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ABSTRACT
Image-to-image translation is defined as the process of learning a

mapping between images from a source domain and images from a

target domain. The probabilistic structure that maps a fixed initial

state to a pinned terminal state through a standard Wiener pro-

cess is a Brownian bridge. In this paper, we propose a score-based

Stochastic Differential Equation (SDE) approach via the Brown-

ian bridges, termed the Amenable Brownian Bridges (A-Bridges),

to image-to-image translation tasks as an unconditional diffusion

model. Our framework embraces a large family of Brownian bridge

models, while the discretization of the linear A-Bridge exploits its

advantage that provides the explicit solution in a closed form and

thus facilitates the model training. Our model enables the acceler-

ated sampling and has achieved record-breaking performance in

sample quality and diversity on benchmark datasets following the

guidance of its SDE structure.

1 INTRODUCTION
Analogous to automatic language translation, image-to-image trans-

lation is defined as the process of learning a mapping between

images from a source domain and images from a target domain.

The applications of image-to-image translation are diverse, span-

ning areas like image colorization [5], generating semantic labels

from images [17], image super resolution [6, 18, 40], and domain

adaptation [26].

Generative Adversarial Networks (GANs) [12] are a powerful

framework for image-to-image translation, as they can learn a map-

ping function that preserves the content of the source image while

generating realistic and diverse outputs. Additional information,

such as class labels or input images, can be added to guide the gen-

eration process [39]. Despite their remarkable capabilities, GANs

face challenges that warrant attention. First, they are notoriously

difficult to train efficiently [3]. Second, GANs often suffer from the

issue of dropping modes in the output distribution [25].

Diffusion models [15] have demonstrated competitive perfor-

mance in generating high-quality images when compared to GAN-

based models [8]. Unlike many conditional diffusion models that

approach image-to-image translation as conditional image genera-

tion [30], the Brownian Bridge Diffusion Model (BBDM) [22] offers

a unique perspective. BBDM treats image-to-image translation as

a stochastic Brownian Bridge process, the probabilistic structure

that maps a fixed initial state to a pinned terminal state through
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a standard Wiener process, and directly learns the translation be-

tween two domains. This novel approach provides an alternative

avenue for achieving effective and high-fidelity image-to-image

translation.

Expanding the exploration of innovative approaches in image-

to-image translation, score-based generative modeling through

Stochastic Differential Equations (SDE) emerges as a compelling

paradigm. The integration of SDE in generative modelling brings

forth novel sampling procedures and enhances modeling capabili-

ties, presenting a promising avenue for image generation [34]. In

this paper, we propose a score-based SDE approach via the amenable

Brownian bridges (A-Bridges, defined in Section 3), for image-to-

image translation as an unconditional diffusion process. As shown

in Figure 1, the A-Bridge formation streamlines the inference and

generative processes for a large family of Brownian bridge models

that take advantages of the amenable structure. Our linear A-bridge

model (defined in Section 4) simultaneously addressed three key

requirements in image-to-image applications including: high sam-

ple quality, diversity coverage, and fast sampling, and achieved

record-breaking performance in sample quality and diversity when

compared to the current state-of-the-art (SOTA) image-to-image

translation methods. The main contributions of this work can be

summarized as follows:

(1) We propose a score-based Brownian bridge scheme based on

SDEs that sets a solid theoretic ground for image-to-image

translations. The A-Bridge SDEs streamline the uncondi-

tional forward and reverse diffusion processes and thus prof-

fer better understanding and realization of image-to-image

mappings.

(2) Our framework encompasses a large family of Brownian

bridges that offer explicit solutions in a closed form, and

thereby facilitates the training of the diffusionmodel. Among

a variety of potential A-Bridges, we implemented and dis-

cretized the linear A-Bridge model because of its simplicity

and clarity. The accelerated sampling algorithm is also pro-

vided.

(3) Through extensive experiments on various benchmark datasets,

our linear A-Bridge model, following the guidance of its SDE

structure, exhibits a significant enhancement over current

SOTA for image-to-image translation tasks.

2 BACKGROUND
2.1 Image-to-image translation
The seminal work of pix2pix [17] marked the inception of Image-

to-Image translation tasks, demonstrated the capability to translate

images from one domain to another through conditional adversarial

networks. Wang et al. [39] further advanced the field by employing

Conditional GANs to synthesize high-resolution, photo-realistic

images from semantic label maps, showcasing the potential for

detailed and context-aware image translation. CycleGAN [43], on

the other hand, introduced a novel approach that addressed the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Amenable Brownian Bridges (A-Bridges) for image-to-image translation. Images from domain A are transformed into
a latent space representation via the VQGAN encoder [9], traverse through an SDE-based A-Bridge, and are then reconstructed
in domain B using the VQGAN decoder.

challenge of unpaired image translation, enabling the transforma-

tion of images from a source domain to a target domain without the

need for paired examples. Building upon these foundations, DRIT++

[21] was proposed, which embeds images into domain-invariant

content spaces and domain-specific attribute spaces, facilitating ver-

satile image translation with a focus on shared information across

domains. In a different vein, Han et al. introduced DCLGAN [13],

leveraging contrastive learning within a dual learning setting to

infer efficient mappings between unpaired data. Collectively, these

contributions have significantly advanced the capabilities and scope

of image-to-image translation techniques.

Recent advancements, exemplified by works like VQ-VAE-2 [9],

leverage the strengths of Convolutional Neural Networks (CNNs)

and transformers, combining the inductive bias of CNNs with the

expressive power of transformers. This integration enables the

modeling and synthesis of high-resolution images. However, it is

noteworthy that GAN-based techniques, while effective, grapple

with training instabilities and mode collapse issues [3, 25].

