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A PROOF OF PROPOSITION[3.1]

We first recall the Hamiltonian formulation of continuous FTRL in zero sum game from Bailey &
Piliouras (2019).

The Hamiltonian function H (X, y) for agent 1 is defined to be

H(X1,91) = hi (s (1)) + 3 (12(0) + AV X4 (1)), ®)
and the Hamiltonian function H (X3, y2) for agent 2 is defined to be
H(X2,y2) = h3(y2(t)) + 15 (51 (0) + AP X (1)), ©

where h; is the regularizer used by agent ¢, ¢ = 1, 2.

Theorem 3.2 of Bailey & Piliouras| (2019) shows the dynamical behaviors of (X;(t),y;(t)) are
completely determined by these two Hamiltonian functions.

More precisely, it was shown that the cumulative strategies and payoffs of agent 1, (X1,y;), of
continuous FTRL for agent 1 satisfies the following equations:

d OH
%X1(t) = %(thl) = Vhi(y1(t)), (10)
d oH (12) oy * (21)

Similarly results also hold for agent 2, (X2, ys), of continuous FTRL for agent 2 satisfies the
following equations:

d OH

%X2(t) = TyQ(X%yz) = Vh;(y2(t)), (12)
d oH (21) 1, (12)

Selt) = =5 (X, 2) = APVTRI (12 (0) + A Xa (1), (13)

The proof of Proposition[3.1]is divided into two parts :

* The proof of entropy regularizers is presented in Section[A.2]

* The proof of Euclidean norm regularizers is presented in Section[A.3]
and in Section[A.T] we introduce the Euler and Symplectic discretization of FTRL.

A.1 EULER AND SYMPLECTIC DISCRETIZATION OF FTRL

Both in Euler and Symplectic, we denote the initial condition of the discrete equation on (X}, y!), i =
1,2 to be yY = y;(0) and X? = 0.

K2

Lemma A.1 (Euler discretization of FTRL). Discretizing equation (3) with Euler method for both
agent i = 1,2 gives

H

X=Xt 4 ng—(X'{, yith = X1+ nVhi(yh), (agent 1 Euler discretize equation)
Y1

OH «
v =y =g (X1w) =yl 4+ nAT V(s + ARV,
and
OH
X = xt na—yz(Xé7 yh) = X5+ nVhi(yh), (agent 2 Euler discretize equation)

OH .
v =i - 9X, (X5 b)) = b + nACYVRT () + AU XY).
Proof. Note that in Euler discretization, we use the derivative on point of ¢-th round to find the
point of ¢t + 1 round. Thus (agent 1 Euler discretize equation) directly follows from applying Euler
discretization to[I0 and [IT. Similarly, (agent 2 Euler discretize equation) directly follows from
applying Euler discretization to[I2]and[T3] O
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Lemma A.2 (Symplectic discretization of FTRL). Discretizing (5) for i = 1 with I-type Euler

symplectic method[Type I method gives

oH Y
Yt =yl - Mo, (Xul) = vl + nAU2VRL (Y9 + APVXT)
(agent 1 Symplectic discretize equation)
OH

Xt =Xi+ng
1

(X195 = X] + VA (i)

and discrete 3 for i = 2 with II-type Euler symplectic method gives
0H
X=Xt + na—(Xé, ys) = X5+ nVhi(ys)  (agent 2 Symplectic discretize equation)
Y2

OH )
yst =l — naT(g(Xé“v yh) = yh + nACYVR; (i) + AUD X

Proof. (agent 1 Symplectic discretize equation)) directly follows from applying
to equation [I0 and [I1. Similarly, (agent 2 Symplectic discretize equation) directly follows from

method) to equation|12|and|13] O

We define (2}, z}) to be

zh = X - Xf, zh = X" = X§ (14)
] Ui
In the case of Euler discretization of FTRL (LemmaA.1]), we have
vy = Vhi(y1), @5 = Vh3(45), (15)
and in the case of Symplectic discretization of FTRL (Lemma[A.2)), we have
71 = Vhi(n"), @5 = Vh;(y). (16)

Note that in Symplectic method, z¢ is determined by yf“, but in Euler method, x} is determined by
Y1

In the following, we will show (z}, z%) evolves as (MWU) under Euler method or (AItMWUJ) under
Symplectic method on the strategy space if the regularizers h;(-) are choose to be entropy functions,
and the constrained sets &; are chosen to be simplexes for ¢ = 1, 2, this exactly the second part of

Proposition 3.1}

Lemma A.3. Both in Euler discretization of FTRL dynamics and Symplectic discretization of FTRL
dynamics, the equalities

yr =y + A X7 (17)
Yy =y9 + AV X} (18)
hold for any n > 0.

Proof. Here we only prove the case of Symplectic discretization of FTRL dynamics, as the case of
Euler discretization of FTRL dynamics is similar. We prove this by induction. For n = 0, (I7) and
(18)) are

y) =yl + AP X9 (19)
y9 =y + APV XY, (20)

which hold trivially since by definition X = X9 = 0.

14
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Now assume and hold for n, i.e,
g =y + 40D X7
v =8 + ACDXT.
Then, we have
yitt =yt + nAIVRS (Y + ACYXT)
i+ nAIVh(yy)
=y + A"y
(21 WO+ AU X A2
=0 + A0 x L
Moreover, we have
yotl = gp +77A(21)Vh*( 0 +A(12)X;L+1)
(2] n+77A (21) Vh*( ntl)
=yy + UA(M z
Y9+ ACHXT 4+ nACY
= y? + A(21)X{L+1
This finish the proof.

A.2 PROOF OF ENTROPY REGULARIZERS

2n
(22)

(23)

(24)
(25)

(26)
27)

(28)
(29)
(30)
€1y
(32)

Lemma A.4. For entropy regularizer h(xz) = >, x; Inx; with simplex constrain, i.e., A = {x €

R™| >0 @ = 1,2; > 0}, we have
evi "
w0 = ()
Proof. By the definition,

h*(y) = gleag(@,y) — h(z)),

and
Vi (y) = arg max((z, ) — h(z)).

re

(33)

Denote f(z) = ({x,y) — h(x)), by the KKT condition, if 2* is the maximum of f, then there exist

w; and A such that
—Vf(z*) + Zngl ) 4+ AVA(z*) = 0

n

gi(x*) = —x; <0 forall i € [n], h(z*) = fo —1=0, pgi(x*) =0 forall i € [n].

i=1
Since the gradient of f can be computed to be
Vfix)=y— (logzs +1,...,logz, + 1),

the KKT condition becomes

—y+ (logz; +1,...,logx, + 1) + Zm(o, ey —1,0,0) + A(L, ..., 1) = 0.

i=1
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Suppose the feasible z* is interior point of A, i.e., z; > 0, then we have for all i € [n], u; = 0. Then

the KKT condition is reduced to the following equations
logz; + 1+ A=y, forall ¢ € [n},le =1.
i=1

This gives solution of z; and A:

eYi n
;= =n—— forall i € [n], A\ =log <Zey‘5> -1,
Z eYs po

s=1°%"

thus we have completed the proof.
Lemma A.5. The (2%, 2%) in with entropy regularizer is the same as (MWU).

Proof. In (L), we have z{ = VA (y}), thus

zy = Vhi(y))

t ni
B3) ( e )
- ny yt .
. e’l.J
>t o

n
‘, ey?.s—"_(A(IZ)X;)s !
o s et jHAUD XL,

s=1

j=1 =

ni
V2 (40D I o),

Sy n(AC? Sis15);
i=1

— n

( pl-ten(AtPai ), ™
o n1 o t—1 p(A02)gt1y; )
il Ty e s=1

s=1

s

The case of 2 agent is exactly same as 1 agent as they are symmetry, and we have

t—1 n A(21)mt—1 R n2
xt x27s e ( 2 )
2 F—
an t_leW(A(m)w; 1)j

. Tao -
j=1"2,j s=1

That is same as (MWU) .

Lemma A.6. The (2%, %) in @) with entropy regularizer is the same as (AltMWU ).
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Proof. For 1 agent, from (16), we have 2t = Vh*(y!™?), thus
zy = Vhi(y ™)

n
t+1 1

" eyl,s
- t+1
ST et
j=1 s=1
0 (A0 xit1) 1
(), eYi,s 2 s
Z @31 ey?)j+(A(l2)X;+l)j
j=1 s=1

n
G n(AOD L )\ ™

o s eVt T(ACD S50 ah);
Jj=1 s=1

n

xiiele"(A(lz)xé)ﬂ '
= 1 I—1 n(AO0Dgt),
E - _fL‘Lj 877( 5);

J s=1

Note that the update rule of 2 use x5, this is a characteristic of (AItMWU).
For 2 agent, from we have 25 = Vhi(yh), thus
w5 = Vh3(y5)

t n2
( 6y2,s
B n2 oY
Zg:l € s=1

0 (21) yt na
() ey2,s+(A X1)s
o Sz eusHABDXT);
s=1

j=1 =

no
V3. +n(ACY ST 2h),

S Y8, T(ACD 3770 o)
=1

t—1_n ACD =1y na
. ( nyS e ( 2 )
o na =1 _p(ACDgE=1). ’
. Len( Ty )
ijl Taj € s=1

Combine and , we can see the update rule of (zf, z%) is same as (AItMWU) .

(44)
(45)

(46)

(47)

(48)

(49)

(50)

61y

(52)

(53)
(54)

(55)

(56)

(57

(58)

(59)

(60)

(61)

O

Combine Lemma[A.5|and Lemma[A.6] we proved the second part of Proposition 3.1\ The first part is
very similar, except the regularizers are changed to Euclidian norm. However, this change will not

affect the proof, so we omit it here.

