
Supplemental Materials of CRT

In this supplemental material, we provide (1) more detailed information on the benchmark datasets,
implementation details, and algorithm summary, (2) theoretical understanding of our method, and (3)
more ablation studies.

1 More Details on the Benchmark Datasets and Algorithm Implementation

In this section, we provide more details on the benchmark datasets used in our experiments, further
implementation details, and algorithm summary.

1.1 Benchmarks Datasets

The following datasets are used in our experiments for performance evaluations. (1) The CUB-200-
2011 [1] consists of 11,788 images from 200 bird categories. We use the first 100 classes (5,864
images) for training and the remaining 100 classes (5,924 images) for testing. (2) The Cars-196 [2]
dataset contains 16,185 images of 196 cars classes. We use the first 98 classes (8,054 images) for
training and the remaining 98 classes (8,131 images) for testing. (3) The Stanford Online Product
(SOP) [3] dataset consists of 120,053 images with 22,634 classes crawled from Ebay. Classes are
hierarchically grouped into 12 coarse categories (e.g. cup, bicycle, etc.). Following the existing
protocol, we split the first 11,318 classes with 59,551 images for training, and the remaining 11,316
classes with 60,502 images for retrieval. In the test set, each image is also used as the query image. (4)
The In-Shop Clothes Retrieval (In-Shop) [4] dataset consists of 52,712 images with 7,986 clothing
classes. We use the predefined 25,882 training images of 3,997 classes for training. The remaining
3985 classes are partitioned into a query set (14,218 images) and a gallery set (12,612 images).

1.2 Implementation Details

In Table 3 of the main paper, ResNet-50 with frozen Batch-Normalization is used, just as the method
by Roth et al. [5]. Training runs on the CUB and Cars196 datasets are performed over 70 epochs and
60 epochs for the SOP and In-Shop datasets, respectively. The initial learning rate is 3e−5, and decays
10 times after 1000 iterations for the CUB dataset, 3000 iterations for the Cars dataset, and 9000
iterations for the SOP and In-Shop datasets. The batch size is set to 80 on the CUB and Cars datasets,
150 for the MiT-B2 backbone on the SOP and In-Shop datasets, and 180 for other banckbones on the
SOP and In-Shop datsets. The batch size and learning rate decay values are determined based on
the performance on the validation set. We implement our experiments in PyTorch. Experiments are
performed on GPU servers with a GeForce RTX 3090 GPU and 24GB memory. Each reported result
is averaged over five seeds.

1.3 The MS Loss Function

We provide a more detailed explanation of the MS loss function [6] used in our paper, which is
defined as follows,

Lms = 1
N

∑
Ii∈I

[
1
α log[1 +

∑
j∈Pi

exp(−α(d̂c(i, j)− λ))]
]

+
∑
Ii∈I

[
1
β log[1 +

∑
k∈Ni

exp(β(d̂c(i, j)− λ))]
] , (1)

where Pi and Ni are the sets of positive pairs and negative pairs for image Ii in the mini-batch,
respectively. α, β, and λ are scale parameters, we follow [6] and set them to be 2, 40, and 0.5,
respectively. d̂c(i, j) denotes the cosine similarities between embedding fi and fj , which is defined
as follows,

d̂c(i, j) =

{
dc(fi, fj) dc(fi, fj) > minj∈Pi dc(fi, fj)− ε
dc(fi, fj) dc(fi, fj) < maxk∈Ni dc(fi, fk) + ε
0 otherwise

. (2)

Following [6], ε is set to be 0.1.
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Figure 1: (a) Coded Residual Transform. (b) Multi-Perspective Projection and Residual Encoding. (c) Coded
Residual Features Transformation.

1.4 Evaluation Metric

The evaluation metric used throughout this work is the recall@K, especially Recall@1, as it offers
strong insights into the retrieval performance of the learned embedding. Given a set of feature
embeddings fi ∈ F with fi = Γ(Φ(Ii)), and Ii ∈ I. We define the k nearest neighbours of a sample
fa following [5] as follows,

Gka = min sortd(fa,·) arg min
G∈I,|G|=k

∑
Ib∈G

d(fa, fb). (3)

The, the Recall@K is defined as:

Recall@K =
1

|I|
∑
Ii∈I

{
1, ∃Ik ∈ Gki , s.t., yk = yi
0, otherwise, (4)

which evaluates how likely the positive pairs will occur in the set of k nearest neighbours.

