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In this supplementary material, we offer additional details regarding our FastParticle and Panoptic
datasets, which provide the necessary context for our experiments. We delve into our method for
articulated objects segmentation, presenting full qualitative results that demonstrate its effectiveness
across various scenarios. Additionally, we clarify our rationale for maintaining the same number of
iterations in our comparisons and present a comparison under equal wall-clock time, showing that
our method still outperforms Dynamic3DGS Luiten et al. (2023). We also include visualizations il-
lustrating the multi-layer clustering structure we employ, as well as the manually annotated tracking
labels used for evaluating 2D tracking results. Furthermore, we discuss our approach to learning
the deformation, emphasizing the two-phase training strategy. Finally, we reflect on limitations,
identifying potential areas for future improvement.

A FASTPARTICLE AND PANOPTIC DATASETS

In this section, we introduce the FastParticle and Panoptic datasets used in our experiments in details.
The real-world Panoptic dataset includes six scenes: Basketball, Boxes, Football, Juggle, Softball,
and Tennis. Each frame in these scenes comes with segmentation provided by the original authors.
Following Luiten et al. (2023), we distinguish between foreground and background in these scenes
and utilize background loss and floor loss accordingly. Each scene in this dataset contains 150
frames captured by a total of 31 cameras, with 27 cameras used for training and 4 for testing.

The synthetic FastParticle dataset, which we have accelerated, contains six dynamic scenes: Robot,
Spring, Wheel, Pendulums, Robot-Task, and Cloth. After acceleration, these scenes respectively
have 35, 18, 38, 24, 35, and 35 frames. As illustrated in fig. I, we show the dynamic evolution of
some scenes, highlighting the significant changes between frames. This dataset includes 40 cameras
in total, from which we randomly select 4 as testing cameras and the remaining 36 as training
cameras.

For all experiments, we provide the same static checkpoints to all baselines. For the 12 scenes
across the two datasets, we train for 20,000 iterations to obtain the checkpoints. Due to the varying
complexity of the static scenes, 3,000 iterations are sufficient for most FastParticle scenes.

B ARTICULATED OBJECTS SEGMENTATION

As mentioned in Sec. 5.1. The intuition behind the KMeans design is that, (1) Gaussians belong
to the same part of the object should be close to each other at all time, and (2) the rotations of
Gaussians within the same rigid part should be the same. The first one can be trivial, here we
provide more explanations about the second point. As shown in fig. II, suppose we have a rigid
body with its centroid denoted as C0. This rigid body can be considered as a combination of two
smaller rigid bodies, with their centroids denoted as C1 and C2, respectively. After rotation, C1 and
C2 move to C ′

1 and C ′
2. Taking C0 as the origin of the coordinate system, the movement of the rigid

body can only be a rotation R around C0, and the two smaller rigid bodies move accordingly. When
considering the left smaller rigid body alone, its motion should consist of a translation of its centroid
C1 and a rotation R1 around C1. We aim to prove that R1 = R. Therefore, consider a point P on
the left rigid body, which moves to point P ′ after the movement. From the perspective of C0, we
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Figure I: This figure shows the evolution of three scenes from the FastParticle dataset, demonstrating
the high dynamic characteristics of the accelerated dataset.

C0C1
C2

𝑅

𝑃
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Figure II: Illustration of a rigid body rotating R around its centroid. When considering the rigid
body as composed of two smaller rigid bodies, it can be shown that the rotation of each smaller rigid
body around its own centroid is the same with R.

have −−−→
C0P

′ = R
−−→
C0P . (1)

Also, from the perspective of C1, we can have
−−−→
C0P

′ = R1
−−→
C1P +

−−−→
C0C

′
1

= R1
−−→
C1P +R

−−−→
C0C1.

(2)

Therefore, we have
R
−−→
C1P = R1

−−→
C1P . (3)

Since the choice of P is arbitrary, we can conclude that R1 = R. Similarly, we can prove that the
rotation of the smaller rigid body on the right is also R. The above demonstrates the case where
the rigid body is divided into two parts. This conclusion can be generalized to any case of multiple
divisions, meaning that all parts of the same rigid body have the same rotation. Returning to our
problem, since the rotation of Gaussians is around their centroids, the Gaussians belonging to the
same rigid body should have the same rotation.
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C FULL QUALITATIVE RESULTS

Dynamic3DGS Ours Ground Truth
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Figure III: Qualitative results on FastParticle

In this section, we provide qualitative results on all 12 scenes from the two datasets. As shown in
fig. III and fig. IV, both our method and Luiten et al. (2023) are trained 100 iterations between two
consecutive frames.

