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1 APPENDIX

1.1 PRIOR RESULTS

Le et al. (2017) proved concentration results for regularized adjacency matrices generated by SBM
and their symmetric normalized Laplacians in sparse regimes with d̃ = o(log(N)). Our main result
relies on several of the results therein, so we recite them below. The first result relates the L2 norm
of a matrix to the L1 norms of its rows and columns.

Lemma 1.1. Consider a matrix B in which each row has L1 norm at most a, and each column has
L1 norm at most b. Then ‖B‖ 6

√
ab.

Proof. See Lemma 2.7 in Le et al. (2017). �

The next result shows that the number of high-degree nodes in A is fixed.

Lemma 1.2. Let 1 6 m 6 N and α >
√
m/N . Then for r > 1 the following holds with probability

at least 1−N−r. Consider a block I × J of size m×m. Then all but m/αd rows of AI×J have at
most 8rαd ones.

Proof. See Lemma 3.5 in Le et al. (2017). �

The following is a main result from Le et al. (2017) and establishes that regularized adjacency
matrices concentrate around their mean.

Theorem 1.3. Consider a random graph from the inhomogeneous Erdös-Rényi model G(N, (pij)),
and let d = maxij Npij . For any r > 1, the following holds with probability at least 1 − N−r.
Consider any subset consisting of at most 10N/d vertices, and reduce the weights of the edges
incident to those vertices in an arbitrary way. Let d′ be the maximal degree of the resulting graph.
Then the adjacency matrix A′ of the new (weighted) graph satisfies

‖A′ − E(A)‖ 6 Cr3/2(
√
d+
√
d′).

Moreover, the same bound holds for d′ being the maximal L2 norm of the rows of A′.

Proof. See Theorem 2.1 in Le et al. (2017). �

Next, we recite below a well-known result from linear algebra.

Theorem 1.4 (Sylvester’s law of inertia). Let A,B ∈ Mn (the set of all n × n complex matrices)
be Hermitian. There is a nonsingular matrix S ∈ Mn such that A = SBS∗ if and only if A and B
have the same inertia, that is, they have the same number of positive, negative, and zero eigenvalues.

Proof. See Theorem 4.5.8 in Horn & Johnson (2012). �
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1.2 STATEMENTS AND PROOFS OF THE RESULTS IN SECTION 3

Lemma 1.5. Let Lζ := 1
ζHζ = D̃ζ−A, where D̃ζ = (ζ− 1

ζ )IN + 1
ζD and ζ > 1 be the Laplacian

form corresponding to the Bethe-Hessian matrix Hζ . Define the symmetric normalized Laplacian
L(Lζ) := D̃

−1/2
ζ LζD̃

−1/2
ζ . Then, Hζ and L(Lζ) have the same number of negative eigenvalues.

Proof of Lemma 1.5. Writing L(Lζ) := D̃
−1/2
ζ

[
1
ζHζ

]
D̃
−1/2
ζ , note that 1

ζHζ is symmetric and

D̃
−1/2
ζ is non-singular. Then, by Theorem 1.4, the desired result follows. �

Lemma 1.6. Let L(Lζ) be defined as in Lemma 1.5. Analogously, define L(L̄ζ) :=
˜̄D
−1/2
ζ L̄ζ

˜̄D
−1/2
ζ , where L̄ζ = ˜̄Dζ − Ā and ˜̄Dζ = (ζ − 1

ζ )IN + 1
ζ D̄. Then, there is a constant

C such that for any r > 1 and ζ ∈ ω(
√
d),∥∥L(Lζ)− L(L̄ζ)
∥∥ 6 Cr2ζd3/2

(ζ2 − 1)2

Å
1 +

d

ζ2 − 1

ã
with probability at least 1− e−r.

Proof of Lemma 1.6. We proceed in a manner similar to that outlined in the proof of Theorem 4.1
in Le et al. (2017). First, we decompose the deviation into two parts.

L(Lζ)− L(L̄ζ) = ˜̄D
−1/2
ζ Ā ˜̄D

−1/2
ζ − D̃

−1/2
ζ AD̃

−1/2
ζ

= D̃
−1/2
ζ (Ā−A)D̃

−1/2
ζ︸ ︷︷ ︸

Φ

+ ˜̄D
−1/2
ζ Ā ˜̄D

−1/2
ζ − D̃

−1/2
ζ ĀD̃

−1/2
ζ︸ ︷︷ ︸

Ψ

Next, we compute the upper-bounds for Φ and Ψ.

