
Appendix

A Lower Bound

In this section, we establish a lower bound on the expected regret of any algorithm for our multi-agent
multi-armed bandit (MA-MAB) problem. In the classical multi-armed bandit problem, it is known
that no algorithm can achieve a regret bound of E[RT ] = o(

√
KT ), when the constant inside the

little-Oh notation is required to be independent of the distributions in the given instance [18]. Our
goal in this section is twofold. First, we argue that, due to subtle reasons, a lower bound for the
classical multi-armed bandit problem does not immediately carry over to our setting. Nevertheless,
we subsequently argue that a very simple adjustment to the proof of the classical lower bound due to
Auer et al. [18] is sufficient to extend it to our problem. To avoid excessive repetition of notation
and proof arguments, we purposefully leave this section not self-contained and only outline these
adjustments needed. We refer an interested reader to the work of Auer et al. [18] for the full and
detailed proof. That said, this argument establishes that the

√
T -dependence of the expected regret of

our UCB variant from Theorem 3 is optimal. Note that our focus is solely on the dependence of the
expected regret on T as T is typically much larger than both the number of agents N and the number
of arms K. We leave it to future work to optimize the dependence on N and K.

First, we notice that any lower bound derived for the case of a single agent also holds when there are
N > 1 agents. This is because one can consider instances in which all but one of the agents derive
a fixed reward of 1 from every arm. Note that the contribution of such agents to the product in the
Nash social welfare expression is always 1 regardless of the policy chosen. Hence, the Nash social
welfare reduces to simply the expected utility of the remaining agent, i.e., the Nash social welfare in
an instance with only this one agent. Therefore, any lower bound on the expected regret that holds
for MA-MAB with a single agent also holds for MA-MAB with N > 1 agents.

Next, let us focus on the MA-MAB problem with N = 1 agent. At the first glance, this may look
almost identical to the classical multi-armed bandit problem. After all, if there is but one agent, the
policy maximizing the Nash social welfare places probability 1 on the arm j∗ that gives the highest
mean reward to the agent. Thus, like in the classical problem, our goal would be to converge to
pulling arm j∗ repeatedly and our regret would also be measured with respect to the best policy
which deterministically pulls arm j∗ in every round. However, there are two subtle differences which
prevent us from directly borrowing the classical lower bound.

1. In our MA-MAB problem, an algorithm is allowed to “pull” a distribution over the arms pt
in round t and learn the stochastically generated rewards for a random arm jt sampled from
this distribution. This makes the algorithm slightly more powerful than an algorithm in the
classical MAB problem which must deterministically choose an arm to pull.

2. In our MA-MAB problem, the regret in round t is computed as the difference between the
mean reward of the best arm and the expected mean reward of an arm jt sampled according
to the distribution pt used by the algorithm. In the classical problem, one would replace the
latter term with the mean reward of the arm actually pulled in round t.

The latter distinction is not particularly troublesome because our focus is on the expected regret of an
algorithm anyway. However, the first distinction makes it impossible to directly borrow lower bounds
from the classical MAB problem.

One might wonder if there is still a way to reduce the MA-MAB problem with N = 1 agent to the
classical MAB problem. For example, given an algorithm A for MA-MAB with N = 1, what if we
construct an algorithm Â for the classical MAB and use the lower bound on the expected regret of
Â to derive a lower bound on the expected regret of A? The problem with such reduction is that
once A chooses a distribution pt, we have no control over which arm will be sampled. This choice
is crucial as it will determine what information the algorithm gets to learn. We cannot mimic this
learning process in our deterministic algorithm Â. Upon careful consideration, it also seems difficult
to express the expected regret of A as the convex combination of the expected regret of several
deterministic algorithms for the classical MAB.

Instead of aiming to find a black-box reduction to the classical problem, we therefore investigate
in detail the proof of the Ω

(√
KT

)
lower bound for the classical MAB due to Auer et al. [18,
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Theorem 5.1] and observe that their argument goes through for our MA-MAB problem as well.
Instead of repeating their proof, we survey the key steps of their proof in which they assume the
algorithm to be deterministically pulling an arm and highlight why the argument holds even when
this is not the case.

• In the proof of their Lemma A.1, in the explanation of their Equation (30), they cite the
assumption that given the rewards observed in the first t − 1 rounds (they denote this by
the vector rt−1), the algorithm pulls a fixed arm it in round t. They refer to the distribution
Pi{rt|rt−1} of the reward in round t given rt−1. In their case, the randomness in rt is
solely due to stochasticity of the rewards since the arm pulled (it) is fixed. However, in
our case, one can think of Pi{rt|rt−1} as containing randomness both due to the random
choice of it and due to the stochasticity of the rewards, and their equations still go through.

