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A Additional background

A.1 Priors from posteriors

Given the long-standing debates around the role, selection and treatment of the prior within Bayesian
statistics, it is natural that the choice of p(z) in VAEs has come under scrutiny. While many of the
traditional arguments revolve around principled points on objectivity, the primary issue for VAEs is
the lack of expressiveness of the standard Normal distribution [25]. The shared concern is that the
prior is often selected for practical but, ultimately, spurious reasons of technical convenience (e.g.
conjugacy, reparametrization trick).

One solution is to simply replace the prior with the posterior. The apparent simplicity of this approach
obscures the multiple issues that arise from double-dipping the data [44, 45]. Nevertheless the idea has
endured — from the earlier proposal of posterior Bayes Factors as a solution to Lindley’s paradox [45],
modern Empirical Bayes methods, to likelihood-free models such as the calibration in approximate
Bayesian computation models [46], invoking the posterior ‘before its time’ is increasingly performed
to anchor statistical models to a more objective foundation.

For VAEs, a well-known proposal is to replace the prior with a mixture of variational posteriors,
formed using pseudo-observations uy, ..., ux [26]. This Variational Mixture of Posteriors (VaMP)
prior is given by

. 1«
PV (2) = 22 D o (zlup). (®)
k=1

This results in a multi-modal prior, with the pseudo-observations learned by stochastic backpropa-
gation along with the other parameters 6, ¢. As we define in Section 4, the CoMP method adopts a
similar non-parametric approach to defining the prior.

B Proofs

We give the proof of Theorem 1, which is restated for convenience.

Theorem 1. The following are equivalent: 1) z 11 c under distribution q, 2) for every ¢, € C,
q(z|c) = q(z|c’), 3) for every c € C, q(z|c) = q(z|— ¢), 4) the mutual information I(z,c) = 0 under
distribution q, 5) z cannot predict c better than random guessing.

Proof. 1. = 2.If z 1L ¢, then for every ¢, ¢’ € C, q(z|c) = ¢q(z) = q(z|c).
2. = 3. For ¢ € C, by the definition of ¢(z|— c) we have

_ Zc’éC,c’#cp(c/)q(z|cl) o Zc/ec,clyécp(cl)Q(zlc) -
Q(Z|_‘ C) - Zc/ec,c’;écp(cl) - Zc/eC,c’;écp(C/) - Q(Z|C) )

using condition 2.

3. = 4. We have by definition of the mutual information under distribution ¢

_ [, p(c)q(zlc)
I(Z7 C) - ]Ep(x,c)q(z|x,c) | p(C)q(Z) (10)
which can be written
R , 'log p(c)q(zlc) } (11
peeaatzbec) |72 plo)[p(c)a(zle) + (1 — p(e))a(z|-0)]
applying condition 3. gives
[ p(c)q(zlc) ]
=E x,c)q(z|x,c 1 12
pixatebee) |18 L qtale) + (1 — p(0)qzle)] 12
[ ple)g(zlc)
= Ep(x,0)q(z|x,c) [108 7= 13
p(x,c)q(z]x,c) _ng(c)q(z‘c) (13)
=0. (14)
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4. = 5.' Let Q(c|z) be some prediction rule for predicting c using z. By Gibbs’ Inequality, we

e Q(cla)
p(c) ] '

I(zv C) > ]Ep(x,c)q(z\x,c) |:10g (15)

Since I(z,c¢) = 0, we have

IE;D(x,c)q(z|x,c) [IOg Q(C‘Z)] < E’p(x,c) [logp(c)] . (16)
Observe that the left hand side above is the expected log-likelihood for the prediction rule (), whilst the
right hand side is the the log-likelihood for random guessing of ¢ using only its marginal distribution
p(c). We see that random guessing obtains a log-likelihood which is at least as good as that obtained
using the rule Q.

5. = 1. Consider the prediction rule

. p(c)q(zlc)
clz) = —————. a7
Q*(ele) =05
By condition 5., we have
Ep(x,c)q(z\x,c) [IOg Q*(C|Z)] < IE:p(x,c) [logp(c)] . (18)
Hence,
p(C)q(ZC)]
E x,c)q(z|x,c lo SO (19)
p(x,c)q(z]x,c) { g p(c)q(z)
By Gibbs’ Inequality,
p(C)q(ZIC)]
Epx,c)q(zix,c) [108 =~ =0 (20)
p(x,c)q(z]x,c) { g p(c)q(z)

with equality if and only if p(c)q(z|c) = p(c)q(z). By (19), equality does hold, so p(c)q(z|c) =
p(c)q(z) meaning z LI ¢ under distribution g. O

We next restate and prove Theorem 2.
Theorem 2. The CoMP misalignment penalty satisfies

1 & 1 1
5 ;bg([cq Z q(Zi|Xj, Ci)> — log(uﬂq

IS

EHB

i=1 P(Xz‘,ci)q(zz‘|xi,0i)

> | q(zilx;, C.j))}

GEI -,

> " p(c) KL [q(zc)|lg(z]- )]
ceC
and the bound becomes tight as B — oc.

Proof. First, by linearity of the expectation we have

B
1 1 1
Enle p(xi,ci)q(zi|xi,ci) B E IOg ‘I § q(Zi|Xj, Ci) - 10g II § Q(zi|xj7 Cj)
i=1 ci e

i jel,, GEIe,
1 1
:Enlep(xl-,Ci)q(ZiIXi,Ci) log m Z q(z1]xj,¢;) | —log ﬁ Z q(z1]x4, ¢;)
‘il jer, Taljel.,
(2D
Focusing on the latter term, Jensen’s Inequality gives
1
]EHF=1p(xiyc'i)Q(zi‘xiaCi) —log |I | Z Q(Z1|Xjﬂcj) (22)
Tl el
1
= Eparenatabenen | 7108 { B, poccoatee) | 727 > alzlxjc;) (23)
Tl jelg
= Ep(xlycl)q(zllxlycl) [_ IOg q(Z1|_' Cl)} . (24)

'We interpret ‘better prediction’ in condition 5. as achieving a higher expected log-likelihood.
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s50  For the other term, we take our inspiration from recent work on experimental design [47]. We have

E12, pxsscoatalxes) | 108 \Ic F 2 almbxe) (25)
1 J€I
1
T ] Zje[c1 q(Z1|Xj7Ci)
=E 1 1 L 26
T2, p(xici)a(zilxi,ci) lqu(Zlcl) +log ( q(z1]e1) 0
= E[2 | pixrscn)ata e 108 4(Z1]e)] + A 27)

551 Then applying the tower rule with variable ¢y, |I., | we have the difference term equal to

- 1
T 2jer,, 4(z11%5,¢:)
A=E E lo L 28
en|Zey | HILI=C11 | p(xile1)q(z1]x1,c1) l & ( q(z1]c1) (28)
15 i) iy Xyer,, almafxgc)
- IEC1’|101 | Enlfl | p(xi|c1)q(z1|x1,c1) log |Ie, |
T [Ti=1 ' p(xiler)q(zi]er)

(29)

s52 Now observe that zq, ..., Z|p,, | are equal in distribution, so we can change the sampling distribution
c1
553 to be over

prl|cl \I ‘ Z q(z1|x5, ¢;) (30)

J€ILcy

s54  which amounts to choosing at random which of the xy, ..., XL, to sample z; from. Finally, we
€1
555 observe that

|11 |

H p(xilc1)q(z1]cr) (€1))

s56 1S a normalised distribution over x4, ..., xl I |’Z1' Thus we can write A as the following expected
€1
557 KL divergence

Iey | e, |
A=E, 1| |KL H p(xiler) |I N ; q(z1x;, ci) H1 p(xiler)g(zilen) | |- (32)
J€le i=

558 Since the KL divergence is non-negative, we have shown that A > 0. Therefore

EHB 1p(x“cl)q(zb|x“ci) lOg |I 1| Z Z1|X], CZ) 2 Ep(x1,01)q(Z1IX1,cl) [log q(Z1|Cl)] .
¢ S

(33)
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s59  Putting these two results together, we have shown that

B
1 | 1
E[12, pxs.coatmie) | 5 D 108 . > alzlxj.c) | —log T > azilxgc)
i=1 z i

jel, €l
(34
>E[E etz {log Q(Z”Cl)} (35)
= PO B e q(z1]—cr)
q(z1]c1)
=E log ———— 36
p(x1,c1)q(21|x1,c1) [og q(zl|ﬂcl)] (36)
q(z1]c1)
= p(cl)E x1|c1)q(z1]|x1,c1 |:10g :| (37)
; p(x1le1)q(z1] ) q(z1]-c1)
q(z1]c1)
= E log ———— 38
Cech(cl) q(z1]c1) |:Og q(Zl|—'C1)] ( )
=Y () KL[g(z[0)]lq(z]= ). (39)
ceC
se0 Finally, as B — oo, the Strong Law of Large Numbers implies that
1
log [ — Z q(z1]xj,¢:) | = q(zile), (40)
el e
1
log I Z q(zi|xj,¢) | = q(zi|—¢) (41)
Tl jel,,