Upper-bound for Φ

We use D̃
−1/2
ζ to regularize A and use the concentration results in Le et al. (2017) to compute the

upper-bound. Define the diagonal matrix ∆ as follows:

∆ii :=

®
1 if di 6 8rd

di
ζ(ζ− 1

ζ )
+ 1 otherwise

With this notation, since each entry in
(
ζ − 1

ζ

)
∆ is upper-bounded by the corresponding entry in

D̃ζ , the bound for Φ can be decomposed into two parts as follows.(
ζ − 1

ζ

)
‖Φ‖ 6

∥∥∥Ā−∆−1/2A∆−1/2
∥∥∥︸ ︷︷ ︸

R1

+
∥∥∥∆−1/2Ā∆−1/2 − Ā

∥∥∥︸ ︷︷ ︸
R2

For R1, note that ∆−1/2 reduces the weights of degrees of A greater than 8rd. Denoting A′ :=
∆−1/2A∆−1/2, the maximal squared L2 norm of its i-th row is given by

‖Ai·′‖
2
2 6

N∑
j=1

Aij

∆ii∆jj
6

di
∆ii
6 max

{
8rd, ζ2 − 1

}
Hence, we can invoke Theorem 2.1 in Le et al. (2017) and obtain with probability 1 − N−r the
following upper-bound for R1:

R1 =
∥∥∥Ā−∆−1/2A∆−1/2

∥∥∥ 6 C1r
2

Å√
d+ (ζ2 − 1)1/4

ã
For R2, denoting I := {i|di 6 8rd} to be the set of entries in ∆−1/2Ā∆−1/2 that coincide with
the corresponding entries in Ā, Lemma 3.5 in Le et al. (2017) guarantees that |Ic| 6 N/d with
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probability 1−N−r. The entry-wise deviation where they do not coincide is bounded by the entries
of Ā, i.e., d/N , and thus the L1 norm of the row of ĀIc×[N ] is d/N ·N = d and that for the column
is d/N ·N/d = 1. Similarly, the L1 norm of the row and column of Ā[N ]×Ic is 1 and d, respectively.
By Lemma 2.7 from Le et al. (2017), we have

R2 6 2
√
d

Now, combining the two bounds together allows us to bound Φ as follows∥∥∥D̃−1/2
ζ (Ā−A)D̃

−1/2
ζ

∥∥∥ 6 C2r
2

ζ − 1
ζ

(
√
d+ (ζ2 − 1)1/4)

with probability at least 1− 2N−r.

Upper-bound for Ψ

Using the Frobenius norm to bound the spectral norm, we have

1

ζ2
‖Ψ‖2 6 1

ζ2
‖Ψ‖2F =

1

ζ2

N∑
i,j=1

Ψ2
ij

where
1

ζ
Ψij := Āij

[
1/
»
δ̄ij − 1/

√
δij
]

δ̄ij = (d̄i + ζ2 − 1)(d̄j + ζ2 − 1)

δij = (di + ζ2 − 1)(dj + ζ2 − 1)

Note that Āij 6 d
N and ∣∣1/»δ̄ij − 1/

√
δij
∣∣ 6 |δ̄ij − δij |

2(ζ2 − 1)3

where
δ̄ij − δij = (di + ζ2 − 1)(dj + ζ2 − 1) − (d̄i + ζ2 − 1)(d̄j + ζ2 − 1)

+ (di + ζ2 − 1)(d̄j + ζ2 − 1) − (di + ζ2 − 1)(d̄j + ζ2 − 1)

= (di + ζ2 − 1)(dj − d̄j) + (d̄j + ζ2 − 1)(di − d̄i)

Hence, we have
1

ζ2
‖Ψ‖2 6 d2

4N2(ζ2 − 1)6
(1.1)ï N∑

i=1

(di + ζ2 − 1)2
N∑
j=1

(dj − d̄j)2 +N(d+ ζ2 − 1)2
N∑
i=1

(di − d̄i)2

ò
(1.2)