A.3 PROOF OF EUCLIDEAN NORM REGULARIZERS
Note that for Euclidean norm regularizers, i.e., h;(x) = ||x||?, we have

Vhi(y) = arg max{(z,y) — [|lz|*} = y.

Lemma A.7. The (x},2%) in with Euclidean norm regularizer is the same as (GDA).

17
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Proof. For agent 1, we have

(15) %
2 @ wniy) (63)

162)

vt (64)

=9+ A0} (65)
t—1

=10 +n AW Y af (66)
=0

=gl 4y AT (67)

Agent 2 is exactly same as agent 1 since in Euler method, two agent are symmetry. Thus we have
shown the update rule of (z%, z%) is same as (GDA). O

Lemma A.8. The (2%, %) in (@) with Euclidean norm regularizer is the same as (AltGDA).

Proof. For agent 1, we have

(16 *
2t @ opy 68)
(162)
yit (69)
=40 + A2 xIH (70)
t
=)+ AT 2 (71)
1=0
= xﬁ_l +n- A(12)Jc§. (72)
For agent 2, we have
(16) *
4 © wniy) (73)
162)
v (74)
— 04 ACD XL (75)
t—1
=ys+n- ABDY (76)
1=0
=gb g ABDT (77)

Thus we have shown the update rule of (x%, %) is same as (AltGDA).

B PROOF OF SECTION /4]

In this appendix we prove results in Section [d. Proposition [4.1] is proved in Section [B.3] and
Proposition 4.2|is proved in Section In fact, we prove a more general result, which states that
when two players choose arbitrary regularizers that satisfies strongly convex and Lipschitz gradient
condition except a bounded region on the domain, then the differential entropy of Euler discretization
has linear growth rate, while differential entropy of Symplectic discretization keeps constant. Note
that both Euclidian norm regularizer and entropy regularizer satisfy these conditions, for example,
entropy regularizer is 1-strongly convex on the interior points of simplex and has Lipschitz gradient
except an arbitrary small neighbourhood of zero point.

The main technical lemma for proving Proposition is Lemma which states for sufficient
small step size, the update rule of Euler discretization of FTRL is an injective map. This injective
property is necessary for calculating the evolution of differential entropy, see Lemma [B.T} The proof
of Proposition[4.2]is easier, as the symplectic discretization is naturally an injective map.

18
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B.1 EVOLUTION OF DIFFERENTIAL ENTROPY UNDER DIFFEOMORPHISM

The following result and its proof are informally stated in|Cheung et al. (2022), for convenience of
applying their statement later, we formulate it into a lemma as follows.

Lemma B.1. Let X € R be a random vector with probability density function g(z) and the support
set of g(x) is X. Assume f : R? — RY be a diffeomorphism, thus f(X) is a random vector. Then we
have

S(f(X)) ZS(X)+/ g(x)log (|det Jy(z)]) dz (78)
x
where J(x) is the Jacobian matrix of f at point x € R

Proof. Denote Y = f(X), and let g(Y) represent the probability density function of Y, and ) be
the support set of Y.

Then we have

S(Y)=S(f(X)) = —/ g(y) -log (9(y)) dy (79)
N
= /yg(fl(y)) |det J -1 (y)]-log (g(f " (y))|det Jp-1 (y)]) dy (80)
=- /Xg(w)ldet Ji—1 (f(2)) |-log (g(x)|det Jp—1 (f (x))]) - |det Jp(a)|dz  (81)
- /X 9(w) -log (g(a)ldet J; 1 (()]) da (82)
— [ at@)los g do~ [ glo)log (det Iy ()| de (83)
X X
— S(X) + /X o(x) og (|det J; (z)]) dz, (84)
where (82)) comes from the inverse function theorem, which states
Jp-1 (f(2)) = (Jp(z) 7" (85)
0

B.2 TECHNICAL LEMMAS FOR PROPOSITION [4.1]

We first present several lemmas used later.
Lemma B.2 (Corollary 2.2 and 2.3 of[Hong & Horn|(1991)). Let A, B € R™"*"™ be symmetry and
positive semidefinite. Then AB is diagonalizable and has nonnegative eigenvalues. Moreover, if A is

positive definite, then the number of positive eigenvalues, negative eigenvalues, and 0 eigenvalues of
AB are the same as B.

Lemma B.3. If A € R"X" is a symmetry matrix, and \ is an eigenvalue of A, then \? is an
eigenvalue of A2.

Proof. Since A is a symmetry matrix, there is an invertible matrix P makes

At
P-A-Pl= , (86)
An

where A1, ..., A, are eigenvalues of A. Thus

P-(A?.-P'=(P-A-P . (P-A- P (87)
(A1)?
= , (88)
(An)?

this implies {\?} are eigenvalues of A2. O
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The following lemma is the standard Fenchel duality property, a proof can be found in Theorem 1
Zhou (2018).

Lemma B4. Let h : X — R be a u-strongly convex function with L-Lipschitz continuous gradient,
let

n*(y) ==ggg§{<w7y>-— h(z)} (89)

be the convex conjugate of h, then we have
(1) h*isa %-strongly convex function.
(2) h* has %-Lipschitz continuous gradient.
Lemma B.5. Let f : R™ — R” be a differentiable function on a convex set U C R"”, and
1) — Il < 1 90)

for any x € U, where ||-|| is the L?-operator norm, then f is an injective map.

Proof. Let g(x) = f(x) — x. Then for any x # y, we have

1f(z) = f(y) +y -zl = [lg(z) — gy 1)
= [T (O)(x = y)|| (92)
< NGOl llz =yl (93)
<z -yl (94)

where (92) use the mean value theorem, and (94) is due to the fact that ||.J,(¢)||< 1 forany ¢ € U.
Thus f(z) # f(y). O
Lemma B.6. If the step size ) < min{juy, po/|| APV}, then the iterate map

¢+ (XT,ur) = (X (95)
of Euler discretization of FTRL in Lemma is an injective function.

Proof. Recall the iterate map ¢ : (X7, y7) — (X7 A y?ﬂ) can be written as an Euler discretization
with the following form

vt =yl e g (X ) (96)
OH

X = X7 4 o= (X 0) (97)
Y1

and the Hamiltonian function has form

H(X1,y1) = hi(y1) + h3(y2(0) + AV X). (98)

Note that H1 (X7, y;) is separable, i.e., hi(-) is independent with X and h3(+) is independent with
41, thus we have

OPH__ OPH
8X18y1 o 3y18X1 N

0. 99)

Next we calculate the Jacobin matrix of ¢,

20
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n41 n41 r 9°H no,
Bg;; 389)1(; I—nm(Xﬁyf) 7732X (X7, 91)
Jy = = (100)
axytt  axptt
Iyt oX7 L nc’??yl (Xluyl) I+773X13y1 (Xﬁyl)
roT _,,](A(21))T . v2h§ . A(21)
= , (101)
|[nV2hi I
and
0 _n(A(21))T . V2h§ . AR
Jo—T= . (102)
nV2hi 0

Since h; is p;-strongly convex, by Lemma [B.4, A} has i-Lipschitz continuous gradient, thus we
have '

1
IV2hy||< ” (103)

holds at arbitrary points within the domain of h}.

Next we estimate the L?-operator norm of the matrix .Js — I, since the L?-operator norm is equivalent
to the spectral norm, we have

176 =TI = /A (Js = DT - (J = D)), (104)

and

2
. ) (V2h3) 0
(Jo—=1)" - (Jp—1I)=n"" . (105)
0 ((A(Ql))T V2R .A(21))2

Since both V243 and (A?V)T . V2h3 - AR are symmetry matrix, thus by Lernma eigenvalues
of (Jy—1I)" - (Jy —I) has form 772)\2, where ) is an eigenvalue of V2h} or (A®D) T . V2p5 . ACD,

Note that i is a function of X7, y;, thus A is also a function of X7, y;, and it is not clear whether
there is an upper bound on )\ without more information on the Hessian matrix of h;. However, as we
have shown in , the L2-operator norm of V2h} has an upper bound , thus we have

1 A21)))12
O§>\<max{,””}. (106)
M1 M2

Thus we can choose 77 < min {uh ”A{éif)”z} to make
1o = I1I< 1, (107)

and by Lemma|B.5, ¢ is an injective map. [
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B.3 PROOF OF PROPOSITION

Proof. By Lemma|B.€] the iterate map of simultaneous FTRL is an diffeomorphism, thus we can use
Lemma [B.T]to calculate the evolution of differential entropy in simultaneous FTRL. We firstly prove
differential entropy is a non-decrease function.

Recall , the Hamiltonian function of FTRL is
H(X{,y0) = hi(yh) + hs(ys + APDXY), (108)
n+1

and the iterate map ¢ : (y7, X}) — (y7, X7'™!) of simultaneous FTRL can be written as Euler
discretization of continuous FTRL, i.e.,

OH

v =y - g (X (109)
OH

Xt = Xi 40 5 (X ). (110)

Recall from (101), the jacobian map of ¢ is

I —n(ACD) T V2h5 (X, y) - ARV
Jo(X,y) = ; (11D
nV2hi(X,y) 1
thus
det (J5(X, ) = det (T+7% - V2Ri(X,y) - (AP)T - 02h5(X,p) - ABD) . (112)

Since V2h} and (AC)T . V2h3 - AL are both symmetry and positive semidefinite matrix, by
Lemma B.2] their product is diagonalizable and has non-negative eigenvalues. Thus we have

det (Jy(X,y)) = 1. (113)
Combine this with (78], we have
Sy = S (X1 u™) (114)

:S(Xf,yiH/ 9" (X7, y1)log (|det J4(XT,41)]) dX1dy; (115)
X

> S(Xyl) + / g' (X!, ) log(1)dX 1 dy! (116)
X
= S(X1, 1), (117)

where g*(-) is the probability density function of (X7, y*), and (116) comes from det (J4(X,y)) > 1.
Thus S(X?,y}) is a non-decreasing function.