• In the same equation, they consider Punif{it = i}, the probability that arm i is pulled in
round t. In their case, the only randomness is due to rt−1. In our case, there is additional
randomness due to the sampling of an arm in round t from a distribution pt. However, this
does not affect their calculations.

• Finally, in the proof of their Theorem A.2, they again consider the probability Pi{it = i}
and the same argument as above ensures that their proof continues to hold in our setting.

Thus, we have the following lower bound.

Proposition 2. For any algorithm for the MA-MAB problem, there exists a problem instance such
that E[RT ] = Ω

(√
KT

)
.

B Missing Algorithms & Proofs

Algorithm 2: Explore-First
Input: Number of agents N , number of arms K, horizon T
Parameters :Exploration period L
// Pull each arm L times

for t = 1, . . . ,K · L do // Exploration

j ← dt/Le
pt ← policy that puts probability 1 on arm j // Pull arm j deterministically

end
Compute the estimated reward matrix µ̂ , µ̂K·L+1 of the rewards observed so far
Compute p̂ ∈ arg maxp∈∆K NSW(p, µ̂)

for t = K · L+ 1, . . . , T do // Exploitation

pt ← p̂

end

δ-Covering: Given a metric space (X, d) and δ > 0, a set S ⊆ X is called a δ-cover if for each
x ∈ X , there exists s ∈ S with d(x, s) ≤ δ. That is, from each point in the metric space, there is a
point in the δ-cover that is no more than δ distance away. We will heavily use the fact that there exists
a δ-cover of (∆K , ‖·‖1) (i.e. the K-simplex under the L1 distance) with size at most (1 + 2/δ)

K [44,
p. 126], which follows from a simple discretization of the simplex.
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Algorithm 3: εt-Greedy
Input: Number of agents N , number of arms K
Parameters :Exploration probabilities εt for t ∈ N
curr ← 1 // Next arm to pull during exploration

for t = 1, 2, . . . , do
Toss a coin with success probability εt

if success then // Exploration

// Round-robin among arms during exploration

pt ← policy that puts probability 1 on arm curr // Pull it deterministically

curr ← curr + 1 // When curr becomes K + 1, reset to 1

else // Exploitation

Compute the estimated reward matrix µ̂t from the rewards observed so far
pt ← arg maxp∈∆K NSW(p, µ̂t)

end
end

B.1 Proof of Lemma 1

Proof. We prove this using induction on N . For N = 1, the lemma trivially holds. Suppose it holds
for N = n. For N = n+ 1, we have∣∣∣∣∣

n+1∏
i=1

ai −
n+1∏
i=1

bi

∣∣∣∣∣ =

∣∣∣∣∣
n+1∏
i=1

ai − bn+1

n∏
i=1

ai + bn+1

n∏
i=1

ai −
n+1∏
i=1

bi

∣∣∣∣∣
≤

(
n∏
i=1

ai

)
|an+1 − bn+1|+ bn+1 ·

∣∣∣∣∣
n∏
i=1

ai −
n∏
i=1

bi

∣∣∣∣∣
≤ |an+1 − bn+1|+

n∑
i=1

|ai − bi| =
n+1∑
i=1

|ai − bi| ,

where the second transition is due to the triangle inequality, and the third transition holds due to the
induction hypothesis and because ai, bi ∈ [0, 1] for each i.

B.2 Proof of Lemma 2

Proof. Using Lemma 1, we have∣∣NSW(p1, µ)−NSW(p2, µ)
∣∣ ≤∑i∈[N ]

∣∣∣∑j∈[K](p
1
j − p2

j ) · µi,j
∣∣∣ ≤ N ·∑j∈[K]

∣∣p1
j − p2

j

∣∣ ,
where the final transition is due to the triangle inequality and because µi,j ∈ [0, 1] for each i, j.

