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ABSTRACT
Dynamic Sequential Recommendation (DSR) systems, which adapt
to users’ changing preferences by adjusting their parameters in
real time, have emerged as a significant advancement over tradi-
tional static models. Despite their advantages, DSR systems face
challenges including large item parameter spaces and heteroge-
neous user-item interactions, which can destabilize the recommen-
dation process. To address these issues, we introduce the Semantic
Codebook Learning for Dynamic Recommendation Models (SOLID)
framework. SOLID compresses the parameter generation model’s
search space and utilizes homogeneity within the recommendation
system more effectively. This is achieved by transforming item se-
quences into semantic sequences and employing a dual parameter
model, which combines semantic and item-based cues to tailor rec-
ommendation parameters. Our innovative approach also includes
the creation of a semantic codebook, which stores disentangled
item representations to ensure stability and accuracy in parameter
generation. Through extensive testing, SOLID has shown to sur-
pass traditional DSR systems, providing more precise, stable, and
dynamically adaptable recommendations. 1.

CCS CONCEPTS
• Computing methodologies; • Information systems→ Per-
sonalization;

KEYWORDS
Disentangled, Recommendation System, Multimodal

1 INTRODUCTION
Today, recommendation systems based on deep learning have
rapidly evolved from traditional Collaborative Filtering (CF) meth-
ods to sequence recommendations that suggest items based on a
user’s recent behavior sequence. This evolution has led to the emer-
gence of numerouswell-known sequential recommendationmodels,
such as DIN [29], GRU4Rec [9], SASRec [11], and BERT4Rec [17].
However, the behavior logic of most users is not universally appli-
cable, and as interests can change, it necessitates that sequence rec-
ommendation models be able to adjust their parameters in real-time
according to the user’s current interest preferences. Consequently,

1Our source code can be referred to https://anonymous.4open.science/r/SOLID-0324
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dynamic sequential recommendation models (DSR) like DUET [13]
and APG [26] have been developed.

The DSR paradigm consists of two parts: (1) The primary model.
This model has a structure similar to conventional sequential rec-
ommendation models like SASRec, but it is divided into a static
layer and a dynamic layer. The parameters of the static layer re-
main unchanged after pre-training, whereas the parameters of the
dynamic layer change with the user’s behavior. (2) The parame-
ter generation model. This is mainly used to sparse user behavior
and generate the parameters for the dynamic layer of the primary
model based on this behavior. The DSR paradigm enables tradi-
tional static sequential recommendation models to quickly adjust
their parameters according to the potential shift of interests and
intentions reflected in user behaviors, thus dynamically obtaining
more interest-aligned models in real time.

Despite the promising potential of Dynamic Sequential Recom-
mendation (DSR) systems, they face significant challenges, primar-
ily stemming from the item-to-parameter modeling scheme: (1) A
large number of items result in a vast search space for the parameter
generationmodel. Slight variations in user behavior sequences, such
as "shirt, tie, suit" versus "tie, shirt, suit," which suggest similar pref-
erences, can unpredictably alter the item-to-parameter modeling,
introducing complexity and potential instability. (2) The interaction
between users and items is generally sparse and potentially noisy
(e.g., the notorious implicit feedback issue), leading to heteroge-
neous behavior sequences that complicate the learning of accurate
item representations. This results in inaccurate item representation
learning, weakening the precision of model parameter customiza-
tion based on item sequence features, and further exacerbating the
inaccuracy of generated parameters.

To address these issues, we propose the Semantic Codebook
Learning for Dynamic Recommendation Models (SOLID). The core
objective of SOLID is to compress the search space of the parame-
ter generation model, promoting homogeneity signals utilization
within the recommendation system. We construct a semantic code-
book that better utilizes these homogeneity signals. In this code-
book, item representations are disentangled into semantics that
are learned to be absorbed in the codebook elements, such that
the homogeneity between items in the disentangled latent space
can be established. The user-item interactions are transformed into
density-enriched user-semantic interactions in the latent space. The
enriched density reduces the heterogeneity and complexity of user
behavior space modeling in the parameter generator. Moreover,
SOLID shifts from a traditional item sequence-based parameter
model to a dual approach (item sequence + semantic sequence)→
model parameter, effectively merging both uniform and diverse
information in a structured manner. Uniform information derived
from the semantic-to-parameter part is utilized to develop param-
eters that generalize across certain user behaviors, while diverse
information allows for the crafting of specific parameters tailored

https://anonymous.4open.science/r/SOLID-0324
https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Global Data
Personal

Data

(a) Data

(c) SOLID

(d) Performance Comparison

3215 2067 7981

Pro Hoops Classic: Versatile 
Basketball for Any Court
High-Top Slam: Elite Men's 
Basketball Sneakers
Global Kick: Match-Grade 
Soccer Ball for Elite Play

Image

ID

Text

(b) Forward Propagation of DSR
Recommendation 

Model
𝚯

Parameter 
Generation

Input
Output

!𝑦

ID

Image

ID
Text

Static
Layers

𝚯𝒔

Dynamic 
Layers

𝚯𝒅

(c) DSR

Parameter 
GeneratorID

Dynamic
Layers

𝚯𝒅

Branch 
Generator

Trunk 
Generator

Dynamic
Layers

𝚯𝒅

𝚯𝒅𝑻

𝚯𝒅𝑩

Merge

Parameter 
Generation

Parameter 
Generation

UAUC

Recall@10

…

Codebook

Semantic
Metacode

Figure 1: (a) describes multimodal user behavior data that includes images, text, and IDs. (b) describes the forward propagation
of DSR, which is divided into two pathways: the first pathway processes user behavior data composed of IDs through a
parameter generator to produce the parameters for the dynamic layers of the primary model. The second pathway processes
the same ID-based user behavior data through the primary model’s static layer, then through the dynamic layer, resulting
in the prediction output. (c) and (d) compare the parameter generation patterns of existing DSR and SOLID. (e) compares the
performance of our method and SR models and DSR Models on four multimodal recommendation datasets and four additional
recommendation datasets. The results show that our method significantly enhances performance on extensive datasets.

to individual behavioral nuances. Crucially, by aligning the dimen-
sions of the codebook with those of the semantic encoder, we trans-
form the semantic encoder into a meta-code that serves as an initial
state for the codebook, further easing the modeling of parameter
generation.