Moreover, as log(1 + z) > /(1 + z) for z > 0, thus from (L15), to prove a linear growth rate
of differential entropy, it is sufficient to prove a uniform lower bound on det (J4(X,y)). With the
assumption that h; (-) has Lipschitz continuous gradient, by Lemma|B.4] A (-) is y1;-strongly convex,
thus V2h} (X, y) is positive definite, i.e.,

V2hi(X,y) = pil (118)

for some 11; > 0. From Lemma[B.2} with A = V2h3(X,y) and B = (AC))T . V2h5(X,y) - ACD,
we have

7’ VER(X,y) - (ABD) T V2hs(X,y) - ACY (119)

is a diagonalizable matrix, and there are all eigenvalues of J, (X, y) are real number and larger than 1.
Moreover, these eigenvalues has a uniform lower bound 1 + ¢, where c is determined by the strongly
convex coefficients 1; and the payoff matrix A1), O
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B.4 PROOF OF PROPOSITION [4.2]

Lemma B.7. The update map
(X11) = (X

from (lagent 1 Symplectic discretize equation)) is an injective map.

Proof. Recall the update rule can be written as

O0H .
=yt - nax; (Xt i) =i+ nAIDVhs (y) + APY XY), (120)
O0H
Xt =Xf+778Th(Xf7y§“) = X} +nVhi(yi™). (121)
(122)
Thus given (Xf“, yi—H), we can directly find an unique X} from (121)), i.e.,
X{ =X —Vhi(yith).
Then use this X f, we can also determine a unique yf from li ie.,
gt =y —nAUDVR3 () + ABVXY).
This finish the proof. O

Now we are ready to prove Proposition[4.2]

Proof. Since the iterate map ¢ : (X7, y7) — (X7, y*") in Symplectic discretization of FTRL
defined [A.2]in is naturally an injective map from Lemma|[B.7 , we can directly use lemma[B.T] We
have

S(XPH ) — S(XT ) = /X XD ) log (det Jy(XP 4P ) de (123)

where ¢"(-) is the probability density function of random vector (X7, y7").
Moreover, since v is a symplectomorphism, we have
|det Jy (X1, y7)|= 1. (124)

Thus the right hand side of (123) equals to 0, and this implies S(X7+!, 4"+t = S(X7,y2). O

B.5 NUMERICAL EXAMPLES OF PROPOSITION PROPOSITIONS [4. 1] AND

Although differential entropy plays important roles in several subjects, estimating the value of
differential entropy under transformations is generally a challenging task. Even in the one-dimensional
case, special methods need to be designed for calculating differential entropy |Hyvirinen|(1997). A
recent review of this topic can be found in |Feutrill & Roughan (2021).

However, for the case of gradient descent, it is possible to calculate the variation of differential
entropy due to the linear structure of the algorithm and the equality

S(AX) — S(X) = log(|det(A)]). (125)
In Figure 2, we present numerical experiments on the variation of differential entropy using game

defined by A = [[1, —1],[—1, 1]]. Numerical results show differential entropy has a linear growth
rate in simultaneous case and keeps invariant in alternating case, which support Propositions 4.1 and

42
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h(XAt,y*t) - h(X*,yM)

—— variation of DE for simultaneous GDA
1.75| — Vvariation of DE for alternating GDA

Figure 5: Variation of differential entropy for simultaneous and alternating GDA. The growth rate of the
variation in DE is linear for simultaneous GDA, while it is O for alternating GDA.

C PROOF OF THEOREM 5.1/

This appendix is divided into two parts. In Section[C.T, we presented necessary backgrounds from
linear algebra, differential equation, and difference equation. In Section[C.2} we provide detailed
prove of Theorem 5.1}

C.1 ADDITIONAL BACKGROUNDS

C.1.1 COMPLEX JORDAN NORMAL FORM

We will consider the complex Jordan normal form of a real square matrix A € R%*4, Let Spec(A)
be the set of eigenvalues of A. Consider A acts on vector space C? as a linear operator.

Definition C.1 (Generalized Eigenvector). A vector v,, € C% is called a generalized eigenvector of
type m corresponding to the eigenvalue |1 if

(A= AD)"vy, =0

but
(A —pD)™ o, #0.

Definition C.2 (Jordan Chain). let v,, be a generalized eigenvector of type m corresponding
to the matrix A and the eigenvalue u. The Jordan chain generated by v, is a set of m vectors
{Vms Vm—1, ..., U1} given by

Um—1 = (A — pul)vy,
Vg = (A — pI)?vy = (A — pl)vm

o1 = (A= pI)™ vy, = (A = pl)v

Remark C.3. If u € R is a real eigenvalue of A, then the generalized eigenvectors of | are also
vectors over real numbers, and the Jordan chain are also made up by vectors over real numbers.

Proposition C.4. A Jordan chain is a linearly independent set of vectors.

Proof. Let {v, V1, ..., v1 } be a Jordan chain generated by a type m generalized eigenvector v,
corresponding to an eigenvalue A of A, and consider the equation

CmVUm + Cm—1Vm—1+ ... + c1v1 =0 (126)

We will show ¢,,, = ¢;pp_1 = ... = c1 = 0.
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Multiply equationby (A — pI)™=1, and note that for j < m — 1

(A= p)"eju; = ¢j(A— uI)" 71 A = pl) ;)
=0

Thus equation becomes to be ¢, (A—pul)™ v, = 0. However, since v,, is a type m generalized
eigenvector, we have

(A — D)™ to, #0,
thus ¢,,, = 0. Continuing this process, we will finally obtain ¢,, = ¢;,—1 = ... = ¢; = 0. O]

Proposition C.5 (page 366 of Bronson (1991) ). Every d x d matrix has d linearly independent
generalized eigenvectors.

Given a Jordan chain {vy, va, ..., v, } of length m, by Proposition|C.4, we will get a subspace spans
by {v1,v2, ..., }. The linear operator A : C? — C? can acts on vectors’ set {vy, va, ..., Uy }.

Denote [v1, v, ...., U] to be the matrix consists of column vectors {vy, va, ..., v, }, then A acts on
[’Ul7 V2, eeny Um] as

Alvy, v, ..., U] = [Avy, Avs, ..., Avp]
= [pv1,v1 + o2, ..y U1 + (0]

w1
[

= [’Ul, V2y eeny Um}
Thus we have

1
noo1
[U1, V2, cvevy U] L A1, Vo, ey U] = (127)
w1
i

which is a m x m upper triangular matrix, with eigenvalue i on diagonal and each non-zero off-
diagonal entry equal to 1. Such an upper triangular matrix is called a size m Jordan block of A
corresponding to eigenvalue p.

Proposition C.6 (Page 367 of Bronson (1991)). Every d x d matrix A has a set of d X d linearly
independent generalized eigenvectors composed entirely of Jordan chains, such a set of generalized
eigenvectors is a called a canonical bases of A.

Definition C.7 (Generalized modal matrix). Let A be an d x d matrix. A generalized modal matrix
M for Ais a d X d matrix whose columns, considered as vectors, form a canonical basis for A and
appear in M according to the following rules:

(1) All vectors of the same chain appear together in adjacent columns of M.
(2) Each chain appears in M in order of increasing type.

Remark C.8. The Jordan chain corresponding to a real eigenvalue 11 € R of A will composed by
vectors in R?, but if i1 € C is a complex eigenvalue of A, then the Jordan chain corresponding to
will contain vectors in C,

Combine equation[I27]and Proposition|C.6, we have following proposition.
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Proposition C.9. Any matrix A € R¥*? is similar to a matrix in Jordan normal form under the
similarity transformation of a generalized modal matrix M of A, i.e.,

JC=M"1AM

has block diagonal form J© = @;.J; with Jordan blocks J; given with p. € Spec(A) by

w1
1

The Jordan normal form is unique up to the order of the Jordan blocks.

We have the following proposition that determines the number of a particular size of Jordan blocks in
Jordan normal form corresponding to an eigenvalue A .

Proposition C.10 (Page 368 of [Bronson|(1991)). Let A be an eigenvalue of A, and denote
m = max{i| ker(A — pI)" 2 ker(A — puI)"~'}.

Denote py, as the number of linear independent generalized eigenvectors of type k corresponding to
the eigenvalue 1 that appear in a canonical basis for A, then

pr = dimker(A — pI)* — dimker(A — pI)*~! (k =1,2,...,m).

Since every Jordan chains of length k in a canonical basis gives a size k Jordan block, py, is also the
number of size k Jordan blocks in the complex Jordan normal form corresponding to \.

There is another characterization on the size of the largest Jordan block corresponding eigenvalue
based on the minimal polynomial of A:

Proposition C.11 (Theorem 3.3.6 in|Horn & Johnson|(2012)). Let m be the size of the largest Jordan
block corresponding to the eigenvalue 1 of a matrix A, then m equals to the degree of the factor
(x — ) in the minimal polynomial of A.

C.1.2 REAL JORDAN NORMAL FORM

The real Jordan normal is important for computing exponential function of a matrix A € R?*<, In the
complex Jordan form, Jordan blocks may contain elements in C — R. Thus for a matrix A € R4*¢
we cannot use its complex Jordan normal form to calculate exponential functions of A directly. We
need to define a standard form of A, which should only contain real numbers and keep the shape as a
diagonal block matrix. This motive the definition of real Jordan normal form.

