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A PROOF OF PROPOSITION 3.1
We first recall the Hamiltonian formulation of continuous FTRL in zero sum game from Bailey &
Piliouras (2019).

The Hamiltonian function H(X1, y1) for agent 1 is defined to be

H(X1, y1) = h
⇤
1(y1(t)) + h

⇤
2(y2(0) +A

(21)
X1(t)), (8)

and the Hamiltonian function H(X2, y2) for agent 2 is defined to be

H(X2, y2) = h
⇤
2(y2(t)) + h

⇤
1(y1(0) +A

(12)
X2(t)), (9)

where h
⇤
i

is the regularizer used by agent i, i = 1, 2.

Theorem 3.2 of Bailey & Piliouras (2019) shows the dynamical behaviors of (Xi(t), yi(t)) are
completely determined by these two Hamiltonian functions.

More precisely, it was shown that the cumulative strategies and payoffs of agent 1, (X1, y1), of
continuous FTRL for agent 1 satisfies the following equations:

d

dt
X1(t) =

@H

@y1
(X1, y1) = rh

⇤
1(y1(t)), (10)

d

dt
y1(t) = �

@H

@X1
(X1, y1) = A

(12)
rh

⇤
2(y2(0) +A

(21)
X2(t)). (11)

Similarly results also hold for agent 2, (X2, y2), of continuous FTRL for agent 2 satisfies the
following equations:

d

dt
X2(t) =

@H

@y2
(X2, y2) = rh

⇤
2(y2(t)), (12)

d

dt
y2(t) = �

@H

@X2
(X2, y2) = A

(21)
rh

⇤
1(y1(0) +A

(12)
X1(t)). (13)

The proof of Proposition 3.1 is divided into two parts :

• The proof of entropy regularizers is presented in Section A.2,

• The proof of Euclidean norm regularizers is presented in Section A.3,

and in Section A.1, we introduce the Euler and Symplectic discretization of FTRL.

A.1 EULER AND SYMPLECTIC DISCRETIZATION OF FTRL
Both in Euler and Symplectic, we denote the initial condition of the discrete equation on (Xt

i
, y

t

i
), i =

1, 2 to be y
0
i
= yi(0) and X

0
i
= 0.

Lemma A.1 (Euler discretization of FTRL). Discretizing equation (5) with Euler method for both
agent i = 1, 2 gives

X
t+1
1 = X

t

1 + ⌘
@H

@y1
(Xt

1, y
t+1
1 ) = X

t

1 + ⌘rh
⇤
1(y

t

1), (agent 1 Euler discretize equation)

y
t+1
1 = y

t

1 � ⌘
@H

@X1
(Xt

1, y
t

1) = y
t

1 + ⌘A
(12)

rh
⇤
2(y

0
2 +A

(21)
X

t

1),

and

X
t+1
2 = X

t

2 + ⌘
@H

@y2
(Xt

2, y
t

2) = X
t

2 + ⌘rh
⇤
2(y

t

2), ( agent 2 Euler discretize equation)

y
t+1
2 = y

t

1 � ⌘
@H

@X2
(Xt+1

2 , y
t

2) = y
t

2 + ⌘A
(21)

rh
⇤
1(y

0
1 +A

(12)
X

t

2).

Proof. Note that in Euler discretization, we use the derivative on point of t-th round to find the
point of t+ 1 round. Thus (agent 1 Euler discretize equation) directly follows from applying Euler
discretization to 10 and 11. Similarly, ( agent 2 Euler discretize equation) directly follows from
applying Euler discretization to 12 and 13.
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Lemma A.2 (Symplectic discretization of FTRL). Discretizing (5) for i = 1 with I-type Euler
symplectic method Type I method gives

y
t+1
1 = y

t

1 � ⌘
@H

@X1
(Xt

1, y
t

1) = y
t

1 + ⌘A
(12)

rh
⇤
2(y

0
2 +A

(21)
X

t

1)

(agent 1 Symplectic discretize equation)

X
t+1
1 = X

t

1 + ⌘
@H

@y1
(Xt

1, y
t+1
1 ) = X

t

1 + ⌘rh
⇤
1(y

t+1
1 )

and discrete 5 for i = 2 with II-type Euler symplectic method Type II method gives

X
t+1
2 = X

t

2 + ⌘
@H

@y2
(Xt

2, y
t

2) = X
t

2 + ⌘rh
⇤
2(y

t

2) (agent 2 Symplectic discretize equation)

y
t+1
2 = y

t

1 � ⌘
@H

@X2
(Xt+1

2 , y
t

2) = y
t

2 + ⌘A
(21)

rh
⇤
1(y

0
1 +A

(12)
X

t+1
2 )

Proof. (agent 1 Symplectic discretize equation) directly follows from applying (Type I method)
to equation 10 and 11. Similarly, (agent 2 Symplectic discretize equation) directly follows from
applying (Type II method) to equation 12 and 13.

We define (xt

1, x
t

2) to be

x
t

1 =
X

t+1
1 �X

t

1

⌘
, x

t

2 =
X

t+1
2 �X

t

2

⌘
. (14)

In the case of Euler discretization of FTRL (Lemma A.1), we have

x
t

1 = rh
⇤
1(y

t

1), x
t

2 = rh
⇤
2(y

t

2), (15)

and in the case of Symplectic discretization of FTRL (Lemma A.2), we have

x
t

1 = rh
⇤
1(y

t+1
1 ), xt

2 = rh
⇤
2(y

t

2). (16)

Note that in Symplectic method, xt

1 is determined by y
t+1
1 , but in Euler method, xt

1 is determined by
y
t

1.

In the following, we will show (xt

1, x
t

2) evolves as (MWU) under Euler method or (AltMWU) under
Symplectic method on the strategy space if the regularizers hi(·) are choose to be entropy functions,
and the constrained sets Xi are chosen to be simplexes for i = 1, 2, this exactly the second part of
Proposition 3.1.

Lemma A.3. Both in Euler discretization of FTRL dynamics and Symplectic discretization of FTRL
dynamics, the equalities

y
n

1 = y
0
1 +A

(12)
X

n

2 (17)

y
n

2 = y
0
2 +A

(21)
X

n

1 (18)

hold for any n � 0.

Proof. Here we only prove the case of Symplectic discretization of FTRL dynamics, as the case of
Euler discretization of FTRL dynamics is similar. We prove this by induction. For n = 0, (17) and
(18) are

y
0
1 = y

0
1 +A

(12)
X

0
2 (19)

y
0
2 = y

0
2 +A

(21)
X

0
1 , (20)

which hold trivially since by definition X
0
1 = X

0
2 = 0.
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Now assume (17) and (18) hold for n, i.e,

y
n

1 = y
0
1 +A

(12)
X

n

2 (21)

y
n

2 = y
0
2 +A

(21)
X

n

1 . (22)

Then, we have

y
n+1
1 = y

n

1 + ⌘A
(12)

rh
⇤
2(y

0
2 +A

(21)
X

n

1 ) (23)
(22)
= y

n

1 + ⌘A
(12)

rh
⇤
2(y

n

2 ) (24)

= y
n

1 + ⌘A
(12)

x
n

2 (25)
(21)
= y

0
1 +A

(12)
X

n

2 + ⌘A
(12)

x
n

2 (26)

= y
0
1 +A

(12)
X

n+1
2 . (27)

Moreover, we have

y
n+1
2 = y

n

2 + ⌘A
(21)

rh
⇤
1(y

0
1 +A

(12)
X

n+1
2 ) (28)

(27)
= y

n

2 + ⌘A
(21)

rh
⇤
1(y

n+1
1 ) (29)

= y
n

2 + ⌘A
(21)

x
n

1 (30)
(22)
= y

0
2 +A

(21)
X

n

1 + ⌘A
(21)

x
n

1 (31)

= y
0
1 +A

(21)
X

n+1
1 (32)

This finish the proof.