Specifically, to reduce the search space of the parameter gen-
eration model through the semantic codebook, SOLID involves
three main modules. Initially, SOLID employs a pretrained model
to extract semantic components from item, image, and text features.
This disentanglement transitions the focus from item sequences
to semantic sequences, shifting the modeling approach from item-
based to semantics-based parameter generation. This design results
in trunk parameters that generalize behaviors from the entire user
base to specific groups, and branch parameters that cater to individ-
ual user behaviors, both derived from semantic and item sequences
respectively. Parameters derived from items are tightly controlled
(e.g., ±0.01) before their integration into the dynamic layer of the
primarymodel, ensuring a responsive and adaptive system based on
real-time user activity. Despite this, branch parameters still adhere
to an item-centric approach, necessitating the use of a Semantic
Codebook (SC) to maintain personalization and stability in rep-
resentation. This codebook stores semantic vectors of behavior,
progressively aligned with the nearest matches during learning.
The weights of the semantic encoder are used to initialize the SC,
easing the semantic codebook learning. As demonstrated, SOLID
is designed to pursue the precision, stability, and clarity of model

parameter generation, trying to promote the dynamic recommen-
dation model’s response to sparse, heterogeneous, and potentially
noisy user behaviors.

Our contributions can thus be summarized as:

• We identified the limitations of the existing Dynamic Se-
quential Recommendation (DSR) paradigm and designed the
SOLID frameworkwith a semantic codebook to address these
deficiencies.
• We first learned to disentangle the parameter generation
model, vertically splitting the item-to-parameter scheme into
semantic-to-parameter as the trunk and item-to-parameter
as the branch. This approach ensures that the generated
model parameters contain both homogeneous and heteroge-
neous information.
• To enhance the semantic codebook learning, we transformed
the semantic encoder used for trunk parameter generation
into a semantic metacode, which is used to initialize the
semantic codebook.
• We conducted extensive experiments across multiple
datasets, where varied analysis demonstrates the rationality
and efficacy of SOLID.

2 RELATEDWORK
2.1 Sequential Recommendation
Sequential recommendation systems analyze users’ historical in-
teractions to predict future preferences, playing a crucial role in
various applications like e-commerce and short video platforms.
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Early approaches, such as the FPMCmodel [15], leveraged non-deep
learning techniques and Markov decision processes to understand
user behavior sequences. However, to enhance model capabilities,
recent advancements [4, 9, 11, 17, 24, 29] have shifted towards
deep learning-based sequential recommendation systems. For in-
stance, GRU4Rec [9] employs Gated Recurrent Units (GRUs) to
effectively model sequential behavior, demonstrating impressive
results. Additionally, models like DIN [29] and SASRec [11] incor-
porate attention mechanisms and transformers, respectively, to
achieve rapid and efficient performance enhancements. BERT4Rec
further applies the principles of BERT for superior outcomes. These
four models—GRU4Rec, DIN, SASRec, and BERT4Rec—have signifi-
cantly influenced both academic research and industry practices
with their innovative approaches to sequential recommendation.
However, these SR Models struggle to achieve optimal performance
across every data distribution when dealing with users’ real-time
changing behaviors and interest preferences. Therefore, we have
designed a more robust DSR Model that retains the advantages of
existing DSR Models while addressing their shortcomings.

2.2 Disentangled Representation Learning
Disentangled Representation Learning: The goal of disentangled
representation learning is to parse the data into distinct, inter-
pretable components by identifying different underlying latent
factors [2, 3]. The Variational Autoencoder (VAE) [6], a cornerstone
in this field, employs variational inference alongside an encoder-
decoder structure to differentiate between various latent factors.
The 𝛽−VAE model [10] further refines this by adjusting the bal-
ance between the model’s ability to disentangle and its capacity to
represent information. This approach has found notable applica-
tions in areas like recommendation systems, where it addresses the
diverse purchasing preferences of users. By incorporating multi-
interest methods [12, 14] along with disentangled representation
learning, several studies [20–23, 28] have demonstrated significant
advancements in recommendation tasks. We draw on the idea of dis-
entangling and apply it to dynamic model parameter generation to
reduce the parameter search space and leverage the homogeneous
information of user behavior.

2.3 Dynamic Neural Network
Research in dynamic neural networks unfolds across two primary
branches: HyperNetworks and Dynamic Filter Networks. Hyper-
Networks, initially introduced by Ha et al. [8], represent a novel ap-
proach wherein one neural network dynamically generates the pa-
rameters for another, offering a significant reduction in the number
of parameters required for training, thus achieving model compres-
sion. This foundational concept has sparked extensive exploration
into various applications and enhancements of HyperNetworks. For
instance, Oscar et al. [5] delved into parameter initialization tech-
niques specifically for HyperNetworks. The versatility of HyperNet-
works has been demonstrated across a wide array of tasks, including
continual learning [18], graph analysis [27], meta-learning [25], and
federated learning [16]. Recent advancements have particularly fo-
cused on leveraging HyperNetworks to generate unique network
parameters based on differing data inputs, with HyperStyle [1] and
HyperInverter [7] showcasing the potential for enhancing image

reconstruction quality by producing distinct decoder parameters
for various images. APG [26] and DUET [13] are the most recently
and the SOTA dynamic recommendation models. However, existing
DSR models are affected by the heterogeneity of user behavior, the
sparsity of user-item interactions, etc., leading to drawbacks such
as an overly large parameter search space and inaccurate parameter
generation. Our method effectively addresses these shortcomings
of the DSR models.