D SAME WALL-CLOCK TIME COMPARISONS

In our experiments, we use the same number of iterations across different methods for consistency.
While wall-clock time may vary depending on the specific implementation (e.g., whether CUDA
acceleration is employed), the number of iterations reflects the convergence speed of the algorithms.
A lower number of iterations indicates faster convergence, showing that the optimization problem is
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Figure IV: Qualitative results on Panoptic

Metrics Method FastParticle
Robot Spring Wheel Pendulums Robot-Task Cloth

PSNR↑ Ours100 29.46 30.28 27.95 30.60 27.67 31.68
Dynamic3DGS300 Luiten et al. (2023) 27.66 27.16 26.67 29.57 26.79 30.41

SSIM↑ Ours100 0.96 0.97 0.94 0.97 0.95 0.97
Dynamic3DGS300 Luiten et al. (2023) 0.95 0.95 0.93 0.96 0.95 0.97

LPIPS↓ Ours100 0.09 0.04 0.07 0.06 0.10 0.06
Dynamic3DGS300 Luiten et al. (2023) 0.10 0.06 0.08 0.06 0.10 0.07

Table I: Comparison of our method trained with 100 iterations per time frame against Dy-
namic3DGS.
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Figure V: Coarse-to-fine multi-layer clustering structures for two objects in the FastParticle dataset.

easier to solve. This practice is commonly used in the evaluation of online methods, as demonstrated
in the Dynamic3DGS Luiten et al. (2023) comparison (see Table 1 in their paper), where different
methods are also compared using the same number of iterations.

Even when comparing with equivalent wall time, our method remains superior. To further illus-
trate this, we provide a comparison of our method trained for 100 iterations per frame versus Dy-
namic3DGS Luiten et al. (2023) trained for 300 iterations per frame on the FastParticle dataset. The
results show that our method has an average training speed per iteration approximately twice as fast
as Dynamic3DGS Luiten et al. (2023). As seen in table I, despite the difference in iteration count,
our method still outperforms Dynamic3DGS Luiten et al. (2023) in terms of both efficiency and final
performance.

E ILLUSTRATION OF THE MULTI-LAYER STRUCTURE

In fig. V, we show the coarse-to-fine multi-layer clustering structures for two objects in the FastPar-
ticle dataset. Different colors in the figure represent different clusters, and for clarification, the same
color in different layers does not indicate any correlation between the clusters.

F TRACKING LABELS

Here, as shown in fig. VI, we present all manually annotated 2D tracking ground truths. Since the
human eye can only track points with distinct features across multiple frames, we only selected such
points for annotation.

G LEARNING THE DEFORMATION

algorithm 1 summarizes our training process. Initially, we train our Gaussians on the static scene
using observations from the first frame. Subsequently, we perform multilevel coarse-to-fine cluster-
ing for the centroids of the Gaussians. For each input in every time frame, we use an optimization
approach to backpropagate loss and subsequently update our deformation functions.

For potential negative impacts, since LayeredGS can learn deformation information and be used for
creating new motions or inserting objects, such applications can be used for fake news to convince
people by multi-view renderings. More censorship needs to be established in such cases.
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Figure VI: Illustration of our manually annotated tracking ground truths.
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Algorithm 1: Deformation-based Dynamic Scene Reconstruction Algorithm
Input: Images from all frames
Θprev ← Initialization stage (Static Gaussian Splatting);
Do Clustering;
for t in time frames do

Initialize the Deformation D;
for iter in max iters do

Θcurr ← D(Θprev);
Images← Render(Θcurr);
loss← Loss(gt Images, Images);
Backpropagate(loss);

end
end

H LIMITATIONS

While our method significantly reduces training iterations to 100 per frame, achieving real-time
training and rendering remains a challenge. Additionally, the learned deformation information is not
fully utilized, and the presented articulated object segmentation results are not well refined. Future
work will focus on addressing these limitations by exploring real-time training approaches, refining
deformation utilization techniques, and developing more sophisticated segmentation methods.
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