Note that since Var(di) 6 d for all i ∈ [N ], E
∑N
i=1(di − d̄i)

2 6 Nd. Furthermore, denoting
Xi := (di − d̄i), by Bernstein’s inequality, P{Xi > Ct

√
d} 6 e−t for all t > 1. Note that the

function ψ1/2 : R+
0 → R+

0 defined ψ1/2(x) := exp(x)1/2 − 1 is convex, increasing, and satisfies
ψ1/2(0) = 0 and ψ1/2(x) → ∞, x → ∞. Hence, ψ1/2 is an Orlicz function and using Bernstein’s
inequality, we can define the Orlicz norm of the random variable X2

i as∥∥X2
i

∥∥
ψ1/2

:= inf{s > 0 : E exp(|Xi|/
√
s) 6 1} 6 C2d

Therefore, by triangle inequality,
∥∥∥∑N

i=1X
2
i

∥∥∥
ψ1/2

6 C2Nd and this with Markov inequality im-

plies
N∑
i=1

(di − d̄i)2 6 C2r
2Nd (1.3)
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with probability 1− e−2r.

Next, (1.3) implies

N∑
i=1

(di + ζ2 − 1)2 6 2

N∑
i=1

(di − d̄i)2 + 2

N∑
i=1

(d̄i + ζ2 − 1)2

6 2C2r
2Nd+ 2N(d+ ζ2 − 1)2

6 C3r
2N(d+ ζ2 − 1)2

Plugging this into (1.1) yields

‖Ψ‖2 6 ζ2d2

4N2(ζ2 − 1)6

ï N∑
i=1

(di + ζ2 − 1)2
N∑
j=1

(dj − d̄j)2 +N(d+ ζ2 − 1)2
N∑
i=1

(di − d̄i)2

ò
6

ζ2d2

4N2(ζ2 − 1)6
(C3r

2Nd)
(
C3r

2N(d+ ζ2 − 1)2 +N(d+ ζ2 − 1)2
)

6
C4r

4d3ζ2(d+ ζ2 − 1)2

(ζ2 − 1)6
6
C4r

4ζ2

ζ2 − 1

Å
d

ζ2 − 1

ã3Å
1 +

d

ζ2 − 1

ã2

which approaches 0 for ζ ∈ ω(
√
d).

Now, combining this with the bound for ‖Φ‖ above and its probability gives the desired result. �

Proof of Theorem 3.1. Recall that −L̄ζ := Ā − ˜̄Dζ , where ˜̄Dζ = (ζ − 1
ζ )IN + 1

ζ D̄ and

ζ > 1, and L(L̄ζ) := ˜̄D
−1/2
ζ L̄ζ

˜̄D
−1/2
ζ . Next, note that since ˜̄D

−1/2
ζ is non-singular and L̄ζ is

symmetric, it follows that L(L̄ζ) and L̄ζ have the same inertia, as does ζL̄ζ for ζ > 0. Recall
Ā = ZBZT − Diag(ZBZT ). So −L̄ζ = ZB(t)ZT −D1 −D2 for diagonal matrices D1 and D2.

Using Weyl’s inequality,

λK(−L̄ζ) > λK(ZBZT ) + λN (−D1 −D2)

> dλ
nmin

N
− λ1(D1)− λ1(D2)

> dλ
nmin

N
− d

N
− λ1(D2) > 0,

when ζ + (dmax − 1)/ζ < d(λNmin − 1)/N . On the other hand,

λK+1(−L̄ζ) 6 λK+1(ZBZT ) + λ1(−D1 −D2)

6 0− λN (D1)− λN (D2) < 0.

So, L̄ζ has exactly K negative eigenvalues.