3 METHODOLOGY
3.1 Notations and Problem Formulation
First, we introduce the notation in sequential recommendations.

3.1.1 Data. We use Xori = {𝑢, 𝑣, 𝑠𝑣} to represent a piece of data,
Xdec = {𝑢, 𝑐, 𝑠𝑐 } to represent a piece of disentangled data, Xmm =

{𝑖, 𝑡} to represent multimodal information, and Y = {𝑦} to repre-
sent the label indicating whether the user will interact with the
item. In brief, X = Xori ∪ Xdec ∪ Xmm = {𝑢, 𝑣, 𝑠𝑣, 𝑐, 𝑠𝑐 , 𝑖, 𝑡}, where
𝑢, 𝑣, 𝑐, 𝑠𝑣, 𝑠𝑐 , 𝑖, 𝑡 represent user ID, item ID, category ID, user’s click
sequence consists of item ID, user’s click sequence consists of cate-
gory ID, the image of the item, and the title of the item respectively.
We represent the dataset as D, where D = {𝑋,𝑌 }. More specif-
ically, we use DTrain to represent the training set and DTest to
represent the test set. Roughly speaking, let L be the loss obtained
from training on dataset DTrain. For simplicity, we simplify the
symbol DTrain to D. Then, the model parameters𝑊 can be ob-
tained through the optimization function argminL. The sequence
length inputted into the model is set to 𝐿𝑠 , so the lengths of both
𝑠𝑣 and 𝑠𝑐 in a sample are 𝐿𝑠 .

3.1.2 Model. The recommendation model is represented byM
and the parameters of theM is Θ, where Θ = Θ𝑠 ,Θ𝑑 . The model
M𝑣 is utilized to generate the Θ𝑑 according to the item id sequence
𝑠𝑣 ,M𝑐 is utilized to generate the Θ𝑑 according to the category id
sequence 𝑠𝑐 ,M(·) andM𝑣 (·) represent the forward propagation
processes of two models, where · denotes the input.

3.1.3 Feature. We use Ev and Ec to represent the item feature
set and semantic feature set extracted from 𝑠𝑣 and 𝑠𝑐 respectively.
Specifically, Ev = {𝑒1𝑣 , 𝑒2𝑣 , ..., 𝑒

𝐿𝑠
𝑣 }, Ec = {𝑒1𝑐 , 𝑒2𝑐 , ..., 𝑒

𝐿𝑠
𝑐 }. ev and ec are

the sequence features obtained through sequence feature extraction
models such as Transformer or GRU, via Ev and Ec, respectively.
The length of an item representation or a semantic representation
is set to 𝐿𝑟 .

3.1.4 Formula. Sequential RecommendationModels (SR), Dynamic
Sequential Recommendation Models (DSR), and Disentangled Mul-
timodal Dynamic Sequential Recommendation Models (SOLID) can
be formalized as follows:

SR : M(Xori;Θ)︸        ︷︷        ︸
Recommendation Procedure

Gradients←−−−−−−−−−−−−−−−−−−−−→
Output

(Ŷ⇐⇒Y)︸       ︷︷       ︸
Loss Calculation

. (1)

DSR :M(Xori;Θ𝑠 ,Θ𝑑 =M𝑣 (Xori))︸                                 ︷︷                                 ︸
Recommendation Procedure

Gradients←−−−−−−−−−−−−−−−−−−−−→
Output

(Ŷ⇐⇒Y)︸       ︷︷       ︸
Loss Calculation

. (2)
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Figure 2: The framework of the SOLID, which consists of three main modules: Semantic Parameter Generation (SPG), Semantic
Metacode Learning (SML), and Semantic Codebook Learning (SCL). SPG first converts item representations into semantics and
constructs a semantic sequence to generate parameters in a structured manner. Subsequently, SML generates model parameters
based on both the item sequence and the semantic sequence, and it jointly trains the model, accommodating both homogeneous
and heterogeneous information. More importantly, the semantic encoder it learns can be transformed into metacode, which
then provides a good initial value for the codebook. Finally, SCL learns a semantic codebook to improve the process of the
parameter generation. Among them, LRec = 𝑙CE (𝑦,𝑦),LCon = 𝑙MSE (E𝑣, E′𝑣).

SOLID :



Xori,Xmm ↦→ 𝑐 = 𝑓 (𝑣, 𝑖, 𝑡) ↦→ Xdec,
Θ𝑑 =M𝑣 (Xori) ⊕ M𝑐 (Xdec),

M(Xori;Θ𝑠 ,Θ𝑑 )︸               ︷︷               ︸
Recommendation Procedure

Gradients←−−−−−−−−−−−−−−−−−−−−→
Output

(Ŷ⇐⇒Y)︸       ︷︷       ︸
Loss Calculation

.

(3)
In the aforementioned formula, 𝑎 → 𝑏 indicates that the direction
of information transfer is from 𝑎 to 𝑏, with the text next to it repre-
senting the content of the transfer. 𝑎 ↦→ 𝑏 signifies that 𝑏 is derived
from 𝑎.

3.2 Preliminary
3.2.1 Sequential Recommendation Models. Here we first retrospect
the paradigm of sequential recommendation.

In the training stage, the loss can be calculated to optimize the
sequential recommendation models as follows,

min
Θ
LSR =

∑︁
𝑢,𝑣,𝑠𝑣 ,𝑦∈D

𝑙CE (𝑦,𝑦 =M(𝑢, 𝑣, 𝑠𝑣 ;Θ)). (4)

The loss function can set to CE (Cross Entropy) loss and MSE (Mean
Squared Error) loss, etc. However, since sequential recommendation
often focuses more on CTR (Click-Through Rate) prediction tasks,
and this paper is also focused on CTR prediction, the recommenda-
tion loss in this paper is CE loss and represented by 𝑙CE.

