
DeltaSort: Incremental repair of sorted arrays with known updates

Shubham Dwivedi
Independent Researcher

shubd3@gmail.com

2026

Abstract

Reading sorted data is a fundamental requirement in almost all data processing systems.
When dealing with large sorted datasets that require great read performance, sorting-on-read is
not feasible. A standard approach is to have a derived sorted read-replica that is updated with
the latest snapshot asynchronously whenever the system-of-record gets updated. For updating
read-replicas, most production systems resort to either full re-sorting or Binary-Insertion-Sort or
Extract-Sort-Merge. In this paper, we show that these traditional approaches can be significantly
improved for certain workloads. This paper also formulates an alternative model in which the
sorting routine is explicitly informed of the updated indices since the previous sort. Under this
model, we present DeltaSort, an efficient incremental repair algorithm for arrays. We present
experimental evidence that shows that DeltaSort outperforms existing approaches for a wide
range of update batch sizes for our Rust implementation. These results suggest that tighter
integration between update pipelines and sorting routines can yield significant performance
gains in real incremental-sorting workloads. We also explore limitations of this approach and
identify a clear crossover point, depending on array size, where full re-sorting becomes preferable.

1 Introduction

Sorting is among the most optimized primitives in modern systems, backed by decades of deep re-
search. Standard library implementations—TimSort [13], Introsort [10], and PDQSort [12] deliver
excellent performance for general inputs by exploiting partial order, cache locality, and adaptive
strategies. However, these algorithms operate under a blind model: they discover structure dynam-
ically rather than being explicitly informed about which values have changed since the previous
sort.

In many practical systems, this assumption is unnecessarily pessimistic. Sorted arrays are often
maintained incrementally in read-heavy workloads where updates affect only a subset of values
and the indices of those updates can be easily tracked if needed. Nevertheless, this information
is typically not tracked or utilized, and systems fall back to blind re-sorting or standard repair
approaches using Binary-Insertion-Sort or Extract-Sort-Merge. As an example, consider a web
application that shows a real-time game leaderboard. Being able to efficiently update the sorted
view on updates directly impacts the user experience. The traditional approaches fall short—
full re-sort can block the main UI thread for long durations, while Binary-Insertion-Sort can be
slow for a large number of updates. To address these limitations, this paper makes the following
contributions:

1

1. Update-aware sorting model: We formulate an incremental sorting model in which the
sorting routine is explicitly informed of the updated indices since the previous sort. Under this
model, Binary-Insertion-Sort and Extract-Sort-Merge serve as natural baseline algorithms for
maintaining sorted order through incremental updates.

2. DeltaSort algorithm: We present DeltaSort, an incremental repair algorithm for sorted
arrays designed for the update-aware model. DeltaSort batches multiple updates and achieves
multi-fold speedups over traditional approaches for a wide range of update batch sizes.

2 Related Work

Adaptive sorting algorithms exploit existing order in the input to improve performance on nearly
sorted data. TimSort [13] and natural merge sort [8] dynamically identify monotonic runs and
merge them efficiently, while a substantial body of work formalizes measures of presortedness and
analyzes sorting complexity as a function of these measures rather than input size alone [9]. These
approaches, however, operate under a blind model: partial order must be rediscovered through
full-array scans, and no external information about which values have changed is assumed.

A separate line of work studies incremental computation and view maintenance in database and
streaming systems, where changes to input data are propagated to derived results using explicit
delta representations [7, 11, 2]. These techniques focus on maintaining query results, aggregates, and
materialized views, and operate at the level of relational or dataflow operators rather than array-
based sorting primitives. While they demonstrate the practical value of update-aware computation,
they do not specifically address the problem of efficiently restoring sorted order in arrays under
batched point updates.

Dynamic data structures offer a different trade-off. Self-balancing trees such as AVL trees [1],
red–black trees [6], B-trees [3], and skip lists [14] support efficient ordered updates with logarithmic
cost, but abandon contiguous array layout and its attendant cache locality. Library sort [4] reduces
insertion overhead by maintaining gaps within arrays, but addresses online insertion and incurs
additional space overhead.

In contrast, this work considers maintaining sorted order in arrays where the indices of updated
values since the previous sort are explicitly available. DeltaSort performs segmented repair without
auxiliary data structures, which distinguishes it from prior adaptive sorting algorithms, incremental
view maintenance techniques, and dynamic ordered data structures.