>

Let ;1 = Re(p) +ilm(y), Im(p) # 0 be an eigenvalue of A, and v,,, € C¢ is a generalized eigenvalue
of type m corresponding to u. Then the complex conjugate of 1, denote by fi, is also an eigenvalue
of A, and the complex conjugate of v,,,, denote by 7,,, € C? is a generalized eigenvalue of type m
corresponding to fi. Let

{Vm—il Vm—i = (A= pD)'vp,, i =0,1,....,m — 1}

be a Jordan chain of length m corresponding to A, then it gives a complex Jordan block of size m in
the complex Jordan normal form of A as in equation

The 2m vectors {Re(vy),Im(vy), Re(vs), Im(va), ..., Re(vy ), Im(v,,)} € R? will play the
role of complex generalized vectors of eigenvalues pu, . It is directly to check A acts on
[Re(v1), Im(vy), Re(va), Im(ve), ..., Re(vy, ), Im(vy, )] gives the following matrix representation
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A[Re(v1), Im(v1), Re(va), Im(vs), ..., Re(vy,), Im(vy, )]
= [ARe(v1), Alm(vy), ARe(vz), Alm(vs), ..., ARe(vy, ), AIm(vy, )]

= [Re(pv1), Im(uvy), Re(vr) + Re(puvz), Im(v1) + Im(pve), ..., Re(vm—1) + Re(pvm, ), Im(vpm—1) + Im(pv,,))

D I
= [Re(v1), Im(v1), Re(va), Im(va), ..., Re(vp), Im(vy, )]
I
D
Re(p)  Im(p) 10
where D = and I, = [0 1] .
—Im(u) Re(p)
The matrix
D I
(128)
I
D

is called the real Jordan blocks corresponding to a conjugate pair of image eigenvalues i, ji.

As in the case of complex Jordan normal form, we need to define the real generalized modal matrix,
and under the similar transformation by real generalized modal matrix, the original matrix will be
transformed into a real Jordan normal form.

Definition C.12 (Real generalized modal matrix). Let A be an d x d matrix. A real generalized
modal matrix M for A is a d X d matrix whose columns, considered as vectors, are real or image
parts of a complex generalized eigenvectors in a canonical basis for A and appear in M according
to the following rules:

(1) Real and image parts of a generalized eigenvectors corresponding to same image eigenvalues
appear in the first columns of M

(2) If Re(v), Im(v) appear in the real generalized modal matrix, (Re(v),Im(v)) appear in
adjacent columns of M

(3) All vectors of the same chain appear together in adjacent columns of M.
(4) Each chain appears in M in order of increasing type.

Note that comparing to definition[C.7] the new requirements are (1) and (2). (1) will make the Jordan
blocks as in equation appear firstly in the real Jordan normal form, and the necessary of (2) can
be seen from the derivation of equation

Proposition C.13 ( Theorem 1.2.3 in|Colonius & Kliemann|(2014)). Any matrix A € R*¥*? is similar
to a matrix in the real Jordan normal from via a similarity transformation by A’s real generalized
modal matrix. That is, IM € R4 be A’s real generalized modal matrix to make

JR = M1TAM
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where J® = (Jyy iy © oo ® Jpp i) Bty (Juy,,) with real Jordan blocks given for ji € Spec(L£) NR
by

no 1
1
Ju =
w1
and for p, i = X\ +iv € Spec(L),v > 0, by
D I, - -0
0 D .
= .
D I
0 0 D

A —v 1 0
whereD:[V /\]andlgz[o 1].

Note that the difference between complex and real Jordan form, complex and real generalized modal
matrix are only in the Jordan blocks corresponding to a eigenvalue whose image part is not 0. Thus
the number of a given size Jordan blocks corresponding to a real eigenvalue is same in complex and
real Jordan form. For a pair of conjugate complex eigenvalues with nonzero image part, every real
Jordan block is a combination of two complex Jordan blocks.

C.1.3 SOLUTION FORMULA FOR LINEAR DIFFERENTIAL EQUATION
For a linear differential equation with constant coefficients A € R4x¢

dx

with initial condition z(0), it’s solution formula is given by z(t) = e*4x(0). Thus to understand the
dynamic behavior of x:(t), it is necessary to calculate the matrix exponential matrix ¢4, This can
be done by using the real Jordan normal form of A. Let J4 be A’s real Jordan normal form, and
Ja = MAM™1, then et4 = Met/4 M ~1. Thus calculation of e** can be reduced to calculation
of e’’/4 and the real generalized modal matrix of A. The real generalized modal matrix of A is a
combination of real and image parts of A’s generalized eigenvectors, and in this section we consider
calculation of e!/4.

Proposition C.14. (page 12 in|Colonius & Kliemann|(2014)) Let J,, be a real Jordan block of size
m x m associated with the real eigenvalue ;1 of a matrix A € R4*?. Then

w1
J7
J, = o | ermm (129)
noo1
I
and
t2 t'rnfl
Lt 5 - - (m—1)!
ot _ it L t.2 c RMXm. (130)
.o Lo
t
1

Let J,, j be a real Jordan block of size 2m x 2m associated with the real eigenvalue 1, fi = A\Eiv,v >
0 of a matrix A € R4*4. With
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b_ P _V} R RO = [cos@t) sm(m] L [1 0}’

sin(vt)  cos(vt) 01

one obtains for

D I
Jpp = o € RImx2m (131)
Iy
D
and
_ , -
R tR R =i
et _ M | eremem, (132)
2
&R
tR
R

C.1.4 SOLUTION FORMULA FOR LINEAR DIFFERENCE EQUATION
For a matrix A € R4¥9, a linear difference equation with coefficient matrix A has form

Tpy1 = Axy (133)
By induction, equation has solution formula
zn, = A"xg, x0 € RY. (134)

If J4 = M—'AM be the real Jordan normal form of A, then z,, = M(JA)”Mfla:O. Thus to solve
equation it is sufficient to know the formula for (J4)™ and the real generalized modal matrix M.
Moreover, if J4 = @;J;, then (J4)™ = @®;(J;)™, thus we only need to consider the power of real
Jordan blocks.

Proposition C.15 (Page 19 in|Colonius & Kliemann|(2014)). Let J be a real Jordan block of size
m x m associated with a real eigenvalue i of A € R**%, Then

o 0 1
o 0 1
Jy = + (135)
Iz 0 1
" 0
— [+ N (136)
with N™ = 0. Thus we have
m—1 n
Jr=@ul+N)"=>" (i),ﬂ—w". (137)
i=0

Note that if > 1, elements in J;} will have an exponential growth rate as ju". If 1 = 1, elements in
J), have a polynomial growth rate. If i < 1, elements in J|} tends to 0 as n growth.
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Proposition C.16 (Page 20 in|Colonius & Kliemann|(2014)). Let J be a real Jordan block of size
2m X 2m associated with a pair of conjugate complex eigenvalue ;. = X\ +iv, i = X\ — iv of

A € R4 With D — [i V] and Iy = {(1) (1)] one obtains that

A
D 0 0 I
Juin = U L (138)

0 - Iy
D 0

=D+N (139)

with N™ = 0. Moreover, since ji = |p|e!® for some ¢ € [0,27), one can write

D— [)\ )\1/] — |ulR, R = [cosgb sinqﬁ} . (140)

v sing cos¢
Thus
~ m—1 n\ - o m—1 n o o
Jla=[D+N)" = Z <i)D"‘2N1 = Z (i>|u|"—lR"—lN2. (141)
i=0 i=0

where R is a block diagonal matrix with matrix block R. Note that if |j|> 1, elements in J); n have
exponential growth rate as O(|u|™). If |u|= 1, elements in J), i have polynomial growth rate. If
lu|< 1, elements in J}; ; tends to 0 as n growth.

C.2 PROOF OF THEOREM[3.T]

Now we are ready to prove Theorem [5.1] The proof is divided into three parts :
* covariance evolution of continuous time equation, proved in
* covariance evolution of Euler discretization, proved in@
* covariance evolution of Symplectic discretization, proved in

C.2.1 COVARIANCE EVOLUTION OF CONTINUOUS EQUATION

We firstly give a summary of the proof. The continuous time equation of FTRL with Euclidean norm
for agent 1 is written as:

dy:  OH(Xy,y1)

- = > P —AAT X (t) + Ayz(0) (142)
diil _ 8H(;Z(/11,y1) _— (143)

Similarly for agent 2 we have
dc)l% _ 8H(8)Z, Y2) _ (i), (145)

In the following, we will focus on the viewpoint of agent 1, thus we will consider equation (I42)) and
(143).

Lemma C.17. The solution of the linear differential system consisted by equation (142) and (143)
and initial condition (y1(to), X1(to)) can be written as

y1(t+to) o [yl(to)

t+to
+ et / e 5% Ayy (0)ds (146)
Xi(to)

to

X1(t+to)
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Proof. Ttis directly to verify the derivate of right hind side satisfies equation (142) and (143), and the
solution satisfies initial condition (y1(¢9), X1(to)). Due to the uniqueness of the solution of linear
differential equation, we can conclude this is the solution of equation (142) and (I43). O

Form (146) we can also see that if uncertainty are introduced to the system at some initial time
to, i.e., (y1(to), X1(to)) is a random variable, then the evolution of covariance of random variable
(y1(t+to), X1(t+to)) will not be affected by the term fzfto e =% Ay (0)ds since this is a determined
quantity, thus will only affect the expectation of (y; (¢ + ¢g), X1 (¢t + to)) . Therefore, without loss of
generality, we will let y2(0) = 0 in the following.

