
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A DETAILED RELATED WORK

Diffusion models Diffusion models have emerged as a powerful class of generative models, enabling
high-fidelity synthesis of complex data distributions. Diffusion models are based on non-equilibrium
thermodynamics, which gradually add noise to data and learn to reverse the diffusion process to
generate samples. Ho et al. (2020); Dhariwal & Nichol (2021); Peebles & Xie (2023) The research on
the diffusion model can be generally classified into four categories. The first category aims to enhance
image synthesis quality, as demonstrated by notable models such as Stable Diffusion Rombach
et al. (2022), DALL·E 2 Ramesh et al. (2022), and Imagen Saharia et al. (2022) by leveraging
techniques like CLIP-based text encoders, latent space diffusion, and hierarchical architectures.
Second, researchers focus on accelerating the sampling process, with key developments including
Denoising Diffusion Implicit Models Song et al. (2022) and DPM-Solver Lu et al. (2022). These
approaches aim to improve the computational efficiency of diffusion models through deterministic
sampling, closed-form expressions, and numerical ODE solvers. Third, recent research has also
focused on reevaluating diffusion models through the lens of continuous analysis like score-based
generative modeling Feng et al. (2023) in continuous-time settings. Fourth, the success of diffusion
models has sparked their application in various domains, including text-to-speech synthesis Kong
et al. (2021), 3D shape generation Luo & Hu (2021), and anomaly detection in medical images
Wolleb et al. (2022), demonstrating the potential of diffusion models beyond image synthesis. In this
work, we explore the conditional diffusion model in the parameter generation domain.

Conditional generation Conditional generation has gained significant attention in machine learning,
particularly in computer vision and natural language processing. Three prominent frameworks
have emerged: conditional GANs Mirza & Osindero (2014); Isola et al. (2018); Zhu et al. (2020),
conditional VAEs Sohn et al. (2015); Yan et al. (2016), and conditional diffusion models Rombach
et al. (2022); Ho et al. (2020), which incorporate conditions to guide the generation process, enabling
the creation of visually coherent and semantically meaningful data samples. Conditional GANs
incorporate condition information into GAN to generate images conditioned on specific attributes or
labels. Conditional diffusion models take this further by generating visually coherent and semantically
meaningful images from the textual description, demonstrating superior image synthesis quality
compared to GANs. Building upon the success of conditional diffusion models, we propose to extend
this approach to generating neural network parameters based on specific conditions.

Parameter generation The field of parameter generation has seen significant progress in recent
years, with HyperNetworks ((Ha et al., 2016) and generative models of neural network checkpoints
Peebles et al. (2022) emerging as promising approaches. Ha et al. (2016) introduced HyperNetworks,
which uses a hypernetwork to learn the parameters for another neural network. Finn et al. (2017)
proposes Model-Agnostic Meta-Learning, which learns an initialization for efficient fine-tuning.
Peebles et al. (2022) introduce the model G.pt to predict the distribution over parameter updates
given an initial input parameter vector and a prompted loss or error. Schürholt et al. (2022) trained
autoencoder on a model zoo to learn a hyper-representation for generative use to sample new model
weights Knyazev et al. (2021) use a GNN-based model to sample network parameters. Erkoç et al.
(2023) directly leverages MLP weights and generates neural implicit fields encoded by synthesized
MLP weights. Wang et al. (2024) uses a diffusion model to generate high-performing neural network
parameters across various architectures and datasets. Different from the previous works, we focus
on conditional parameter generation to generate high-performing weights based on specific task
conditions practically.

B EXPERIMENT SETUP

In this section, we show detailed experiment setups, including dataset information and training
configuration.

B.1 STYLE TRANSFER EXPERIMENTS

In this section, we provide detailed information about the training configurations used for both the
autoencoder and the diffusion model in the style transfer task.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Autoencoder configuration: The encoder is a 1D CNN-based model where the channel of each layer
is (16, 32, 64, 128, 256, 384, 512, 768, 1024, 64). At the bottom layer, we flatten the parameters and
map them to a latent dimension of 256 with a linear layer. In the decoder part, we use transposed
convolutions with the same number of channels and layers to upsample back to the original shape.

The training details of hyperparameters are as follows: total number of parameters 516, 096, kernel
size for CNN model 9, learning rate 2 × 10−4 with cosine annealing, total training steps 12, 000,
batch size 64. In addition, to reduce memory usage and accelerate computations, mixed-precision is
enabled with bfloat16 for the first 75% of the training process.

Diffusion Model configuration: The architecture of the DDPM comprises a 1D CNN-based U-Net
Ronneberger et al. (2015) with channels (64, 128, 256, 512, 768, 1024, 1024, 32). A fully connected
layer is applied at the bottom of the U-Net after flattening. In addition to the U-Net, we employ a
style feature extraction network as the condition projector, consisting of two convolutional layers, an
average pooling layer, and a fully connected layer. The extracted features are added as embeddings to
the bottom layer of the U-Net. The training details of hyperparameters are as follows: kernel size for
CNN model 3, learning rate 5× 10−4 with cosine annealing, total training steps 50, 000, batch size
128, number of diffusion steps 1, 000, β in the diffusion model shifted linearly from 0.0001 to 0.02
in diffusion models. And the same as AE training, mixed-precision is enabled with bfloat16 for the
first 75% of the training process.