For the probability statement, let Er be the event of Theorem 3.3, where r = (ζ/
√
d)3/2−δ . It is not

difficult to see that the event L(L̄ζ) has K negative eigenvalues holds on Er if d is large enough.
So, the bound for P(Er) from Theorem 3.3 gives the probability estimate of the theorem. �

Proof of Corollary 3.4. The desired result is immediately apparent by setting the radicand in the
interval for ζ in Theorem 4.3 to positive, and rearranging the terms. �

1.3 ADDITIONAL SIMULATION RESULTS

We use the same simulation settings introduced in the main paper. We re-state the setting here for the
purpose of continuity. We simulate network data from the SBM. In the Simulation Setting (1), the
probability connectivity matrix is defined as B := ρB0 := ρ(η − 1)b[IK + 1

η−11K1TK ]. ρ controls

the expected degree of the network by d̃ = ρ(1TN (ZB0Z
T −Diag(ZB0Z

T ))1N )/N . η is the in/out
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ratio based on B and determines the degree of assortativity. b is the baseline value in B, which is set
to 0.1. To generate data, we first simulate the membership vector Z ∼ Mult

(
1;
(

1
K , ...,

1
K

))
. We set

d̃ ∈ {3
√

log(N), 0.165(log(N))2, 0.788(N)(1/3)} by varying ρ, to assess the performance of the
algorithms under different sparsity regimes. The constants in the rates of d̃ are chosen in way that
d̃ is same at N = 1000 for all the rates. With a fixed Z and B, and given model parameters K, N ,
d̃, and η, we then generate A with 20 repetitions. Table 1.1 summarises the combinations of model
parameter settings used in the simulations.

Table 1.1: Model Parameters for Simulation Setting (1)
K N d̃ η

3 {5000, 15000, 25000, 35000} {3
√

log(N), 0.165(log(N))2, 0.788(N)(1/3)} {3, 4, ..., 8}
4 {5000, 15000, 25000, 35000} {3

√
log(N), 0.165(log(N))2, 0.788(N)(1/3)} {3, 4, ..., 8}

10 {5000, 15000, 25000, 35000} {3
√

log(N), 0.165(log(N))2, 0.788(N)(1/3)} {16, 17, ..., 25}
25 {25000} {3

√
log(N), 0.165(log(N))2, 0.788(N)(1/3)} {41, 42, ..., 55}

50 {25000} {3
√

log(N), 0.165(log(N))2, 0.788(N)(1/3)} {101, 102, ..., 110}

In Simulation Setting (2), we use a more general probability connectivity matrix as defined in equa-
tion 1.4, where η ∈ {2.5 + (m − 1)0.25 : m = 1, ..., 9}, and set other parameters as follows:
d̃ = 3

√
log(N); K = 3; and N ∈ {5000, 15000, 25000, 35000}.

B := ρ

(
1 + η 0.5 0.3
0.5 2 + η 0.1
0.3 0.1 0.5 + η

)
(1.4)

Figures 1.1, and 1.2 show oracle intervals for ζ and its estimates are shown with two popular heuristic
choices for ζ (rm and ra) commonly used in literature and discussed in Le & Levina (2015). Net-
work data was simulated from Simulation Setting (1) with d̃ ∈ {0.165(log(N))2, 0.788(N)(1/3)},
each simulated with 20 repetitions. Intervals are shown as zeros when the threshold of detection is
not met.

Figure 1.1: Oracle intervals for ζ and its estimation are shown with two heuristic choices for ζ, rm
and ra.
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Figure 1.2: Oracle intervals for ζ and their estimates are shown with ζ ∈ {rm, ra}.

Procedure 4.2 in the main paper outputs N̂K0
and B̂K0

with candidate number of communities
K0 ∈ [1, ...,Kmax] as an input, where Kmax is a tuning parameter. Then, the minimal community
size is estimated with N̂min = min{N̂2}. N̂min is an upper bound ofNmin with high probability and
has shown in simulations to be a good estimate of Nmin. Next, estimating d, dmax, and λ requires
K0 as an input. We propose K̂0 = arg maxK0

(λK0(B̂K0)) to recover community membership with
maximum signal. Then the estimators of d, dmax, and λ are d̂ = N maxa,b{(B̂K̂0

)a,b}, d̂max =

max{N̂K̂0
B̂K̂0
}, and λ̂ = λK̂0

(B̂K̂0
) respectively. In simulations, we found d̂ and λ̂ to be good

estimates while d̂max tended to overestimate. Hence, we derived another estimator d̂′max = d̄ based
on our modeling assumption for B (see §5 in main paper).