Thus the continuous equation of agent 1 is

L y1(t)
=L (147)
4, X4(1)
where
0 —AAT
£ _ c R2n><2n
I 0

y1(t) y1(0)
Since the solution of (147) is = et , we have
X1(t) X1(0)

P(t+to) = e£ P(t)(eX) .

Thus to analysis the behavior of Var(X(t)), Var(yi (t)), and Cov(Xy(t), y1(¢)), we need to under-
stand the behavior of e’“. A standard method to calculate the matrix exponential of a matrix with
elements in R is though the matrix’s real Jordan normal form and real generalized modal matrix, see
Proposition[C.T4. For our purpose, the most important question about the Jordan form of £ is :

What is the size of the largest Jordan blocks corresponding to £'s eigenvalues ?

Because this number will determine the growth rate of elements in e*“. In Proposition we
will determine the minimal polynomial of £, combine this result with Proposition|[C.IT, we can get
elements in e** that will at most have a linear growth rate. However as we see in Theorem there
is a difference between Var(X;(t)) and Var(y;(t)), Var(X;(¢)) may have quadratic growth and
Var(y; (t)) will always be bounded, only the growth rate of e~ is not sufficient for one to explain
this difference. To show that Var(y; (¢)) is always bounded, we need a more detailed analysis of the
real generalized modal matrix of £. We will see that the first » rows of the real generalized modal
matrix has many 0 elements, and these 0 elements will make the first n rows of et~ not to have linear
growth rate. This will be shown in Proposition[C.23.

Lemma C.18. Let
0 —AAT
L=
I 0

be the coefficient matrix of ({[47), then the eigenvalues of L are pure imaginary numbers or 0.
Moreover, if O is an eigenvalue of L, then its multiplicity is an even number.

Proof. Let f(z) be the character polynomial of —AAT, thus
f(z) = det(xlpxn + AAT) (148)

Firstly, every eigenvalue of —AAT is a negative number or 0. That is because if 1 is an eigenvalue of
—AAT and v is an eigenvector of i, then

v, v) = (~AA v, v)
= —(ATv, ATv)

— [T <0,
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since (v, v) > 0, thus we have 1 < 0. This implies the zeros of (148)) are 0 or negative.

The character polynomial of £ is

det(Mopxon — £) = det(A2 L5, + AAT) (149)

= f(\%) (150)

Thus the eigenvalues of £ are square roots of zeros of (148). Since the zeros of (148) are O or
negative, thus the eigenvalues of £ are 0 or pure imaginary numbers. Moreover, since ([49) is an

even polynomial, it means that the polynomial only have terms of even degree, thus if 0 is a zero of
(T49), then its multiplicity is at least 2. O

Next we will calculate the minimal polynomial of £. Combining the calculated results with Proposi-
tion|C.11] we will get the size of the biggest Jordan blocks in the Jordan normal form of £. Before
that, we need the following lemma.

Lemma C.19. (Corollary 3.3.10. in|Horn & Johnson (2012))Let M € R and fy;(z) be its
minimal polynomial. Then M is diagonalizable if and only if every eigenvalue of M has multiplicity 1
as a root of fpr(x) = 0.

Proposition C.20 (Minimal polynomial of £). Let A1 # A2 # ... # \; be the distinct eigenvalues of
—AAT, thus Vi € [, \; € R, \; < 0. Then the minimal polynomial of L is :

fo(@) = (2 = V)@ + VAri)en (2 — VA (@ + v/ Nd)

Note that this implies that eigenvalues of L are purely imaginary or 0, moreover, if \; = 0 for some 1,
then the factor x in fr(x) has degree 2.

Proof. Let f_ 447 (z) be the minimal polynomial of —AAT. Since —AAT is symmetric, thus
diagonalizable, by Lemma|C.19] f_ 447 (x) only contains linear factor of (z — \;),where ); is an
eigenvalue of —AAT. Thus we have

foaar(z) = H(l‘ - i)

We claim f_ 447 (£?) = 0, since:

—AAT 0
L2 =
0 —AAT
therefore
foaaT(—AAT) 0
foaaT(£?) = =0.
0 foaaT(—AAT)

Thus if fz(x) is the minimal polynomial of £, we have

fe(@) | foaar (@) = [[(@ = Vi) (@ + /Xj6) (151)

J
Moreover, since every eigenvalue of £ is also a root of f(x), from (151)), we have :
(1) If £4/A;i # 0 is an eigenvalue of £, then the degree of (z & \/A;i) in fz(z) must be 1.

(2) If A; = 0 s an eigenvalue of £, then the degree of = in f,(x) must be 1 or 2.

32



Under review as a conference paper at ICLR 2024

In the following arguments, we will prove that there is at least a real Jordan block corresponding to
eigenvalue 0 has size 2. We have

0 —AAT —AAT 0
L= , L% =
I 0 0 —AAT

Thus for some = = (x1,22) € Ker(L£?),where 21,5 € R™. Then we have
T —AAT -1
L2 = =0.
X2 —AAT -T2

This implies 21, 7o € Ker — AAT. Since —AAT has eigenvalue 0, 21, 2o may not equal to 0. But

X1 —AAT )
L-

2 x1

soif (x1,22) € KerL, 21 must be 0. This completes the proof of Ker(L) # Ker(£?). By Proposition
C.10, there exists Jordan block of size 2. O

Lemma C.21. Let Jy be the largest Jordan blocks of L corresponding to 0 eigenvalues, then elements
in e’ot are of O(t). Let Ju,p be the largest Jordan blocks of L corresponding to a pair of conjugate
purely imaginary eigenvalues (u, [i), then elements in e+t € O(1).

Proof. From Proposition [C.20] the size of the largest Jordan blocks of £ corresponding to the 0
eigenvalues are 2. Thus the corollary follows from (I30) with ;x = 0 and m = 2. From Proposition
[C.20] the size of the largest Jordan blocks of £ corresponding to a pair of conjugate imaginary
eigenvalues (u, i) are 2. So the corollary follows from with A =0and m = 1. O

Next we consider the set of real generalized vectors of L. Let S, be the set of vectors that appear
in the real generalized modal matrix M . Then as shown in Proposition [C.20] these generalized
eigenvectors corresponds to an imaginary eigenvalues or 0 eigenvalues. If v € S, corresponds to
0, v may in a Jordan chain with length 1 or length 2. If v € S corresponds to a purely imaginary
number, then there exists some w be the eigenvector of an imaginary eigenvalue and v = Re(w) or
v =Im(w).

Thus we have

S = (Ugup)Sc(p, 1) USc(0)
where
Sc(p, i) = {v € R?"| 3w be an eigenvector for g or i € C — R ,v = Re(w) or v = Im(w)},

and
Sc(0) = {v € R*"| v is a generalized eigenvector for 0}.

So as in definition [C.12} M has the following form:

m1 columns mso columns ms columns

M,C = [Ulv o 5 Umys Vi4mys oo 5 Umi4+mas Umid+mo+1, .- 7'Um1+m,2+m3] (152)

where

o {v1y s Uy } CUG NS (1, 1) -
* {V14myy s Umy4+ms t C S (0), and each each v; is a Jordan chain of length 1.

* {VUmytmat1s s Umy+matms t C S2(0), (vi,v;41) is a Jordan chain of length 2, and v; =
L’(}i+1.
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* mi + my+ms3=2n.

Lemma C.22. Ifw = (w1, wa, ..., wa,) | # 0 is a type 1 generalized eigenvectors of L correspond-
ing to 0 eigenvalue , then the first n components (w1, ws, ..., w,) ' = 0, and the the last n components
(Wng1y ey Wap) T € ker(—AAT).

If s = (51,52, ..., 80n) " # 0is a type 2 generalized eigenvectors of L corresponding to 0 eigenvalue
, then (s1,...,5n) " # 0and (s1,...,50) ", (Snt1y .oy S2n) | € ker(—AAT).

Proof. Firstly, note that type 1 generalized eigenvectors of £ corresponding to 0 are just vectors in
ker(L£). Thus if w is a type 1 generalized eigenvectors of £ corresponding to 0, we have

(0 —AAT
L w= .(fth}Q,...,ﬂ)Qn)T
I 0

-*AAT . (wn+1a "'aw2n)T

= :0

L (wla"-awn)T
Thus (wy, wa, ..., w,) " = 0and (w,41,...,wap) | € ker(—AAT) .
Secondly, if s = (51, 82, ..., S2,) | # 0 is a type 2 generalized eigenvectors of £ corresponding to 0

eigenvalue, then we have
L-s#0and L?-5=0

Since _

—AAT 0

£2.5: ~(81’327...752n)T
0 —AAT

-—AAT . (Sn+1; ceey Szn)—r
= - 0
—AAT (51, .00,8,) T

This implies (S1, .., $n) ", (Snt1,. S2n) | € ker(—AAT). Moreover, since s is a type 2 generalized
eigenvector, we have (s1, ..., s,) | # 0. O

From the correspondence between real generalized vectors and real Jordan blocks as described in
Proposition|C.13] the real Jordan form .J, of £ under a similar transformation by real generalized
modal matrix M, has form

my columns

JHlﬁﬂl

J B mg columns
oy j2sHmy 2 e N——
0

Jr = . (153)
mg columns

0  —_— -
Jg

_ S
Re(pur)  —Im(uk)

Im(p)  Re(ug)

(g, fix) and JZ = 8 (1)] is the real Jordan block corresponding to the type 2 generalized eigenvec-

‘]likvﬁk =

] are real Jordan blocks corresponding to conjugate eigenvalue
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tors of 0 eigenvalue. Thus we have
ee = @ (eMhon) & I @Y et (154)
where
o e!uimi is defined in with A = 0, m = 1. Thus elements in e!/x: -7 are in O(1).
o I} =[1] € R*L
e !5 is defined in (130) with 1 = 0,m = 2. Matrix elements in €5 are in O(t).
More precisely, we have

mi + Mo

ms columns

eth —

N - (155)

and only elements in the upper diagonal of the last m3 columns belongs to O(t), other elements are
all bounded function of ¢.