561 so (under mild technical assumptions) we conclude that the bound becomes tight in this limit. This
s62 completes the proof. O

ses C  Analysing CoMP gradients

s64 We provide additional details and a full derivation for the results discussed in Section 4.1. To analyse
s65  MMD and CoMP gradients, we focus on the two specific cases that highlight the similarities between
s66 these methods, revealing the remaining differences. Specifically, we consider MMD with a simple
s67 unnormalised Radial Basis Kernel [34]

k(z,2') = e I#=#1°, 42)
ses and a Gaussian variational posterior family with fixed covariance matrix %I
q(z|x, c) x e llz=pa(x0)lI” (43)

s69  We also assume just two conditions |C| = 2. For an MMD penalty, the simplest form of the Kernel
s70 Two-sample Test statistic [17] with batch size B can be written as follows

B
Panvip = Y Pramin (2i, ¢:) (44)
=1
YR i~z 2 1 i~z 2 45
- Z 2 Z € - T T Z € ) (45)
— \ |L,|" e, | |1e,] .
= il g€l JE€I-c,;

s71  taking gradients with respect to z; gives us

2 g2 2 Mz —zi 12
V., Psvip (zi, ¢;) = 7 Z o~ llzi—z;] (Zj_zi)_ﬁ Z e 7i=21% (2, —2;), (46)
cl jel, Tetiel jer,,
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the gradients of the total penalty are

4 Nz —z 112 4 gz 112
Va2, Pymp = 5 Z e llzi—2;]] (2 — 2;) — ———— Z e~ llzi—z] (z; — 2:).

.,

I,
‘il jel.,

e

0

jel.,
The CoMP penalty (ignoring normalising constants) is

B
Peomp = Y _ Peowp(2i, i)

i=1

B
1 1 2 1 2
- = —llzi—peay 1%} _ —llzi—pea |l
=3 igl log .. E e i log T E e i

jele, €I,

if we take the gradient with respect to z; we obtain

V2. Peomp (i, ¢;) =

Nzi—ps |12 Nzi—pag |2
QZjEICi e ||z #ZJH (l‘l’zj —Zi) 2Zj61ﬁ% e |z Mz | (sz *Zi)

“Tzi—paa, 7 Tz —pm, 12
. J . J
BY jer, € BY jer.. €

(47)

(48)

(49)

(50)

where p,; = p(x;, ¢;) is the variational mean for z;. The gradient of the full penalty with respect to

Wz, nOtINE Z; = [y, + €;, 18

Nz —, |2 T
2Zj€ICie qu, HZjH (IJ’Z]‘ _Zi) 2Zjefﬁcie qu, HZJ-H (IJ’Z]' _Zi)

V i, Peomp =
oz " COMP =z, 2 iz, 2
B Zje[ui € ! B Zjelwi € !

— P 2 — =z, 2
Lo Z e~ llzi—paz | (2 — thz,) Z e llzi—pz; |l (z; — pz,)

Mo 7 S P
jet, B 2er, € e, Bler, ¢ '

(G

Finally, to see the connection with nearest neighbour methods, we repeat this analysis with Gaussian

posterior with fixed variance 0. The gradient term is then
1 — ez llzi—pay |12 .
o2 Zje]ci € 2 J (sz - Zz)
1 X 2
BZ e—m|\zz—ﬂzj‘|
jelc;

1 — stz llzi—pa |12 .
?Zjejﬁct e 22 TR (g, — 2;)

1 2
el L |
BZjEIﬁCi e 20 i

V2, Pcomp(2i, ¢i) =

As o — 0, we have

o 52z I —paa I?
S ier., ez lmop
-

where nn; is the index of the nearest neighbour to z; among the set {z; : j € I, }, i.e.

— 5knni

nn; = argminjelﬁ% HZZ - ZJH

indicating that the gradient between z; and z,,, becomes the dominant term in the limit.

D Experimental details

D.1 Dataset details and data processing

Details of the datasets and for each one, how we processed the data.
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Tumour / Cell Line This dataset, as used in the experiments in Cellinger [217]?, consists of bulk
expression profiles for tumours (n=12,236) and cancer cell-lines (n=1,249) across 39 different
cancer types. The tumour samples are taken from The Cancer Genome Atlas (TCGA) [48]° and
Therapeutically Applicable Research To Generate Effective Treatments (TARGET) [49]* and was
compiled by the Treehouse Childhood Cancer Initiative at the UC Santa Cruz Genomics Institute
[50]°. The cell lines are from the Cancer Cell Line Encyclopedia (CCLE) [511°. The condition
variable is the tumour / cell line label. The expression data is restricted to the intersecting subset of
16,612 protein-coding genes and are TPM log,-transformed values.

In our experiments, as is common practice in omics data analysis (e.g. [21]), we pre-process the data
by filtering out low-variance genes. Here we select the 8,000 highest variance genes across cell-lines
and tumours separately and take the union to give a final feature set of 9,468 genes.

For our calculation of m-kBET}, , and 5, . metrics we only include cancer types with at least 400
samples (i.e. 4 x k for our choice of £ = 100) to ensure that the metric retains the ability to evaluate
local mixing. 15 cancer types pass this threshold, representing 82% of all samples.

Single-cell PBMCs This dataset consists of single-cell expression profiles of 14,053 genes for
peripheral blood mononuclear cells (PBMCs), various immune cell types pooled from eight lupus
patient samples. 7,217 of the cells were stimulated with interferon (IFN)-3 while 6,359 were left
untreated (control). [41]. This dataset has been used in [9] and [10] previously. We obtained an
annotated and pre-filtered dataset from [10]” 8, which includes metadata on immune cell type labels
along the condition label; stimulated or control.

The file was read into scanpy [52] and pre-processed using sc.pp.normalize_total(data,
inplace=True), which normalises the data such that each cell has a total count equal to the median
total count across all cells. The normalised counts were then log(z + 1) transformed using the scanpy
function, sc.pp.logip(data). We selected the top 2,000 most variable genes using the scanpy
function, sc.pp.highly_variable_genes(data, flavor="seurat", n_top_genes=2000).

We obtained the top 50 differentially expressed (DE) genes between stimulated and con-
trol cells for each cell type by subsetting the data for each cell type and using scanpy’s
function sc.tl.rank_genes_groups(cell_type_data, groupby=‘‘stim’’, n_genes=50,
method=‘wilcoxon’’), which ranks genes based on a Wilcoxon rank-sum test. For each cell type,
we separated the top 50 DE genes into those that were up-regulated and down-regulated by IFN-/3
stimulation.

UCI Adult Income This dataset is derived from the 1994 United States census bureau and contains
information relating to education, marriage status, ethnicity, self-reported gender of census partici-
pants and a binary high / low income label ($50,000 threshold). Data was downloaded from the UCI
Machine Learning Repository [22].

D.2 Evaluation metrics

Let {(x; c;,d;)}Y, be the dataset N samples with ¢; € {0,1} the binary condition variable and
d; € {d™ }M_ | an additional discrete random variable of interest not used in training.
We start with some housekeeping definitions of sample index subsets of the full dataset [1, V]. Let

N; 1 be the index set of the k nearest-neighbors of z;. Let I be the index set of samples has ¢; = c,
and Jg for samples that has d; = d.

2
3

www.nature.com/articles/s41467-020-20294-x#data-availability
Www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
‘ocg.cancer.gov/programs/target
*https://treehousegenomics.soe.ucsc.edu/public-data/previous-compendia.html#
tumor_v10_polyA
6portals .broadinstitute.org/ccle
"https://github.com/theislab/trVAE_reproducibility
$https://drive.google.com/drive/folders/1n1SLbXhad0H7 j72Z0zZAxrj_-2kczgl8, filename:
kang_count.hbad
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From [42], kBET} , is the proportion of rejected null hypotheses from the set of separate x>
independence tests, with significance threshold «, on the %k nearest-neighbours of every sample. If we

let KBETY _, be the metric calculated on the filtered sub-population with index set J, then we define
a mean kBET metric as

m-kBET, , = — Z KBET{ "’ (55)

m=1
We also consider local Silhouette Coefficients [43]
1 bz k i,k
¢ = = _ 56
Sk, |I | Z max(a; k,bZ k) Sk |1, U I ZEIX:UI max(a; k, bi k) (56)

where a; , and b, j, are the mean Euclidean distances between z; and all other sample points in the k
nearest-neighbor set that are of the same and different condition variable respectively; i.e.