3 Problem Model

Definition 1 (Update-Aware Sorting). Let A[0..n − 1] be an array sorted according to a strict
weak ordering defined by a comparator cmp. Let U = ⟨u1, u2, . . . , uk⟩ be a sequence of indices such
that

0 ≤ u1 < u2 < · · · < uk ≤ n− 1,

and the values at these indices may have been arbitrarily updated, while values at all other indices
remain unchanged. The update-aware sorting problem is to restore A to a state that is sorted with
respect to cmp, given explicit knowledge of the set U .

2

4 DeltaSort Algorithm

4.1 Overview

Definition 2 (Violation). For an updated index i, we classify its violation based on local order:

• LEFT (L): Value must move left—cmp(A[i− 1], A[i]) > 0 (for i > 0).

• RIGHT (R): Value may move right and cannot move left.

Every updated index is either a LEFT or RIGHT violation. Violation is only defined for updated
indices and has no meaning for clean indices.

Definition 3 (Segment). A segment is a maximal subarray of U whose values follow the pattern
(R)∗(L+ | ϵ): zero or more RIGHT violations followed by one or more LEFT violations, or end of
array. Figure 1 illustrates this structure.

· · · R · · · L · · · R · · · R · · · R · · · L · · · L · · · R · · · R · · ·

Segment Si: (R)
∗(L+ | ϵ)

(R)∗ L+

Si−1 Si+1

R = RIGHT

L = LEFT

· · · = clean

Figure 1: Each segment follows the pattern (R)∗(L+ | ϵ): zero or more RIGHT violations followed
by one or more LEFT violations (or end of array).

DeltaSort operates in two phases:

1. Phase 1 (Segment): Extract updated values, sort them, and write back to updated indices
in index order. This establishes segments in the array that are disjoint and can be repaired
independently.

2. Phase 2 (Repair): Repair each segment left-to-right, deferring RIGHT indices to a stack
until the first LEFT index is encountered. When a LEFT is encountered, first flush and repair
all pending RIGHTs in LIFO order, then repair the LEFT. Continue left-to-right.

4.2 Key Insight: Segmentation enables localized repair

The key insight behind DeltaSort is that pre-sorting updated values induces a segmentation of
updates. After Phase 1, updated indices partition into disjoint segments of the form (R)∗(L+ | ϵ).

Lemma 4 (Movement Confinement). Value movement during the repair phase is bounded within
each segment: no value needs to cross a segment boundary.

Proof. Let S be a segment with RIGHT indices R1, . . . , Rm followed by LEFT indices L1, . . . , Lp

(where m ≥ 0 and p ≥ 0, with m + p ≥ 1). After Phase 1, updated values are monotonically
ordered by index, so A[R1] < · · · < A[Rm] < A[L1] < · · · < A[Lp].

1. RIGHT values move rightward but cannot pass the first LEFT index L1 (if it exists) or the
segment boundary, since A[Ri] < A[L1] for all i.

2. LEFT values move leftward but cannot pass the last RIGHT index Rm (if it exists) or the
segment boundary, since A[Rm] < A[Lj] for all j.

Since no value exits its segment, segments can be repaired independently.

3

4.3 Pseudocode

Algorithm 1 DeltaSort

Require: Array A[0..n− 1], updated indices U , comparator cmp
Ensure: A is sorted

1: Phase 1: Segment
2: updatedIndices← sort(U);
3: updatedValues← sort([A[u] : u ∈ updatedIndices], cmp)
4: for i← 0 to |updatedIndices| − 1 do
5: A[updatedIndices[i]]← updatedValues[i]
6: end for
7: updatedIndices.push(n); ▷ Sentinel for handling trailing segment with no LEFT’s

8: Phase 2: Repair
9: pendingRight← []; leftBound← 0

10: for p← 0 to |updatedIndices| − 1 do
11: i← updatedIndices[p]; dir← (i = n) ? Left : GetDirection(A, i)
12: if dir = Left then
13: rightBound← i− 1
14: while pendingRight ̸= ∅ do
15: j ← pendingRight.pop()
16: if cmp(A[j], A[j + 1]) > 0 then
17: rightBound← FixRightViolation(A, j, rightBound)− 1
18: end if
19: end while
20: if i < n then ▷ Skip dummy LEFT sentinel
21: leftBound← FixLeftViolation(A, i, leftBound) + 1
22: end if
23: else
24: pendingRight.push(i) ▷ Defer RIGHT violation
25: end if
26: end for