A.2 PROOF OF ENTROPY REGULARIZERS

Lemma A.4. For entropy regularizer h(x) =
P

n

i=1 xi lnxi with simplex constrain, i.e., � = {x 2

Rn
|
P

n

i=1 xi = 1, xi � 0}, we have

rh
⇤(y) =

✓
e
yi

P
n

s=1 e
ys

◆n

i=1

. (33)

Proof. By the definition,

h
⇤(y) = max

x2�
(hx, yi � h(x)),

and

rh
⇤(y) = argmax

x2�
(hx, yi � h(x)).

Denote f(x) = (hx, yi � h(x)), by the KKT condition, if x⇤ is the maximum of f , then there exist
µi and � such that

�rf(x⇤) +
nX

i=1

µirgi(x
⇤) + �rh(x⇤) = 0

and

gi(x
⇤) = �x

⇤
i
 0 for all i 2 [n], h(x⇤) =

nX

i=1

x
⇤
i
� 1 = 0, µigi(x

⇤) = 0 for all i 2 [n].

Since the gradient of f can be computed to be

rf(x) = y � (log x1 + 1, ..., log xn + 1),

the KKT condition becomes

�y + (log x1 + 1, ..., log xn + 1) +
nX

i=1

µi(0, ...,�1, ..., 0) + �(1, ..., 1) = 0.
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Suppose the feasible x⇤ is interior point of �, i.e., xi > 0, then we have for all i 2 [n], µi = 0. Then
the KKT condition is reduced to the following equations

log xi + 1 + � = yi for all i 2 [n],
nX

i=1

xi = 1.

This gives solution of xi and �:

xi =
e
yi

P
n

s=1 e
ys

for all i 2 [n], � = log

 
nX

s=1

e
ys

!
� 1,

thus we have completed the proof.

Lemma A.5. The (xt

1, x
t

2) in (15) with entropy regularizer is the same as (MWU).

Proof. In (15), we have x
t

1 = rh
⇤
1(y

t

1), thus

x
t

1 = rh
⇤
1(y

t

1) (34)
(35)

(33)
=

 
e
y
t
1,s

P
n1

j=1 e
y
t
1,j

!n1

s=1

(36)

(37)

(17)
=

 
e
y
0
1,s+(A(12)

X
t
2)s

P
n1

j=1 e
y
0
1,j+(A(12)Xt

2)j

!n1

s=1

(38)

(39)

=

0

@ e
y
0
1,s+⌘(A

(12) Pt�1
k=1 x

k
2 )s

P
n1

j=1 e
y
0
1,j+⌘(A

(12)
Pt�1

k=1 x
k
2 )j

1

A
n1

s=1

(40)

(41)

=

 
x
t�1
1,s e

⌘(A(12)
x
t�1
2 )s

P
n1

j=1 x
t�1
1,j e⌘(A

(12)x
t�1
2 )j

!n1

s=1

. (42)

The case of 2 agent is exactly same as 1 agent as they are symmetry, and we have

x
t

2 =

 
x
t�1
2,s e

⌘(A(21)
x
t�1
2 )s

P
n2

j=1 x
t�1
2,j e⌘(A

(21)x
t�1
2 )j

!n2

s=1

. (43)

That is same as (MWU) .

Lemma A.6. The (xt

1, x
t

2) in (16) with entropy regularizer is the same as (AltMWU).
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Proof. For 1 agent, from (16), we have x
t

1 = rh
⇤
1(y

t+1
1 ), thus

x
t

1 = rh
⇤
1(y

t+1
1 ) (44)

(45)

(33)
=

0

@ e
y
t+1
1,s

P
n1

j=1 e
y
t+1
1,j

1

A
n1

s=1

(46)

(47)

(17)
=

0

@ e
y
0
1,s+(A(12)

X
t+1
2 )s

P
n1

j=1 e
y
0
1,j+(A(12)X

t+1
2 )j

1

A
n1

s=1

(48)

(49)

=

 
e
y
0
1,s+⌘(A

(12) Pt
k=1 x

k
2 )s

P
n1

j=1 e
y
0
1,j+⌘(A

(12)
Pt

k=1 x
k
2 )j

!n1

s=1

(50)

(51)

=

 
x
t�1
1,s e

⌘(A(12)
x
t
2)s

P
n1

j=1 x
t�1
1,j e⌘(A

(12)xt
2)j

!n1

s=1

. (52)

Note that the update rule of xt

1 use x
t

2, this is a characteristic of (AltMWU).

For 2 agent, from (16) we have x
t

2 = rh
⇤
2(y

t

2), thus
x
t

2 = rh
⇤
2(y

t

2) (53)
(54)

=

 
e
y
t
2,s

P
n2

j=1 e
y
t
2,j

!n2

s=1

(55)

(56)

(18)
=

 
e
y
0
2,s+(A(21)

X
t
1)s

P
n2

j=1 e
y
0
2,j+(A(21)Xt

1)j

!n2

s=1

(57)

(58)

=

0

@ e
y
0
2,s+⌘(A

(21) Pt�1
k=1 x

k
2 )s

P
n2

j=1 e
y
0
2,j+⌘(A

(21)
Pt�1

k=1 x
k
1 )j

1

A
n2

s=1

(59)

(60)

=

 
x
t�1
2,s e

⌘(A(21)
x
t�1
2 )s

P
n2

j=1 x
t�1
2,j e⌘(A

(21)x
t�1
2 )j

!n2

s=1

. (61)

Combine (61) and (52), we can see the update rule of (xt

1, x
t

2) is same as (AltMWU) .

Combine Lemma A.5 and Lemma A.6, we proved the second part of Proposition 3.1. The first part is
very similar, except the regularizers are changed to Euclidian norm. However, this change will not
affect the proof, so we omit it here.

A.3 PROOF OF EUCLIDEAN NORM REGULARIZERS

Note that for Euclidean norm regularizers, i.e., hi(x) = kxk
2, we have

rh
⇤
i
(y) = arg max

x2Rn
{hx, yi � kxk

2
} = y. (62)

Lemma A.7. The (xt

1, x
t

2) in (15) with Euclidean norm regularizer is the same as (GDA).
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Proof. For agent 1, we have

x
t

1
(15)
= rh

⇤
1(y

t

1) (63)
(62)
= y

t

1 (64)

= y
0
1 +A

(12)
X

t

2 (65)

= y
0
1 + ⌘ ·A

(12)
t�1X

i=0

x
i

2 (66)

= x
t�1
1 + ⌘ ·A

(12)
x
t�1
2 . (67)

Agent 2 is exactly same as agent 1 since in Euler method, two agent are symmetry. Thus we have
shown the update rule of (xt

1, x
t

2) is same as (GDA).