B.3 Proof of Lemma 3

Proof. Again, using Lemma 1, we have∣∣NSW(p, µ1)−NSW(p, µ2)
∣∣

≤
∑
i∈[N ]

∣∣∣∣∣∣
∑
j∈[K]

pj · (µ1
i,j − µ2

i,j)

∣∣∣∣∣∣ ≤
∑

i∈[N ],j∈[K]

pj ·
∣∣µ1
i,j − µ2

i,j

∣∣ ,
where the last transition is due to the triangle inequality.
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B.4 Proof of Theorem 1

Proof. Note that the instantaneous regret rt(pt) in any round t can be at most 1 because
NSW(p, µ∗) ∈ [0, 1] for every policy p. Thus,

E[RT ] =

T∑
t=1

E[rt] ≤ KL · 1 + (T −KL) · E[NSW(p∗, µ∗)−NSW(p̂, µ∗)]. (2)

Thus, our goal is to bound E[NSW(p∗, µ∗)−NSW(p̂, µ∗)]. We bound this in two ways.

First approach: We present this approach briefly since it largely mimics the classical analysis with
an application of Lemma 3. Here, we bound how much µ̂ can deviate from µ∗. Specifically, we let

ε =
√

log(NKT )
L and define the event E , ∀i ∈ [N ],∀j ∈ [K] :

∣∣µ̂i,j − µ∗i,j∣∣ ≤ ε. Since L is fixed,
we have E[µ̂i,j ] = µ∗i,j . Hence, we can apply Hoeffding’s inequality followed by the union bound to
derive Pr[E ] ≥ 1− 2/T 2. Conditioned on E , from Lemma 3 we have NSW(p, µ∗)−NSW(p, µ̂) ≤
Nε for every policy p, which implies

NSW(p∗, µ∗) ≤ NSW(p∗, µ̂) +Nε ≤ NSW(p̂, µ̂) +Nε ≤ NSW(p̂, µ∗) + 2Nε,

where the second transition is because p̂ ∈ arg maxp∈∆K NSW(p, µ̂). Substituting this into Equa-
tion (2), using the fact that E[NSW(p∗, µ∗)−NSW(p̂, µ∗)] ≤ 1·E[NSW(p∗, µ∗)−NSW(p̂, µ∗)|E ]+

Pr[¬E ] · 1, and setting L = Θ
(
N

2
3K−

2
3T

2
3 log

1
3 (NKT )

)
yields the first regret bound.

Second approach: We now focus on another approach for bounding E[NSW(p∗, µ∗)−NSW(p̂, µ∗)],
which is more intricate and offers a different tradeoff between the dependence on N and K. Notice
that for a given p, E[NSW(p, µ̂)] = NSW(p, µ∗) because all µ̂i,j-s are independent and expectation
decomposes over sums and products of independent random variables. Thus, we can use McDiarmid’s
inequality to bound |NSW(p, µ̂)−NSW(p, µ∗)| at a given p.

Fix a δ-cover P of (∆K , ‖·‖1) with |P| ≤ (1 + 2/δ)K . Fix p ∈ P . Notice that µ̂i,j = (1/L) ·∑L
s=1X

s
i,j , where Xs

i,j is the reward to agent i from the s-th pull of arm j during the exploration
phase.

We thus decompose µ̂ into N · L random variables: for each i ∈ [N ] and s ∈ [L], we let Xs
i =

(Xs
i,j)j∈[K]. To apply McDiarmid’s inequality, we need to analyze the maximum amount csi by which

changing Xs
i can change NSW(p, µ̂). Using Lemma 3, it is easy to see that csi ≤ 1/L for each

i ∈ [N ] and s ∈ [L]. Now, applying McDiarmid’s inequality, we have

Pr [|NSW(p, µ̂)−NSW(p, µ∗)| ≤ ε] ≤ 2e
−2ε2∑

i∈[N],s∈[L](c
s
i
)2 = 2e

−2Lε2

N .

Setting ε =
√

N log(|P|T )
2L , we have that for each p ∈ P ,

Pr

[
|NSW(p, µ̂)−NSW(p, µ∗)| ≤

√
N log(|P|T )

2L

]
≤ 2

|P|T
.

Using the union bound, we have that

Pr

[
∀p ∈ P : |NSW(p, µ̂)−NSW(p, µ∗)| ≤

√
N log(|P|T )

2L

]
≥ 1− 2

T
.

For p ∈ ∆K , let p ∈ arg minp′∈P ‖p− p′‖1. Then, since P is a δ-cover, we have ‖p− p‖1 ≤ δ.
Thus, due to Lemma 2, we have

|NSW(p, µ̂)−NSW(p, µ∗)| ≤
∑

µ∈{µ̂,µ∗}

|NSW(p, µ)−NSW(p, µ)|+ |NSW(p, µ̂)−NSW(p, µ∗)|

≤ 2Nδ + |NSW(p, µ̂)−NSW(p, µ∗)| .
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Setting δ = 1
NT , we have

Pr

[
∀p ∈ ∆K : |NSW(p, µ̂)−NSW(p, µ∗)| ≤ 2

T
+

√
N log(|P|T )

2L

]
≥ 1− 2

T
.