Figure 1.3 below shows performances of estimators for nmin, λ, d, and dmax discussed in §5.2 in
the main manuscript. Network data is simulated from the SBM under Simulation Setting (1) with
d̃ = 3

√
log(N).
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Figure 1.3: Oracle values of (A) Nmin, (B) λ, (C) d, and (D) dmax with their estimates. Red
points are the oracle values of parameters, blue boxes are estimates of the oracle parameters out of
20 repetitions, where the upper line represents the 75% quantile of those estimations, the lower line
represents the 25% quantile, and the middle line represents the median.
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Figure 1.4 below shows ACR of BHsparse with different quantiles of the oracle intervals with
varying community assortativity levels, i.e., η, for more dense synthetic networks with d̃ ∈
{0.165(log(N))2, 0.788(N)(1/3)}. Network data was generated from Simulation Setting (1). It is
clear that there is a threshold-like point in η at which the algorithm’s performance changes sharply.
It is shown to be an empirical property that the threshold in η decreases with increase in the expected
degree (d̃).

Figure 1.4: ACR of BHsparse versus η using oracle intervals with ζ set to five quantiles (10%,
30%, 50%, 70%, 90%) of the intervals. The following two settings for d̃ were used: (D2)d̃ =

0.165(log(N))2 and (D3)d̃ = 0.788(N)(1/3).

Figure 1.5 below shows ACR of BHsparse with different quantiles of the intervals (oracle or
estimated) for more dense synthetic networks with two choices of the expected degree d̃ ∈
{0.165(log(N))2, 0.788(N)(1/3)}. Only those cases where the oracle intervals or estimated in-
tervals exist are shown in the plot. For the estimated choices of ζ, performances of the BHsparse
algorithm are worse when ζ are close to the end-points of the intervals. Generally 30% to 50%
quantiles within the intervals turn out to be the best picks for ζ.
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Figure 1.5: ACR of BHsparse as η varies, using the estimated interval and ζ set to quantiles (10%,
30%, 50%, 70%, 90%) of the estimated intervals using our proposed method and based on networks
satisfying the threshold in Corollary 3.2. Network data was generated from Simulation Setting (1)
with two levels of d̃: (D2)0.165(log(N))2 and (D3)0.788(N)(1/3).

Figure 1.6 (Figure 1.7 resp.) below show ACR of BHsparse with ζ set equal to 30% and 50%
quantiles of the oracle intervals (estimated intervals resp.). For more dense synthetic networks,
two values were used for the expected degree: d̃ ∈ {0.165(log(N))2, 0.788(N)(1/3)}. When the
threshold in Corollary 3.2 is satisfied, these choices for ζ perform better compared to the heuristic
choices.
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Figure 1.6: A comparison of ACRs of BHsparse, BHmc and BHac at varying levels of η. Network
data was generated from Simulation Setting (1) with two levels of d̃: D2 = 0.165(log(N))2, and
D3 = 0.788(N)(1/3). ζ was set to 30% and 50% quantiles of the oracle intervals. Only cases where
the oracle threshold in Corollary 3.2 is satisfied are considered.
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Figure 1.7: A comparison of ACRs of BHsparse, BHmc and BHac at varying levels of η. Network
data was generated from Simulation Setting (1) with two levels of d̃: D2 = 0.165(log(N))2, and
D3 = 0.788(N)(1/3). ζ was set to 30% and 50% quantiles of the estimated intervals. Only cases
where the estimated threshold in Corollary 3.2 is satisfied are considered.

For Simulation Setting (2), Figure 1.8 below shows the performance of estimators for nmin, λ, d, and
dmax discussed in §5.2. Figure 1.9 shows ACR of BHsparse with different quantiles of the oracle
interval with varying η. It can be seen that in a more general setting of the probability connectivity
structure, when K is small, the sharp change in performance of the method still exists, showing
an empirical property of the detection threshold. The estimations of the interval of ζ proposed in
Procedure 4.1 also perform well.

Figure 1.8: The oracle interval for ζ and its estimation are shown with the two popular heuristic
choices for ζ (rm and ra). Network data was generated from Simulation Setting (2), where d̃ =
3
√

log(N) and K = 3.

11



Under review as a conference paper at ICLR 2021

Figure 1.9: Performance of BHsparse with ζ set equal to quantiles (10%, 30%, 50%, 70%, 90%) of
the oracle intervals. Network data was generated from Simulation Setting (2) with d̃ = 3

√
log(N)

and K = 3.
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