3.2.2 Dynamic Sequential Recommendation Models. DSR generate
model parameters based on users’ real-time user behaviors. Then
the updated model is used for current recommendations. The layers
whose parameters are updated are referred to as “dynamic layers”,
while the layers whose parameters remain unchanged are referred
to as “static layers”.

DSR treat the parameters of one of the dynamic layers as a
matrix 𝐾 ∈ R𝑁𝑖𝑛×𝑁𝑜𝑢𝑡 , where 𝑁𝑖𝑛 and 𝑁𝑜𝑢𝑡 represent the number
of input neurons and output neurons of a fully connected layer
(FCL), respectively. DSR utilize a encoder 𝐸𝑣 to extract the sequence
feature 𝒆𝑣 from the user’s behavior sequence 𝑠𝑣 to generate the
parameters of the model’s dynamic layers.

𝜃𝑑 =M𝑣 (𝐸𝑣 (𝑠𝑣)), (5)

After parameter generation, the parameters of the model will be
reshaped into the shape of 𝐾 .

During training, all layers of theM𝑣 are optimized together with
the static layers of theM. The loss function LDSR is defined as
follows:

min
Θ𝑠 ,Θ𝑣

LDSR =
∑︁

𝑢,𝑣,𝑠𝑣 ,𝑦∈D
𝑙CE (𝑦,𝑦 =M(𝑢, 𝑣, 𝑠𝑣 ;Θ𝑠 ,Θ𝑑 )) . (6)

Although the Item-based Dynamic Recommendation Model can
obtain personalized model parameters based on users’ real-time
behavior and achieve superior performance, it also faces multiple
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challenges. 1) The user-item interaction is extremely sparse, lead-
ing to inaccurate item representation learning, making the model
parameters customized based on item-based features inaccurate. 2)
The personalized model parameters obtained by this strategy are
highly mixed. 3) The generated parameters are not subject to any
constraints, which poses challenges to the stability of the generated
model. So we design the novel methods to address the challenges
mentioned above.

3.3 SOLID Framework
Our proposed Semantic Codebook Learning for Dynamic Recom-
mendation Models (SOLID), which is shown in the Figure 2.

3.3.1 Semantic Parameter Generation. Transforming the Item-
based Dynamic Recommendation Model into a Semantic-based
Dynamic Recommendation Model is an important step in disentan-
gling personalized model parameters.
Item to Semantic. First, items need to be transformed into se-
mantics. For data without category labels, clustering can be directly
applied to obtain semantics, i.e.,

Cluster({𝑒𝑖 }N𝑖=1) ↦→ {𝑐𝑖 }
N
𝑖=1, 𝑐𝑖 ∈ {1, 2, ..., 𝑘}. (7)

For data with category labels, since the same item often belongs
to multiple categories, we need to select a primary category as
semantic it. First, we can define the centroid𝑚𝑐 of each category
𝑐 , which is the average of embeddings 𝑒 for all items belonging
to category 𝑐 . Assuming 𝑛𝑐 is the number of items belonging to
category 𝑐 , the centroid𝑚𝑐 for category 𝑐 can be represented as:

𝑚𝑐 =
1
𝑛𝑐

∑︁
𝑣∈𝑐 (𝑒𝑣 or 𝑒𝑖 or 𝑒𝑡 ), (8)

where 𝑒𝑣, 𝑒𝑖 , 𝑒𝑡 are the representation of item ID 𝑣 , item image 𝑖 ,
item title 𝑡 , respectively. Next, we compute its distance to each
category center𝑚𝑐 . Assuming we use the Euclidean distance, it can
be represented as,

𝑑 (𝑣, 𝑐) = ∥(𝑒𝑣 or 𝑒𝑖 or 𝑒𝑡 ) −𝑚𝑐 ∥, (9)

where ∥ · ∥ denotes the norm of the vector, typically the Euclidean
norm. Finally, we select the closest category as the semantic for
item 𝑣 . That is, the semantic 𝑐𝑝 for item 𝑣 can be represented as:

𝑐𝑝 = argmin
𝑐
𝑑 ((𝑣 or 𝑖 or 𝑡), 𝑐) . (10)

This way, we can use formulas to represent the process of com-
puting the primary category for an item.
Semantic-based Parameter Generation. After converting
items into semantics, a semantic-to-parameter model can be trained.
The training process is similar to that of the item-to-parameter
model. The only differences are that the input for the item-to-
parameter model is an item sequence, whereas for the semantic-to-
parameter model, it is a semantic sequence; similarly, the outputs
are the target item and target semantic, respectively.

min
Θ𝑠 ,Θ𝑐

LDSR =
∑︁

𝑢,𝑣,𝑠𝑐 ,𝑦∈D
𝑙CE (𝑦,𝑦),

𝑦 =M(𝑢, 𝑣, 𝑠𝑐 ;Θ𝑠 ,Θ𝑑 ),
Θ𝑑 =M𝑐 (𝐸𝑐 (𝑠𝑐 )) .

(11)

In the above equation, 𝐸𝑐 represents the semantic encoder, which
is similar to the item encoder 𝐸𝑣 .

3.3.2 Semantic Metacode Learning. To obtain a semantic metacode
that provides a good initialization for the semantic codebook, our
strategy involves using the weights of a semantic encoder, which
incorporates substantial homogeneity information for semantic en-
coding, as the semantic metacode. To acquire the semantic encoder,
we need to disentangle the parameter generation into trunk param-
eters and branch parameters, using semantic sequences and item
sequences for generation, respectively. Once training is complete,
we can obtain the semantic metacode.

Disentangling the parameter generation model into item-to-
parameter and semantic-to-parameter means separating the model
parameters into a user model and a user group model. The ad-
vantage of the former lies in its extreme personalization, but the
downside is the inaccurate parameter generation due to the high
heterogeneity of data. The latter has the advantage of low data
heterogeneity, allowing for more stable and accurate parameter
generation, but its downside is that the personalization level of
the semantic sequence is not as high as that of the item sequence.
Therefore, how to complement the advantages of both is a question
worth considering.