Lemma A.8. The (xt

1, x
t

2) in (16) with Euclidean norm regularizer is the same as (AltGDA).

Proof. For agent 1, we have

x
t

1
(16)
= rh

⇤
1(y

t+1
1 ) (68)

(62)
= y

t+1
1 (69)

= y
0
1 +A

(12)
X

t+1
2 (70)

= y
0
1 + ⌘ ·A

(12)
tX

i=0

x
i

2 (71)

= x
t�1
1 + ⌘ ·A

(12)
x
t

2. (72)

For agent 2, we have

x
t

2
(16)
= rh

⇤
1(y

t

2) (73)
(62)
= y

t

2 (74)

= y
0
2 +A

(21)
X

t

2 (75)

= y
0
2 + ⌘ ·A

(21)
t�1X

i=0

x
i

2 (76)

= x
t�1
2 + ⌘ ·A

(21)
x
t�1
2 . (77)

Thus we have shown the update rule of (xt

1, x
t

2) is same as (AltGDA).

B PROOF OF SECTION 4
In this appendix we prove results in Section 4. Proposition 4.1 is proved in Section B.3, and
Proposition 4.2 is proved in Section B.4. In fact, we prove a more general result, which states that
when two players choose arbitrary regularizers that satisfies strongly convex and Lipschitz gradient
condition except a bounded region on the domain, then the differential entropy of Euler discretization
has linear growth rate, while differential entropy of Symplectic discretization keeps constant. Note
that both Euclidian norm regularizer and entropy regularizer satisfy these conditions, for example,
entropy regularizer is 1-strongly convex on the interior points of simplex and has Lipschitz gradient
except an arbitrary small neighbourhood of zero point.

The main technical lemma for proving Proposition 4.1 is Lemma B.6, which states for sufficient
small step size, the update rule of Euler discretization of FTRL is an injective map. This injective
property is necessary for calculating the evolution of differential entropy, see Lemma B.1. The proof
of Proposition 4.2 is easier, as the symplectic discretization is naturally an injective map.
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B.1 EVOLUTION OF DIFFERENTIAL ENTROPY UNDER DIFFEOMORPHISM

The following result and its proof are informally stated in Cheung et al. (2022), for convenience of
applying their statement later, we formulate it into a lemma as follows.

Lemma B.1. Let X 2 Rd be a random vector with probability density function g(x) and the support
set of g(x) is X . Assume f : Rd

! Rd be a diffeomorphism, thus f(X) is a random vector. Then we
have

S(f(X)) = S(X) +

Z

X
g(x) log (|det Jf (x)|) dx (78)

where Jf (x) is the Jacobian matrix of f at point x 2 Rd.

Proof. Denote Y = f(X), and let bg(Y ) represent the probability density function of Y , and Y be
the support set of Y .

Then we have

S(Y ) = S(f(X)) = �

Z

Y
bg(y) · log (bg(y)) dy (79)

= �

Z

Y
g
�
f
�1(y)

�
|det Jf�1(y)|· log

�
g(f�1(y))|det Jf�1(y)|

�
dy (80)

= �

Z

X
g(x)|det Jf�1 (f(x)) |· log

�
g(x)|det Jf�1(f(x))|

�
· |det Jf (x)|dx (81)

= �

Z

X
g(x) · log

�
g(x)|det Jf�1(f(x))|

�
dx (82)

= �

Z

X
g(x) log (g(x)) dx�

Z

X
g(x) log

�
|det Jf�1 (f(x)) |

�
dx (83)

= S(X) +

Z

X
g(x) log (|det Jf (x)|) dx, (84)

where (82) comes from the inverse function theorem, which states

Jf�1 (f(x)) = (Jf (x))
�1

. (85)

B.2 TECHNICAL LEMMAS FOR PROPOSITION 4.1
We first present several lemmas used later.

Lemma B.2 (Corollary 2.2 and 2.3 of Hong & Horn (1991)). Let A,B 2 Rn⇥n be symmetry and
positive semidefinite. Then AB is diagonalizable and has nonnegative eigenvalues. Moreover, if A is
positive definite, then the number of positive eigenvalues, negative eigenvalues, and 0 eigenvalues of
AB are the same as B.

Lemma B.3. If A 2 Rn⇥n is a symmetry matrix, and � is an eigenvalue of A, then �2 is an
eigenvalue of A2.

Proof. Since A is a symmetry matrix, there is an invertible matrix P makes

P ·A · P
�1 =

2

64
�1

. . .
�n

3

75 , (86)

where �1, ...,�n are eigenvalues of A. Thus
P · (A)2 · P�1 =

�
P ·A · P

�1
�
·
�
P ·A · P

�1
�

(87)

=

2

64
(�1)2

. . .
(�n)2

3

75 , (88)

this implies {�2
i
} are eigenvalues of A2.
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The following lemma is the standard Fenchel duality property, a proof can be found in Theorem 1
Zhou (2018).

Lemma B.4. Let h : X ! R be a µ-strongly convex function with L-Lipschitz continuous gradient,
let

h
⇤(y) = max

x2X
{hx, yi � h(x)} (89)

be the convex conjugate of h, then we have

(1) h
⇤ is a 1

L
-strongly convex function.

(2) h
⇤ has 1

µ
-Lipschitz continuous gradient.

Lemma B.5. Let f : Rn
! Rn be a differentiable function on a convex set U ⇢ Rn, and

kJf (x)� Ik< 1 (90)

for any x 2 U , where k·k is the L
2-operator norm, then f is an injective map.

Proof. Let g(x) = f(x)� x. Then for any x 6= y, we have

kf(x)� f(y) + y � xk = kg(x)� g(y)k (91)
= kJg(⇣)(x� y)k (92)
 kJg(⇣)k·kx� yk (93)
< kx� yk, (94)

where (92) use the mean value theorem, and (94) is due to the fact that kJg(⇣)k< 1 for any ⇣ 2 U .
Thus f(x) 6= f(y).

Lemma B.6. If the step size ⌘ < min{µ1, µ2/kA
(21)

k
2
}, then the iterate map

� : (Xn

1 , y
n

1 ) ! (Xn+1
1 , y

n+1
1 ) (95)

of Euler discretization of FTRL in Lemma A.1 is an injective function.