1: function GetDirection(A, i)
2: return i > 0 ∧ cmp(A[i− 1], A[i]) > 0 ? Left : Right
3: end function

1: function FixLeftViolation(A, i, leftBound)
2: t← BinarySearchLeft(A,A[i], leftBound, i− 1)
3: Move(A, i, t)
4: return t
5: end function

1: function FixRightViolation(A, i, rightBound)
2: t← BinarySearchRight(A,A[i], i+ 1, rightBound)
3: Move(A, i, t);
4: return t
5: end function

4

4.4 Correctness Proof

Lemma 5 (Violation Fix Invariant). Each fix operation during Phase 2 resolves a violation without
introducing new ones.

Proof. We fix each violation using binary search. For binary search to find the correct insertion
point, the search range must contain no violations.

• LEFT fix at index i: The search range [leftBound, i−1] contains no LEFT violations because
LEFTs are processed left-to-right, and no RIGHT violations because all pending RIGHTs are
flushed before any LEFT is fixed.

• RIGHT fix at index i: The search range [i + 1, rightBound] contains no RIGHT violations
because RIGHTs are processed in LIFO order with rightBound narrowing after each fix, and
no LEFT violations because rightBound never extends past the first LEFT in the segment.

Theorem 6 (Correctness). DeltaSort produces a correctly sorted array.

Proof. The only violations in the array after Phase 1 are at updated indices. Phase 2 processes
each updated index exactly once. By Lemma 5, each fix resolves a violation without introducing
new ones. After all fixes, no violations remain, so the array is sorted.

4.5 Complexity Analysis

Theorem 7 (Time Complexity). DeltaSort runs in O(k log k+ k log n+M) time, where M is the
total movement.

Proof. We analyze the two phases separately.

Phase 1. Sorting the k updated indices and their corresponding values costs O(k log k) time.
Writing the sorted values back requires O(k) time.

Phase 2. Each updated index is processed once. Violation checks cost O(1) per index, and each
repair performs a binary search over a sorted region in O(log n) time. Thus Phase 2 requires
O(k logn) time. Let M denote the total number of values moved during repair. The movement
cost is O(M).

Total. The overall complexity is O(k log k + k logn+M).

Theorem 8 (Space Complexity). DeltaSort uses O(k) auxiliary space.

Proof. Phase 1 stores k updated indices and k updated values. Phase 2 maintains a pending stack
of at most k indices. No O(n) auxiliary structures are required.

Remark 9 (Movement Efficiency). While worst-case movement is O(kn), the segmentation created
by Phase 1 tends to reduce movement in the average case. Empirical results in §5 demonstrate
substantial speedups, validating that segmentation (Lemma 4) effectively reduces movement in
practice. We will analyze average-case movement more rigorously in future work.

5

Table 1 compares algorithm complexity with the standard baseline approaches used in the
experiments:

• NativeSort (NS): Re-sort the array using the natively available sort function. O(n log n)
comparisons and movements.

• Binary-Insertion-Sort (BIS): Extract updated values, then for each: binary search for
correct position, reinsert. O(k log n) comparisons, O(kn) worst-case movement. Searches the
full array range for each insertion.

• Extract-Sort-Merge (ESM): Extract updated values, sort them, merge with clean values.
O(k log k + n) comparisons, O(n) movement. Requires O(n) auxiliary space.

Table 1: Algorithm complexity comparison

Algorithm Comparisons Movement Space

NativeSort O(n logn) O(n logn) O(n)
Binary-Insertion-Sort O(k logn) O(kn) O(1)
Extract-Sort-Merge O(k log k + n) O(n) O(n)
DeltaSort O(k log n) O(kn)* O(k)

*Worst case; average case is empirically much smaller.

5 Experimental Evaluation

All experiments are run using a Rust implementation of DeltaSort [5] on a synthetic dataset of user
objects with composite keys (country, age, name) on an M3 Pro MacBook Pro with 18GB RAM.
DeltaSort is compared against three baselines: NativeSort (Rust’s sort by), Binary-Insertion-Sort
(BIS), and Extract-Sort-Merge (ESM).