1.5 Algorithm Summary

As shown in Figure 1 (a), we first learn anchor network to generate a set of diversified anchor features
C = {c1, c2, · · · , cK}, ck ∈ RL. For each anchor ck, we project the whole feature map X onto this
anchor. Specifically, for each feature xj ∈ X inside the feature map, we find the relative difference
dkj = xj − ck between the feature xj and the anchor ck. Let wkj = xj · cTk be their correlation
coefficient. Then, with anchor ck, as shown in Figure 1 (b), the whole map is transformed into the
following feature vector using weighted summation of dkj :

rk =

H×W∑
j=1

log[1 + exp(xTj ck)](xj − ck), (5)

where the nonlinear function log[1+exp(wkj)] converts the correlation coefficient wkj into a positive
number. In this way, each anchor ck will generate a separate coded residual representation rk of
the feature map for the input image. Finally, as shown in Figure 1 (c), rk is further transformed by
a nonlinear embedding network Γk with multiple fully connected layers and one GELU nonlinear
activation layer [7]. By aggregating those nonlinear embeddings, the final embedded feature f is
then given by

f =
1

K

K∑
k=1

Γk(rk). (6)

We summarize the training algorithm in Algorithm 1.
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Algorithm 1 Summary of Training Procedures
1: Input: Random sampling a mini-batch images. Set the number of anchors K1 and K2 in the

first embedding branch and the second embedding branch to be 49 and 64. Set the embedding
dimensions d and D in these two embedding branches to be 128 and 1024, respectively.

2: Output: Linear embeddings in the first embedding branch.
3: Compute feature maps of the input images based on the backbone network Φ.
4: Encode these feature maps in the first and the second embedding branches based on the CRT

method (Figure 1 (a) and (b)).
5: Transform the encoded features into nonlinear embeddings in each embedding branch using

network Γ (Figure 1 (c)).
6: Transform the nonlinear embeddings in the first embedding branch into linear embeddings.
7: Compute the diversity loss of anchors L(1)

DIV and L(2)
DIV for these two embedding branches,

respectively.
8: Compute the multi-similarity loss L

(1)
MS and L

(2)
MS based on the output embeddings in these two

embedding branches, respectively.
9: Compute local correlation matrices S(1) and S(2) for linear embeddings and nonlinear embeddings

in the first embedding branch and the second embedding branch, respectively.
10: Compute the consistency loss LCON based on S(1) and S(2).
11: Optimize the parameters of the whole model in an end-to-end manner. . The consistency loss

does not require backpropagation in the second embedding branch during optimization.

2 Further Understanding of the Proposed CRT Algorithm

This section aims to provide further understanding of our CRT method. In our method, we first
learn a set of diversified anchor features, project the feature map onto each anchor, and then encode
its features using their projection residuals weighted by their correlation coefficients with each
anchor. Then, we transform each encoded CRT feature rk into an independent embedding space
using an embedding network Γk. Finally, we average all the embeddings to obtain the final nonlinear
embeddings. Here, we show that the embedding and average process aims to realize dimension
reduction for the concatenated CRT features.

Suppose that the concatenated CRT features of images Ii and Ij are Ri ∈ RLK×1 and Rj ∈ RLK×1,
where L is the channel dimension of the feature map, K is the number of anchors. The Mahalanobis
distance between Ri and Rj is defined as,

d(Ii, Ij) = (Ri −Rj)
TM(Ri −Rj), (7)

In (7), M is a learnable matrix that can be decomposed as GTG, and G ∈ RD×LK , D < LK, then
d(Ii, Ij) can be re-written as,

(Ri −Rj)
TM(Ri −R2j)

= (Ri −Rj)
TGTG(Ri −Rj)

= (GRi −GRj)
T (GRi −GRj)

= ||GRi −GRj ||2,

(8)

where G is a learnable matrix which can be implemented using a fully connected network Γ.
The inputs of Γ are the CRT features Ri and Rj . The outputs are the reduced dimension of the
embeddings GRi and GRj . The parameters of the network Γ are G. According to the block-wise
matrix multiplication rules, GRi and GRj can be re-written as:

GRi =
∑K
k=1 Gkri,k, GRj =

∑K
k=1 Gkrj,k, (9)

where ri,k ∈ RL×1 and rj,k ∈ RL×1 are slice vectors in Ri and Rj , respectively. Gk ∈ RD×L is
the k-th matrix block in Gk. Thus, we have

1
KGRi = 1

K

∑K
k=1 Gkri,k,

1
KGRj = 1

K

∑K
k=1 Gkrj,k. (10)