Proof. Recall the iterate map � : (Xn

1 , y
n

1 ) ! (Xn+1
1 , y

n+1
1 ) can be written as an Euler discretization

with the following form

y
n+1
1 = y

n

1 � ⌘ ·
@H

@X1
(Xn

1 , y
n

1 ) (96)

X
n+1
1 = X

n

1 + ⌘ ·
@H

@y1
(Xn

1 , y
n

1 ) (97)

and the Hamiltonian function has form

H(X1, y1) = h
⇤
1(y1) + h

⇤
2(y2(0) +A

(21)
X1). (98)

Note that H1(X1, y1) is separable, i.e., h⇤
1(·) is independent with X1 and h

⇤
2(·) is independent with

y1, thus we have

@
2
H

@X1@y1
= 0,

@
2
H

@y1@X1
= 0. (99)

Next we calculate the Jacobin matrix of �,
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J� =

2

6664

@y
n+1
1
@y

n
1

@y
n+1
1

@X
n
1

@X
n+1
1

@y
n
1

@X
n+1
1

@X
n
1

3

7775
=

2

66664

I � ⌘
@
2
H

@y1@X1
(Xn

1 , y
n

1 ) �⌘
@
2
H

@2X1
(Xn

1 , y
n

1 )

⌘
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=

2
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I �⌘(A(21))> ·r
2
h
⇤
2 ·A

(21)

⌘r
2
h
⇤
1 I

3

75 , (101)

and

J� � I =

2

64

0 �⌘(A(21))> ·r
2
h
⇤
2 ·A

(21)

⌘r
2
h
⇤
1 0

3

75 . (102)

Since hi is µi-strongly convex, by Lemma B.4, h⇤
i

has 1
µi

-Lipschitz continuous gradient, thus we
have

kr
2
h
⇤
i
k

1

µi

(103)

holds at arbitrary points within the domain of h⇤
i
.

Next we estimate the L2-operator norm of the matrix J��I , since the L2-operator norm is equivalent
to the spectral norm, we have

kJ� � Ik =
q
�max ((J� � I)> · (J� � I)), (104)

and

(J� � I)> · (J� � I) = ⌘
2
·

2

4

�
r

2
h
⇤
1

�2
0

0
�
(A(21))> ·r

2
h
⇤
2 ·A

(21)
�2

3

5 . (105)

Since both r
2
h
⇤
1 and (A(21))> ·r

2
h
⇤
2 ·A

(21) are symmetry matrix, thus by Lemma B.3, eigenvalues
of (J�� I)> · (J�� I) has form ⌘

2
�
2, where � is an eigenvalue of r2

h
⇤
1 or (A(21))> ·r

2
h
⇤
2 ·A

(21).

Note that h⇤
i

is a function of X1, y1, thus � is also a function of X1, y1, and it is not clear whether
there is an upper bound on � without more information on the Hessian matrix of h⇤

i
. However, as we

have shown in (103), the L
2-operator norm of r2

h
⇤
i

has an upper bound 1
µi

, thus we have

0  � < max

⇢
1

µ1
,
kA

(21)
k
2

µ2

�
. (106)

Thus we can choose ⌘ < min
n
µ1,

µ2

kA(21)k2

o
to make

kJ� � Ik< 1, (107)

and by Lemma B.5, � is an injective map.
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B.3 PROOF OF PROPOSITION 4.1
Proof. By Lemma B.6, the iterate map of simultaneous FTRL is an diffeomorphism, thus we can use
Lemma B.1 to calculate the evolution of differential entropy in simultaneous FTRL. We firstly prove
differential entropy is a non-decrease function.

Recall (8), the Hamiltonian function of FTRL is

H(Xt

1, y
t

1) = h
⇤
1(y

t

1) + h
⇤
2(y

0
2 +A

(21)
X

t

1), (108)

and the iterate map � : (yn1 , X
1
n
) ! (yn+1

1 , X
n+1
1 ) of simultaneous FTRL can be written as Euler

discretization of continuous FTRL, i.e.,

y
t+1
1 = y

t

1 � ⌘ ·
@H

@X1
(Xt

1, y
t

1) (109)

X
t+1
1 = X

t

1 + ⌘ ·
@H

@y1
(Xt

1, y
t

1). (110)

Recall from (101), the jacobian map of � is

J�(X, y) =

2

64

I �⌘(A(21))> ·r
2
h
⇤
2(X, y) ·A(21)

⌘r
2
h
⇤
1(X, y) I

3

75 , (111)

thus

det (J�(X, y)) = det
⇣
I + ⌘

2
·r

2
h
⇤
1(X, y) · (A(21))> ·r

2
h
⇤
2(X, y) ·A(21)

⌘
. (112)

Since r
2
h
⇤
1 and (A(21))> · r

2
h
⇤
2 · A

(21) are both symmetry and positive semidefinite matrix, by
Lemma B.2, their product is diagonalizable and has non-negative eigenvalues. Thus we have

det (J�(X, y)) � 1. (113)

Combine this with (78), we have

S(Xt+1
1 , y

t+1
1 ) = S

�
�(Xt+1

1 , y
t+1
1 )

�
(114)

= S(Xt

1, y
t

1) +

Z

X
g
t(Xt

1, y
t

1) log
�
|det J�(X

t

1, y
t

1)|
�
dX

t

1dy
t

1 (115)

� S(Xt

1, y
t

1) +

Z

X
g
t(Xt

1, y
t

1) log(1)dX
t

1dy
t

1 (116)

= S(Xt

1, y
t

1), (117)

where gt(·) is the probability density function of (Xt

1, y
t

1), and (116) comes from det (J�(X, y)) � 1.
Thus S(Xt

1, y
t

1) is a non-decreasing function.

Moreover, as log(1 + x) > x/(1 + x) for x > 0, thus from (115), to prove a linear growth rate
of differential entropy, it is sufficient to prove a uniform lower bound on det (J�(X, y)). With the
assumption that hi(·) has Lipschitz continuous gradient, by Lemma B.4, h⇤

i
(·) is µi-strongly convex,

thus r2
h
⇤
i
(X, y) is positive definite, i.e.,

r
2
h
⇤
i
(X, y) < µiI (118)

for some µi > 0. From Lemma B.2, with A = r
2
h
⇤
1(X, y) and B = (A(21))> ·r

2
h
⇤
2(X, y) ·A(21),

we have

⌘
2
·r

2
h
⇤
1(X, y) · (A(21))> ·r

2
h
⇤
2(X, y) ·A(21) (119)

is a diagonalizable matrix, and there are all eigenvalues of J�(X, y) are real number and larger than 1.
Moreover, these eigenvalues has a uniform lower bound 1 + c, where c is determined by the strongly
convex coefficients µi and the payoff matrix A

(21).
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B.4 PROOF OF PROPOSITION 4.2
Lemma B.7. The update map

(Xt

1, y
t

1) ! (Xt+1
1 , y

t+1
1 )

from (agent 1 Symplectic discretize equation) is an injective map.

Proof. Recall the update rule can be written as

y
t+1
1 = y

t

1 � ⌘
@H

@X1
(Xt

1, y
t

1) = y
t

1 + ⌘A
(12)
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0
2 +A
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X

t

1), (120)

X
t+1
1 = X

t

1 + ⌘
@H

@y1
(Xt

1, y
t+1
1 ) = X

t

1 + ⌘rh
⇤
1(y
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1 ). (121)

(122)

Thus given (Xt+1
1 , y

t+1
1 ), we can directly find an unique X

t

1 from (121), i.e.,

X
t

1 = X
t+1
1 � ⌘rh

⇤
1(y

t+1
1 ).