2.2 Diffusion Models
In the landscape of image-to-image translation, diffusion models

have emerged as a compelling alternative to conventional GAN-

based approaches. Notably, the diffusion probabilisticmodel (DDPM)

[15] stands as a pioneering work, showcasing competitive per-

formance for image synthesis. Recent advancements delve into

leveraging DDPM within the latent space of powerful pre-trained

autoencoders [30]. This distinctive approach enables the training

of diffusion models on a representation that strikes a near-optimal

balance between complexity reduction and detail preservation.

The integration of SDE [34] into generative modeling provides

a fresh perspective. The reverse-time SDE, relying solely on the

time-dependent gradient field or score of the perturbed data distri-

bution, not only encapsulates but also extends previous score-based

generative modeling and diffusion probabilistic modeling. This

integration introduces novel sampling procedures and enhances

modeling capabilities.

2.2.1 Conditional Diffusion Models. Conditional diffusion models

[38] have been explored, treating image-to-image translation as

a conditional image generation task. Another contribution comes

from the Dual Diffusion Implicit Bridges (DDIB) method [35], which

diverges from traditional training on domain pairs. DDIB employs

a distinctive two-step process: it first acquires latent encodings for

source images using the source diffusion model and subsequently

decodes these encodings with the target model to construct target

images.

2.2.2 Diffusion Bridge Models. Recent advancements in diffusion

bridge models have shown notable progress, with some focusing

on providing theoretical guidance [1], while others have demon-

strated successful applications across various tasks such as image

restoration [23, 42]. In particular, BBDM [22] introduces a novel

approach, uniquely modeling image-to-image translation in both

image and latent space as a stochastic Brownian Bridge process.

This departure from traditional conditional models opens new av-

enues for image translation tasks. BBDM algorithm is modified

from a standard symmetric linear Brownian bridge by avoiding

the large variance in the middle steps which causes the framework

untrainable. The posterior distribution of the reverse process of

BBDM is computed with the Bayes’ rule. However, this BBDM for-

mulation, NOT grounded in SDE theory, is complex and inflexible,

and as a result, it does not provide a solid foundation for further

improvement.

In this work, we propose a score-based Brownian bridge scheme

based on SDEs that sets a solid theoretic ground beyond intuitive
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ideas. Although this scheme is one kind of bridge models and bears

the structural features of bridge models as the aforementioned ones,

it possesses distinctive characteristics. Unlike the other bridge mod-

els, this new model is constructed directly from the SDE. Indeed,

this new SDE perspective provides insights and options in image-

to-image Brownian bridges and presents explicit solutions in closed

forms. We particularly implemented a linear A-Bridge model (in-

troduced in Section 4) and achieved record breaking performance

in sample quality and diversity following the guidance of its SDE

structure.

3 AMENABLE BROWNIAN BRIDGES
In this section, we present a general framework of the score-based

image-to-image Brownian bridges in terms of SDE. Our goal is

to seek a condition on a Brownian bridge SDE that renders an

explicit functional equation or formula of the solution in the closed

form so that it facilitates the training of the diffusion model. We

call such a Brownian bridge amenable. Let 𝑋 (𝑡), 0 ≤ 𝑡 ≤ 1, be

an 𝑛-dimensional stochastic process and𝑊 (𝑡), 0 ≤ 𝑡 ≤ 1, an𝑚-

dimensional Brownian motion. Suppose F : R𝑛 → R𝑛 and G : R𝑛 ×
[0, 1] → R𝑛×𝑚 are respectively vector or matrix-valued smooth

functions with F(0) = 0. We consider an SDE with 𝑋0 ∈ R𝑛 that

forms a Brownian bridge which pins 𝑋 (1) = 0:

𝑑𝑋 (𝑡) = − F(𝑋 (𝑡 ) )
1−𝑡 𝑑𝑡 + G(𝑋 (𝑡), 𝑡) 𝑑𝑊 (𝑡),

𝑋 (0) = 𝑋0
(1)

where 0 < 𝑡 < 1. We say the Brownian bridge expressed by the

SDE (Eq. 1) is an Amenable Brownian Bridge, or A-Bridge for short,
if there are smooth functions u = (𝑢1, . . . , 𝑢𝑛) : R𝑛 → R𝑛 and

𝑀 : (0, 1) → R𝑛×𝑚 that satisfy the conditions

u(𝑋 ) = 0 (𝑋 ∈ R𝑛) ⇐⇒ 𝑋 = 0, (2)

𝐷u · F(𝑋 ) = u(𝑋 ) + 1−𝑡
2

[
𝐷2u : G,G

]
(𝑋, 𝑡)

𝐷u(𝑋 ) · G(𝑋, 𝑡) = 𝑀 (𝑡), (𝑋 ∈ R𝑛, 𝑡 ∈ (0, 1)) (3)

where 𝐷u, 𝐷2u are the gradient and Hessian of u, and[
𝐷2u : G,G

]
𝑘
(𝑋, 𝑡) = tr

(
G(𝑋, 𝑡)𝑇𝐷2𝑢𝑘 (𝑋 )G(𝑋, 𝑡)

)
.

A functional equation can be garnered from an A-Bridge 𝑋 (𝑡), 0 ≤
𝑡 ≤ 1, as stated in Theorem 3.1 below. A proof is included in the

Supplementary Materials.

Theorem 3.1. Suppose (1) is amenable. Then 𝑋𝑡 := 𝑋 (𝑡) verifies
the functional equation

u(𝑋𝑡 ) = (1 − 𝑡)u(𝑋0) + (1 − 𝑡)
∫ 𝑡

0

𝑀 (𝜏)
1 − 𝜏 𝑑𝑊𝜏 (4)

Consequently, for the solution𝑋 (𝑡) of (1), it holds that lim𝑡→1− 𝑋 (𝑡) =
0 almost surely.