Gkri,k and Gkrj,k can be implemented using a fully connected network Γk, where Γk is a sub-
network in Γ. The input of the network Γk are CRT features ri,k and rj,k. The outputs are the
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embeddings with reduced dimensions GkRi,k and GkRj,k. The parameters of Γk are Gk. Then,
we have

f =
1

K

K∑
k=1

Γk(rk). (11)

The above derivation process is based on the linear transformation condition, which is shown in Figure
2(a). In our implementation, we used the nonlinear activation function GELU(·) for each sub-matrix
Gk. In this case, the left and right sides of (9) and (10) are not strictly equal. According to the
above analysis, our CRT method can be considered as a form of nonlinear metric learning to realize
dimensionality reduction. Specifically, as shown in Figure 2(b), ∀k, if we set Gk = G0 or Γk = Γ0,
the transformation of CRT features is the single-perspective transformation. The experimental results
for these two cases are shown in Table 7 in the main paper.

Figure 2: Dimension reduction of deep metric learning (DML) on the coded residual features.

3 More Ablation Studies

This section provides more experimental results and further ablation studies to understand our CRT
method and demonstrate its performance.

3.1 Performance Comparisons with Different Configurations of the Backbone Network

Different configurations of the backbone network may have a major impact on the final embed-
ding performance. In Section 4.3 of the main paper, we provide performance comparisons with
different backbone networks. Here, we experiment with different parameter sizes of the model
and complexity of the backbone network. Table 1 summarizes the parameter sizes and complex-
ity levels (measured by FLOPs) of different backbone networks. We can see that the parame-
ters and FLOPs of ResNet-50, DeiT-S and MiT-B2 are approximately the same. The parameter
sizes and FLOPs of MiT-B1 and BN-Inception are also approximately equal. In the following,
we provide the experimental results with the MiT-B0, MiT-B1 and MiT-B2 backbone networks
based on the CRT method. Results on the CUB and Cars datasets are shown in Table 2. Table 3
shows the experimental results on the SOP and In-Shop datasets with the MiT backbone networks.
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We can see that the performance increases consistently with the increasing of model complexity.

Table 1: Parameters count and FLOPs at resolution 227×227.

Complexity Index GoogLeNet BN-Inception ResNet-50 DeiT-S MiT-B0 MiT-B1 MiT-B2
Params(M) ↓ 5.60 10.27 23.51 21.96 3.31 13.14 24.17
FLOPs(G) ↓ 1.52 2.06 4.65 4.24 0.47 1.83 3.55

Table 2: Experimental results on the CUB and Cars datasets for different MiT backbone networks.

Method Backbones
CUB Cars

R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8

CRT
MiT-B0 69.19 79.66 86.83 92.23 85.34 91.28 94.75 97.05
MiT-B1 75.95 84.47 90.26 94.51 89.60 94.20 96.47 97.79
MiT-B2 78.98 86.68 91.61 95.04 91.16 94.92 96.79 98.03

Table 3: Experimental results on the SOP and In-Shop datasets for different MiT backbone networks.

Method Backbones
SOP In-Shop

R@1 R@10 R@100 R@1000 R@1 R@10 R@20 R@30

CRT
MiT-B0 80.16 91.60 96.50 98.90 92.90 99.06 99.42 99.51
MiT-B1 82.32 93.02 97.19 99.20 93.51 99.11 99.50 99.63
MiT-B2 83.41 93.86 97.66 99.31 94.48 99.37 99.68 99.75

3.2 Impact of Hyper-parameters

In this experiment, we analyze the impact of metric learning parameters, including the loss weight λ1,
cross-CRT consistency loss weight λ2, different embedding sizes and different batch sizes. The value
of λ1 in the first embedding branch (the low-dimensional embedding branch) is always set to be 1.0
in our experiments. In the second embedding branch (the high-dimensional embedding branch), we
set λ1 = 1.0− λ2, the retrieval performance with different values of λ2 are shown in Table 4. We
can see that the best recall@1 is obtained at λ2 = 0.9.

Table 4: The Recall@K (%) for different λ2.