Conditional PDM Generated LoRA parameters

Image style

𝝉

Prompt: “an elephant and a man.” PixArt-𝛼

𝓓

Generated

Noise 𝝐

Conditional Parameter Generation (ours)

Image Generation

Style condition projector𝝉

Decoder of AE𝓓

Figure 3: COND P-DIFF framework in style-transfer tasks.

Framework: This section describes the framework and workflow of the style transfer task with our
conditional parameter generation in detail, as illustrated in Figure 3.

Data Preparation: The first step is selecting appropriate data, including style image and parameter
data. For style image data, we select a total of 16 groups of data with different styles.

7 groups, such as Van Gogh, Edvard, and Jacoulet, are manually selected from SemArt and WikiArt
Garcia & Vogiatzis (2018); Saleh & Elgammal (2015) datasets, which totally includes more than
250,000 works by 3,000 artists. The other 9 groups, such as Chalk and Charcoal, are generated by a
traditional image style transfer algorithm Gatys et al. (2016) to make sure the styles of images in a
particular group are highly consistent. For parameter data, we use the PixArt-α Chen et al. (2024) as
the base model, which is a transformer-based text-to-image diffusion model with smaller parameter
sizes and competitive quality. We finetuned it with the style image data. Each set of LoRA parameters
holds 64 checkpoints from the last 64 steps of one training. Thus, we obtained 16 sets of parameter
data, with 64 LoRA parameters in each set.

Training of Autoencoder and Conditional Parameter Diffusion: We introduce details of the
training process of the autoencoder and the diffusion models. For the autoencoder, we use the

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

parameter data to train the autoencoder to encode the LoRA parameters into a 256-dimensional latent
space. Note that we did not use the style image data in this process. For conditional diffusion model,
we use style condition extractor to extract the style features of the style image data, and merge the
features into the diffusion model as condition information.

Generation Process: The generation process is divided into two steps. First, the LoRA parameters
are obtained by the conditional parameter diffusion model, and then they are merged into PixArt-α to
obtain the style image.

Parameter Generation: In the inference process, the diffusion model is fed with noise and an image
in a particular style as conditions, and the generated latent is fed into the decoder to get completed
LoRA parameters.

Image Generation: Next, merge the generated LoRA parameters to PixArt-α. Then, we get the
PixArt-α finetuned with a particular style. Then, we can feed it with a prompt to get an image whose
style corresponds to our input condition.

B.2 LANGUAGE EXPERIMENTS

B.2.1 DATASETS

In NLP tasks, we use GLUE benchmark Wang et al. (2018), a benchmark for evaluating natural
language understanding capabilities. SST2 Socher et al. (2013): A sentiment analysis benchmark
using movie review excerpts, labeled as positive or negative, to aid in sentiment understanding. RTE:
A dataset for evaluating if one sentence logically entails another, testing models’ understanding of
textual entailment. MRPC Badsha et al. (2018): Contains sentence pairs to benchmark models’
paraphrasing and semantic equivalence capabilities. CoLA: Tests language models’ grasp of English
grammar, with sentences labeled as grammatically acceptable or not. QNLI: Converts question-
answer pairs into inference tasks, assessing if sentences are correct responses to questions. STSB Cer
et al. (2017): A benchmark for measuring semantic similarity between sentences, rated on a scale
from 0 to 5 for nuanced meaning comprehension.

B.2.2 LORA CONFIGURATIONS

In this section, we introduce the configuration of LoRA fine-tuning as presented in Table 1. All
models are fine-tuned with 20 epochs and a dropout rate of 0.1. Mixed-precision training is enabled
with FP16 to accelerate computation and reduce memory usage. The learning rate is set to 0.0001,
and a warmup ratio of 0.1 is used to gradually increase it at the beginning of the training. Additionally,
a weight decay of 0.1 is applied to regularize the model and prevent overfitting.

Table 5: Add caption

Model BERT RoBERTa DeBERTa

Rank 1 2 4 16 1 2 4 16 1 2 4

alpha 8 8 16 32 8 8 16 32 8 8 16

B.2.3 CONDITION

This is task ’SST-2’. SST-2 (The Stanford Sentiment Treebank) includes sentences from movie
reviews and their sentiment labels (positive or negative). It tests a model’s ability to capture sentiment
from text.

Example 1: Sentence: "The movie was fantastic!" Label: Positive. Example 2: Sentence: "I did not
enjoy the film at all." Label: Negative.

This is task ’RTE.’ RTE (Recognizing Textual Entailment) involves pairs of sentences and asks
whether the second sentence is true (entails), false, or undetermined based on the information in the
first sentence.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Example 1: Sentence 1: "The cat sat on the mat." Sentence 2: "There is a cat on the mat." Label:
Entailment. Example 2: Sentence 1: "Sarah bought two tickets to Hawaii for her honeymoon."
Sentence 2: "Sarah is planning a trip to Hawaii." Label: Entailment.