Lemma C.23. Let (e'X); denote the i-th row of e'*. Then we have

o If AAT has 0 eigenvalues, then fori € {1,2,...,n}, elements in (e'*); are bounded and for
i€ {n+1,n+2, .., 2n}, (e©); belongs to O(t).

tL

o If AAT doesn’t have 0 eigenvalues, all elements in et* are bounded.

Proof. Let (M)~ = [p1,p2, ..., p2n], pi € R?™ be the inverse of the real generalized modal matrix
of £, then we have

et = My (et [wy, wa, ..., way)). (156)

If AAT has 0 eigenvalues, from (155), we have e'/2w; has form

€ O(1), m1 + mo rows

ms3 TOWS

B . (157)
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From Lemma|C.22, the first n rows of M has form

my + mo mg columns
—
i 0 0 0 i
0 0 0
0 0 0
0 0 0
. . n rows
Um+2 . o . U2n
0 0 0

(158)

The first n rows of M et’c p; is the matrix-vector product of and , we can see the term ¢
in @) will product with term 0 in (158), thus the first n rows of M e*/2p; belong to O(1). The
last n rows of M e*/2p; belong to O(t) because there may exist nonzero elements in the last n rows
of M that can product with ¢ in (I57).

If AAT doesn’t have 0 eigenvalues, from Lemma/|C.21, all elements in e’ct are bounded and since
et? = Mp(et’=(M,)~", thus all elements in e** are bounded. O

The covariance evolution directly follows from above calculation.

Proof of covariance in continuous time equation. Denote

Var(y1(to)) Cov (y1(to), X1(to))
P(ty) = ]
Cov(y1(to), X1(to)) Var(Xi(to))
At) B(t)
and '~ = . Since P(t +tg) = e*“ P(tg)(e**) T, we have
c@) D)
A(t)  B(t) Var(y:(to)) Cov(yi(to), X1(t0))] [(A®)T (C@)"
P(t+to) =
C(t) D(t)] LCov(yi(to), X1(to)) Var (X (to)) (Bt)" (D))"

[A(t)Var(yi(to)) + B(t)Cov(yi(to), X1(to))  A(t)Cov(yr(to), X1(to)) + B(t)Var(Xi(to))

LC(t)Var(y1(to)) + D(t)Cov(yi(to), X1(to)) C(t)Cov(yi(to), X1(to)) + D(t)Var(Xi(to))

i Var(y1 (to + t)) COV(yl (to + t), X4 (to + t))

LCov(y1(to +1), X1(to +1)) Var(Xi(to +1))

From Lemma|C.23, if AAT has 0 eigenvalue, elements in A(t), B(t) are bounded and elements in
C(t), D(t) are in O(¢) and there exist elements in C(t), D(t) belongs to ©(t) , thus from above
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equation we have Var(y; (o +t)) € O(1), Cov(yi(to), X1(to + ) € O(t),Var(Xi(to + 1)) €
O(t?). Moreover, if AAT doesn’t have 0 eigenvalue, Lemma implies all elements in
A(t), B(t),C(t), D(t) are bounded, thus all elements in P(t + t) are bounded. O

C.2.2 COVARIANCE EVOLUTION OF EULER DISCRETIZATION

Proof. The Euler discretization of (I147) with step size 77 can be written as

yt yi ! 0 —nAAT] [yt I —nAAT] [yt
_ . . _ : _(159)
Xt X! nl 0 xi=t nI I Xt

We want to prove if (y}, X?) evolve as this equation, then Cov(y}), Cov(X}) have exponential

I  —nAAT
growth rate. This can be done by calculating the real Jordan normal form of . Since
nl I
AAT e R"*" jsa diagonalizable matrix, there exists a matrix P, such that
!
72
PAATP! = , (160)

Tn

where 71, ..., 7, are eigenvalues of AAT. Moreover, since AA T is a positive semidefinite matrix, we
have ; > 0,1 € [n].

Then we have

1 -nn
1 =21
P I —AAT| | P! '
77 _ ]_ *’Ynn
-1 n 1
Pl |nI I P 7 1
I n L]
(161)
I —nAAT
This matrix is similar to , thus they have same character polynomial defined by
nl I
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1 —1n
1 —2n
det(ul— 1 —nll (162)
7 7 1
n 1
L n I
[ -1 1N 1
p—1 Y2
p—1 —Yn7]
= det 163
et( — T ) (163)
=1 p—1
L -n pw—1 |

— det( § ) 64

=TT = 1%+ (165)
i=1

Recall we have ; > 0,4 € [n], thus the root of character polynomial is x5, fi; = 1 £4,/4;m, j € [n].
I  —nAAT '

Moreover, we have |uj|= 1+ ~;1? > 1. Thus by Proposition [C.16| elements in

nl I

have an exponential growth rate as O(|u|t), where i is the eigenvalue of AAT which has largest
norm.

Since
_ | Var(y) - Cov(yi, X7)
PO= |eov(Xty)  Var(x) (100
I —nAAT e Var(yi°) Cov(y}°, X1°) I —nAAT e
- ( )T 167
nl 1 Cov(X1°,°)  Var(X)°) nl 1
I —pAAT]' "
Since elements in matrix has growth rate ©(|u|*), thus elements in P(¢) has
nl I
growth rate O(|u|??). O

C.2.3 COVARIANCE EVOLUTION OF SYMPLECTIC DISCRETIZATION

We firstly determine the Symplectic discretization of continuous FTRL (147) with Euclidian norm
regularizer.

Lemma C.24. Discrete continuous FTRL with (Type I method), we get
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Y I —nAAT yr
= ] . (168)
Xyt n I—n*AAT X7
Proof. Directly calculate gives
't =y —nAATXY, (169)
X = Xp oy (170)
= X!+ gyt —n?AAT XL (171)
Combine above gives
it I —nAAT yr
- . (172)
X{l+1 n I — ,'72AAT XIL
This finish the proof. O
I —AAT .q
Let M,, = . Since AA" is diagonalizable, and AA"’s eigenvalues are all

n I—AAT .p?
non-negative, there exists a matrix P € R™*™ and P invertible, such that

il
Y2

P1AATP = ) (173)
Tn
where v, ..., 7, > 0 are eigenvalues of AAT.

Lemma C.25. M, has real eigenvalues if and only if AAT has 0 eigenvalue, and in this case the
only real eigenvalue of M, equals to 1. Moreover, every image eigenvalue of M,, has norm equals
to 1.

Proof. With (173), we have

w—1 AATy
det(pul — M,,) = det( ) (174)
- p—I+AATy?
=det((u—I)(u—T+AATY?) + AATH?) (175)
=det(p? —2u+ I+ pAATH?) (176)
1 = 2u+ 14 pn’n , ,
W =2+ 1+ pnye
det(
1 = 2u+ 14 pn’,
(177)
= [1w® = 20+ 1+ ) (178)
=1

From above, we can see if 1 makes det(u — M) = 0, then there exists some ¢ € [n], such that

p? = 2u 41+ uny; = 0. (179)
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O G

(179) is a quadratic function about p, and has solution p = 5

To make i € R, we need (n?y; — 2)2 — 4 > 0. For sufficient small 1 (n%y; < 2), that can only
happen when ~; = 0, and in this case we have ;1 = 1. Moreover, if (n?v; — 2)? — 4 < 0, we have

2~ pys) i /I (P =22
o2 = | 2 E A O Z 2 (150
2402 2. o\2
1 (182)

Thus we have

* M,, has areal eigenvalue if and only if y = 0 is an eigenvalue of AAT, and in this case the
real eigenvalue of M,, equals to 1.

* Every image eigenvalue of M,, has norm equals to 1.

Lemma C.26. The largest Jordan blocks corresponding to u = 1 have size 2.

Proof. As in proposition|C.10, the number of size k Jordan blocks corresponding to eigenvalue 1 is
determined by the dimension of linear space ker(M,, — I)* and ker(M,, — I)*~1. Since similar
matrixes have same minimal polynomial and same kernel space, thus we can change M, to any
similar matrix. Thus by (I73), we only need to consider

- o i}
0 —Y21

P 0 p-! 0 o 0 —In
[0 P} M'n{ 0 P—l} —I= — (183)

n —y21?

L n —%772 J

Our claim is : k = 3 is the smallest number to make p;, = 0 in proposition|C.10] thus by proposition
C.10 the largest Jordan block corresponding to eigenvalue 1 have size 2 .