A family of A-Bridges are given when F(𝑋 ) = 𝑎𝑋 for constants

𝑎 and G(𝑋, 𝑡) = G(𝑡) that depends on 𝑡 only.
A continuous Gaussian process has a reversal in time in an

identical functional form as the forward process [10], and in this

case, the reverse generative process to Eq. 1 can be expressed as a

Brownian bridge SDE [2]

𝑑𝑋 (𝑡) = − F̃(𝑋 (𝑡 ) )
1−𝑡 𝑑𝑡 + G(𝑋 (𝑡), 𝑡) 𝑑𝑊 ,

𝑋 (1) = 0
(5)

where 0 < 𝑡 < 1. Here𝑊 (𝑡) is a reverse-time Brownian motion

driven by the stochastic process

𝑑𝑊 (𝑡) = 𝑑𝑊 (𝑡) + ∇𝑋 ·[𝐺
𝑇 (𝑋 (𝑡 ),𝑡 )𝑝 (𝑋 (𝑡 ),𝑡 )]
𝑝 (𝑋 (𝑡 ),𝑡 ) 𝑑𝑡

𝑊 (0) = 0,

and

F̃(𝑋 (𝑡)) = F(𝑋 (𝑡))

+ 1 − 𝑡
𝑝 (𝑋 (𝑡), 𝑡) ∇𝑋 ·

(
G(𝑋 (𝑡), 𝑡)G(𝑋 (𝑡), 𝑡)𝑇 𝑝 (𝑋 (𝑡), 𝑡)

)
,

where 𝑝 (𝑋 (𝑡), 𝑡) is the probability distribution of 𝑋 (𝑡).
If we want to pin a nonzero terminal state 𝑌 , we just consider

𝑋 (𝑡) − 𝑌 in place of 𝑋 (𝑡) in an A-Bridge specified by Eq. 1. In this

case, the function F(𝑋 ) is replaced by F(𝑋 − 𝑌 ).
In this paper, we focus on a linear A-Bridge model when F(𝑋 ) =

𝑋 −𝑌 andG(𝑡) = 𝜆
√
1 − 𝑡𝐼 with a parameter 𝜆 > 0, where 𝐼 denotes

the 𝑛 × 𝑛 identity matrix. Note that our SDE-based framework

provides many options when selecting an A-bridge as long as the

conditions given in Eqs. 2 and 3 are satisfied. In general, determining

the best noise schedule in diffusion models for a given dataset is

still an open problem; for example, the optimal noise schedule for

the well-known DDPM model [15] is not yet clear. Here, we choose

the asymmetric variance G(𝑡) = 𝜆
√
1 − 𝑡𝐼 on [0, 1] for two reasons.

The first is the intuitive idea that by diminishing the variance of

the white noise near 1 the A-Bridge should converge to 𝑌 fast and

well as 𝑡 → 1
−
. Second, we want to test that the A-Bridge model

is robust enough that it delivers results of high quality for the

non-symmetric variance. Our experimental results (in Section 5)

positively confirm both.

4 THE LINEAR A-BRIDGE MODEL
We now establish a linear A-Bridge model for image-to-image trans-

lation that aims to achieve high image quality and sample diversity

and enable efficient accelerated sampling. The mean of this model is

chosen as a linear function of 𝑡 because of its simplicity and clarity.

In the mean time, its nonsymmetric variance over [0, 1], obtained
directly from SDE, is one of the key differences (in addition to SDE-

based vs. non-SDE-based) between our model and the existing ones

[22].

4.1 Linear A-Bridge SDE
We construct an𝑛-dimensional amenable diffusion Brownian bridge

process𝑋 (𝑡), 0 ≤ 𝑡 ≤ 1, with pinned ends𝑋 (0) = 𝑋0 and𝑋 (1) = 𝑌 .
The forward inference SDE of the linear A-Bridge that we adopt is

the following:

𝑑𝑋𝑡 = −𝑋𝑡−𝑌
1−𝑡 𝑑𝑡 + 𝜆

√
1 − 𝑡 𝑑𝑊𝑡

𝑋 (0) = 𝑋0
(6)

where 0 < 𝑡 < 1,𝑊𝑡 is an 𝑛-dimensional Brownian motion, and

𝜆 > 0 is a parameter. Let 𝑝 (𝑋𝑡 , 𝑡) denote the probability distribution
of 𝑋 (𝑡), 0 ≤ 𝑡 ≤ 1. The SDE in Eq. 6 is an amenable Brownian

bridge (see the Supplementary Materials for details). The functional

equation 4 in Theorem 3.1 in this case takes an explicit form

𝑋𝑡 = (1 − 𝑡)𝑋0 + 𝑡𝑌 + 𝜆(1 − 𝑡)
∫ 𝑡

0

𝑑𝑊𝜏√
1 − 𝜏

(7)
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which gives the marginal distribution of the forward process. That

is,

𝑋𝑡 ∼ N
(
(1 − 𝑡)𝑋0 + 𝑡𝑌 , 𝜆2 (1 − 𝑡)2

∫ 𝑡

0

𝑑𝜏

1 − 𝜏 𝐼
)
. (8)

In particular, 𝑋1 = 𝑌 . The transitional distribution is given by, for

0 ≤ 𝑠 < 𝑡 ≤ 1:

𝑋𝑡 =
1 − 𝑡
1 − 𝑠 𝑋𝑠 +

𝑡 − 𝑠
1 − 𝑠 𝑌 + 𝜆(1 − 𝑡)

∫ 𝑡

𝑠

𝑑𝑊𝜏√
1 − 𝜏

, (9)

or that

𝑋𝑡 ∼ N
(
1 − 𝑡
1 − 𝑠 𝑋𝑠 +

𝑡 − 𝑠
1 − 𝑠 𝑌, 𝜆

2 (1 − 𝑡)2
∫ 𝑡

𝑠

𝑑𝜏

1 − 𝜏

)
.