1 1
aak ‘Ni,k;ﬁlc HZ Z]H Sk ‘Ni,k:ﬁIﬁCJ HZ Z]H ( )

1 jEN; kNI, ‘U JEN; kNI,

Similar to the mean kBET metric, we can also define a mean Silhouette Coefficient s, . as follows.

We first define b —a d
| Z i k,d ik,
_ 58
‘Sk,C | l ﬂ Jl| i ma‘X(ai)]@d; bi,k,d) 7 ( )

with

1
Aipa = > lzi -z,
[N O Lo, 0 Jal JEN; e, Ny

1 (59)
bi,k,dE Z ||Zi_sz~
INik O e 0 al sy ST,
Then the mean local Silhouette Coefficient is
M
_ 1 (m)
Shye ::Mm 1 She s (60)

with §; defined anagolously to sj in (56). A well-mixed representation that keeps samples with
identical d; together will have low values of m-kBET}, ., and 5 . close to zero. Higher values near 1
would indicate either an undesirable dependency between z and c in the form of identifiable clusters
around values of ¢, a censoring process that fails to preserve the clustering with respect to d, or a
combination of both.

D.3 Tumour / Cell Line representations for individual cancer types

As the cancer type labels are not used in training, there is the possibility that cell lines of one cancer
type will cluster around tumours of a different type. Here we illustrate this risk by examining the
subset of Prostate Cancer latent representations inferred by CoMP and trVAE, where the majority
of tumours and cell lines for this cancer type can be found in a single group. As shown in Figure 7,
trVAE has cell-lines from other cancer types erroneously placed within the prostate cancer cluster;
CoMP, on the other hand, maintains a relatively high level of specificity with fewer non-prostate
cancer cell lines present. On average across all cancer types, this favourable behaviour of CoMP is
reflected in the low § and m-kBET scores.

D.4 Condition mixing metrics for single-cell PBMC expression data

In this section we present additional results of our experiments on the single-cell PBMC expression
data evaluating the condition mixing capabilities of CoMP. We focus on the two mixing metrics —
sy, and kBET}, ., — and report both the mean values and their standard errors over 10 random model
initialisations. We have the following three sets of experiments:
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Figure 7: 2D UMAP projection of the CoMP and trVAE posterior means of z; from Tumour / Cell
Line data and the detailed Prostate Cancer tumour sample clusters.

Table 3: kBET metrics for single-cell PBMC dataset with & = 100 and o = 0.1. Here, kBET
and m-KBET refer to the mean KBET and mean m-kBET across 10 random seeds for each model,
respectively. SEM represents the standard error of the mean.

Model kBET), KBET),+SEM m-kBET, m-kBET},, +SEM

VAE 0.9788 (0.9754, 0.9821) 0.9443 (0.9351, 0.9535)
CVAE 09056  (0.8973,0.9139) 0.8202 (0.8060, 0.8344)
VFAE  0.4753 (0.4660, 0.4847) 0.4067 (0.3942,0.4192)
trVAE  0.5082  (0.4946, 0.5218) 0.3819 (0.3683, 0.3955)
CoMP  0.1211 (0.0845, 0.1577) 0.0681 (0.0388, 0.0975)

Benchmarking In Tables 3 to 4 we benchmark CoMP against the four other VAE models and show
that CoMP outperforms the other models by significant margins on both metrics.

Cell type level evaluation In Table 5 we evaluate the mixing at a cell type level, where the strong
mixing capabilities of CoMP is seen consistently across cell types. In particular, we highlight the
good mixing of the CD14 Mono cell type by CoMP relative to the other penalised models.

CoMP penalty scale v In Tables 6 to 8 we explore the effect of varying the CoMP penalty scale
at both the population and cell type levels. Here we see that the optimum value is ~ 1.

Table 4: Silhouette Coefficient metrics for single-cell PBMC dataset with k¥ = 100. Here, s and §
refer to the mean s and mean s across 10 random seeds for each model, respectively. SEM represents
the standard error of the mean.

Model Sk Sk + SEM §k §k + SEM

VAE 0.6354  (0.6303,0.6404)  0.5249  (0.5172, 0.5326)
CVAE 04872  (0.4805,0.4939) 0.3856  (0.3802, 0.3910)
VFAE 0.0501  (0.0457,0.0544)  0.0793  (0.0731, 0.0855)
trVAE  0.0651  (0.0596, 0.0705)  0.0605  (0.0574, 0.0636)
CoMP -0.0026 (-0.0032,-0.0020) -0.0013 (-0.0027, 0.0001)
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Table 5: Cell type specific kBET and Silhouette Coefficient metrics for the single-cell PBMC dataset
summarised for 10 random seeds for each model. Metrics represent the mean value across the 10

random seeds for each model. Here, £ = 100 and o« = 0.1.

Cell type Model kBET, kBETy . = SEM Sk s £ SEM

B VAE 0.9724 (0.9683, 0.9765)  0.5375 (0.5225, 0.5526)

B CVAE 0.9016 (0.8964, 0.9068)  0.2884 (0.2783, 0.2985)

B VFAE  0.3892 (0.3357,0.4426)  0.0263 (0.0205, 0.0320)

B trVAE 0.2697 (0.2243,0.3151)  0.0102 (0.0083, 0.0121)

B CoMP  0.0110 (0.0002, 0.0217)  -0.0040 (-0.0050, -0.0030)
CD14 Mono VAE 1.0000 (1.0000, 1.0000)  0.9388 (0.9356, 0.9420)

CD14 Mono CVAE 1.0000 (1.0000, 1.0000)  0.9373 (0.9317, 0.9428)

CD14 Mono VFAE  0.8192 (0.8084, 0.8300)  0.0548 (0.0486, 0.0610)

CD14 Mono trVAE 0.9360 (0.9213,0.9508) 0.1579 (0.1414, 0.1743)

CD14 Mono CoMP  0.1709 (0.0817,0.2601)  0.0003  (-0.0015, 0.0022)
CD16 Mono VAE 1.0000 (1.0000, 1.0000) 0.7462 (0.7168, 0.7756)

CD16 Mono CVAE 1.0000 (1.0000, 1.0000)  0.7455 (0.7204, 0.7706)

CD16 Mono VFAE  0.8796 (0.8572,0.9020)  0.2328 (0.1860, 0.2796)

CD16 Mono trVAE 0.8059 (0.7856, 0.8263)  0.0535 (0.0493, 0.0576)

CD16 Mono CoMP  0.0947 (0.0184,0.1711)  0.0005  (-0.0011, 0.0021)
CD4T VAE 0.9964 (0.9960, 0.9968)  0.5069 (0.4932, 0.5206)

CD4T CVAE 09104 (0.9028,0.9179)  0.2103 (0.1956, 0.2250)

CD4 T VFAE  0.1460 (0.1358,0.1562)  0.0035 (0.0030, 0.0039)

CD4T trVAE 0.2236 (0.1985, 0.2487)  0.0042 (0.0036, 0.0047)

CD4 T CoMP  0.0538 (0.0442,0.0634) -0.0022 (-0.0028, -0.0016)
CD8 T VAE 0.9041 (0.8633, 0.9448)  0.2828 (0.2714, 0.2942)

CD8T CVAE 0.4805 (0.4080, 0.5529)  0.0653 (0.0579, 0.0728)

CD8 T VFAE 0.0397 (0.0307, 0.0486)  0.0094 (0.0083, 0.0106)

CD8 T trVAE 0.0317 (0.0224, 0.0409)  0.0071 (0.0052, 0.0090)

CD8 T CoMP  0.0634 (0.0437,0.0830) -0.0000 (-0.0008, 0.0008)
DC VAE 1.0000 (1.0000, 1.0000)  0.6834 (0.6678, 0.6991)

DC CVAE 1.0000 (1.0000, 1.0000)  0.6723 (0.6598, 0.6847)

DC VFAE  0.7095 (0.6715,0.7476)  0.2901 (0.2733, 0.3069)

DC trVAE 0.6286 (0.5972,0.6600)  0.2339 (0.2225, 0.2453)

DC CoMP  0.0784 (0.0329, 0.1239)  0.0034  (-0.0027, 0.0096)
NK VAE 0.9645 (0.9525,0.9764)  0.2609 (0.2358, 0.2860)

NK CVAE 0.8798 (0.8682,0.8914)  0.1095 (0.0975, 0.1215)

NK VFAE  0.1548 (0.1258, 0.1838)  0.0093 (0.0072, 0.0114)

NK trVAE 0.1013 (0.0514,0.1512)  0.0113 (0.0067, 0.0159)

NK CoMP  0.0721 (0.0488, 0.0953) -0.0025 (-0.0035, -0.0015)
T VAE 0.7172 (0.6377,0.7967)  0.2423 (0.2135, 0.2711)

T CVAE 0.3891 (0.3315, 0.4466)  0.0561 (0.0459, 0.0663)

T VFAE  0.1155 (0.0934, 0.1376)  0.0082 (0.0060, 0.0104)

T trVAE 0.0585 (0.0354, 0.0815)  0.0061 (0.0047, 0.0075)

T CoMP  0.0009 (0.0003, 0.0016)  -0.0062 (-0.0074, -0.0050)
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Table 6: Effect of varying ~ for the CoMP model on the kBET metrics for the single-cell PBMC
dataset. Here, kBET and m-kBET refer to the mean kBET and mean m-kBET across 10 random
seeds for each value of v, respectively. SEM represents the standard error of the mean. Here, k¥ = 100
and oo = 0.1.