Our solution is to use semantic-to-parameter as the trunk, gen-
erating the main part of the model parameters, which can be based
on the semantic sequence to obtain the user group model. Then, the
parameters generated by item-to-parameter act as branches, limited
within a smaller threshold, to ensure the stability of the generated
parameters while personalizing from the user group model to the
user model. The process can be formulated as follows,

min
Θ𝑠 ,Θ𝑐 ,Θ𝑣

LSOLID =
∑︁

𝑢,𝑣,𝑠𝑐 ,𝑦∈D
𝑙CE (𝑦,𝑦),

𝑦 =M(𝑢, 𝑣, 𝑠𝑣 ;Θ𝑠 ,Θ𝑑 ),
Θ𝑑 =M𝑐 (𝐸𝑐 (𝑠𝑐 )) + Clip(M𝑣 (𝐸𝑣 (𝑠𝑣)));T),

(12)

where T is a hyperparameter to control the threshold of the gener-
ated parameter shift. The training procedure can thus be formulated
as the following optimization problem.

3.3.3 Semantic Codebook Learning. However, even if we disen-
tangle the model parameters and deal with the item-to-parameter
process, the item-to-parameter mapping still needs to be used to
generate model parameters. Therefore, to further improve the accu-
racy of the item-to-parameter mapping, so we designe a Semantic
Codebook (SC). Upon obtaining the semantic metacode, we can
initialize the semantic codebook with it. Subsequently, we continue
using the trunk and branch method of parameter generation, specif-
ically semantic-to-parameter and item-to-parameter, to derive the
parameters for the dynamic layer of themodel. In the branch branch,
the item representations are replaced with semantic codes from the
codebook, which are then used to further predict model parameters.
The generated model parameters are used for click prediction on
item sequences, just as before, ultimately allowing for the train-
ing of the semantic codebook. The specific method for computing
the loss is described below. SC is denoted as 𝐷 , and 𝐷 ∈ RN𝑐×𝐿𝑟 .
Specifically, we first use the weights of the semantic encoder in
the semantic-to-parameter to initialize the item representation, as
their dimensions are the same. Then, we encode the user’s item
representation. For a piece of data, as introduced in the notation
description section, its item representation is E𝑣 = {𝑒1𝑣 , 𝑒2𝑣 , ..., 𝑒

𝐿𝑠
𝑣 }.
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Afterward, we find the closest feature in the SC to replace each
item representation in the set E𝑣 , obtaining E′𝑣 = {𝑒′1𝑣 , 𝑒′2𝑣 , ..., 𝑒

′𝐿𝑠
𝑣 },

and the sequence feature obtained from E′𝑣 is 𝑒′𝑣 . Subsequently, we
compute the MSE loss between the item representation set E′𝑣 ob-
tained from the SC and the original set E𝑣 , and incorporate it into
the training process as follows,

min
Θ𝑠 ,Θ𝑐 ,Θ𝑣

LSOLID =
∑︁

𝑢,𝑣,𝑠𝑐 ,𝑦∈D
𝑙CE (𝑦,𝑦) + 𝜆𝑙MSE (E𝑣, E′𝑣),

𝑦 =M(𝑢, 𝑣, 𝑠𝑣 ;Θ𝑠 ,Θ𝑑 ),
Θ𝑑 =M𝑐 (𝑒𝑐 ) + Clip(M𝑣 (𝑒′𝑣));T),

(13)

where 𝑙MSE represents the MSE loss function, and the 𝜆 is a hyper-
parameter.

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Datasets and Preprocessing. We evaluate SOLID and
baselines on eight datasets: Amazon Arts (Arts), Amazon
Instruments (Instruments), Amazon Office (Office),
Amazon Scientific (Scientific), Amazon CDs (CDs), Amazon
Electronic (Electronic), Douban Book (Book), and Douban
Music (Music). Arts, Instruments, Office, and Scientific
are four benchmarks that was recently released but has been
widely used in the multimodal recommendation tasks [19]. CDs,
Electronic, Book, and Music are four widely used public bench-
marks in the recommendation tasks. The details of these datasets
and preprocessing methods can be found in the Appendix. We
choose the leave-one-out approach to process the dataset, taking
the last action of each user as the test and all previous actions as
the train. Our task is CTR (Click-through Rate) prediction, so we
process these datasets into CTR prediction datasets. These datasets
consist of user rating datasets with complete reviews. We treat all
user-item interactions in the dataset as positive samples because
having a rating implies that the user clicked on the item. Further, to
ensure the training process goes smoothly with both positive and
negative samples, we sample 4 negative samples for each positive
sample in the training set and 99 negative samples for each positive
sample in the test set.

4.1.2 Baselines. To evaluate the effectiveness of our method, we
selected baselines from the following multiple categories:
• Static Recommendation Models.
DIN [29], GRU4Rec [9], SASRec [11], and BERT4Rec [17]
are all highly prevalent sequential recommendation methods
in both academic research and the industry. They each incor-
porate different techniques, such as Attention, GRU (Gated
Recurrent Unit), and Self-Attention, to enhance the recom-
mendation process.
• Dynamic Recommendation Models.
DUET [13] and APG [26] consists of two parts: a parameter
generation model and a main model. The main model refers
to the aforementioned models like DIN, GRU4Rec, SASRec,
BERT4Rec, etc. After pre-training, the parameter generation
model can generate model parameters for the main model
during inference based on the sample.