This is task ’MRPC’. MRPC(’Microsoft Research Paraphrase Corpus’) checks if sentences are
paraphrased from each other.

Example 1: "The storm left a wake of destruction." / "Destruction was left by the storm." -> Paraphrase.
Example 2: "He says that he saw the man leave." / "He says the man stayed in." -> Not Paraphrase.”’,

This is task ’COLA’. CoLA (The Corpus of Linguistic Acceptability) consists of English sentences
labeled as grammatically correct or incorrect. It’s designed to evaluate a model’s ability to understand
English grammar.

Example 1 : Sentence: "The cat sat on the mat." Label: Correct. Sentence: "On the mat sat cat."
Label: Incorrect.

Example 2: Sentence: "She reads books every day." Label: Correct. Sentence: "Books every day
reads she." Label: Incorrect.

This is task ’QNLI’. QNLI (Question Natural Language Inference) involves pairs of a question and a
sentence, where the goal is to determine whether the sentence contains the answer to the question.

Example 1: Question: "What color is the sky?" Sentence: "The sky is usually blue." Label: Entailment.
Example 2: Question: "Who wrote ’1984’?" Sentence: "George Orwell is the author of ’Animal
Farm’ and ’1984’." Label: Entailment.

This is task STSB. STSB(Semantic Textual Similarity Benchmark) aims to rate sentence pair
similarity on a 0-5 scale.

Example 1: "A man is playing a guitar." / "A man is playing an instrument." -> Score: 4.5. Example
2: "A child is riding a horse." / "A horse is being ridden by a child." -> Score: 5.

Style-1 Style-2Generated on test set

𝝀=0.05 𝝀=0.65𝝀=0.25𝝀=0.00 𝝀=1.00𝝀=0.45 𝝀=0.85

Figure 4: Visualization of the image generated by LoRA parameters, which is generated by
COND P-DIFF on the test set with conditions that the model has never seen.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 5: PCA in the latent space of the LoRA parameters of train set and generated by COND
P-DIFF

C EXPLORATIONS OF COND P-DIFF GENERALIZABILITY

We consider that the generalizability of COND P-DIFF is limited by the current amount of data. If we
want the model to gain generalizability, we need to sample enough LoRA parameters in the parameter
space, which is difficult to achieve. Therefore, in this experiment, we first make a style-continuous
dataset, which can be equivalent to sampling enough data points in a subspace to provide enough
data for our model. We then trained our model on the style-continuous dataset we created to verify its
generalizability.

Make a style-continuous dataset:

Since it is difficult to find style-continuous data, we use some AI-generated images to make a style-
continuous parameter-image pair dataset, to verify the continuity of the parameter space and the
model’s generalization ability. Here are the detailed steps:

Firstly, we train the LoRA parameters relevant to style-1 using style-1 images; train the parameters
relevant to style-2 using style-2 images. Next, we use formula θinterp = (1 − λ)θstyle1 + λθstyle2 to
combine LoRA parameters in different proportions to obtain 1000 LoRA parameters between style-1
and style-2 (λ is from {0.000, 0.001, 0.002, · · · , 0.999}). Then we merge the 1000 LoRA parameters
to PixArt-α in turn and randomly select some prompts to generate images in relevant style. Thus, we
obtain a dataset of 1000 parameter-image pairs.

Train on the style-continuous dataset:

With the above style-continuous parameter-image pair data, we can verify continuity of the parameter
space and the generalization ability of our model. The detailed training process is as follows:

First, we split the dataset into a train set and a test set. We select 500 parameter-image pairs out of the
1000 pairs as the training set, in which λ is from [0.1, 0.2)∪[0.3, 0.4)∪[0.5, 0.6)∪[0.7, 0.8)∪[0.9, 1.0),
and the rest are as the test set. Next, we train COND P-DIFF on the train set according to the normal
method described in Section 3, and evaluate our model on the test set.

The results are shown in Figure 4, where the input conditions are images chosen from the test set,
which our model has never seen before. We find that the model can still generate images in the
relevant style, which shows our model’s generalizability. In addition, we visualized the training set
parameters and the parameters generated by our model in the latent space by PCA Maćkiewicz &
Ratajczak (1993) in Figure 5. The blue dots represent the data used for training, and the place where
the blue line is disconnected is left for testing. The orange dots represent the parameters generated by
COND P-DIFF, and we find that our model can fit the entire distribution instead of only parts of the
train set, illustrating the generalizability of the model.

17

	Introduction
	Preliminary
	Preliminaries of LoRA
	Preliminaries of Conditional Diffusion Models

	Methodology
	Overview
	Parameter autoencoder
	Conditional parameter generation

	Experiment
	Experiment setup
	Experiment results
	Ablation study
	Analysis

	Related work
	Conclusion
	Limitation and future work

	Detailed related work
	Experiment setup
	Style transfer experiments
	Language experiments
	Datasets
	LoRA configurations
	Condition

	Explorations of Cond P-Diff generalizability