A fact that is worth noting is that both marginal and transitional

distributions are exact due to the amenability of the A-Bridge (Eq.

6).

The reverse Brownian bridge SDE of Eq. 6 takes the form, [10]

and [2],

𝑑𝑋𝑡 = −
(
𝑋𝑡 − 𝑌
1 − 𝑡 + 𝜆

2 (1 − 𝑡)∇𝑋 log 𝑝 (𝑋𝑡 , 𝑡)
)
𝑑𝑡

+ 𝜆
√
1 − 𝑡 𝑑𝑊 𝑡

𝑋 (1) = 𝑌

(10)

where 0 < 𝑡 < 1, ∇𝑋 log𝑝 (𝑋𝑡 , 𝑡) is the score function, and𝑊 𝑡 is an

𝑛-dimensional reverse-time Brownianmotion. In theory, the reverse

generative process furnishes one with the output 𝑋 (0) = 𝑋0.
The task of the A-Bridge amounts to computing the score of

the marginal distribution ∇𝑋 log𝑝 (𝑋𝑡 , 𝑡) at each time step 𝑡 and

simulating the reverse generative process to produce samples 𝑋0
of 𝑋0.

4.2 Discretization of A-Bridge SDE
Given two image sets X and Y, we sample a pair (𝐼 , 𝑌 ), where
𝐼 ∈ X and 𝑌 ∈ Y. When necessary, we put a subscript 𝑘 to 𝐼

and 𝑌 to indicate we sample over all corresponding image pairs

from X and Y. Let 𝑋0 = 𝐼 and 𝑇 be the number of time steps.

In the forward inference process, for each 𝑡 = 1, . . . ,𝑇 , we define

𝑋𝑡 =
(
1 − 𝑡

𝑇

)
𝑋0+ 𝑡𝑇 𝑌 +𝐵(𝑡) 𝜖 according to Eq. 7, where 𝜖 ∼ N(0, 𝐼 ),

and

𝐵(𝑡) =


𝜆(1 − 𝑡

𝑇
)

√︄
ln

(
1

1− 𝑡
𝑇

)
if 𝑡 = 1, . . . ,𝑇 − 1

0 if 𝑡 = 𝑇

As the linear A-Bridge is amenable, the formula of𝑋𝑡 is exact instead

of an approximate value at each step [22]. 𝐵(𝑇 ) is as defined to avoid
a blowup because lim𝑡→𝑇− 𝐵(𝑡) = 0. We train a neuron network

to approximate the difference of 𝑋𝑡 and 𝑋0, i. e. 𝜖𝜃 [22], instead of

𝜖 as in DDPM [15]:

∇𝜃



 𝑡
𝑇
(𝑌 − 𝑋0) + 𝐵(𝑡)𝜖 − 𝜖𝜃 (𝑋𝑡 , 𝑡)




2
for 𝜖 ∼ N(0, 𝐼 ), 𝑌 , and 𝑋𝑡 defined as above. More precisely, we

train 𝜖𝜃 by minimizing

𝐸𝐼𝑘 ,𝑌𝑘 ,𝜖∼N(0,𝐼 ),𝑡 ∈{1,...,𝑇 }



 𝑡
𝑇
(𝑌𝑘 − 𝐼𝑘 ) + 𝐵(𝑡)𝜖 − 𝜖𝜃 (𝑋𝑡 , 𝑡)




2
where

𝑋𝑡 =

(
1 − 𝑡

𝑇

)
𝐼𝑘 +

𝑡

𝑇
𝑌𝑘 + 𝐵(𝑡)𝜖.

Algorithm 1 Training Algorithm for the linear A-Bridge

1: function Train(𝐼𝐴 , 𝐼𝐵 )

2: repeat
3: 𝑋0 ← 𝐼𝐴 , 𝑌 ← 𝐼𝐵
4: 𝑡 ∼ Uniform(1, . . . ,𝑇 )
5: 𝜖 ∼ N(0, 𝐼 )
6: 𝑋𝑡 = (1 − 𝑡

𝑇
)𝑋0 + 𝑡

𝑇
𝑌 + 𝐵(𝑡)𝜖

7: 𝐺 ← ∇𝜃


 𝑡
𝑇
(𝑌 − 𝑋0) + 𝐵(𝑡)𝜖 − 𝜖𝜃 (𝑋𝑡 , 𝑡)



2
8: GradientStep(𝐺)

9: until converged
10: end function

In the reverse generative process, we take 𝑋𝑇 = 𝑌 . For the A-

Bridge, the probability distribution 𝑝 (𝑋𝑡 , 𝑡) and hence the score

function ∇𝑋 log 𝑝 (𝑋𝑡 , 𝑡) can be calculated in a closed form from Eq.

7 or Eq. 8. Plugging the computed value of the score function into

the reverse SDE (10), we can discretize Eq. 10 to get the discrete

reverse transitional formula for 𝑡 = 𝑇, . . . , 2

𝑋𝑡−1 = 𝐶𝑥𝑡 𝑋𝑡 −𝐶𝑦𝑡 𝑌 −𝐶𝜖𝑡 𝜖𝜃 (𝑋𝑡 , 𝑡) −𝐶𝑧𝑡 𝑧,
where 𝑧 ∼ N(0, 𝐼 ), and

𝐶𝑥𝑡 =
1

𝐶

(
1 + 1

𝑇 ln
𝑇

𝑇−𝑡+1

)
𝐶𝑦𝑡 =

1

𝐶

(
1

𝑇 − 𝑡 + 1 −
𝑡 − 1

𝑇 (𝑇 − 𝑡 + 1) ln 𝑇
𝑇−𝑡+1

)
𝐶𝜖𝑡 =

1

𝐶

1

𝑇 ln
𝑇

𝑇−𝑡+1

𝐶𝑧𝑡 =
𝜆

𝐶

√︂
1 − 𝑡

𝑇
+ 1

𝑇

√︂
1

𝑇

𝐶 = 1 − 1

𝑇 − 𝑡 + 1 +
1

(𝑇 − 𝑡 + 1) ln 𝑇
𝑇−𝑡+1

.