4.1.3 Evaluation Metrics. In the experiments, we use the widely
adoptedAUC,UAUC,NDCG, andRecall as themetrics to evaluate
model performance. They are defined as follows,

AUC =
∑
𝑥+∈D+Test

∑
𝑥−∈D−Test

1[M(𝑥− )<M(𝑥+ ) ]
|D+Test | |D

−
Test |

, (14)

UAUC = 1
|U |

∑
𝑢∈U

∑
𝑥𝑢,+∈D𝑢,+Test

∑
𝑥𝑢,− ∈D𝑢,−Test

1[M(𝑥𝑢,− )<M(𝑥𝑢,+ ) ]
|D+Test | |D

−
Test |

,

(15)

NDCG@𝐾 =
1
|U|

∑︁
(𝑢,𝑣,𝑠,𝑦) ∈DTest

21(sort𝐾 (�̂�) ) − 1
log2 (1(sort𝐾 (𝑦)) + 1)

, (16)

Recall@𝐾 =

∑
(𝑢,𝑣,𝑠,𝑦) ∈DTest 1(sort𝐾 (𝑦))

|U| , (17)

In the equation above,M represents the model, 1(·) is the in-
dicator function. D+Test and D

−
Test represent the positive testing

dataset and negative testing dataset respectively. D𝑢,+Test and D
𝑢,−
Test

represent the each user’s positive testing dataset and negative test-
ing dataset respectively, 𝑥 , 𝑥+, 𝑥− , 𝑥𝑢,+, 𝑥𝑢,− represent samples,
positive samples, negative samples, each user’s positive samples
and negative samples, respectively. sort𝐾 is an operator that sorts
items by their scores and retrieves the top-𝐾 items with the highest
scores.U is the user set.

4.2 Overall Results
As shown in Table 1, we evaluate the overall performance across
four multimodal datasets: Arts, Instruments, Office, and Scientific.
For each dataset, we test the performance of four SR Models: DIN,
GRU4Rec, SASRec, and BERT4Rec. We measure performance using
six metrics: AUC, UAUC, NDCG@10, Recall@10, NDCG@20, and
Recall@20. For each SR Model, there are five options for DSR Mod-
els: none (“-”), APG, Ours (APG), DUET, and Ours (DUET), where
“-” indicates no DSR Model usage, i.e., the inherent performance
of the SR Model itself. Since the “-” option consistently performs
worse than using a DSR Model, our comparison primarily focuses
on the performance of APG vs. Ours (APG) and DUET vs. Ours
(DUET) for each SR Model. Across all datasets, all SR Models, and
all metrics, our proposed methods significantly outperform both
APG and DUET.

(a) Amazon CDs (b) Amazon Electronic

Figure 3: UAUC comparison of the proposed method and
baseline on the CDs and Electronic datasets.

As shown in Figure 3 and Figure 4, we conducted experiments on
four other commonly used recommendation datasets and compared
the UAUC metric in the figures. Optimal values were used for all
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Table 1: Performance of all selected baseline results including SR Models and DSR methods under P5. The best results is in bold.
T-test shows that 𝑝-value < 0.05.

Arts Instruments

Metrics Metrics
SR Model DSR Model AUC UAUC NDCG@10 Recall@10 NDCG@20 Recall@20 SR Model DSR Model AUC UAUC NDCG@10 Recall@10 NDCG@20 Recall@20

- 0.8193 0.7559 0.2646 0.4696 0.2993 0.6054 - 0.7974 0.7463 0.2620 0.4576 0.2966 0.5991
APG 0.8432 0.7786 0.2868 0.5024 0.3221 0.6363 APG 0.8183 0.7534 0.2680 0.4606 0.3025 0.5962

Ours (APG) 0.8459 0.7873 0.2907 0.5144 0.3271 0.6529 Ours (APG) 0.8274 0.7769 0.2918 0.5006 0.3257 0.6364
DUET 0.8338 0.7647 0.2837 0.4893 0.3185 0.6202 DUET 0.8126 0.7499 0.2727 0.4658 0.3060 0.5970

DIN

Ours (DUET) 0.8426 0.7830 0.3014 0.5162 0.3363 0.6486

DIN

Ours (DUET) 0.8207 0.7613 0.2850 0.4885 0.3183 0.6181

- 0.8434 0.7837 0.2799 0.4943 0.3169 0.6380 - 0.8103 0.7604 0.2770 0.4772 0.3102 0.6105
APG 0.8416 0.7796 0.2828 0.4986 0.3196 0.6403 APG 0.8171 0.7578 0.2746 0.4716 0.3089 0.6069

Ours (APG) 0.8463 0.7897 0.3023 0.5242 0.3378 0.6589 Ours (APG) 0.8296 0.7752 0.2911 0.4971 0.3265 0.6360
DUET 0.8463 0.7809 0.2911 0.5061 0.3277 0.6430 DUET 0.8236 0.7568 0.2699 0.4655 0.3058 0.6059

GRU4Rec

Ours (DUET) 0.8466 0.7915 0.3111 0.5368 0.3460 0.6694

GRU4Rec

Ours (DUET) 0.8261 0.7740 0.2958 0.4987 0.3313 0.6401

- 0.8383 0.7737 0.2758 0.4852 0.3127 0.6273 - 0.8201 0.7586 0.2729 0.4705 0.3071 0.6051
APG 0.8370 0.7687 0.2816 0.4884 0.3166 0.6222 APG 0.8200 0.7523 0.2663 0.4601 0.3010 0.5929

Ours (APG) 0.8414 0.7820 0.3018 0.5145 0.3365 0.6468 Ours (APG) 0.8234 0.7573 0.2699 0.4622 0.3065 0.6029
DUET 0.8345 0.7660 0.2727 0.4763 0.3101 0.6177 DUET 0.8241 0.7599 0.2768 0.4760 0.3105 0.6076