Model kBET,. kBET;,+SEM m-kBET,, m-kBET;, +SEM
CoMP 025 02703  (0.2482,0.2924) 0.1276 (0.1085, 0.1467)
CoMP 050  0.1741  (0.1438, 0.2045) 0.0763 (0.0543, 0.0983)
CoMP 100  0.1211  (0.0845,0.1577) 0.0681 (0.0388, 0.0975)
CoMP 5.00  0.4426  (0.3889,0.4963) 0.4419 (0.3827,0.5011)
CoMP 1000 0.5311  (0.4456,0.6167) 0.5118 (0.4135, 0.6100)
CoMP 1500 0.4288  (0.3511,0.5065) 0.4614 (0.3738, 0.5489)
CoMP 20.00 0.5880  (0.5101, 0.6660) 0.6383 (0.5547, 0.7219)

Table 7: Effect of varying v for the CoMP model on the Silhouette Coefficient metrics for the
single-cell PBMC dataset. Here, s and s refer to the mean s and mean § across 10 random seeds for
each value of v, respectively. SEM represents the standard error of the mean. Here, k£ = 100.

Model v Sk s = SEM Sk s = SEM

CoMP 0.25 -0.0024 (-0.0028,-0.0021) -0.0006 (-0.0018, 0.0006)
CoMP 0.50  -0.0029 (-0.0030,-0.0028) -0.0023 (-0.0031, -0.0015)
CoMP 1.00 -0.0026 (-0.0032,-0.0020) -0.0013 (-0.0027, 0.0001)
CoMP 5.00 0.0043  (0.0026, 0.0059)  0.0209  (0.0145, 0.0274)
CoMP 10.00 0.0028  (0.0016,0.0039)  0.0523  (0.0300, 0.0746)
CoMP 15.00 0.0046  (0.0025,0.0067)  0.0750  (0.0484,0.1016)
CoMP 20.00 0.0061 (0.0038,0.0083)  0.1319  (0.1053,0.1584)

D.5 Counterfactual prediction of single-cell PBMC expression data (IFN-3 stimulation)

In this section we present the full results on the counterfactual prediction of single-cell PBMC
expression data under IFN-S stimulation. In Tables 9 and 10, we present the mean and standard
error of the Pearson correlation coefficient and MSE metrics respectively for CoMP and the other
four VAE models. We present our results for each cell type separately. As is consistent with the
summary presented in Figures 5 and 8, we see that CoMP produces highly accurate counterfactual
reconstructions. Indeed, this can be seen in the scatter plots showing the mean expression of (actual)
stimulated cells against the mean of counterfactually stimulated control cells (Figure 9). Here, we see
that the other VAE models tend to underestimate the expression of genes that are up-regulated by
IFN-g stimulation and overestimate the expression of genes that are down-regulated. However, this
is not as evident with CoMP.

Similar to the mixing metrics, we evaluate the effect of varying the penalty scale y. As we see in
Tables 12 and 11 the optimal value is ~ 1.

D.6 Implementation details and hyperparameters

The encoder and decoders are parameterised by multi-layer fully-connected networks. Following
the trVAE implementation [10], we implement a multi-scale Gaussian kernel for both trVAE and
VFAE benchmark models, except on the Adult Income dataset where a single scale kernel was used
to match the original implementation. The details of the model architectures and hyperparameters
used in CoMP, VFAE and trVAE across three sets of experiments are given in Tables 13-21.

D.7 Model training resources
Experiments were performed on NVIDIA Tesla V100 GPUs. Each training run of CoMP for a single

hyperparameter configuration on the Tumour / Cell Line dataset (our largest dataset) on a single GPU
takes 2-3 hours. Running times for the other models are broadly similar.
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Table 8: Effect of varying -y for cell type specific kBET and s metrics for the single-cell PBMC
dataset. Metrics represent the mean value across the 10 random seeds. Here, £ = 100 and o = 0.1.

Cell type Model kBET) . kBET) . + SEM Sk si + SEM

B CoMP 025  0.0061  (0.0037,0.0086) -0.0046 (-0.0053, -0.0038)
B CoMP 0.50  0.0030  (0.0004,0.0056) -0.0033 (-0.0039, -0.0028)
B CoMP 100  0.0110  (0.0002,0.0217) -0.0040 (-0.0050, -0.0030)
B CoMP 5.00  0.4860  (0.3881,0.5840) 0.0094  (0.0073,0.0115)

B CoMP 10.00 0.5321  (0.4226,0.6415) 0.0195  (0.0118,0.0273)

B CoMP 1500 05229  (0.4331,0.6127) 0.0167  (0.0109, 0.0224)

B CoMP 20.00 0.6135  (0.5308,0.6963) 0.0729  (0.0384, 0.1075)

CD14Mono CoMP 025  0.6868  (0.6336,0.7400) 0.0060  (-0.0001, 0.0121)
CD14Mono CoMP 050  0.3840  (0.3001,0.4680) -0.0007 (-0.0017, 0.0003)
CD14Mono CoMP 1.00  0.1709  (0.0817,0.2601)  0.0003  (-0.0015, 0.0022)
CD14Mono CoMP 5.00 04530  (0.3295,0.5765) 0.0254  (0.0092, 0.0416)

CD14Mono CoMP 10.00 07073  (0.6114,0.8031) 0.0745  (0.0419, 0.1072)

CD14Mono CoMP 15.00 0.6991  (0.5946,0.8036) 0.1240  (0.0795, 0.1685)

CD14Mono CoMP 20.00 0.7889  (0.6943,0.8834) 0.1429  (0.1012, 0.1846)

CD16Mono CoMP 025  0.0963  (0.0382,0.1543) 0.0031  (0.0018, 0.0045)

CD16 Mono CoMP 050  0.0589  (0.0216,0.0962)  0.0003  (-0.0008, 0.0013)
CD16Mono CoMP 1.00  0.0947  (0.0184,0.1711)  0.0005  (-0.0011, 0.0021)
CD16Mono CoMP 5.00  0.5897  (0.4934,0.6859) 0.0421  (0.0248, 0.0593)

CD16Mono CoMP 10.00 0.6113  (0.4660,0.7566) 0.1741  (0.0946, 0.2537)

CD16Mono CoMP 15.00 0.5950  (0.4552,0.7348) 0.2778  (0.1705, 0.3850)

CD16Mono CoMP 20.00 0.8420  (0.7381,0.9460) 0.4705  (0.3782, 0.5628)

CD4T CoMP 025  0.0642  (0.0543,0.0742) -0.0027 (-0.0032, -0.0022)
CD4T CoMP 0.50  0.0401  (0.0344,0.0458) -0.0027 (-0.0031, -0.0023)
CD4T CoMP 1.00  0.0538  (0.0442,0.0634) -0.0022 (-0.0028, -0.0016)
CD4T CoMP 5.00 03631  (0.2966,0.4296)  0.0036  (0.0024, 0.0048)

CD4T CoMP 10.00 0.4058  (0.3020,0.5096) 0.0075  (0.0039, 0.0111)

CD4 T CoMP 1500 03287  (0.2466,0.4108)  0.0080  (0.0043,0.0117)

CD4T CoMP 20.00 05127  (0.4140,0.6115) 0.0561  (0.0192, 0.0929)

CD8 T CoMP 025  0.0081  (0.0051,0.0111) -0.0015 (-0.0026, -0.0004)
CD8 T CoMP 050  0.0216  (0.0129,0.0304) -0.0021 (-0.0032, -0.0010)
CD8 T CoMP 100  0.0634  (0.0437,0.0830) -0.0000  (-0.0008, 0.0008)
CD8 T CoMP 5.00  0.4287  (0.3508,0.5067) 0.0266  (0.0167, 0.0365)

CD8 T CoMP 10.00 0.4289  (0.3251,0.5326) 0.0115  (0.0073,0.0156)

CD8 T CoMP 1500 02733  (0.1927,0.3540) 0.0071  (0.0051, 0.0090)

CD8 T CoMP 20.00 0.4913  (0.3731,0.6095) 0.0495  (0.0127, 0.0863)