Then use this Xt

1, we can also determine a unique y
t

1 from (120), i.e.,

y
t

1 = y
t+1
1 � ⌘A

(12)
rh

⇤
2(y

0
2 +A

(21)
X

t

1).

This finish the proof.

Now we are ready to prove Proposition 4.2.

Proof. Since the iterate map  : (Xn

1 , y
n

1 ) ! (Xn+1
1 , y

n+1
1 ) in Symplectic discretization of FTRL

defined A.2 in is naturally an injective map from Lemma B.7 , we can directly use lemma B.1. We
have

S(Xn+1
1 , y

n+1
1 )� S(Xn

1 , y
n

1 ) =

Z

X
g
n(Xn

1 , y
n

1 ) log (|det J�(X
n

1 , y
n

1 )|) dx (123)

where g
n(·) is the probability density function of random vector (Xn

1 , y
n

1 ).

Moreover, since  is a symplectomorphism, we have

|det J (X
n

1 , y
n

1 )|= 1. (124)

Thus the right hand side of (123) equals to 0, and this implies S(Xn+1
1 , y

n+1
1 ) = S(Xn

1 , y
n

1 ).

B.5 NUMERICAL EXAMPLES OF PROPOSITION PROPOSITIONS 4.1 AND 4.2
Although differential entropy plays important roles in several subjects, estimating the value of
differential entropy under transformations is generally a challenging task. Even in the one-dimensional
case, special methods need to be designed for calculating differential entropy Hyvärinen (1997). A
recent review of this topic can be found in Feutrill & Roughan (2021).

However, for the case of gradient descent, it is possible to calculate the variation of differential
entropy due to the linear structure of the algorithm and the equality

S(AX)� S(X) = log(|det(A)|). (125)

In Figure 2, we present numerical experiments on the variation of differential entropy using game
defined by A = [[1,�1], [�1, 1]]. Numerical results show differential entropy has a linear growth
rate in simultaneous case and keeps invariant in alternating case, which support Propositions 4.1 and
4.2.
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Figure 5: Variation of differential entropy for simultaneous and alternating GDA. The growth rate of the
variation in DE is linear for simultaneous GDA, while it is 0 for alternating GDA.

C PROOF OF THEOREM 5.1
This appendix is divided into two parts. In Section C.1, we presented necessary backgrounds from
linear algebra, differential equation, and difference equation. In Section C.2, we provide detailed
prove of Theorem 5.1.

C.1 ADDITIONAL BACKGROUNDS

C.1.1 COMPLEX JORDAN NORMAL FORM

We will consider the complex Jordan normal form of a real square matrix A 2 Rd⇥d. Let Spec(A)
be the set of eigenvalues of A. Consider A acts on vector space Cd as a linear operator.

Definition C.1 (Generalized Eigenvector). A vector vm 2 Cd is called a generalized eigenvector of
type m corresponding to the eigenvalue µ if

(A� �I)mvm = 0

but
(A� µI)m�1

vm 6= 0.

Definition C.2 (Jordan Chain). let vm be a generalized eigenvector of type m corresponding
to the matrix A and the eigenvalue µ. The Jordan chain generated by vm is a set of m vectors
{vm, vm�1, ..., v1} given by

vm�1 = (A� µI)vm

vm�2 = (A� µI)2vm = (A� µI)vm�1

...

v1 = (A� µI)m�1
vm = (A� µI)v2

Remark C.3. If µ 2 R is a real eigenvalue of A, then the generalized eigenvectors of µ are also
vectors over real numbers, and the Jordan chain are also made up by vectors over real numbers.

Proposition C.4. A Jordan chain is a linearly independent set of vectors.

Proof. Let {vm, vm�1, ..., v1} be a Jordan chain generated by a type m generalized eigenvector vm
corresponding to an eigenvalue � of A, and consider the equation

cmvm + cm�1vm�1 + ...+ c1v1 = 0 (126)

We will show cm = cm�1 = ... = c1 = 0.
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Multiply equation 126 by (A� µI)m�1, and note that for j  m� 1

(A� µI)m�1
cjvj = cj(A� µI)m�j�1(A� µI)jxj

= 0

Thus equation 126 becomes to be cm(A�µI)m�1
vm = 0. However, since vm is a type m generalized

eigenvector, we have
(A� µI)m�1

vm 6= 0,

thus cm = 0. Continuing this process, we will finally obtain cm = cm�1 = ... = c1 = 0.

Proposition C.5 (page 366 of Bronson (1991) ). Every d ⇥ d matrix has d linearly independent
generalized eigenvectors.

Given a Jordan chain {v1, v2, ..., vm} of length m, by Proposition C.4, we will get a subspace spans
by {v1, v2, ..., vm}. The linear operator A : Cd

! Cd can acts on vectors’ set {v1, v2, ..., vm}.

Denote [v1, v2, ...., vm] to be the matrix consists of column vectors {v1, v2, ..., vm}, then A acts on
[v1, v2, ...., vm] as

A[v1, v2, ...., vm] = [Av1, Av2, ..., Avm]

= [µv1, v1 + µv2, ..., vm�1 + µvm]

= [v1, v2, ..., vm]

2

66664

µ 1
µ 1

. . . . . .
µ 1

µ

3

77775
.

Thus we have

[v1, v2, ...., vm]�1
A[v1, v2, ...., vm] =

2

66664

µ 1
µ 1

. . . . . .
µ 1

µ

3

77775
(127)

which is a m ⇥ m upper triangular matrix, with eigenvalue µ on diagonal and each non-zero off-
diagonal entry equal to 1. Such an upper triangular matrix is called a size m Jordan block of A
corresponding to eigenvalue µ.

Proposition C.6 (Page 367 of Bronson (1991)). Every d⇥ d matrix A has a set of d⇥ d linearly
independent generalized eigenvectors composed entirely of Jordan chains, such a set of generalized
eigenvectors is a called a canonical bases of A.

Definition C.7 (Generalized modal matrix). Let A be an d⇥ d matrix. A generalized modal matrix
M for A is a d⇥ d matrix whose columns, considered as vectors, form a canonical basis for A and
appear in M according to the following rules:

(1) All vectors of the same chain appear together in adjacent columns of M .

(2) Each chain appears in M in order of increasing type.

Remark C.8. The Jordan chain corresponding to a real eigenvalue µ 2 R of A will composed by
vectors in Rd, but if µ 2 C is a complex eigenvalue of A, then the Jordan chain corresponding to µ

will contain vectors in Cd.

Combine equation 127 and Proposition C.6, we have following proposition.
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Proposition C.9. Any matrix A 2 Rd⇥d is similar to a matrix in Jordan normal form under the
similarity transformation of a generalized modal matrix M of A, i.e.,

J
C = M

�1
AM

has block diagonal form J
C = �iJi with Jordan blocks Ji given with µ 2 Spec(A) by

Ji =

2

66664

µ 1
µ 1

. . . . . .
µ 1

µ

3

77775
.