Finally, we garner a sample of 𝑋0 by setting

𝑋0 = 𝑋1 − 𝜖𝜃 (𝑋1, 1).

The reverse process generates a sample 𝐼 of the image 𝐼 . In the

discretization of the A-Bridge, we take care to avoid the blowup of

the coefficients when 𝑡 = 𝑇 . In fact, the blowup is avoided through

the definition of 𝐵(𝑡) in the forward formula and the choice of

𝑡−1
𝑇

in the discretizaion of the reverse formula (Eq. 10). In addition,

𝑋0 in the reverse formula at the intermediate steps is replaced by

𝑋𝑡−𝜖𝜃 (𝑋𝑡 , 𝑡) as suggested in [15] and [22]. The discrete forward and
reverse processes are detailed in Algorithms 1 and 2. We emphasize

that we discretize the forward and reverse SDE according to the

flow of time. That is, in the forward training, we discretize the SDE

at time 𝑡 , while the SDE is discretized at time 𝑡 −Δ𝑡 in the sampling.

4.3 Training Objective
Instead of optimizing the negative log likelihood function 𝐿 =

−𝐸𝑞 (𝑋0 ) log𝑝 (𝑋0) directly, we set the training objective as mini-

mizing the Evidence Lower Bound (ELBO) of 𝐿 [32]:

𝐾 =

𝑇∑︁
2

𝐷𝐾𝐿 (𝑞(𝑋𝑡−1 |𝑋𝑡 , 𝑋0, 𝑌 ) |𝑝𝜃 (𝑋𝑡−1 |𝑋𝑡 , 𝑌 ))
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Algorithm 2 Sampling Algorithm for the linear A-Bridge

1: function Sample(𝑌 )

2: 𝑋𝑇 ← 𝑌

3: for 𝑡 = 𝑇, . . . , 2 do
4: 𝑧 ∼ N(0, 𝐼 )
5: 𝑋𝑡−1 ← 𝐶𝑥𝑡𝑋𝑡 −𝐶𝑦𝑡𝑌 −𝐶𝜖𝑡𝜖𝜃 (𝑋𝑡 , 𝑡) −𝐶𝑧𝑡𝑧
6: end for
7: 𝑋0 ← 𝑋1 − 𝜖𝜃 (𝑋1, 1)
8: return 𝑋0
9: end function

where 𝐷𝐾𝐿 (𝑞 |𝑝) = 𝐸𝑞
[
log

𝑞 (𝑥 )
𝑝 (𝑥 )

]
is the Kullback-Leibler divergence

of 𝑞 relative to 𝑝 , and the posterior distribution

𝑞(𝑋𝑡−1 |𝑋𝑡 , 𝑋0, 𝑌 ) =
𝑞(𝑋𝑡 |𝑋𝑡−1, 𝑌 )𝑞(𝑋𝑡−1 |𝑋0, 𝑌 )

𝑞(𝑋𝑡 |𝑋0, 𝑌 )
is determined by the Bayes’ rule. The first term in the KL diver-

gences has been dropped as it is a constant. Here 𝑞(𝑋0:𝑇 ) and
𝑝 (𝑋0:𝑇 ) denote respectively the forward and reverse trajectories of

the A-Bridge.

4.4 Accelerated Sampling
The reverse sampling process of our linear A-bridge model can be

accelerated [33] in line with the forward non-Markovian inference

process defined below. Let 𝜏 = {𝜏1, 𝜏2, . . . , 𝜏𝑆 } be a subsequence of
{1, . . . ,𝑇 } with 𝜏𝑆 = 𝑇 and 𝜎 = (𝜎1, . . . , 𝜎𝑇 ) ∈ R𝑇+ be a real vector.
Set𝑚𝑡 =

𝑡
𝑇
.

We recall that, for all 𝑡 = 1, . . . ,𝑇 ,

𝑞(𝑋𝑡 |𝑋0, 𝑌 ) = N
(
(1 −𝑚𝑡 )𝑋0 +𝑚𝑡𝑌, 𝐵2 (𝑡) 𝐼

)
.

We can define

𝑞(𝑋𝑡−1 |𝑋𝑡 , 𝑋0, 𝑌 ) = N((1 −𝑚𝑡−1)𝑋0 +𝑚𝑡−1𝑌

+

√︃
𝐵2 (𝑡 − 1) − 𝜎2𝑡

𝐵(𝑡) (𝑋𝑡 − (1 −𝑚𝑡 )𝑋0 −𝑚𝑡𝑌 ), 𝜎2𝑡 𝐼 ) .

In particular, the discrete non-Markovian forward inference process

(i.e., the ground truth) is defined by, for 𝑖 = 1, . . . , 𝑆 ,

𝑞(𝑋𝜏𝑖−1 |𝑋𝜏𝑖 , 𝑋0, 𝑌 ) = N((1 −𝑚𝜏𝑖−1 )𝑋0 +𝑚𝜏𝑖−1𝑌

+

√︃
𝐵2 (𝜏𝑖−1) − 𝜎2𝜏𝑖

𝐵(𝜏𝑖 )
(𝑋𝜏𝑖 − (1 −𝑚𝜏𝑖 )𝑋0 −𝑚𝜏𝑖𝑌 ), 𝜎2𝜏𝑖 𝐼 ) .