DC CoMP 025  0.1379  (0.0972,0.1786)  0.0056  (0.0026, 0.0085)

DC CoMP 050  0.0739  (0.0394,0.1085) 0.0009  (-0.0029, 0.0047)
DC CoMP 100  0.0784  (0.0329,0.1239) 0.0034  (-0.0027, 0.0096)
DC CoMP 5.00 02339  (0.1546,0.3132) 0.0461  (0.0230, 0.0693)

DC CoMP 10.00 0.4642  (0.3143,0.6141) 0.1064  (0.0433,0.1695)

DC CoMP 1500 0.6008  (0.4650,0.7367) 0.1502  (0.0832,0.2172)

DC CoMP 20.00 0.7962  (0.6907,0.9017) 0.1718  (0.1117,0.2319)

NK CoMP 025  0.0158  (0.0075,0.0241) -0.0043  (-0.0049, -0.0036)
NK CoMP 050  0.0233  (0.0045,0.0420) -0.0048 (-0.0056, -0.0041)
NK CoMP 1.00  0.0721  (0.0488,0.0953) -0.0025 (-0.0035,-0.0015)
NK CoMP 5.00  0.6378  (0.5259,0.7497) 0.0058  (0.0018, 0.0097)

NK CoMP 10.00 0.5422  (0.4403,0.6440) 0.0135  (0.0094, 0.0177)

NK CoMP 1500 0.4105 (0.3194,0.5016) 0.0134  (0.0083, 0.0185)

NK CoMP 20.00 0.5637  (0.4606,0.6667) 0.0372  (0.0152,0.0592)

T CoMP 025  0.0052  (0.0025,0.0079) -0.0066 (-0.0076, -0.0057)
T CoMP 050  0.0054  (0.0021,0.0086) -0.0059 (-0.0066, -0.0052)
T CoMP 1.00  0.0009  (0.0003,0.0016) -0.0062 (-0.0074, -0.0050)
T CoMP 5.00  0.3430  (0.2440, 0.4420)  0.0087  (0.0041, 0.0134)

T CoMP 10.00 0.4024  (0.3032,0.5015) 0.0113  (0.0067, 0.0159)

T CoMP 1500 0.2605  (0.1846,0.3364) 0.0030  (0.0005, 0.0055)

T CoMP 20.00 0.4979  (0.3883,0.6076) 0.0542  (0.0224, 0.0860)

24



Table 9: Counterfactual reconstruction by cell type: Pearson correlation coefficient metrics for all
genes (4;;) and the top 50 DE genes (rpg). Metrics represent the mean across 10 random seeds for

each model. SEM represents standard error of the mean.

Cell type Model Tall ra = SEM TDE rpe = SEM

B VAE 0.8854 (0.8850, 0.8857) 0.8170 (0.8165, 0.8175)
B CVAE 0.9499 (0.9481,0.9516) 0.9153 (0.9125,0.9181)
B VFAE 0.9908 (0.9901,0.9915) 0.9880 (0.9866, 0.9893)
B trVAE 09877 (0.9868, 0.9886) 0.9833 (0.9817, 0.9849)
B CoMP 0.9986 (0.9984, 0.9988) 0.9985 (0.9982, 0.9987)
CDI14 Mono VAE 0.7488 (0.7485,0.7491) 0.4896 (0.4891, 0.4900)
CD14 Mono CVAE 0.7529 (0.7520,0.7538) 0.4958 (0.4938, 0.4977)
CDl14 Mono VFAE 0.9954 (0.9951,0.9958) 0.9928 (0.9921, 0.9935)
CD14 Mono trVAE 0.9830 (0.9804,0.9856) 0.9650 (0.9586,0.9714)
CDl14 Mono CoMP 0.9954 (0.9915,0.9992) 0.9920 (0.9848, 0.9993)
CD16 Mono VAE 0.8304 (0.8301,0.8307) 0.7135 (0.7131, 0.7140)
CD16 Mono CVAE 0.8351 (0.8341, 0.8360) 0.7223 (0.7203, 0.7243)
CD16 Mono VFAE 0.9912 (0.9909, 0.9915) 0.9910 (0.9904, 0.9916)
CDI16 Mono trVAE 0.9881 (0.9873,0.9889) 0.9821 (0.9802, 0.9839)
CD16 Mono CoMP 0.9990 (0.9985,0.9994) 0.9989 (0.9986, 0.9993)
CDh4 T VAE 0.8975 (0.8971,0.8978) 0.8366 (0.8360, 0.8372)
CDh4 T CVAE 0.9697 (0.9682,0.9712) 0.9514 (0.9492, 0.9537)
CDh4 T VFAE 0.9977 (0.9975,0.9979) 0.9983 (0.9982, 0.9985)
CD4 T trVAE  0.9915 (0.9908,0.9922) 0.9905 (0.9893, 0.9918)
CDh4 T CoMP 0.9990 (0.9990, 0.9991) 0.9988 (0.9987, 0.9989)
CD8T VAE 0.9108 (0.9104,0.9112) 0.8719 (0.8713, 0.8724)
CD8 T CVAE 09726 (0.9715,0.9736) 0.9613 (0.9598, 0.9628)
CD8 T VFAE 0.9923 (0.9920,0.9927) 0.9935 (0.9931, 0.9939)
CD8 T trVAE 09828 (0.9810,0.9846) 0.9808 (0.9781, 0.9836)
CD8T CoMP 0.9927 (0.9917,0.9937) 0.9950 (0.9945, 0.9955)
DC VAE 0.8156 (0.8153,0.8159) 0.5809 (0.5802, 0.5816)
DC CVAE 0.8213 (0.8205, 0.8221) 0.5943 (0.5925, 0.5961)
DC VFAE 009885 (0.9879,0.9892) 0.9894 (0.9887, 0.9901)
DC trVAE 09743 (0.9702,0.9783) 0.9502 (0.9396, 0.9608)
DC CoMP 0.9946 (0.9925,0.9966) 0.9931 (0.9899, 0.9962)
NK VAE 0.8918 (0.8910, 0.8926) 0.8304 (0.8292, 0.8316)
NK CVAE 0.9539 (0.9520,0.9558) 0.9269 (0.9237, 0.9301)
NK VFAE 09870 (0.9865,0.9874) 0.9864 (0.9855, 0.9873)
NK trVAE  0.9393 (0.9259,0.9526) 0.9290 (0.9113, 0.9466)
NK CoMP 0.9917 (0.9904, 0.9929) 0.9899 (0.9881, 0.9917)
T VAE 0.8848 (0.8843,0.8853) 0.7469 (0.7457, 0.7480)
T CVAE 0.9516 (0.9500, 0.9533) 0.8960 (0.8926, 0.8994)
T VFAE 09849 (0.9841,0.9856) 0.9763 (0.9750, 0.9777)
T trVAE 0.9567 (0.9498,0.9637) 0.9368 (0.9294, 0.9443)
T CoMP 0.9941 (0.9936, 0.9946) 0.9934 (0.9928, 0.9940)
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Table 10: Counterfactual reconstruction by cell type: Mean squared error metrics for all genes
(MSE,);) and the top 50 DE genes (MSEpg). Metrics represent the mean across 10 random seeds for

each model. SEM represents standard error of the mean.