SASRec

Ours (DUET) 0.8469 0.7867 0.3022 0.5216 0.3382 0.6560

SASRec

Ours (DUET) 0.8270 0.7661 0.2843 0.4827 0.3198 0.6206

- 0.8322 0.7791 0.2752 0.4885 0.3126 0.6370 - 0.7951 0.7582 0.2794 0.4723 0.3132 0.6110
APG 0.8485 0.7848 0.2986 0.5123 0.3346 0.6478 APG 0.8261 0.7650 0.2895 0.4891 0.3226 0.6202

Ours (APG) 0.8504 0.7921 0.3054 0.5279 0.3411 0.6631 Ours (APG) 0.8386 0.7846 0.3058 0.5179 0.3412 0.6568
DUET 0.8454 0.7834 0.2861 0.5025 0.3238 0.6424 DUET 0.8285 0.7686 0.2712 0.4750 0.3078 0.6191

BERT4Rec

Ours (DUET) 0.8497 0.7970 0.3088 0.5344 0.3456 0.6748

BERT4Rec

Ours (DUET) 0.8326 0.7811 0.2992 0.5104 0.3329 0.6435

Office Scientific

Metrics Metrics
SR Model DSR Model AUC UAUC NDCG@10 Recall@10 NDCG@20 Recall@20 SR Model DSR Model AUC UAUC NDCG@10 Recall@10 NDCG@20 Recall@20

- 0.8158 0.7510 0.2701 0.4702 0.3046 0.6045 - 0.6100 0.5971 0.1337 0.2609 0.1648 0.3880
APG 0.8359 0.7639 0.2862 0.4903 0.3202 0.6202 APG 0.7310 0.6969 0.1700 0.3238 0.2099 0.4816

Ours (APG) 0.8394 0.7673 0.2764 0.4823 0.3128 0.6222 Ours (APG) 0.7315 0.6989 0.1746 0.3429 0.2147 0.5020
DUET 0.8297 0.7531 0.2813 0.4816 0.3147 0.6085 DUET 0.6714 0.6266 0.1428 0.2736 0.1748 0.3979

DIN

Ours (DUET) 0.8361 0.7642 0.2949 0.4970 0.3282 0.6240

DIN

Ours (DUET) 0.7138 0.6682 0.1589 0.3012 0.1989 0.4573

- 0.8346 0.7606 0.2704 0.4762 0.3055 0.6117 - 0.7424 0.7094 0.1621 0.3214 0.2049 0.4952
APG 0.8343 0.7623 0.2809 0.4831 0.3154 0.6159 APG 0.7273 0.6933 0.1592 0.3159 0.1988 0.4758

Ours (APG) 0.8354 0.7671 0.2914 0.4966 0.3255 0.6272 Ours (APG) 0.7402 0.7133 0.1859 0.3535 0.2273 0.5161
DUET 0.8399 0.7649 0.2930 0.4976 0.3268 0.6262 DUET 0.7270 0.6881 0.1658 0.3224 0.2036 0.4703

GRU4Rec

Ours (DUET) 0.8437 0.7737 0.3072 0.5112 0.3403 0.6366

GRU4Rec

Ours (DUET) 0.7410 0.7054 0.1792 0.3415 0.2196 0.5020

- 0.8288 0.7587 0.2820 0.4858 0.3153 0.6151 - 0.7175 0.6772 0.1587 0.3145 0.1960 0.4631
APG 0.8377 0.7603 0.2823 0.4804 0.3170 0.6117 APG 0.6952 0.6610 0.1523 0.3040 0.1910 0.4583

Ours (APG) 0.8402 0.7679 0.2997 0.4995 0.3333 0.6269 Ours (APG) 0.7161 0.6728 0.1634 0.3122 0.2002 0.4580
DUET 0.8395 0.7594 0.2833 0.4831 0.3173 0.6105 DUET 0.6992 0.6565 0.1579 0.3040 0.1944 0.4481

SASRec

Ours (DUET) 0.8460 0.7735 0.2997 0.5061 0.3345 0.6380

SASRec

Ours (DUET) 0.7111 0.6738 0.1548 0.3016 0.1957 0.4614

- 0.8184 0.7544 0.2701 0.4732 0.3049 0.6092 - 0.7329 0.7000 0.1744 0.3306 0.2108 0.4768
APG 0.8354 0.7633 0.2885 0.4923 0.3223 0.6222 APG 0.7255 0.6953 0.1699 0.3306 0.2069 0.4758

Ours (APG) 0.8462 0.7767 0.3032 0.5130 0.3374 0.6419 Ours (APG) 0.7456 0.7132 0.1760 0.3508 0.2183 0.5167
DUET 0.8371 0.7682 0.2842 0.4900 0.3187 0.6223 DUET 0.7325 0.6962 0.1707 0.3262 0.2090 0.4785

BERT4Rec

Ours (DUET) 0.8380 0.7731 0.2892 0.4987 0.3249 0.6365

BERT4Rec

Ours (DUET) 0.7420 0.7108 0.1826 0.3477 0.2235 0.5099
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(a) Douban Book (b) Douban Music

Figure 4: UAUC comparison of the proposed method and
baseline on the Book and Music datasets.

SR Models and DSR Models. Our method significantly outperforms
other SR and DSR Models across all the datasets.

4.3 Ablation Study
We conduct ablation studies on each module and each modality
to further analyze the impact of them. Here, we choose the Arts

dataset, the SASRec model for SR, and the DUET model for DSR.
Each row’s !and %respectively indicate with and without the
module/modality.

4.3.1 Ablation Study on Modules. As shown in Table 2, we conduct
an ablation study on each module proposed in our method, SPG
stands for Semantic Parameter Generation, SML stands for Seman-
tic Metacode Learning, and SCL stands for Semancic Codebook
Learning. Since SPG is a prerequisite for SML, SML cannot exist
independently of SPG; therefore, there is no separate performance
data for SML alone in the table. The translation from Chinese to
English for your text is: The first line represents the traditional DSR
model where parameters are generated using an item sequence.
The second line represents generating parameters using a semantic
sequence. The third line represents the joint generation of parame-
ters using both item sequence and semantic sequence, with joint
training. The fourth line represents using semantic codebook learn-
ing without using semantic information. The fifth line represents
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our complete method. The experiments show that the model per-
forms best when all three modules are used. In terms of individual
modules, SCL has the greatest impact on performance.