As shown in lemma , 1 is an eigenvalue of M, if and only if 0 is an eigenvalue of AAT. Assume
0 is an eigenvalue of AA " with multiplicity 1, then it is easy to see (183) has rank 2n — m. A direct
calculate show the square of (I83) equals to

[ —mn? , —y17? \
—727 —V27

—Yn? S —Yu]
-’ , —n” 4+ i . .
—721) —y2n* 4+ 730

i Y1’ —Yu* +van*
(184)
Thus if 0 is an eigenvalue of AAT with multiplicity 1, then there are 2/m rows in (184) be 0, thus

(184) has rank 2n — 2m, this shows the p, in proposition is not zero, which implies there exists
Jordan blocks with size 2 x 2 corresponding to eigenvalue 1.
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Moreover, the cubic of (183) equals to

RGN mn® —Ain’ s s T
Y21 Y21 — 72
ran' > = yan’
-’ , 2t =t
21 295m° = 72m
i —Ynn’ 29am* =’
(185)
We can see the rank of (I85) is also 2n — 2m, thus p3 in proposition [C.10]is zero. This finish the
proof of our claim. O

The following lemma determines M,,’s type 1 and type 2 generalized eigenvectors of M,, correspond-
ing to eigenvalue y = 1. Recall v € R*" is a type 2 generalized eigenvectors of M, corresponding
to eigenvalue y = 1 if v € ker(M,, — I)? but v ¢ ker(M,, — I).

Lemma C.27. Let z,y € R", then

(1) If (x,y) € R?" is a type 2 generalized eigenvectors of M, corresponding to eigenvalue
pw=1,then x,y € ker(AAT) and x # 0.

(2) If (z,y) € R* is a type 1 generalized eigenvectors of M,, corresponding to eigenvalue
p=1,theny € ker(AAT) and x = 0.

Proof. We have

(M, —1)* = :ﬁﬁigi W A%{{Z’ZTW (186)
Thus if (z,y) € ker(M,, — I)?, we have
—AAT x4 (AAT Py =0 (187)
—AAT e+ (mAAT? 4+ (AAT) M)y =0 (188)
—n- gives
—AAT?y =0. (189)

Thus we have y € ker(AAT), and take this back to (188)), we get = € ker(AAT).

Moreover, it is directly to verify if (z,y) € ker(M,, — I), thenz = 0 and y € ker(AAT). Thus if
(z,y) is a type 2 generalized eigenvector, z € ker(AAT), x # 0 and y € ker(AAT).

O

Lemma C.28. For an image eigenvalue ;1 # 1 of M, the largest real Jordan blocks corresponding
to w have size 2.

Proof. The proof is similar to lemma Let u # 1 be an image eigenvalue of M,,, by (179),
there exists an eigenvalue y; of AAT to make

p? —2p 41+ un~y; = 0. (190)

Moreover, the algebraic multiplicity of u as an eigenvalue of M, is same as the algebraic multiplicity
of v as an eigenvalue of AAT. We assume 4 # 1 has algebraic multiplicity m.
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Consider the matrix

[ pn—1 7N |
w—1 Y2m
P 0 Pt 0] _ p—1 Ynl
M_[O P]M”[ 0 Pl]_ - p—1+yn?
=1 =1+ yn?
L -1 p—14ymn* |
(191)
It is easy to see if
P’ =2+ 1+ pn’y =0 (192)

the 7-th and n + ¢-th row of (191) are linearly dependent. Moreover, if if 1 as rank m, the multiplicity
of v, as an eigenvalue of AA " is also m. So there are m rows in the first n rows of (191) linearly
dependent on m rows in the last n rows of (191)). Thus if i as rank m, (191) has rank 2n — m.

A directly calculate shows the square of (191) equals to

[ (p—1)% —yn? Y1121 — 2 + v1n?)

(1 —1)* = ymn? Y21 — 2 + Y1)

- —nn? + (p—14+mn)?

(193)

Moreover, if 1 and ~; satisfy (I92), the i-th row and n + i-th row are linearly dependent, thus same
as matrix in (191)), has rank 2n — m if p is an eigenvalue of M,, with multiplicity m.

Thus we have ps = 0 in proposition |C.10, this implies the real Jordan blocks of a pair of conjugate
eigenvalues (u, i) have size 2. O

Lemma C.29. Let t be a positive integer, and (/\/l%)Z be the i-th row of the matrix /\/lf] for i =
1,2,...,2n. We have

o If AAT is singular, then for 1 < i < n, elements in (/\/1’57)Z is bounded, forn +1 <1 < 2n,
elements in (M})); have growth rate O(t).

. IfAA—r is non-singular, then for all 1 <1 < 2n, elements in (/\/lf])z is bounded.

Proof. Denote the real generalized modal matrix of M,, by M, then we have M% =M Jf\,[nM -1

where J4, is the real Jordan normal form of M,,. If AAT has 0 eigenvalue, then from Lemma
and Lemma 1 is the only possible real eigenvalue of M,,, and the largest size real Jordan bloc
have size 2. Moreover in this case, form Lemma@ the real generalized modal matrix of M, has
same structure as the real generalized modal matrix of £ as in (I58), thus the proof follows from a
same argument as in Proposition[C.23,

If AAT doesn’t have 0 eigenvalue, all eigenvalues of M,, are image numbers and form Lemmam
these eigenvalues have norm 1. From Lemma the largest size real Jordan blocks of M,, is 2 X 2,
thus from Proposition|C.16 with m = 1, all elements in Jf\,l" are bounded, thus all elements in M%

are bounded. ]
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The covariance evolution of Symplectic discretization directly follows from above calculations.

t t
Denote the covariance matrix at time ¢ + ¢ by P(t + to) and ./\/lf7 = [ét gt} , then we have

Var(y; ™) Cov(yi ™', X{*)

P(t + to) = - (194)
COV(Xt+tO t+t°) Var(X1+ o)

Var(y1 ) Cov(y1 ,Xto)
-, o
COV(X1 ,y1 ) Var(XfO)

At Bt Var(yio) Cov(ny,Xfo) At Bt

& B

)" (195)

( )" (196)
Cov(X{o,yf)  Var(x{) | |C* D'

AVar(y)°) + B'Cov(X1°,1°)  A'Cov(yy®, X1°) + B'Var(X{")| [(A)T (€T

= ( )
C*Var(yl?) + D'Cov(X1°,yl°) C'Cov(yi®, Xi°) + D*Var(Xio)| |(BH)T (DY)T
(197)
The finial equation equals to
PP
) (198)
Py Py
where
= (A"Var(y!®) + B'Cov)(A") " + (A'Cov + B'Var(X1°))(B") T, (199)
= (A'Var(y}°) + B'Cov)(C") T + (A'Cov + B*Var(X°))(D") T, (200)
= (C'"Var(ylo) + D'Cov)(A") T + (C'Cov + D'Var(X[°))(B") T, (201)
P4 = (C*'Var(yl°) + D'Cov)(C") " + (C*Cov + D'Var(X[°))(D") . (202)

From Lemma , when AAT is non-singular, all elements in M; are bounded, thus elements in

P(t+to) is bounded. When AAT is singular, elements in A?, B! are bounded and elements in C*, D!
has linear growth rate, thus Var(y*) € O(1), Cov(X*,y") € ©(t) and Cov (X}, X}) € ©(t?).

D DETAILS OF SECTION "LAST"

D.1 RIEMANNIAN GAME DYNAMICS

We collect minimum amount of terminologies on Riemannian game dynamics, for a complete
treatment on this topic, we refer to|Mertikopoulos & Sandholm (2018). For the case of population
game G (A, v) where A is the strategy set and v is the set of utilities, the gain from motion from state
r € X along z € R4 is defined as

GY(x;2) = Z Vo (T) 2a,-
acA

The cost of motion C(x; z) represents the intrisic difficulty of moving from state x along a given
displacement vector z, and it is defined to be

1
599@('27 Z)

where g is a smooth assignment of symmetric positive definite matrices g,, to each state x € X. The
vector of motion from state x is required to maximize the difference between the gain of motion
G"(x; z) and the cost of motion C(z; z) subject to

& = argmax{G"(z;z) — C(z;2)}. (203)
2€ET, X

C(x;2) =

The dynamics equation is called Riemannian game dynamics.
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D.2 SYMPLECTIC GEOMETRY

Symplectic form. In order to present Gromov’s non-squeezing theorem and its implication in
uncertainty principle, we need some terminology of Symplectic Geometry. Roughly speaking,
symplectic geometry studies the geometry of the space (of even dimension) equipped with the
symplectic form. Take Euclidean geometry for example, it studies the vector space R™ with an inner
product structure (,) : R™ x R™ — R called the Euclidean structure. A symplectic form on a even
dimensional space R"™ is a skew-symmetric bilinear map w(-,-) : R™ x R™ — R, satisfying

* w(u,v) = —w(v,u) forall u,v € R™.
* w(v,v) =0forallv € R™.
* w(u,v) =0 forall v € R™ implies that u = 0.

A typical symplectic form is the bilinear map defined by matrix J = ( _(} IS >, where I,
denotes the identity matrix on R™. A basis {u1, ..., Uy, V1, ..., v, } of R?" is called w-standard if
w(ug, ux) = —w(vj,vE) = 0 and w(u;, vg) = k.

Symplectomorphism. A symplectomorphism ¢ between symplectic vector spaces (R™,w) and
(R™ w') is a linear isomorphism ¢ : R™ — R™ such that o*w’ = w, where (¢*w’)(u,v) =
w'(p(u), p(v)). More generally, let f : (R, w) — (R™,w’) be a diffeomorphism. Then f is a
symplectomorphism if f*w’ = w. These definitions generalize to manifold settings, but further
discussion is beyond the scope of current paper. In the plane, symplectic form represents area, so a
symplectic mapping is equivalent to an area preserving mapping.

Linear symplectic width. The main technique in the analysis of general regularizers is to leverage
the power of symplectic geometry, especially a classic work of Gromov in 1980’s |Gromov|(1985),
to obtain a lower bound for the covariance of the conjugate coordinates. It is known as "Gromov’s
Non-squeezing Theorem",

Theorem D.1 (Gromov, 1985.). If R < r, there does not exist Hamiltonian map ¢ : R2" — R2n
such that p(B(r)) C Z(R), where B(r) = {(z,y) € R2" : ||z||* + |y||* < r?} and Z(R) =
{(z,y) € R®" : 22 + y? < R?} for any i € [n].