5.1 Correctness

Correctness is formally proven in Theorem 6 and also verified by an extensive set of randomized
unit tests [5] across various scales and update sizes. The test routine generates a sorted base array
of size n, applies k random updates at random indices, runs DeltaSort, and asserts that the final
array is sorted and contains all original values with updated values. All tests pass successfully.

5.2 Execution Time

Figure 2 shows execution time (in microseconds) for n = 50K values as a function of updated count
k. DeltaSort consistently outperforms all alternatives up to approximately k = 16.5K (crossover
point), achieving significant speedups of 4–20× over NativeSort in the intermediate range. Also
note the orders-of-magnitude gap between DeltaSort and the baseline incremental algorithms (BIS
and ESM) across the full range of k values.

6

1 10 100 1K 10K
100

101

102

103

104

105

crossover at ∼16.5K (33%)

Number of updated values (k)

E
x
ec
u
ti
o
n
ti
m
e
(µ
s)

NativeSort
BIS
ESM

DeltaSort

Figure 2: Execution time comparison for n = 50K (log-log scale). The vertical dashed line marks
the crossover point (k ≈ 16.5K) where DeltaSort’s advantage over NativeSort diminishes.

5.3 Comparator Invocation Count

Figure 3 shows the number of comparator invocations for each algorithm. DeltaSort and BIS
both achieve O(k log n) comparisons, substantially fewer than NativeSort’s O(n log n) and ESM’s
O(k log k + n). The comparison counts for DeltaSort are 10–40% higher than BIS, indicating
that DeltaSort’s performance advantage comes from reduced data movement (Lemma 4). This also
suggests that in scenarios with expensive comparators, the speedups from DeltaSort over NativeSort
may be even greater.

1 10 100 1K 10K
10

100

1K

10K

100K

1M

Number of updated values (k)

C
o
m
p
a
ra
to
r
in
v
o
ca
ti
on

s

NativeSort
BIS
ESM

DeltaSort

Figure 3: Comparator invocation count for n = 50K. DeltaSort and BIS both achieve O(k logn)
comparisons, while NativeSort uses O(n log n) regardless of k, and ESM uses O(k log k+n). The 10–
40% higher comparison counts for DeltaSort vs BIS confirm that movement confinement (Lemma 4)
is the major factor in DeltaSort speedup.

7

5.4 Crossover Threshold Analysis

A key practical question is: at what update count should one switch from DeltaSort to NativeSort?
A binary search was conducted for the crossover point kc across array sizes from 1K to 10M values.

Figure 4 visualizes how the crossover ratio kc/n varies with array size. The ratio peaks around
∼33% for medium-sized arrays (n ≈ 50K) and declines rapidly for very large arrays (n > 500K),
suggesting that DeltaSort’s advantage narrows as arrays grow very large. This could be because
the segmentation does not grow linearly with array size and hence advantages diminish at larger
scales. More study is needed to understand this trend fully.

1K 10K 100K 1M 10M
0

10

20

30

40
n=50K (Fig. 2)

DeltaSort faster

Array size (n)

C
ro
ss
ov
er

ra
ti
o
k
c
/
n
(%

)

Figure 4: Crossover ratio kc/n as a function of array size. DeltaSort outperforms NativeSort when
the updated fraction is below the curve (shaded region).

The key takeaway is that DeltaSort offers the best incremental sort performance for large
ranges of update sizes (0–30% for the dataset we tested). The exact crossover threshold depends
on the specific scenario (array size, data types, comparator cost, etc.).

5.5 Performance in managed execution environments

DeltaSort was also implemented in JavaScript [5] and benchmarked on the V8 engine to evaluate
behavior in managed runtimes. Initial results indicate that DeltaSort outperforms NativeSort for
some workloads, but the gains are more modest and the crossover point occurs at smaller update
sizes. This behavior appears to be driven primarily by the performance characteristics of the native
JavaScript sort, which is highly optimized and handles nearly sorted inputs exceptionally well. As
a result, the relative advantage of segmented repair is reduced in this environment compared to
the Rust implementation. The JavaScript benchmarks are still being refined and will be reported
in a later revision. Until then, the Rust implementation provides the primary and authoritative
performance characterization.

8

6 Future Work

This work opens up several directions for future investigation:

• Establish average-case movement bounds: The efficiency gains from segmentation have
been demonstrated empirically, but the theoretical worst-case remains O(kn). Establishing
average-case bounds for data movement under typical update distributions would help explain
the observed crossover behavior at large scales and clarify when segmented repair is most
effective.