The Bayes’ rule reads

𝑞(𝑋𝜏𝑖 |𝑋𝜏𝑖−1 , 𝑋0, 𝑌 ) =
𝑞(𝑋𝜏𝑖−1 |𝑋𝜏𝑖 , 𝑋0, 𝑌 )𝑞(𝑋𝜏𝑖 |𝑋0, 𝑌 )

𝑞(𝑋𝜏𝑖−1 |𝑋0, 𝑌 )
from which the discrete trajectory matches 𝑞(𝑋𝜏𝑖 |𝑋0, 𝑌 ). We take

𝜎𝜏𝑖 = 0.5𝐵(𝜏𝑖−1) for every 𝑖 = 𝑆, . . . , 2 to guarantee the square root

in the formula makes sense.

Hence, we define the reverse accelerated sampling by

𝑋𝜏𝑆−1 =

(
1 − 𝜏𝑆−1

𝑇

)
(𝑌 − 𝜖𝜃 (𝑌,𝑇 )) +

𝜏𝑆−1
𝑇

𝑌 + 𝜎𝑆𝑧,

𝑋𝜏𝑖−1 = �̃�𝜏𝑖−1 +

√︃
𝐵2 (𝜏𝑖−1) − 𝜎2𝜏𝑖

𝐵(𝜏𝑖 )
(
𝑋𝜏𝑖 − 𝑌𝜏𝑖

)
+ 𝜎𝜏𝑖𝑧,

for 𝑖 = 𝑆 − 1, 𝑆 − 2, . . . , 2, where 𝑧 ∼ 𝑁 (0, 𝐼 ),
�̃�𝜏𝑖−1 = (1 −𝑚𝜏𝑖−1 )

(
𝑋𝜏𝑖 − 𝜖𝜃 (𝑋𝜏𝑖 , 𝜏𝑖 )

)
+𝑚𝜏𝑖−1𝑌,

𝑌𝜏𝑖 = (1 −𝑚𝜏𝑖 )
(
𝑋𝜏𝑖 − 𝜖𝜃 (𝑋𝜏𝑖 , 𝜏𝑖 )

)
+𝑚𝜏𝑖𝑌,

and lastly,

𝑋0 = 𝑋𝜏1 − 𝜖𝜃 (𝑋𝜏1 , 𝜏1) .
Algorithm 3 provides details of the accelerated sampling. Note

that one can opt to allocate a larger number of sampling steps to

the early phase of the reverse process as the generation tendency

becomes more pronounced in the initial steps of sampling [24].

Algorithm 3 Accelerated Sampling for the Linear A-Bridge

1: function FastSample(𝑌 )

2: 𝜏𝑆 ← 𝑇

3: 𝑋𝜏𝑆 ← 𝑌

4: 𝑋𝜏𝑆−1 ←
(
1 − 𝜏𝑆−1

𝜏𝑆

) (
𝑋𝜏𝑆 − 𝜖𝜃 (𝑋𝜏𝑆 , 𝜏𝑆 )

)
+ 𝜏𝑆−1𝜏𝑆

𝑋𝜏𝑆 + 𝜎𝑆𝑧
5: for 𝑖 = 𝑆 − 1, . . . , 2 do
6: 𝑧 ∼ N(0, 𝐼 )

7: 𝑋𝜏𝑖−1 ← �̃�𝜏𝑖−1 +
√︃
𝐵2 (𝜏𝑖−1 )−𝜎2

𝜏𝑖

𝐵 (𝜏𝑖 ) (𝑋𝜏𝑖 − 𝑌𝜏𝑖 ) + 𝜎𝜏𝑖𝑧
8: end for
9: 𝑋0 ← 𝑋𝜏1 − 𝜖𝜃 (𝑋𝜏1 , 𝜏1)
10: return 𝑋0
11: end function

5 EXPERIMENTS
5.1 Implementation details
To ensure a fair comparison with current methods in the literature,

our approach significantly draws upon existing coding framework.

We incorporated identical key components, notably the UNet ar-

chitecture and the same pretrained VQGAN model [9] that used

in both BBDM [22] and Latent Diffusion Model [30], to maintain

consistency in experimental setup. In the training phase, we con-

figured the number of time steps (𝑇 ) for the linear A-Bridge model

to be 1,000. During the inference phase, we implemented the fast

sampling approach (Algorithm 3) with 200 steps. This strategy

was designed to enhance computational efficiency while ensuring

the quality of the samples. Following [22], all of our models were

trained for 100 epochs using Adam optimizer with a learning rate

of 0.0001.

All experiments were implemented using PyTorch [29] and ran

on a machine with two NVIDIA RTX A6000 GPUs. Our source code

is available in the supplementary materials.

5.2 Experiment Setup
Datasets and Tasks: In this work, we focused on evaluating several
key tasks in the field of image-to-image translation. We selected

five datasets, each tailored to evaluate three different tasks. The

specifics of these datasets and their associated tasks are detailed as

follows:

• Semantic synthesis task: Evaluated on the CelebA-Mask-HQ

dataset [19] and the Cityscapes dataset [7].

• Edges to photos task: Evaluated on the Edges2Shoes and

Edges2Handbags datasets [17].
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Figure 2: The qualitative comparison between our linear A-Bridge and other methods on Edges2Shoes and Face2Comics datasets.
GT stands for Ground Truth.