Cell type Model MSEall MSEall + SEM MSEDE MSEDE + SEM
B VAE 0.0085 (0.0085,0.0085) 0.3230 (0.3221, 0.3239)
B CVAE 0.0038 (0.0037,0.0039) 0.1398 (0.1347, 0.1448)
B VFAE 0.0008 (0.0007,0.0008) 0.0199 (0.0178, 0.0220)
B trVAE  0.0010 (0.0009, 0.0010) 0.0276  (0.0250, 0.0301)
B CoMP 0.0001 (0.0001, 0.0001) 0.0024 (0.0020, 0.0028)
CD14 Mono VAE 0.0483 (0.0483,0.0484) 1.7942  (1.7923, 1.7962)
CD14 Mono CVAE 0.0476 (0.0475,0.0478) 1.7624 (1.7563, 1.7684)
CD14 Mono VFAE 0.0014 (0.0013,0.0015) 0.0343 (0.0314, 0.0371)
CD14 Mono trVAE 0.0044 (0.0038, 0.0051) 0.1422  (0.1190, 0.1654)
CD14 Mono CoMP 0.0011 (0.0002,0.0019) 0.0245 (0.0023, 0.0468)
CD16 Mono VAE 0.0301 (0.0301,0.0302) 1.1255 (1.1234,1.1276)
CD16 Mono CVAE 0.0294 (0.0293,0.0295) 1.0933  (1.0878, 1.0989)
CD16 Mono VFAE 0.0017 (0.0017,0.0018) 0.0223  (0.0204, 0.0242)
CD16 Mono trVAE 0.0029 (0.0027,0.0031) 0.0861 (0.0790, 0.0932)
CD16 Mono CoMP 0.0002 (0.0001, 0.0003) 0.0031 (0.0017, 0.0044)
Ch4T VAE 0.0060  (0.0059, 0.0060) 0.2274  (0.2266, 0.2282)
CDh4T CVAE 0.0018 (0.0017,0.0019) 0.0677 (0.0644, 0.0709)
Ch4T VFAE 0.0001 (0.0001, 0.0002) 0.0021 (0.0018, 0.0023)
Ch4T trVAE  0.0005 (0.0005, 0.0006) 0.0126  (0.0107,0.0144)
CD4T CoMP 0.0001 (0.0001, 0.0001) 0.0015 (0.0014, 0.0016)
CDST VAE 0.0058 (0.0058,0.0058) 0.2187 (0.2178, 0.2196)
CD8 T CVAE 0.0019 (0.0019, 0.0020) 0.0684 (0.0659, 0.0709)
CDST VFAE 0.0005 (0.0005,0.0006) 0.0098 (0.0093,0.0103)
CD8 T trVAE 0.0012 (0.0011, 0.0013) 0.0332  (0.0284, 0.0381)
CDST CoMP 0.0005 (0.0004,0.0006) 0.0074 (0.0066, 0.0082)
DC VAE 0.0332  (0.0331,0.0332) 1.2308 (1.2292, 1.2324)
DC CVAE 0.0322 (0.0321,0.0324) 1.1887 (1.1834,1.1939)
DC VFAE 0.0024 (0.0023,0.0025) 0.0303 (0.0287,0.0318)
DC trVAE  0.0056 (0.0048,0.0064) 0.1758 (0.1436, 0.2081)
DC CoMP 0.0011 (0.0007,0.0016) 0.0161 (0.0083, 0.0239)
NK VAE 0.0091 (0.0091,0.0092) 0.3395 (0.3370, 0.3420)
NK CVAE 0.0043 (0.0041,0.0044) 0.1535 (0.1477,0.1593)
NK VFAE 0.0014 (0.0013,0.0014) 0.0345 (0.0327, 0.0362)
NK trVAE  0.0053 (0.0042,0.0064) 0.1455 (0.1100, 0.1810)
NK CoMP 0.0008 (0.0007,0.0010) 0.0204 (0.0169, 0.0238)
T VAE 0.0077  (0.0077,0.0077)  0.2799  (0.2786, 0.2811)
T CVAE 0.0033 (0.0032,0.0034) 0.1126 (0.1088,0.1164)
T VFAE 0.0011 (0.0010,0.0011) 0.0237 (0.0223, 0.0252)
T trVAE  0.0030 (0.0025,0.0034) 0.0674 (0.0583, 0.0764)
T CoMP 0.0004 (0.0004, 0.0005) 0.0066 (0.0060, 0.0073)
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Table 11: Effect of «v on counterfactual data reconstruction: Mean Pearson correlation coefficient for

all and DE genes across 10 random seeds.

Cell type Model ~v Tall ra £ SEM TDE rpg = SEM

B CoMP 0.25 09987 (0.9986, 0.9988) 0.9986 (0.9984, 0.9987)
B CoMP 0.50 09987 (0.9985,0.9988) 0.9985 (0.9983, 0.9988)
B CoMP 1.00 09986 (0.9984,0.9988) 0.9985 (0.9982, 0.9987)
B CoMP 5.00 09577 (0.9432,0.9722) 0.9623 (0.9510, 0.9736)
B CoMP 10.00 0.9233 (0.9023, 0.9443) 0.9397 (0.9239, 0.9555)
B CoMP 15.00 09106 (0.8925,0.9287) 0.9299 (0.9163, 0.9435)
B CoMP 20.00 0.8974 (0.8841,0.9107) 0.9080 (0.8966, 0.9195)
CD14Mono CoMP 0.25 0.9906 (0.9866,0.9945) 0.9828 (0.9746, 0.9909)
CD14Mono CoMP 0.50 0.9948 (0.9917,0.9980) 0.9910 (0.9844,0.9977)
CD14Mono CoMP 1.00 0.9954 (0.9915,0.9992) 0.9920 (0.9848, 0.9993)
CD14Mono CoMP 5.00 0.9892 (0.9831,0.9954) 0.9823 (0.9723,0.9922)
CD14 Mono CoMP 10.00 0.9536 (0.9316,0.9757) 0.9439 (0.9217,0.9662)
CD14 Mono CoMP 15.00 0.9224 (0.8933,0.9515) 09174 (0.8886, 0.9463)
CD14 Mono CoMP 20.00 0.9034 (0.8737,0.9332) 0.8966 (0.8673,0.9258)
CD16 Mono CoMP 0.25 09983 (0.9977,0.9989) 0.9982 (0.9976, 0.9988)
CD16 Mono CoMP 0.50  0.9989 (0.9985,0.9992) 0.9988 (0.9985,0.9991)
CD16 Mono CoMP 1.00  0.9990 (0.9985,0.9994) 0.9989 (0.9986, 0.9993)
CD16 Mono CoMP 5.00 0.9847 (0.9805,0.9890) 0.9801 (0.9753,0.9850)
CD16 Mono CoMP 10.00 0.9420 (0.9168,0.9672) 0.9503 (0.9313, 0.9693)
CD16 Mono CoMP 15.00 09017 (0.8702,0.9332) 0.9222 (0.8999, 0.9444)
CD16 Mono CoMP 20.00 0.8563 (0.8289,0.8838) 0.8850 (0.8668,0.9031)
CD4T CoMP 0.25 09989 (0.9989, 0.9990) 0.9987 (0.9986, 0.9988)
CD4T CoMP 0.50  0.9991 (0.9990, 0.9991) 0.9989 (0.9988, 0.9990)
CD4T CoMP 1.00 0.9990 (0.9990,0.9991) 0.9988 (0.9987, 0.9989)
CD4T CoMP 5.00 09925 (0.9899,0.9951) 0.9901 (0.9863, 0.9939)
CD4T CoMP 10.00 0.9948 (0.9933,0.9962) 0.9970 (0.9954, 0.9985)
CD4T CoMP 15.00 0.9944 (0.9931,0.9958) 0.9979 (0.9975, 0.9983)
CD4T CoMP 20.00 0.9782 (0.9689,0.9875) 0.9738 (0.9584, 0.9892)
CD8 T CoMP 0.25 09963 (0.9961,0.9964) 0.9965 (0.9964, 0.9966)
CDS8T CoMP 0.50 09955 (0.9951, 0.9960) 0.9962 (0.9959, 0.9965)
CD8T CoMP 1.00 0.9927 (0.9917,0.9937) 0.9950 (0.9945, 0.9955)
CDS8 T CoMP 5.00 0.9666 (0.9626,0.9705) 0.9790 (0.9765,0.9814)
CD8T CoMP 10.00 0.9559 (0.9499, 0.9620) 0.9757 (0.9727, 0.9787)
CDS8 T CoMP 15.00 0.9528 (0.9468, 0.9589) 0.9745 (0.9715,0.9774)
CD8T CoMP 20.00 0.9455 (0.9397,0.9512) 0.9605 (0.9516, 0.9694)
DC CoMP 0.25 09959 (0.9955,0.9962) 0.9945 (0.9942, 0.9949)
DC CoMP 0.50 0.9966 (0.9963,0.9970) 0.9956 (0.9949, 0.9962)
DC CoMP 1.00 09946 (0.9925,0.9966) 0.9931 (0.9899, 0.9962)
DC CoMP 5.00 09694 (0.9576,0.9811) 0.9671 (0.9528,0.9814)
DC CoMP 10.00 0.9219 (0.8966, 0.9472) 0.9265 (0.9031, 0.9499)
DC CoMP 15.00 0.8867 (0.8549,0.9184) 0.8955 (0.8686,0.9224)
DC CoMP 20.00 0.8547 (0.8288,0.8806) 0.8676 (0.8428, 0.8924)
NK CoMP 0.25 09962 (0.9959, 0.9964) 0.9955 (0.9951, 0.9959)
NK CoMP 0.50 0.9949 (0.9942,0.9957) 0.9938 (0.9927, 0.9950)
NK CoMP 1.00 09917 (0.9904, 0.9929) 0.9899 (0.9881, 0.9917)
NK CoMP 5.00 09567 (0.9491,0.9643) 0.9399 (0.9296, 0.9501)
NK CoMP 10.00 0.8916 (0.8654,0.9178) 0.8670 (0.8361, 0.8979)
NK CoMP 15.00 0.8780 (0.8501,0.9060) 0.8518 (0.8187,0.8850)
NK CoMP 20.00 0.8767 (0.8517,0.9018) 0.8477 (0.8189, 0.8765)
T CoMP 0.25 09951 (0.9947,0.9954) 0.9945 (0.9940, 0.9950)
T CoMP 0.50 09950 (0.9947,0.9952) 0.9945 (0.9940, 0.9949)
T CoMP 1.00 09941 (0.9936, 0.9946) 0.9934 (0.9928, 0.9940)
T CoMP 5.00 09682 (0.9584,0.9779) 0.9690 (0.9627,0.9753)
T CoMP 10.00 0.9462 (0.9336,0.9588) 0.9595 (0.9519, 0.9672)
T CoMP 15.00 0.9402 (0.9277,0.9527) 0.9569 (0.9495, 0.9642)
T CoMP 20.00 0.9239 (0.9136,0.9342) 0.9254 (0.9092, 0.9416)
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Table 12: Effect of v on counterfactual data reconstruction: Mean of the mean squared error (MSE)
for all and DE genes across 10 random seeds.