The Jordan normal form is unique up to the order of the Jordan blocks.

We have the following proposition that determines the number of a particular size of Jordan blocks in
Jordan normal form corresponding to an eigenvalue � .

Proposition C.10 (Page 368 of Bronson (1991)). Let � be an eigenvalue of A, and denote

m = max{i| ker(A� µI)i ' ker(A� µI)i�1
}.

Denote ⇢k as the number of linear independent generalized eigenvectors of type k corresponding to
the eigenvalue µ that appear in a canonical basis for A, then

⇢k = dimker(A� µI)k � dimker(A� µI)k�1 (k = 1, 2, ...,m).

Since every Jordan chains of length k in a canonical basis gives a size k Jordan block, ⇢k is also the
number of size k Jordan blocks in the complex Jordan normal form corresponding to �.

There is another characterization on the size of the largest Jordan block corresponding eigenvalue
based on the minimal polynomial of A:

Proposition C.11 (Theorem 3.3.6 in Horn & Johnson (2012)). Let m be the size of the largest Jordan
block corresponding to the eigenvalue µ of a matrix A, then m equals to the degree of the factor
(x� µ) in the minimal polynomial of A.

C.1.2 REAL JORDAN NORMAL FORM

The real Jordan normal is important for computing exponential function of a matrix A 2 Rd⇥d. In the
complex Jordan form, Jordan blocks may contain elements in C� R. Thus for a matrix A 2 Rd⇥d,
we cannot use its complex Jordan normal form to calculate exponential functions of A directly. We
need to define a standard form of A, which should only contain real numbers and keep the shape as a
diagonal block matrix. This motive the definition of real Jordan normal form.

Let µ = Re(µ)+iIm(µ), Im(µ) 6= 0 be an eigenvalue of A, and vm 2 Cd is a generalized eigenvalue
of type m corresponding to µ. Then the complex conjugate of µ, denote by µ̄, is also an eigenvalue
of A, and the complex conjugate of vm, denote by v̄m 2 Cd is a generalized eigenvalue of type m

corresponding to µ̄. Let

{vm�i| vm�i = (A� µI)ivm, i = 0, 1, ...,m� 1}

be a Jordan chain of length m corresponding to �, then it gives a complex Jordan block of size m in
the complex Jordan normal form of A as in equation 127.

The 2m vectors {Re(v1), Im(v1),Re(v2), Im(v2), ...,Re(vm), Im(vm)} ⇢ Rd will play the
role of complex generalized vectors of eigenvalues µ, µ̄. It is directly to check A acts on
[Re(v1), Im(v1),Re(v2), Im(v2), ...,Re(vm), Im(vm)] gives the following matrix representation
:
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A[Re(v1), Im(v1),Re(v2), Im(v2), ...,Re(vm), Im(vm)]

= [ARe(v1), AIm(v1), ARe(v2), AIm(v2), ..., ARe(vm), AIm(vm)]

= [Re(µv1), Im(µv1),Re(v1) + Re(µv2), Im(v1) + Im(µv2), ...,Re(vm�1) + Re(µvm), Im(vm�1) + Im(µvm)]

= [Re(v1), Im(v1),Re(v2), Im(v2), ...,Re(vm), Im(vm)]

2

666664

D I

· ·

· ·

· ·

· I

D

3

777775

where D =

"
Re(µ) Im(µ)

�Im(µ) Re(µ)

#
and I2 =


1 0
0 1

�
.

The matrix

2

666664

D I

· ·

· ·

· ·

· I

D

3

777775
(128)

is called the real Jordan blocks corresponding to a conjugate pair of image eigenvalues µ, µ̄.

As in the case of complex Jordan normal form, we need to define the real generalized modal matrix,
and under the similar transformation by real generalized modal matrix, the original matrix will be
transformed into a real Jordan normal form.

Definition C.12 (Real generalized modal matrix). Let A be an d⇥ d matrix. A real generalized
modal matrix M for A is a d⇥ d matrix whose columns, considered as vectors, are real or image
parts of a complex generalized eigenvectors in a canonical basis for A and appear in M according
to the following rules:

(1) Real and image parts of a generalized eigenvectors corresponding to same image eigenvalues
appear in the first columns of M

(2) If Re(v), Im(v) appear in the real generalized modal matrix, (Re(v), Im(v)) appear in
adjacent columns of M

(3) All vectors of the same chain appear together in adjacent columns of M .

(4) Each chain appears in M in order of increasing type.

Note that comparing to definition C.7, the new requirements are (1) and (2). (1) will make the Jordan
blocks as in equation 128 appear firstly in the real Jordan normal form, and the necessary of (2) can
be seen from the derivation of equation 128.

Proposition C.13 ( Theorem 1.2.3 in Colonius & Kliemann (2014)). Any matrix A 2 Rd⇥d is similar
to a matrix in the real Jordan normal from via a similarity transformation by A’s real generalized
modal matrix. That is, 9M 2 Rd⇥d be A’s real generalized modal matrix to make

J
R = M

�1
AM
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where JR = (Jµ1,µ̄1 � ...�Jµk,µ̄k)�
l

i=1 (Jµk+i) with real Jordan blocks given for µ 2 Spec(L)\R
by

Jµ =

2

66664

µ 1
µ 1

. . . . . .
µ 1

µ

3

77775

and for µ, µ̄ = �± i⌫ 2 Spec(L), ⌫ > 0, by

Jµ,µ̄ =

2

66664

D I2 · · 0
0 D .

·
. . . . . . .

· D I2

0 0 D

3

77775

where D =


� �⌫

⌫ �

�
and I2 =


1 0
0 1

�
.

Note that the difference between complex and real Jordan form, complex and real generalized modal
matrix are only in the Jordan blocks corresponding to a eigenvalue whose image part is not 0. Thus
the number of a given size Jordan blocks corresponding to a real eigenvalue is same in complex and
real Jordan form. For a pair of conjugate complex eigenvalues with nonzero image part, every real
Jordan block is a combination of two complex Jordan blocks.

C.1.3 SOLUTION FORMULA FOR LINEAR DIFFERENTIAL EQUATION

For a linear differential equation with constant coefficients A 2 Rd⇥d

dx

dt
(t) = Ax

with initial condition x(0), it’s solution formula is given by x(t) = e
tA
x(0). Thus to understand the

dynamic behavior of x(t), it is necessary to calculate the matrix exponential matrix e
tA. This can

be done by using the real Jordan normal form of A. Let JA be A’s real Jordan normal form, and
JA = MAM

�1, then e
tA = Me

tJAM
�1. Thus calculation of etA can be reduced to calculation

of etJA and the real generalized modal matrix of A. The real generalized modal matrix of A is a
combination of real and image parts of A’s generalized eigenvectors, and in this section we consider
calculation of etJA .