Figure 3: The diversity samples of our linear A-Bridge on the CelebAMask-HQ dataset

• Style transfer task: Evaluated on the Faces2Comics dataset

[37]

Following the experimental setup of existing methods [22, 42],

we resized Cityscapes and CelebAMask-HQ images to 256 × 256,
Edges2Handbags images to 64 × 64, while keeping the original

resolutions for the other datasets. Following the literature, we con-

ducted our experiments in the latent space for all the datasets except

Edges2Handbags, which was done in the image space.

Metrics: In our evaluation, we employed the widely used Fréchet

Inception Distance (FID) [14] to assess the quality of the generated

images. Additionally, we measured the diversity of the samples

using the Learned Perceptual Image Patch Similarity (LPIPS) [41]

metric. Following literature, we replaced the LPIPS metric with the

mean Intersection over Union (mIoU) using a pre-trained segmenta-

tion network developed in [17] for our evaluation on the Cityscapes

dataset.

Baseline:While our primary focus is on comparing our method

to SOTA of image-to-image translation (e.g, BBDM in [22]), we have

also expanded our analysis to include a large variety of baselines.

These baselines encompass Pix2Pix [17], CycleGAN [43], DRIT++

[21], CDE [31], and LDM [30]. Notably, Pix2Pix, CycleGAN, and

DRIT++ are based on conditional GANs, while CDE and LDM utilize

conditional diffusion models for image translation. Additionally,

we also compared with other recent models from the bridge family,

such as I2SB [23] and DDBM [42]. It is worth noting that I2SB

indicates their model is primarily focused on addressing image

restoration tasks, and the majority of DDBM experiments were

conducted in the image space. So, their experimental setting is

different from othermodels. Tomake a fair comparison, we compare

with them separately from other models and conduct experiments

on the Edges2Handbags dataset using their established setting.

In addition, for a comprehensive evaluation on the CelebAMask-

HQ dataset, we have included comparisons with OASIS [36] and

SPADE [28]. Similarly, for the Cityscapes dataset, we have bench-

marked our method against recent SOTA techniques including CUT,

FastCUT [27], CycleGAN, MUNIT [16], DRIT [20], DistanceGAN

[4], SelfDistance [4], GCGAN [11], DCLGAN [13], and SimDCL

[13].
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Model CelebAMask-HQ edges2shoes faces2comics
FID ↓ LPIPS ↑ FID ↓ LPIPS ↑ FID ↓ LPIPS ↑

Pix2Pix 56.997 0.431 36.339 0.183 49.964 0.282

CycleGAN 78.234 0.490 66.115 0.276 35.133 0.263

DRIT++ 77.794 0.431 53.373 0.498 28.875 0.285

SPADE 44.171 0.376 - - - -

OASIS 27.751 0.384 - - - -

CDE 44.171 0.376 21.189 0.196 33.983 0.259

LDM 22.816 0.371 13.020 0.173 24.280 0.205

BBDM 21.350 0.370 10.924 0.183 23.203 0.192

Linear A-Bridge (Ours) 12.832 0.482 9.457 0.192 12.711 0.368
Table 1: Quantitative comparison on CelebAMask-HQ, edges2shoes, and faces2comics datasets. A - indicates that the metric
was not reported by the method, the same applied in Table 2.

Method FID ↓ mIoU ↑
Pix2Pix - 0.17

CycleGAN 68.6 -

CRN - 0.20

MUNIT 91.4 -

DRIT 155.3 -

Distance 85.8 -

SelfDistance 78.8 -

CGGAN 105.2 -

CUT 56.4 -

FastCUT 68.8 -

DCLGAN 49.4 0.17

DRGAN - 0.19

SimDCL 51.3 -

Linear A-Bridge (ours) 32.9 0.23
Table 2: Comparison of FID and mIoU scores across differ-
ent methods on the Cityscapes dataset with the best scores
bolded.

This diverse set of baselines ensures a comprehensive and robust

comparative evaluation.

5.3 Performance Comparison
5.3.1 Qualitative comparison: In this section, we qualitatively com-

pare our proposed linear A-bridgemodel with other image-to-image

translation models. We categorize these models into three main

classes and select representative models for comparison. The first

category includes GAN-based models, for which we have chosen

well-known models pix2pix and CycleGAN. The second category

consists of conditional diffusion models, and we have chosen La-

tent Diffusion Model (LDM) as a representative. The third category

comprises bridge models that directly let the model to learn two

distributions, e.g., BBDM.

As shown in Figure 2, GAN-based models often struggle to gen-

erate intuitively good images. In contrast, the conditional diffusion

model - LDM can generate high-quality images in most cases, but

sometimes with minor imperfections. For instance, in the second

row of the edges2shoes examples in Figure 2, the colors in the shoe

holes may not precisely match the inner colors. Bridge-type models

in general produce more realistic and higher quality images. Our

linear A-bridge, in particular, derives precise solutions from the

perspective of SDE, allowing our model to recognize subtle details

that may go unnoticed by other models. For example, in the first

example of edges2shoes in Figure 2, only the linear A-bridge model

correctly identifies the logo on the reference in the generated image.

The images generated by our model not only excel in image

quality but also exhibit strong diversity. As depicted in Figure 3, our

model demonstrates competitive diversity, both at a macro (e.g., im-

age colors, backgrounds) and a micro level (e.g., facial expressions

and patterns), while maintaining high image quality. More com-

parison and diversity examples are provided in the supplemental

materials.

5.3.2 Quantitative comparison: As shown in Table 1, our linear

A-Bridge model represents a significant advancement in the area

of image-to-image translation, particularly noted by its impressive

reductions in the FID score over current SOTA. For example, on

the CelebAMask-HQ dataset, the linear A-Bridge delivers an FID of

12.832, marking a 40% improvement compared to the second best

(the BBDMmodel), which scores 21.350. This major improvement in

FID underscores our model’s capability to generate images that are

much closer to the real image distribution, essential for applications

that require high-quality image translations.