Cell type Model Y MSEall MSEaU + SEM MSEDE MSEDE + SEM
B CoMP 0.25 0.0001 (0.0001,0.0001) 0.0023  (0.0021, 0.0025)
B CoMP 0.50  0.0001 (0.0001, 0.0001) 0.0023 (0.0019, 0.0026)
B CoMP 1.00 0.0001 (0.0001,0.0001) 0.0024 (0.0020, 0.0028)
B CoMP 5.00 0.0032 (0.0022,0.0043) 0.0672 (0.0479, 0.0864)
B CoMP 10.00 0.0056 (0.0041,0.0071) 0.1046  (0.0768, 0.1325)
B CoMP 15.00 0.0065 (0.0053,0.0078) 0.1201  (0.0960, 0.1442)
B CoMP 20.00 0.0077 (0.0067,0.0086) 0.1666 (0.1442,0.1891)
CD14 Mono CoMP 025  0.0023 (0.0014,0.0032) 0.0576 (0.0309, 0.0843)
CD14 Mono CoMP 0.50  0.0012 (0.0005, 0.0020) 0.0276  (0.0068, 0.0483)
CD14 Mono CoMP 1.00  0.0011 (0.0002,0.0019) 0.0245 (0.0023, 0.0468)
CD14 Mono CoMP 5.00 0.0034 (0.0013,0.0056) 0.0935 (0.0330, 0.1541)
CD14 Mono CoMP 10.00 0.0123 (0.0066,0.0180) 0.3157 (0.1724, 0.4591)
CD14 Mono CoMP 15.00 0.0196 (0.0124,0.0268) 0.4825 (0.3056, 0.6594)
CD14 Mono CoMP 20.00 0.0245 (0.0173,0.0316) 0.6022 (0.4302, 0.7742)
CD16 Mono CoMP 0.25  0.0003 (0.0002, 0.0005) 0.0054 (0.0034, 0.0074)
CD16 Mono CoMP 0.50  0.0002 (0.0001,0.0003) 0.0036 (0.0024, 0.0048)
CD16 Mono CoMP 1.00  0.0002 (0.0001, 0.0003) 0.0031 (0.0017,0.0044)
CD16 Mono CoMP 5.00  0.0040 (0.0024,0.0056) 0.0876 (0.0451, 0.1300)
CD16 Mono CoMP 10.00 0.0120 (0.0070, 0.0170) 0.2751  (0.1522,0.3979)
CD16 Mono CoMP 15.00 0.0194 (0.0134,0.0254) 0.4529 (0.3058, 0.6001)
CD16 Mono CoMP 20.00 0.0284 (0.0233,0.0335) 0.6688 (0.5421, 0.7955)
CDh4T CoMP 0.25  0.0001 (0.0001, 0.0001) 0.0015 (0.0014, 0.0017)
CDh4T CoMP 0.50  0.0001 (0.0001,0.0001) 0.0013 (0.0013, 0.0014)
CD4T CoMP 1.00 0.0001 (0.0001,0.0001) 0.0015 (0.0014, 0.0016)
CD4T CoMP 5.00 0.0005 (0.0003,0.0006) 0.0133 (0.0081, 0.0185)
CD4T CoMP 10.00 0.0003 (0.0002,0.0004) 0.0040 (0.0019, 0.0062)
CD4 T CoMP 15.00 0.0003 (0.0003,0.0004) 0.0027 (0.0022, 0.0032)
Ch4T CoMP 20.00 0.0013 (0.0008,0.0019) 0.0381 (0.0155, 0.0607)
CD8T CoMP 0.25 0.0003 (0.0003,0.0003) 0.0049 (0.0046, 0.0051)
CD8T CoMP 0.50  0.0003 (0.0003,0.0003) 0.0052 (0.0048, 0.0056)
CD8T CoMP 1.00 0.0005 (0.0004,0.0006) 0.0074 (0.0066, 0.0082)
CD8T CoMP 5.00 0.0023 (0.0020, 0.0025) 0.0329  (0.0290, 0.0369)
CD8T CoMP 10.00 0.0030 (0.0026, 0.0033) 0.0366 (0.0322,0.0411)
CD8T CoMP 15.00 0.0032 (0.0028,0.0035) 0.0387 (0.0344, 0.0431)
CD8T CoMP 20.00 0.0038 (0.0034,0.0042) 0.0717 (0.0512, 0.0921)
DC CoMP 0.25 0.0009 (0.0008,0.0009) 0.0135 (0.0122,0.0149)
DC CoMP 0.50  0.0007 (0.0006,0.0008) 0.0102 (0.0082, 0.0123)
DC CoMP 1.00 0.0011 (0.0007,0.0016) 0.0161 (0.0083, 0.0239)
DC CoMP 5.00 0.0075 (0.0044,0.0106) 0.1189  (0.0580, 0.1798)
DC CoMP 10.00 0.0165 (0.0113,0.0217) 0.2549  (0.1607, 0.3490)
DC CoMP 15.00 0.0228 (0.0169,0.0288) 0.3663  (0.2603, 0.4723)
DC CoMP 20.00 0.0299 (0.0250, 0.0347) 0.4809 (0.3844,0.5773)
NK CoMP 0.25 0.0004 (0.0004,0.0004) 0.0089 (0.0080, 0.0097)
NK CoMP 0.50  0.0005 (0.0004, 0.0006) 0.0122  (0.0099, 0.0146)
NK CoMP 1.00 0.0008 (0.0007,0.0010) 0.0204 (0.0169, 0.0238)
NK CoMP 5.00 0.0041 (0.0035,0.0048) 0.1169 (0.0988, 0.1350)
NK CoMP 10.00 0.0090 (0.0069,0.0110) 0.2419  (0.1869, 0.2969)
NK CoMP 15.00 0.0100 (0.0078,0.0122) 0.2687 (0.2101, 0.3273)
NK CoMP 20.00 0.0103 (0.0084,0.0122) 0.2874 (0.2376, 0.3371)
T CoMP 0.25  0.0004 (0.0003,0.0004) 0.0053 (0.0048, 0.0058)
T CoMP 0.50  0.0004 (0.0003,0.0004) 0.0053 (0.0049, 0.0058)
T CoMP 1.00 0.0004 (0.0004,0.0005) 0.0066 (0.0060,0.0073)
T CoMP 5.00 0.0022 (0.0016, 0.0029) 0.0409 (0.0311, 0.0507)
T CoMP 10.00 0.0037 (0.0029, 0.0046) 0.0579  (0.0454,0.0703)
T CoMP 15.00 0.0041 (0.0033,0.0050) 0.0624 (0.0501, 0.0747)
T CoMP 20.00 0.0053 (0.0046,0.0060) 0.1005 (0.0829, 0.1181)
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Figure 8: The difference in gene expression values for 1950 non-differentially expressed genes (red)
and the top 50 differentially expressed genes (up-regulated: blue, down-regulated: green) between
IFN-/ stimulated cells and counterfactually stimulated control cells for each cell type. The difference
in expression for a gene is the gene mean expression across stimulated cells of a cell type minus the
mean reconstructed gene expression for counterfactually stimulated control cells of the same cell

type.

D.8 CO- emissions

Experiments were conducted using private infrastructure, which has an estimated carbon efficiency
of 0.188 kgCO2eq/kWh. An estimated cumulative 1900 hours of computation were performed on
hardware of type Tesla V100. Total emissions are estimated to be 107 kgCOseq. Estimations were
conducted using the Machine Learning Impact calculator presented in [53].
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Table 13: CoMP architecture and hyperparameters for the Tumour / Cell Line dataset.