Proposition C.14. (page 12 in Colonius & Kliemann (2014)) Let Jµ be a real Jordan block of size
m⇥m associated with the real eigenvalue µ of a matrix A 2 Rd⇥d. Then

Jµ =

2

66664

µ 1
µ 1

. . . . . .
µ 1

µ

3

77775
2 Rm⇥m (129)

and

e
Jµt = e

µt

2

6666664

1 t
t
2

2! · ·
t
m�1

(m�1)!

· · · · ·

· · · ·

· ·
t
2

2!
· t

1

3

7777775
2 Rm⇥m

. (130)

Let Jµ,µ̄ be a real Jordan block of size 2m⇥2m associated with the real eigenvalue µ, µ̄ = �±i⌫, ⌫ >

0 of a matrix A 2 Rd⇥d. With
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D =


� �⌫

⌫ �

�
, R := R(t) =

"
cos(⌫t) � sin(⌫t)

sin(⌫t) cos(⌫t)

#
, I2 =


1 0
0 1

�
,

one obtains for

Jµ,µ̄ =

2

666664

D I2

· ·

· ·

· ·

· I2

D

3

777775
2 R2m⇥2m

, (131)

and

e
Jµ,µ̄t = e

�t

2

666666664

R tR
t
2

2!R · ·
t
m�1

(m�1)!R

· · · · ·

· · · ·

· ·
t
2

2!R

· tR

R

3

777777775

2 R2m⇥2m
. (132)

C.1.4 SOLUTION FORMULA FOR LINEAR DIFFERENCE EQUATION

For a matrix A 2 Rd⇥d, a linear difference equation with coefficient matrix A has form

xn+1 = Axn (133)

By induction, equation 134 has solution formula

xn = A
n
x0, x0 2 Rd

. (134)

If JA = M
�1

AM be the real Jordan normal form of A, then xn = M(JA)nM�1
x0. Thus to solve

equation 134, it is sufficient to know the formula for (JA)n and the real generalized modal matrix M .
Moreover, if JA = �iJi, then (JA)n = �i(Ji)n, thus we only need to consider the power of real
Jordan blocks.

Proposition C.15 (Page 19 in Colonius & Kliemann (2014)). Let J be a real Jordan block of size
m⇥m associated with a real eigenvalue µ of A 2 Rd⇥d. Then

Jµ =

2

66664

µ

µ

. . .
µ

µ

3

77775
+

2

66664

0 1
0 1

. . . . . .
0 1

0

3

77775
(135)

= µI +N (136)

with N
m = 0. Thus we have

J
n

µ
= (µI +N)n =

m�1X

i=0

✓
n

i

◆
µ
n�i

N
i
. (137)

Note that if µ > 1, elements in J
n

µ
will have an exponential growth rate as µn. If µ = 1, elements in

J
n

µ
have a polynomial growth rate. If µ < 1, elements in J

n

µ
tends to 0 as n growth.
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Proposition C.16 (Page 20 in Colonius & Kliemann (2014)). Let J be a real Jordan block of size
2m ⇥ 2m associated with a pair of conjugate complex eigenvalue µ = � + i⌫, µ̄ = � � i⌫ of

A 2 Rd⇥d. With D =


� �⌫

⌫ �

�
and I2 =


1 0
0 1

�
, one obtains that

Jµ,µ̄ =

2

666664

D 0
· ·

· ·

· ·

· 0
D

3

777775
+

2

666664

0 I2

· ·

· ·

· ·

· I2

0

3

777775
(138)

= D̃ +N (139)

with N
m = 0. Moreover, since µ = |µ|e

i� for some � 2 [0, 2⇡), one can write

D =


� �⌫

⌫ �

�
= |µ|R, R =


cos� � sin�
sin� cos�

�
. (140)

Thus

J
n

µ,µ̄
= (D̃ +N)n =

m�1X

i=0

✓
n

i

◆
D̃

n�i
N

i =
m�1X

i=0

✓
n

i

◆
|µ|

n�i
R̃

n�i
N

i
. (141)

where R̃ is a block diagonal matrix with matrix block R. Note that if |µ|> 1, elements in J
n

µ,µ̄
have

exponential growth rate as O(|µ|n). If |µ|= 1, elements in J
n

µ,µ̄
have polynomial growth rate. If

|µ|< 1, elements in J
n

µ,µ̄
tends to 0 as n growth.

C.2 PROOF OF THEOREM 5.1
Now we are ready to prove Theorem 5.1. The proof is divided into three parts :

• covariance evolution of continuous time equation, proved in C.2.1.

• covariance evolution of Euler discretization, proved in C.2.2.

• covariance evolution of Symplectic discretization, proved in C.2.3.

C.2.1 COVARIANCE EVOLUTION OF CONTINUOUS EQUATION

We firstly give a summary of the proof. The continuous time equation of FTRL with Euclidean norm
for agent 1 is written as:

dy1

dt
= �

@H(X1, y1)

@X1
= �AA

>
X1(t) +Ay2(0) (142)

dX1

dt
=
@H(X1, y1)

@y1
= y1(t). (143)

Similarly for agent 2 we have

dy2

dt
= �

@H(X2, y2)

@X2
= �A

>
AX2(t)�A

>
y1(0) (144)

dX2

dt
=
@H(X2, y2)

@y2
= y2(t). (145)

In the following, we will focus on the viewpoint of agent 1, thus we will consider equation (142) and
(143).

Lemma C.17. The solution of the linear differential system consisted by equation (142) and (143)
and initial condition (y1(t0), X1(t0)) can be written as

"
y1(t+ t0)

X1(t+ t0)

#
= e

Lt
·

"
y1(t0)

X1(t0)

#
+ e

Lt
·

Z
t+t0

t0

e
�Ls

Ay2(0)ds (146)
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Proof. It is directly to verify the derivate of right hind side satisfies equation (142) and (143), and the
solution satisfies initial condition (y1(t0), X1(t0)). Due to the uniqueness of the solution of linear
differential equation, we can conclude this is the solution of equation (142) and (143).

Form (146) we can also see that if uncertainty are introduced to the system at some initial time
t0, i.e., (y1(t0), X1(t0)) is a random variable, then the evolution of covariance of random variable
(y1(t+t0), X1(t+t0)) will not be affected by the term

R
t+t0

t0
e
�Ls

Ay2(0)ds since this is a determined
quantity, thus will only affect the expectation of (y1(t+ t0), X1(t+ t0)) . Therefore, without loss of
generality, we will let y2(0) = 0 in the following.

Thus the continuous equation of agent 1 is
2

4
dy1

dt

dX1
dt

3

5 = L

"
y1(t)

X1(t)

#
(147)

where

L =

2

4
0 �AA

>

I 0

3

5 2 R2n⇥2n
.

Since the solution of (147) is

"
y1(t)

X1(t)

#
= e

tL

"
y1(0)

X1(0)

#
, we have

P (t+ t0) = e
tL
P (t0)(e

tL)>.

Thus to analysis the behavior of Var(X1(t)),Var(y1(t)), and Cov(X1(t), y1(t)), we need to under-
stand the behavior of etL. A standard method to calculate the matrix exponential of a matrix with
elements in R is though the matrix’s real Jordan normal form and real generalized modal matrix, see
Proposition C.14. For our purpose, the most important question about the Jordan form of L is :

What is the size of the largest Jordan blocks corresponding to L
0
s eigenvalues ?