The exceptional performance of our model extends to the edges2-

shoes and faces2comics datasets. For edges2shoes, the linear A-

Bridge shows a 13% improvement in FID, while for faces2comics,

the enhancement is a striking 45% over BBDM (the second best). As

indicated by the LPIPS scores, these improvements are especially

noteworthy given that the linear A-Bridge also maintains a higher

level of diversity than BBDM. Furthermore, as shown in Table 2,

our linear A-Bridge also achieved a notable improvement in FID

on the Cityscapes dataset. We get 32.9 while the second best is 51.3

(by SimDCL).

Among models with similar LPIPS scores, our model markedly

outperforms in terms of FID. As demonstrated in Table 1, the linear

A-Bridge achieved the second best LPIPS (0.482) among all models

on CelebAMask-HQ dataset. Though CycleGAN exhibited a slightly

higher diversity with a LPIPS of 0.490, its FID is 6.5 times worse

(higher) than our model (78.234 vs. 12.832). Similarly, our model

closely matches the LPIPS of CDE: 0.196 (CDE) vs. 0.192 (ours) on
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Method FID ↓
I2SB 7.43

DDBM (VE) 2.93

DDBM (VP) 1.83

Linear A-Bridge (Ours) 1.07
Table 3: Comparison of FID across different diffusion bridge
methods on the Edge2Handbags dataset with the best scores
bolded.

𝜆 FID ↓ LPIPS ↑
1 12.939 0.204

2 9.457 0.192

3 13.2286 0.235
Table 4: Ablation study for different 𝜆 values on the
edges2shoes dataset with the best scores bolded.

the edges2shoes dataset, yet surpasses it on FID by over 55%: 21.189

(CDE) vs. 9.457 (ours). This highlights the exceptional ability of

our linear A-Bridge to significantly enhance image quality while

preserving ample diversity.

Finally, as shown in Table 2, the linear A-Bridge is able to exhibits

its versatility by scoring an mIoU of 0.23 on Cityscapes dataset, not

for segmentation accuracy but as a novel metric in this context,

to assess the consistency and accuracy of attribute translation in

synthesized images. This score is 15% higher than that of the sec-

ond best (the CRN model), which serves as further evidence of its

superior performance in preserving and replicating image details.

5.3.3 Compare with other diffusion bridge models: Table 3 presents
a comparison between our linear A-Bridge model and SOTA diffu-

sion bridge models within the image space on the edge2handbags

dataset. Our model demonstrated a 44% enhancement in the FID,

registering an impressive 1.07, whereas the next closest competitor,

the VP DDBM, scored 1.83. Remarkably, we achieved these results

through fast sampling by utilizing just 3 time steps. This under-

scores the linear A-Bridge model’s ability to deliver high-quality

outcomes with minimal time steps, compared to I2SB and DDBM,

which utilized 40 time steps. Our model’s superior performance is

evident. Figure 4 displays some sampling results of our model on

the Edges2Handbags dataset.

5.4 Ablation study
5.4.1 Impact of 𝜆. : our linear A-Bridge contains a hyper-parameter

𝜆, which controls the variance of 𝑋𝑡 at each step of the Brownian

bridge. An ablation study was conducted, applying varying values

of 𝜆 within our model on the edges2shoes dataset to investigate its

impact on image quality and diversity.

Our result in Table 4 indicates that the choice of 𝜆 critically

governs the balance between the fidelity and diversity of the gener-

ated images. A certain value of 𝜆 was observed to yield the highest

quality in generated images, suggesting an optimal alignment with

the target image distribution. However, this peak in quality was

associated with a slight reduction in diversity, implying a potential

limitation on the variation within the generated images. Conversely,

Sampling Steps Algorithm FID ↓ LPIPS ↑
50 Alg. 3 15.25 0.417

100 Alg. 3 13.00 0.431

200 Alg. 3 12.83 0.482
1000 Alg. 2 9.89 0.421

Table 5: Quantitative scores with different numbers of sam-
pling steps on CelebAMask-HQ. The algorithm marked as
"Alg.2" represents regular sampling, while "Alg.3" denotes
fast sampling.

Figure 4: Random selected qualitative sampling results on
Edges2Handbags by our linear A-bridge. Each row of results
consists of three images: the first is the input, the second is
the ground truth, and the third is the sampled result.

other values of 𝜆 were found to favor diversity, which could be ben-

eficial for scenarios that demand a wide array of image outputs.

Nevertheless, this diversity comes at the cost of diminishing cer-

tain quality aspects of the images. Based on this ablation study, we

choose a 𝜆 value of 2 in all our experiments.

5.4.2 Impact of sampling steps. : To investigate the impact of sam-

pling steps on model performance, we employed four different

sampling steps and did an ablation on CelebAMask-HQ. As shown

in Table 5, we noticed that, in general, the quality (FID) of the gen-

erated images decreases with a less number of sampling steps. To

strike a good balance between sampling quality and diversity, and

also between sampling quality and time, we employed 200 as the

default sampling step for all our experiments.

6 CONCLUSION AND FUTUREWORK
We presented a framework for image-to-image translations based

on A-Bridges. Introduction of the A-Bridge models opens the gate

for new sampling algorithms in line with this new understanding of

amenable SDE. Following the guidance of its SDE structure, our lin-

ear A-Bridge model demonstrated its effectiveness in significantly

improving image quality compared to SOTA algorithms while main-

taining ample diversity. Its flexibility also provides the opportunity

to keep balance between the image quality and diversity on a par-

ticular image set. Meanwhile, the answer to questions like how to

choose the best A-Bridge model (e.g, the best noise scheduling of

the Brownian bridge model) to run on a specific image set remains

largely open and will be our future work.
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