• Analyze structured workloads: The current evaluation tests randomized updates, whereas
many real workloads exhibit additional structure, such as gradual value changes in leader-
boards or localized updates in interactive list views. Studying such patterns may reveal
regimes where DeltaSort’s advantages are amplified or diminished.

• Study managed environments: Performance variance in managed environments warrants
deeper investigation. Understanding the impact of factors such as garbage collection and JIT
compilation will help explain the observed performance characteristics.

• Analyze block-structured storage: Although this work focuses on in-memory arrays, the
update-aware model naturally extends to block-structured storage. Exploring how DeltaSort-
style segmentation interacts with page- or block-based layouts may clarify its applicability to
database and external-memory settings.

7 Conclusion

This paper introduced DeltaSort, an incremental repair algorithm for maintaining sorted arrays.
The key insight is that pre-sorting updated values induces segmentation: updated values naturally
partition into segments that can be repaired independently. DeltaSort leverages this segmentation
through stack-based processing. LEFT-moving values are repaired immediately with progressively
narrowed search ranges, while RIGHT-moving values are deferred and processed in reverse order to
ensure stable target positions. This segmentation avoids redundant comparisons and overlapping
value movement that arise from repeated binary insertion. An experimental evaluation in Rust
demonstrates that DeltaSort outperforms both blind native sorting and repeated binary insertion
across a wide range of array sizes and update volumes.

More broadly, this work highlights the value of integrating application-level update information
into core algorithms. When sorting routines are informed of which values changed, batching and
segmentation become possible, enabling performance improvements that blind algorithms cannot
realize. DeltaSort illustrates how modest structural insight—segmentation combined with disci-
plined processing order—can yield substantial practical gains.

9

References

[1] Georgy M. Adelson-Velsky and Evgenii M. Landis. An algorithm for the organization of
information. Proceedings of the USSR Academy of Sciences, 146:263–266, 1962.

[2] Tyler Akidau et al. The dataflow model: A practical approach to balancing correctness,
latency, and cost. In VLDB, 2015.

[3] Rudolf Bayer and Edward M. McCreight. Organization and maintenance of large ordered
indices. Acta Informatica, 1(3):173–189, 1972.

[4] Michael A. Bender, Martin Farach-Colton, and Miguel A. Mosteiro. Insertion sort is o(n logn).
In Proceedings of the 3rd International Conference on Fun with Algorithms, pages 16–23, 2004.

[5] Shubham Dwivedi. DeltaSort: Reference implementation and benchmarks. https://github.
com/shudv/deltasort, 2026. Rust and JavaScript implementations with unit tests and bench-
mark suite.

[6] Leo J. Guibas and Robert Sedgewick. A dichromatic framework for balanced trees. In Pro-
ceedings of the 19th Annual Symposium on Foundations of Computer Science, pages 8–21,
1978.

[7] Ashish Gupta and Inderpal Singh Mumick. Maintenance of materialized views: Problems,
techniques, and applications. IEEE Data Engineering Bulletin, 1995.

[8] Donald E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching.
Addison-Wesley, 2nd edition, 1998.

[9] Heikki Mannila. Measures of presortedness and optimal sorting algorithms. IEEE Transactions
on Computers, 100(4):318–325, 1985.

[10] David R. Musser. Introspective sorting and selection algorithms. Software: Practice and
Experience, 27(8):983–993, 1997.

[11] Miloš Nikolić et al. Incremental computation with dataflow graphs. In OOPSLA, 2014.

[12] Orson R. L. Peters. Pattern-defeating quicksort. https://github.com/orlp/pdqsort, 2021.

[13] Tim Peters. Timsort. Python source code, 2002. Adopted by Java SE 7, Android, and V8.

[14] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Communications of
the ACM, 33(6):668–676, 1990.

10

https://github.com/shudv/deltasort
https://github.com/shudv/deltasort
https://github.com/orlp/pdqsort

	Introduction
	Related Work
	Problem Model
	DeltaSort Algorithm
	Overview
	Key Insight: Segmentation enables localized repair
	Pseudocode
	Correctness Proof
	Complexity Analysis

	Experimental Evaluation
	Correctness
	Execution Time
	Comparator Invocation Count
	Crossover Threshold Analysis
	Performance in managed execution environments

	Future Work
	Conclusion