Next, we use the fact that

NSW(p∗, µ∗)−NSW(p̂, µ∗) ≤
∑

p∈{p∗,p̂}

|NSW(p, µ̂)−NSW(p, µ∗)| .

Hence,

Pr

[
|NSW(p∗, µ∗)−NSW(p̂, µ∗)| ≤ 4

T
+

√
2N log(|P|T )

L

]
≥ 1− 2

T
.

Next, we substitute |P| ≤ (1+2/δ)K ≤ (3/δ)K , δ = 1
NT , andL = Θ

(
N

1
3K−

1
3T

2
3 log

2
3 (NKT )

)
,

and then substitute the derived bound in Equation (2) to get the second regret bound.

B.5 Proof of Lemma 4

Proof. Fix t. For i ∈ [N ], j ∈ [K], and ` ∈ [t], let v`i,j denote the average reward to agent i from the

first ` pulls of arm j, and define r`j =
√

2 log(NKt)
` . Then, by Hoeffding’s inequality, we have

∀i ∈ [N ], j ∈ [K], ` ∈ [t] : Pr
[∣∣v`i,j − µi,j∣∣ > r`j

]
≤ 2

(NKt)4
.

By the union bound, we get

Pr
[
∀i ∈ [N ], j ∈ [K], ` ∈ [t] :

∣∣v`i,j − µi,j∣∣ ≤ r`j] ≥ 1− 2

(NKt)3
.

Because ntj ∈ [t] for each j ∈ [K], the above event implies our desired event Et. Hence, we have
that Pr[Et] ≥ 1− 2/(NKt)3 ≥ 1− 2/t3.

B.6 Proof of Lemma 5

Proof. Conditioned on Et, we have
∣∣µ̂ti,j − µ∗i,j∣∣ ≤ rtj for each j ∈ [K]. In that case, it is easy to see

that the upper bound from Lemma 3 becomes N ·
∑
j∈[K] pj · rtj .

B.7 Proof of Lemma 6

Proof. Fix p ∈ ∆K . Fix δ > 0, and let P be a δ-cover of the policy simplex ∆K with |P| ≤
(1 + 2/δ)

K [44, p. 126].

Conditioned on Et (i.e.
∣∣µ̂ti,j − µ∗i,j∣∣ ≤ rtj =

√
2 log(NKt)

ntj
,∀i ∈ [N ], j ∈ [K]), we wish to derive a

high probability bound on |NSW(p, µ̂t)−NSW(p, µ∗)|. We can bound the deviation of NSW(p, µ̂t)
from its expected value. However, unlike in the case of Explore-First, we cannot directly claim that
the expected value is NSW(p, µ∗) because, as we mentioned above, µ̂t consists of random variables
that may be correlated through the random varaible nt = (nt1, . . . , n

t
K) taking values in [t]K . Thus,

we need a more careful argument.

For i ∈ [N ], j ∈ [K], and `j ∈ [t], let v`ji,j denote the average reward to agent i from the first `j pulls

of arm j, and define r`jj =
√

2 log(NKt)
`j

. Let ` = (`1, . . . , `K) ∈ [t]K and v` = (v
`j
i,j)i∈[N ],j∈[K].

Each v`ji,j is independent and satisfies E[v
`j
i,j ] = µ∗i,j . Since expectation decomposes over sums and

products of independent random variables, we have E[NSW(p, v`)] = NSW(p, µ∗).
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Evaluating conditional expectation: We next argue that further conditioning on the high probability
event Et does not change the expectation by much. Formally,∣∣NSW(p, µ∗)− E[NSW(p, v`)|Et]

∣∣
=
∣∣E[NSW(p, v`)]− E

[
NSW(p, v`)|Et

]∣∣
= Pr[¬Et] ·

∣∣E [NSW(p, v`)|¬Et
]
− E

[
NSW(p, v`)|Et

]∣∣
≤ Pr[¬Et] ≤ 2

t3
≤ 2

t
, (3)

where the penultimate transition holds because NSW is bounded in [0, 1], and the final transition is
due to Lemma 4.