λ2
CUB

R@1 R@2 R@4 R@8
0 73.09 82.38 89.18 93.91

0.1 73.87 83.12 89.92 93.99
0.3 74.93 83.96 90.46 94.16
0.5 74.22 83.52 90.16 93.94
0.7 75.14 84.10 90.48 94.46
0.9 75.95 84.47 90.26 94.51
1.0 75.07 84.54 90.77 94.16

Table 5 shows the results for different dimensions of embeddings on the CUB dataset. We can see
that, when the feature dimension of the second embedding branch is 1024, the performance is less
sensitive to embeddings with different dimensions obtained by the first embedding branch. Previous
studies indicated that the batch size has a significant impact on the performance of feature embedding
[6, 8]. In this experiment, we conduct ablation studies on the dimension of feature embeddings.
Results are shown in Table 6. We can see that the batch size has a major impact on the embedding
performance when it is smaller than 64. When the batch size is larger than 80, the performance
changes very little.

Moreover, we have compared our method with the MS method based on the feature dimension of
128 in Table 5 of the main paper. Here, we conduct experiment to compare with the MS method
based on the BN-Inception backbone network and the feature dimension of 512. This experiment is
conducted on the CUB dataset. The top-1 recall rate is 66.5% for the proposed CRT method, which
is 0.8% higher than the MS method (65.7% as reported in the original paper). This experiment shows
the robustness and generalization ability of our CRT method for different dimensions of feature
embeddings.
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Table 5: The Recall@K (%) for different dimensions of embedding.

The First Embedding Branch The Second Embedding Branch
Dim d R@1 R@2 R@4 R@8 Dim D R@1 R@2 R@4 R@8

64 72.57 81.70 89.10 93.62 1024 75.74 84.47 90.38 94.41
128 75.95 84.47 90.26 94.51 1024 76.52 85.33 90.94 94.65
256 76.16 84.28 90.63 94.60 1024 76.82 84.89 90.78 94.60
512 76.18 85.23 90.99 94.68 1024 75.66 85.08 90.75 94.48

1024 77.09 85.42 91.19 95.05 2048 76.40 85.43 91.46 94.99

Table 6: The Recall@K (%) for different batch sizes.

N
CUB

R@1 R@2 R@4 R@8
32 73.38 83.20 90.23 94.29
64 75.19 84.47 90.45 94.43
80 75.95 84.47 90.26 94.51
120 75.79 84.39 90.38 94.50
150 75.78 84.72 90.75 94.68
180 75.32 84.59 90.34 94.13

4 More Supporting Results for the Proposed CRT Method

In this section, we study the distributions of the learned features on the CUB, Cars, SOP and In-Shop
datasets. Figure 3-6 show the similarity distributions of positive pairs and negative pairs [9] for the
baseline method and our CRT method. We can see that the similarity distributions of the embeddings
generated by the first embedding branch are close to that of the embeddings generated by the second
embedding branch based on our proposed method. However, these two distributions for the baseline
method are significantly different. Figure 7-10 show the t-SNE [10] plots of the learned embedding
for these two branches. We can see that the t-SNE plots of the low-dimensional embeddings are
similar to those of the high-dimensional embeddings in on our method. The above results demonstrate
that our method exhibits better generalization capabilities [5].

Figure 3: The distributions of cosine similarities with and without cross-CRT correlation consistency
(CC) for high-dimensional embeddings and low-dimensional embeddings on the CUB dataset.
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Figure 4: The distributions of cosine similarities with and without cross-CRT correlation consistency
(CC) for high-dimensional embeddings and low-dimensional embeddings on the Cars dataset.

Figure 5: The distributions of cosine similarities with and without cross-CRT correlation consistency
(CC) for high-dimensional embeddings and low-dimensional embeddings on the SOP dataset.

Figure 6: The distributions of cosine similarities with and without cross-CRT correlation consistency
(CC) for high-dimensional embeddings and low-dimensional embeddings on the In-Shop dataset.

Figure 7: The t-SNE visualizations of high-dimensional embeddings and low-dimensional embed-
dings on the CUB dataset.
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Figure 8: The t-SNE visualizations of high-dimensional embeddings and low-dimensional embed-
dings on the Cars dataset.

Figure 9: The t-SNE visualizations of high-dimensional embeddings and low-dimensional embed-
dings on the SOP dataset.

Figure 10: The t-SNE visualizations of high-dimensional embeddings and low-dimensional embed-
dings on the In-Shop dataset.

Figure 11 shows the similarity matrix between anchors learned on the CUB dataset. We can see that
most of the similarities between anchors are very low, only very few similarities computed between
anchors are relatively large. This result shows that most of the anchors learned by our method are
independent.
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Figure 11: The similarity matrix visualization for anchors learned on the CUB dataset.
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