Table 2: Results of the ablation study over our proposedmeth-
ods with respect to the modules. The best results is in bold.

Module Metrics

SPG SML SCL AUC UAUC NDCG@10 Recall@10 NDCG@20 Recall@20

% % % 0.8345 0.7660 0.2727 0.4763 0.3101 0.6177
! % % 0.8459 0.7783 0.2905 0.5069 0.3270 0.6425
! ! % 0.8270 0.7530 0.2491 0.4539 0.2857 0.5922
% % ! 0.8461 0.7828 0.2976 0.5166 0.3326 0.6481
! ! ! 0.8469 0.7867 0.3022 0.5216 0.3382 0.6560

4.3.2 Ablation Study on Modalities. As shown in Table 3, we con-
duct ablation study on each modality. The experimental results
show that the fusion of three modalities—ID, Image, and Text—is
not necessarily the best option. In terms of the impact on perfor-
mance for individual modalities, Text > Image > ID. For the fusion
of two modalities, in terms of impact on performance, ID + Text >
Image + Text > ID + Image.

Table 3: Results of the ablation study over our proposedmeth-
ods with respect to the modalities. The best results is in bold.

Modality Metrics

ID Image Text AUC UAUC NDCG@10 Recall@10 NDCG@20 Recall@20

! % % 0.8419 0.7770 0.2527 0.3814 0.2884 0.5024
% ! % 0.8450 0.7824 0.2579 0.3867 0.2947 0.5106
% % ! 0.8480 0.7861 0.2611 0.3929 0.2977 0.5156
! ! % 0.8402 0.7728 0.2507 0.3781 0.2872 0.5004
! % ! 0.8478 0.7863 0.2631 0.3959 0.3000 0.5201
% ! ! 0.8449 0.7816 0.2574 0.3879 0.2929 0.5082
! ! ! 0.8461 0.7828 0.2603 0.3904 0.2979 0.5166

4.4 Hyperparameter Analysis
We conduct experimental analysis on the main hyperparameters 𝜆
and T , as well as their grid search.

4.4.1 The Impact of 𝜆. As shown in Table 4, we fix T = 0.01 and
vary 𝜆 to observe changes in performance, comparing it across six
metrics. 𝜆 is a hyperparameter that influences the fusion weight
between the MSE (Mean Squared Error) loss in recommendation
task learning and the CE (Cross Entropy) loss in semantic codebook
learning. The results indicate that the performance is optimal when
𝜆 = 0.1, suggesting that at this setting, the model achieves the best
joint learning effect for the recommendation task and the semantic
codebook.

Table 4: The impact of the hyperparameter 𝜆 on performance.
The best results is in bold.

𝝀
Metrics

AUC UAUC NDCG@10 Recall@10 NDCG@20 Recall@20

1 0.8485 0.7839 0.2901 0.5103 0.3273 0.6466
0.1 0.8479 0.7850 0.2983 0.5155 0.3347 0.6510
0.01 0.8489 0.7829 0.2952 0.5120 0.3317 0.6459
0.01 0.8468 0.7810 0.2937 0.5103 0.3292 0.6431

4.4.2 The Impact of T . As shown in Table 5, we fix 𝜆 = 0.1 and
varyT to observe changes in performance, conducting comparisons
across six metrics. T is a hyperparameter that affects the fusion
weight between homogeneous information, i.e., semantic sequence
to parameter, and heterogeneous information, i.e., item sequence
to parameter. The results show that the optimal performance is
achieved when T = 0.01, indicating that at this point, the fusion
effect between semantic sequence to parameter and item sequence
to parameter is the best.
Table 5: The impact of the hyperparameterT onperformance.
The best results is in bold.

T
Metrics

AUC UAUC NDCG@10 Recall@10 NDCG@20 Recall@20

1 0.7785 0.7308 0.2220 0.4114 0.2574 0.5576
0.1 0.8460 0.7822 0.2907 0.5088 0.3273 0.6446
0.01 0.8479 0.7850 0.2983 0.5155 0.3347 0.6510
0.001 0.8451 0.7801 0.2925 0.5078 0.3279 0.6402

4.4.3 Hyperparameter Grid Search. As shown in Figure 5, the hor-
izontal axis represents 𝜆, and the vertical axis represents T . The
depth of the color and the radius of the circle represent the mag-
nitude of the value; the larger the value, the deeper the color and
the larger the circle (i.e., the larger the radius). Blue, green, and
orange represent the metrics UAUC, NDCG@10, and Recall@10,
respectively. The results show that the best performance is achieved
when 𝜆 = 0.1 and T = 0.01.

10 3 10 2 10 1 100

10 3
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10 0

0.7308

0.7850 0.2983

0.3933

0.5155

0.2044
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Figure 5: Hyperparameter Grid Search.

5 CONCLUSION
In this paper, we have presented the Semantic Codebook Learning
for Dynamic Recommendation Models (SOLID) as a solution to the
limitations faced by existing dynamic sequence recommendation
systems (DSR). Our framework integrates multimodal information,
including images and text, with user-item interactions to enhance
recommendation accuracy and adaptability. By disentangling model
parameters into trunk parameters capturing generalized user behav-
ior trends and branch parameters tailored to individual user actions,
SOLID offers a more efficient and effective recommendation system.
Through extensive experimentation across multiple datasets, we
have demonstrated that SOLID significantly outperforms previous
DSR models, with an significant improvement on extensive datasets
and models. These results underscore the potential of leveraging
multimodal information to advance the capabilities of dynamic rec-
ommendation systems, paving the way for more personalized and
responsive user experiences in the era of digital personalization.
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