Gromov’s non-squeezing theorem asserts the following fact: Let B(r) be a ball in the phase space
R" x R™, with center (a,b) and radius r: B(r) : |z —a|® + |ly — b]|> < r2. The orthogonal
projection of this ball on any plane of coordinates alway contains a disc of radius . Now suppose that
the ball is moved by a Hamiltonian flow (¢, -), i.e., each point of B(r) serves as an initial condition
of a system of Hamiltonian equations. By Liouville’s Theorem, the image ¢ (¢, B(r)) at any moment
t has the volume the same as the initial shape ball B(r), but the shape is distorted. If we pair the
conjugate coordinates z; and y;, then the projection of the deformed ball on any (z;, y;)-plane will
never decrease below its original value w2, The FTRL algorithm induces a linear Hamiltonian
system whose solution is a linear symplectic mapping on phase space R™ x R™!. It suffices to
consider a narrowed concept called “Linear symplectic width" which is defined below.

Definition D.2 (Linear symplectic width, [Hsiao & Scheeres| (2006)). The linear symplectic width of
an arbitrary subset A C R?", denoted as wr,(A), is defined as:

wr,(A) = sup {mr? : ¢(B*"(r)) C A for some ¢ € AS,(R*")},

reR+

where AS,(R?*") denotes the group of affine symplectomorphisms, i.e., linear map followed by
translation.

D.3 PROOF OF THEOREM[3.2]

The first ingredient in proving Proposition[5.2/is based on standard results of Taylor series method in
Benaroya & Han (2005). Suppose Y = g(X) where X is a random variable with ;1 x the mean value.
A full Taylor expansion of Y = ¢g(X) about the mean value yields

1 d?g
y A

X — 222
( MX) dx

dg
Y :g(X)|X:NX + (X _MX)%‘X:NX +
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and the expectation is given by
U%{ 1
py = glpx) + —-g" (nx) + ...
which holds due to E[X — px]=0. Furthermore, the variance of Y can be estimated as follows.
0'2 2
7t = BV = 1 = 42ux) + 0% (9 o)+ 9x)g"0x) = (at0x) + o) )

(204)
Therefore, if we assume that 0% < 0% which can be implied by ox < 1, the approximation to
order 0% for the variance is

2
0% =2 0% (¢'(ux))"

This estimate enables one to focus only on the linearization of a general differentiable map on the

multivariable case, with inevitably some extra assumption on higher order derivatives. In general,
suppose Y = g(X1, ..., X,,), the Taylor series expansion about the mean value of each variable yield

Var]Y] :Z <39(/%v-v#n) . *Z z": <39 ;.o ,un)) (39(%,)-(;,%)) P—

i=1 i=1 j=1,j#1

Cov(X;,X;)

0i0j

where p;; =

The other ingredient we need is the linear symplectic width evolving under a time-dependent lin-
ear Hamiltonian flow, which is the result of [Hsiao & Scheeres (2006). In the setting of classic
mechanics, the position and momentum (q, p) in a Hamiltonian system, the covariance matrix of

X =(q1,.-,Gn, D1, .-, Pn) is given by
P=EXX"]
where we assume the system is zero-mean for convenience. If the system is linear
X =A)X

with X () = ®(¢,t9) Xy its solution, then the covariance is mapped as P = ®Py® " . Furthermore, if
we partition P into blocks such that

P11 e Pln
P=| &
Pnl v Pnn
where T -
Elaiq; ] Elaip)]
Pij =

Elpigj] Elpip]]
Then Theorem 3 of |[Hsiao & Scheeres|(2006) asserts that

PN 2
| Py (t)] > <U)L(O)> forall i=1,...,n

™

The third ingredient is the Taylor expansion of differential mapping f : V' — W between higher
dimensional spaces [Conrad. In general suppose V = R"™ and W = R™. Let U C V be open and let
fi : U — R denote the ith component of f, so fis described as amap f = (f1, ..., fm). Letp > 0
be a non-negative integer. Then f is C” map if and only if all p-fold iterated partial derivatives of the
fi’s exist and are continuous on U. Suppose Hom(V, W) be the space of linear mappings from V to
W. Then the higher derivative DP f is a multi-linear mapping from V? — W, i.e.,

DPf U — Mult(V?, W),

where VP =V X ... x V is the p-th fold of Cartesian product of V. Choose a € U and r > 0 such
that a small neighborhood b,.(a) C U for a choice of norm on V. Choose h = ) hje; € V with
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I2]| < r. For non-negative integer k < p, the higher order derivative as multi-linear mapping acting
on T, U is given by the following expression,

(D*f)(a) = 3 ! hzin.__h:‘:,akif( )

i : —(a
k! 1hoiy! 0x .0z

) : 1
i14...+i,=k

where h(®) = (h,...,h) € V* and the sum is taken overa Il ordered n-tuples (i1, ..., %,) of non-
negative integer whose sum is k. To be more concrete

i (a):( Ot fi (a), 0" fm_ (a))

‘4 : vy —
Oxtt..0xy Oxtt..0xy Oxit...0x

which is a vector in W. The Taylor formula for differentiable mapping f : V' — W is given as
follows,

f(a + h) = Z (D]jf')(a)(h(j)) + Rp7a(h)
=0 :
in W, where
Byalh) = /O m«mf)(a + th) = (D? f)(a))(h®))dt
satisfies

1By a(h)] < Copa AN, i Coppa =0

with

Dp th) — (DP
Gy = sup M2 Da+10) = (D))
t€[0,1] p:
With above settings, we are ready to prove the theorem.

Proof. Denote X = (X[°,°) for short, and let ¢;(X) be the flow of Hamiltonian system of X.
The Taylor expansion with respect to mean of X, say u, is computed as follows,

$t(X) = ¢e(p) + Dy (1) (X — ) + %quﬁt(X)(X —)@ 4

Since the covariance matrix of the random vector given X as a random vector is encoded in the
covariances of ¢(X) and ¢ (X) for i, j € [n], i.e., Cov(¢i(X), #!(X)). The fundamental property
of covariance implies that for each pair (i, 7), Cov(¢(X), ¢! (X)) is an infinite sum of covariances
given by the Taylor formular. By assumption on the covariance of the initial input X such that
the covariance is small, it suffices to use covariance matrix of D¢y (u)(X — ) to approximate the
covariance matrix of ¢;(X), since all the terms other than the linear ones in Cov(¢i(X), ¢ (X)) is
of the higher power of the entries of X — u. Formally we have

Cov(¢i(X)) = Cov(Dgy (1) (X — p)).

Since we further assume that the Hamiltonian flow ¢;(-) has Lipschitz derivatives of arbitrary order,
uniformly, the remainder in the approximation is bounded by a constant multiplied by higher power
of entries in the covariance matrix of X. Recall that we use notation X = (Xf ’, yfo), and apply
Theorem 3 of [Hsiao & Scheeres|(2006)) to the linear part D¢, ()(X — ) in the Taylor formula, we
have

2
wi,(Po)
(AXf,aAyf,a)Q - (COV(X’L-t,OH yf,a))Q > Lﬂ_Q
provided the remainder in approximation is zero. Thus for any number strictly less than wiﬂ(ifo)’ say
%@, as long as the covariance entries are small enough, we can have
1 ’UJ2 PO
(AXL Ayl )2 — (Cov(XE o)) = 3 U200
The proof completes. U
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E EXPERIMENTS FOR NON-SINGULAR CASES.

In this section we provide more numerical experiments on the non-singular cases to complete the ver-
ification of Theorem We provide experimental results on the evolution of Var(X; 1), Var(y: 1),
the first components of X and y1, where (X1, y1) evolve as continuous FTRL equation, Symplectic
discretization. In all experiments, we assume that the payoff matrix is in R2%2, thus X7, 3; € R2, and
at initial time the covariance matrix Cov(y1, X1) is [[8,2, 1, 3],[2,13,7,9],[1,7,9,2],[3,9, 2, 10]] €
R**4 which is the same as the setting mentioned in the main text.

Continuous time FTRL. We illustrate how Var(X; 1(¢)) and Var(y;,1(¢)) evolve with contin-
uous time FTRL with payoff matrices Ay = [[1,—2],[-1,1]], 45 = [[2,—3],[-1,5]], 4¢ =
[[2,—1.5], [~2, 3]], see (a)(b) Figure[6. In (a) the Var(X1 1(t)) is bounded, and in (b) Var(y:,1(t))
is bounded, which support results of continuous time part in Theorem [5.1]for the non-singular cases.

\ f
20 \

0 200 400 600 800 1000 0 50 100 150 200 250

(a) Var(X1,1(t)), non-singular (b) Var(y1,1(t)), non-singular
Figure 6: Variance evolution of continuous FTRL

Symplectic discretization. We illustrate how Var(X7 ;) and Var(y{ ;) evolves with symplec-
tic discretization, the payoff matrices are given as follows: By = [[1,—1.1],[-1,1]], Bs =
[[1,-1.2],[-1,1]], Bs = [[1,—1.3], [~1, 1]], see Figure[7. From the experimental results, we can
see the variance behavior of symplectic discretization is same as continuous case, which support
results of symplectic discretization part of Theorem [5.1]for the non-singular cases.
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(a) Var(X7 ;), non-singular (b) Var(yj 1), non-singular

Figure 7: Variance evolution of Symplectic discretization
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