Applying McDiarmid’s inequality: We first decompose v` into N random variables: for each
i ∈ [N ], let v`i = (v`i,j)j∈[K]. To apply McDiarmid’s inequality, we need to analyze the maximum
amount ci by which changing v`i can change NSW(p, v`). Fix i ∈ [N ], and fix all the variables
except v`i . Conditioned on Et, each v`i,j can change by at most 2r

`j
j . Hence, using Lemma 3, we have

that ci ≤ 2
∑
j∈[K] pj · r

`j
j . Now, applying McDiarmid’s inequality, we have ∀` ∈ [t]K :

Pr
[∣∣NSW(p, v`)− E

[
NSW(p, v`)|Et

]∣∣ ≥ ε | Et] ≤ 2e
−2ε2∑
i∈[N] c

2
i ≤ 2e

−2ε2

4N·
(∑

j∈[K] pj ·r
`j
j

)2
.

Using Equation (3), and setting ε =
√

2N log(|P|tK+3) ·
∑
j∈[K] pj · r

`j
j , we have that ∀` ∈ [t]K :

Pr

∣∣NSW(p, v`)−NSW(p, µ∗)
∣∣ ≥√2N log(|P|tK+3) ·

∑
j∈[K]

pj · r
`j
j +

2

t

∣∣∣ Et
 ≤ 2

|P|tK+3
.

Next, by union bound, we get

Pr

∀` ∈ [t]K :
∣∣NSW(p, v`)−NSW(p, µ∗)

∣∣ ≥√2N log(|P|tK+3) ·
∑
j∈[K]

pj · r
`j
j +

2

t

∣∣∣ Et


≤ 2

|P|t3
.

Because ntj ∈ [t] for each j ∈ [K], we have

Pr

∣∣NSW(p, µ̂t)−NSW(p, µ∗)
∣∣ ≥√2N log(|P|tK+3) ·

∑
j∈[K]

pj · rtj +
2

t

∣∣∣ Et


≤ 2

|P|t3
.

Extending to all policies in P: Using the union bound, we have that

Pr

∀p ∈ P :
∣∣NSW(p, µ̂t)−NSW(p, µ∗)

∣∣ ≤√2N log(|P|tK+3) ·
∑
j∈[K]

pj · rtj +
2

t

∣∣∣∣ Et


≥ 1− 2

t3
.

Extending to all policies in ∆K: For p ∈ ∆K , let p ∈ arg minp′∈P ‖p− p′‖1. Then, since P is a
δ-cover, we have ‖p− p‖1 ≤ δ. Thus, due to Lemma 2, we have∣∣NSW(p, µ̂t)−NSW(p, µ∗)

∣∣ ≤ ∑
µ∈{µ̂t,µ∗}

|NSW(p, µ)−NSW(p, µ)|

+
∣∣NSW(p, µ̂t)−NSW(p, µ∗)

∣∣
≤ 2Nδ +

∣∣NSW(p, µ̂t)−NSW(p, µ∗)
∣∣ .
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Setting δ = 1
Nt , we have

Pr

∀p ∈ ∆K :
∣∣NSW(p, µ̂t)−NSW(p, µ∗)

∣∣ ≤√2N log(|P|tK+3) ·
∑
j∈[K]

pj · rtj +
4

t

∣∣∣∣ Et


≥ 1− 2

t3
.

Substituting |P| ≤ (1 + 2/δ)K ≤ (3/δ)K with δ = 1
Nt yields the desired bound.

B.8 Proof of Theorem 2

Proof. Fix t ∈ [T ]. Let bt denote the number of times Epsilon-Greedy performs exploration up
to round t. Note that E[bt] =

∑t
s=1 ε

s ≥ tεt, where the last step follows from the fact that εt is
monotonically decreasing in both cases of the theorem. Let θ > 0 be a constant such that εt ≥ θ·t−1/3

in both cases of the theorem.

Define the event Bt , bt ≥ γ · tεt, where γ = 1− 1/θ. Then, by Hoeffding’s inequality, we have

Pr[¬Bt] ≤ e−2(1−γ)2θ2t1/3 = e−2t1/3 ≤ e− log t =
1

t
. (4)

Because the algorithm performs round-robin during exploration, conditioned on Bt, we have that

ntj ≥ bt

K ≥
γ·tεt
K for each arm j,6 which implies rtj ≤

√
2K log(NKt)

γ·tεt for each j. Thus, conditioned
on Bt, we have

∀p ∈ ∆K :
∑
j∈[K]

pj · rtj ≤ max
j∈[K]

rtj ≤

√
2K log(NKt)

γ · tεt
. (5)

We are now ready to use the bounds from Lemmas 5 and 6. We focus on the event

Ctα , ∀p ∈ ∆K :
∣∣NSW(p, µ∗)−NSW(p, µ̂t)

∣∣ ≤ αt · ∑
j∈[K]

pj · rtj +
4

t
.