Layer Output Dim  Inputs Notes

Input 9468

Conditions 2

Encoder

FC_1 512 [Input, Conditions] = BatchNorm1D, LeakyRe.U
FC 2 512 FC_1 BatchNorm1D, LeakyReLLU
FC_3 512 FC_2 BatchNorm1D, LeakyRe.U
7. mean 16 FC. 3

Z 16 [Z_mean, 0.1] Normal()

Decoder

FC_1 512 Z BatchNorm1D, LeakyReLU
FC-2 512 FC_1 BatchNorm1D, LeakyReLU
FC-3 512 FC-2 BatchNorm1D, LeakyReLU
X_mean 9468 FC-3

X_scale 1 FC-3

X 9468 [X_mean, X_scale] Normal()

Penalty

CoMP penalty [Z, Conditions]

Optimiser Adam

Learning rate le-4

Batch size 5500

Epochs 4000

153 le-7

¥ 0.5

LeakyReLU slope 0.01

Table 14: VFAE architecture and hyperparameters for the Tumour / Cell Line dataset.

Layer Output Dim  Inputs Notes

Input 9468

Conditions 2

Encoder

FC_1 512 [Input, Conditions] = BatchNorm1D, LeakyRel.U
FC 2 512 FC_1 BatchNorm1D, LeakyReLU
FC_3 512 FC_2 BatchNorm1D, LeakyReLU
Z_mean 16 FC_ 3

Z_scale 16 FC_3

Z 16 [Z_mean, Z_scale] Normal()

Decoder

FC_1 512 Z BatchNorm1D, LeakyReLU
FC-2 512 FC_1 BatchNorm1D, LeakyReLLU
FC-3 512 FC-2 BatchNorm1D, LeakyReLU
X_mean 9468 FC-3

X _scale 1 FC-3

X 9468 [X_mean, X_scale] Normal()

Penalty

MMD [FC1, Conditions] Multi-scale RBF kernel
Optimiser Adam

Learning rate le-03

Batch size 5550

Epochs 4000

5] le-7

0 4

LeakyReLU slope 0.01
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Table 15: trVAE architecture and hyperparameters for the Tumour / Cell Line dataset.

Layer Output Dim  Inputs Notes

Input 9468

Conditions 2

Encoder

FC_1 512 [Input, Conditions] = BatchNorm1D, LeakyRe.U
FC 2 512 FC_1 BatchNorm1D, LeakyReLLU
FC_3 512 FC_2 BatchNorm1D, LeakyRe.U
7. mean 16 FC. 3

Z_scale 16 FC_3

Z 16 [Z_mean, Z_scale] Normal()

Decoder

FC_1 512 Z BatchNorm1D, LeakyReLU
FC-2 512 FC_1 BatchNorm1D, LeakyReLLU
FC-3 512 FC-2 BatchNorm1D, LeakyReLU
X_mean 9468 FC-3

X _scale 1 FC-3

X 9468 [X_mean, X_scale] Normal()

Penalty

MMD [FC1, Conditions] Multi-scale RBF kernel
Optimiser Adam

Learning rate 3e-4

Batch size 5550

Epochs 4000

I} le-7

¥ 10

LeakyReLU slope 0.01

Table 16: CoMP architecture and hyperparameters for the single-cell PBMC dataset.

Layer Output Dim  Inputs Notes

Input 2000

Conditions 2

Encoder

FC_1 512 [Input, Conditions] BatchNorm1D, LeakyReLU
FC_2 512 FC_1 BatchNorm1D, LeakyReLU
FC_3 512 FC_2 BatchNorm1D, LeakyReLU
7Z_mean 40 FC_3

Z 40 [Z_mean, 0.1] Normal()

Decoder

FC_1 512 Z BatchNorm1D, LeakyReLU
FC-2 512 FC_1 BatchNorm1D, LeakyReLLU
FC-3 512 FC-2 BatchNorm1D, LeakyReLU
X_mean 2000 FC-3

X _scale 1 FC-3

X 2000 [X_mean, X_scale] Normal()

Penalty

CoMP penalty [Z, Conditions]

Optimiser Adam

Learning rate le-06

Batch size 512

Epochs 10000

5] le-7

0 1

LeakyReLU slope 0.01
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Table 17: VFAE architecture and hyperparameters for the single-cell PBMC dataset.

Layer Output Dim  Inputs Notes

Input 2000

Conditions 2

Encoder

FC_1 512 [Input, Conditions] BatchNorm1D, LeakyReLU
FC_2 512 FC_1 BatchNorm1D, LeakyReLU
FC_ 3 512 FC_2 BatchNorm1D, LeakyReLU
7Z_mean 40 FC_3

Z 40 [Z_mean, 0.1] Normal()

Decoder

FC_1 512 Z BatchNorm1D, LeakyReLU
FC-2 512 FC_1 BatchNorm1D, LeakyReLLU
FC-3 512 FC-2 BatchNorm1D, LeakyReLU
X_mean 2000 FC-3

X _scale 1 FC-3

X 2000 [X_mean, X_scale] Normal()

Penalty

MMD [FC1, Conditions] Multi-scale RBF kernel
Optimiser Adam

Learning rate le-4

Batch size 512

Epochs 10000

B le-7

v 1

LeakyReLU slope 0.01

Table 18: trVAE architecture and hyperparameters for the single-cell PBMC dataset.

Layer Output Dim  Inputs Notes

Input 2000

Conditions 2

Encoder

FC_1 512 [Input, Conditions] = BatchNorm1D, LeakyReLU
FC_ 2 512 FC_1 BatchNorm1D, LeakyReLLU
FC_3 512 FC_2 BatchNorm1D, LeakyReLU
7. _mean 40 FC 3

Z 40 [Z_mean, 0.1] Normal()

Decoder

FC_1 512 Z BatchNorm1D, LeakyReLU
FC-2 512 FC_1 BatchNorm1D, LeakyReLU
FC-3 512 FC-2 BatchNorm1D, LeakyReLU
X_mean 2000 FC-3

X_scale 1 FC-3

X 2000 [X_mean, X_scale] Normal()

Penalty

MMD [FC1, Conditions] Multi-scale RBF kernel
Optimiser Adam

Learning rate Se-4

Batch size 512

Epochs 6000

153 le-7

¥ 10

LeakyReLU slope 0.01
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Table 19: CoMP architecture and hyperparameters for the UCI Adult Income dataset.

Layer Output Dim  Inputs Notes

Input 82

Conditions 2

Encoder

FC_1 64 [Input, Conditions] BatchNorm1D, LeakyReLU
FC 2 64 FC_1 BatchNorm1D, LeakyReLU
7Z._mean 16 FC_2

Z 16 [Z_mean, 0.1] Normal()

Decoder

FC_1 64 Z BatchNorm1D, LeakyReLU
FC-2 64 FC_1 BatchNorm1D, LeakyReLLU
X _mean 82 FC-2

X_scale 1 FC-2

X 82 [X_mean, X_scale] Normal()

Penalty

CoMP penalty [Z, Conditions]

Optimiser Adam

Learning rate le-04

Batch size 4096

Epochs 10000

153 1

~ 0.5

LeakyReLU slope 0.01

Table 20: VFAE architecture and hyperparameters for the UCI Adult Income dataset.

Layer Output Dim  Inputs Notes
Input 82

Conditions 2

Encoder

FC_1 64 [Input, Conditions]  BatchNorm1D, LeakyReLU
Z_mean 16 FC_1

7. scale 16 FC_1

Z 16 [Z_mean, Z _scale] Normal()
Decoder

FC_1 64 Z BatchNorm1D, LeakyReLU
X_mean 82 FC_1

X _scale 1 FC_1

X 82 [X_mean, X_scale] Normal()
Penalty

MMD [Z, Conditions]

Optimiser Adam

Learning rate le-04

Batch size 512

Epochs 10000

153 1

y 1000

RBF scale 2

LeakyReLU slope 0.01
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Figure 9: Mean gene expression of actual stimulated cells against the mean gene expression of
counterfactually stimulated control cells for each cell type and model.
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Table 21: trVAE architecture and hyperparameters for the UCI Adult Income dataset.

Layer Output Dim  Inputs Notes

Input 82

Conditions 2

Encoder

FC_1 32 [Input, Conditions] = BatchNorm1D, LeakyReLU
FC_2 32 FC_1 BatchNorm1D, LeakyReLLU
Z._mean 8§ FC_2

Z 8 [Z_mean, 0.1] Normal()

Decoder

FC_1 32 Z BatchNorm1D, LeakyReLLU
FC-2 32 FC_1 BatchNorm1D, LeakyReLU
X_mean 82 FC-2

X _scale 1 FC-2

X 82 [X_mean, X_scale] Normal()

Penalty

MMD [FC1, Conditions] Multi-scale RBF kernel
Optimiser Adam

Learning rate le-04

Batch size 4096

Epochs 10000

5] 0.001

v 10

LeakyReLU slope 0.01
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