Conditioned on Et ∧ Ht, note that Ctα holds for αt = N due to Lemma 5, and for αt =√
12NK logNKt due to Lemma 6.

Let p̂t ∈ arg maxp∈∆K NSW(p, µ̂t). We wish to bound the regret NSW(p∗, µ∗)−NSW(p̂t, µ∗) that
Epsilon-Greedy incurs when performing exploitation in round t by choosing policy p̂t. Conditioned
on Et ∧Ht ∧ Bt, we have

NSW(p∗, µ∗)−NSW(p̂t, µ∗)

=
(
NSW(p∗, µ∗)−NSW(p∗, µ̂t)

)
+
(
NSW(p∗, µ̂t)−NSW(p̂t, µ̂t)

)
+
(
NSW(p̂t, µ̂t)−NSW(p̂t, µ∗)

)
≤

∑
p∈{p∗,p̂t}

∣∣NSW(p, µ∗)−NSW(p, µ̂t)
∣∣ ≤ 2αt

√
2K log(NKt)

γ · tεt
+

8

t
, (6)

where the penultimate transition holds because p̂t is the optimal policy under µ̂t, so NSW(p∗, µ̂t) ≤
NSW(p̂t, µ̂t), and the final transition follows from Equation (5) and the fact that Et ∧Ht imply Ctα.

6Technically, ntj ≥ b b
t

K
c for each arm j, but we omit the floor for the ease of presentation.
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We are now ready to analyze the expected regret of Epsilon-Greedy at round T . We have

E[RT ] =

T∑
t=1

E[rt] ≤
T∑
t=1

E
[
εt · 1 + (1− εt) ·

(
NSW(p∗, µ∗)−NSW(p̂t, µ∗)

)]
≤

T∑
t=1

(
εt + Pr

[
Et ∧Ht ∧ Bt

]
· E
[
NSW(p∗, µ∗)−NSW(p̂t, µ∗)

∣∣∣ Et ∧Ht ∧ Ctα]
+ Pr

[
¬Et ∨ ¬Ht ∨ ¬Bt

]
· 1

)

≤
T∑
t=1

(
εt + 2αt

√
2K log(NKt)

γ · tεt
+

8

t
+

4

t3
+

1

t

)
,

where the final transition holds due to Equation (6), Lemma 4, Lemma 6, and Equation (4). Notice
that we are using the fact that

Pr[Et ∧Ht] = Pr[Et] · Pr[Ht|Et] ≥ (1− 2/t3) · (1− 2/t3) ≥ 1− 4/t3.

To obtain the first regret bound, we set εt = Θ
(
N

2
3K

1
3 t−

1
3 log

1
3 (NKt)

)
and αt = N , and obtain

E[RT ] = O

(
N

2
3K

1
3 log

1
3 (NKT )

T∑
t=1

t−
1
3

)
= O

(
N

2
3K

1
3T

2
3 log

1
3 (NKT )

)
.

For the second regret bound, we set εt = Θ
(
N

1
3K

2
3 t−

1
3 log

2
3 (NKt)

)
and αt =√

12NK log(NKt), and obtain

E[RT ] = O

(
N

1
3K

2
3 log

2
3 (NKT )

T∑
t=1

t−1/3

)
= O

(
N

1
3K

2
3T

2
3 log

2
3 (NKT )

)
.

Note that in both cases, we omit the O (1/t) and O
(
1/t3

)
terms because they are dominated by the

O
(
1/t1/3

)
term. In both cases, we use Proposition 1 at the end.

21


	Introduction
	Our Results
	Related Work

	Preliminaries
	Explore-First
	Epsilon-Greedy
	Useful Lemmas
	Analysis of Epsilon-Greedy

	UCB
	Discussion
	Lower Bound
	Missing Algorithms & Proofs
	Proof of lem:ai-bi
	Proof of lem:lipschitz-p
	Proof of lem:lipschitz-mu
	Proof of thm:explore-first
	Proof of lem:muhat-close
	Proof of lem:first-bound
	Proof of lem:second-bound
	Proof of thm:epsgreedy