Because this number will determine the growth rate of elements in e
tL. In Proposition C.20, we

will determine the minimal polynomial of L, combine this result with Proposition C.11, we can get
elements in e

tL that will at most have a linear growth rate. However as we see in Theorem 5.1 there
is a difference between Var(X1(t)) and Var(y1(t)), Var(X1(t)) may have quadratic growth and
Var(y1(t)) will always be bounded, only the growth rate of etL is not sufficient for one to explain
this difference. To show that Var(y1(t)) is always bounded, we need a more detailed analysis of the
real generalized modal matrix of L. We will see that the first n rows of the real generalized modal
matrix has many 0 elements, and these 0 elements will make the first n rows of etL not to have linear
growth rate. This will be shown in Proposition C.23.

Lemma C.18. Let

L =

2

4
0 �AA

>

I 0

3

5

be the coefficient matrix of (147), then the eigenvalues of L are pure imaginary numbers or 0.
Moreover, if 0 is an eigenvalue of L, then its multiplicity is an even number.

Proof. Let f(x) be the character polynomial of �AA
>, thus

f(x) = det(xIn⇥n +AA
>) (148)

Firstly, every eigenvalue of �AA
> is a negative number or 0. That is because if µ is an eigenvalue of

�AA
> and v is an eigenvector of µ, then

µhv, vi = h�AA
>
v, vi

= �hA
>
v,A

>
vi

= �
��A>

v
��2  0,

31



Under review as a conference paper at ICLR 2024

since hv, vi � 0, thus we have µ  0. This implies the zeros of (148) are 0 or negative.

The character polynomial of L is

det(�I2n⇥2n � L) = det(�2In⇥n +AA
>) (149)

= f(�2) (150)

Thus the eigenvalues of L are square roots of zeros of (148). Since the zeros of (148) are 0 or
negative, thus the eigenvalues of L are 0 or pure imaginary numbers. Moreover, since (149) is an
even polynomial, it means that the polynomial only have terms of even degree, thus if 0 is a zero of
(149), then its multiplicity is at least 2.

Next we will calculate the minimal polynomial of L. Combining the calculated results with Proposi-
tion C.11, we will get the size of the biggest Jordan blocks in the Jordan normal form of L. Before
that, we need the following lemma.

Lemma C.19. (Corollary 3.3.10. in Horn & Johnson (2012))Let M 2 Rd⇥d and fM (x) be its
minimal polynomial. Then M is diagonalizable if and only if every eigenvalue of M has multiplicity 1
as a root of fM (x) = 0.

Proposition C.20 (Minimal polynomial of L). Let �1 6= �2 6= ... 6= �l be the distinct eigenvalues of
�AA

>, thus 8i 2 [l],�i 2 R, �i  0. Then the minimal polynomial of L is :

fL(x) = (x�

p
�1i)(x+

p
�1i)...(x�

p
�li)(x+

p
�li)

Note that this implies that eigenvalues of L are purely imaginary or 0, moreover, if �i = 0 for some i,
then the factor x in fL(x) has degree 2.

Proof. Let f�AA>(x) be the minimal polynomial of �AA
>. Since �AA

> is symmetric, thus
diagonalizable, by Lemma C.19, f�AA>(x) only contains linear factor of (x� �i),where �i is an
eigenvalue of �AA

>. Thus we have

f�AA>(x) =
Y

i

(x� �i)

We claim f�AA>(L2) = 0, since:

L
2 =

2

64

�AA
> 0

0 �AA
>

3

75 ,

therefore

f�AA>(L2) =

2

64

f�AA>(�AA
>) 0

0 f�AA>(�AA
>)

3

75 = 0.

Thus if fL(x) is the minimal polynomial of L, we have

fL(x) | f�AA>(x2) =
Y

j

(x�
p
�ji)(x+

p
�ji) (151)

Moreover, since every eigenvalue of L is also a root of fL(x), from (151), we have :

(1) If ±
p
�ji 6= 0 is an eigenvalue of L, then the degree of (x±

p
�ji) in fL(x) must be 1.

(2) If �j = 0 is an eigenvalue of L, then the degree of x in fL(x) must be 1 or 2.
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In the following arguments, we will prove that there is at least a real Jordan block corresponding to
eigenvalue 0 has size 2. We have

L =

2

4
0 �AA

>

I 0

3

5 , L
2 =

2

4
�AA

> 0

0 �AA
>

3

5 .

Thus for some x = (x1, x2) 2 Ker(L2),where x1, x2 2 Rn. Then we have

L
2
·

"
x1

x2

#
=

2

4
�AA

>
· x1

�AA
>
· x2

3

5 = 0.

This implies x1, x2 2 Ker�AA
>. Since �AA

> has eigenvalue 0, x1, x2 may not equal to 0. But

L ·

"
x1

x2

#
=

2

4
�AA

>
· x2

x1

3

5 ,

so if (x1, x2) 2 KerL, x1 must be 0. This completes the proof of Ker(L) 6= Ker(L2). By Proposition
C.10, there exists Jordan block of size 2.

Lemma C.21. Let J0 be the largest Jordan blocks of L corresponding to 0 eigenvalues, then elements
in e

J0t are of O(t). Let Jµ,µ̄ be the largest Jordan blocks of L corresponding to a pair of conjugate
purely imaginary eigenvalues (µ, µ̄), then elements in e

Jµ,µ̄t 2 O(1).

Proof. From Proposition C.20, the size of the largest Jordan blocks of L corresponding to the 0
eigenvalues are 2. Thus the corollary follows from (130) with µ = 0 and m = 2. From Proposition
C.20, the size of the largest Jordan blocks of L corresponding to a pair of conjugate imaginary
eigenvalues (µ, µ̄) are 2. So the corollary follows from (132) with � = 0 and m = 1.

Next we consider the set of real generalized vectors of L. Let SL be the set of vectors that appear
in the real generalized modal matrix ML . Then as shown in Proposition C.20, these generalized
eigenvectors corresponds to an imaginary eigenvalues or 0 eigenvalues. If v 2 SL corresponds to
0, v may in a Jordan chain with length 1 or length 2. If v 2 SL corresponds to a purely imaginary
number, then there exists some w be the eigenvector of an imaginary eigenvalue and v = Re(w) or
v = Im(w).

Thus we have

SL = ([(µ,µ̄)SL(µ, µ̄)) [ SL(0)

where

SL(µ, µ̄) = {v 2 R2n
| 9 w be an eigenvector for µ or µ̄ 2 C� R , v = Re(w) or v = Im(w)},

and
SL(0) = {v 2 R2n

| v is a generalized eigenvector for 0}.

So as in definition C.12, ML has the following form:

ML = [

m1 columnsz }| {
v1, ... , vm1 ,

m2 columnsz }| {
v1+m1 , ... , vm1+m2 ,

m3 columnsz }| {
vm1+m2+1, ... , vm1+m2+m3 ] (152)

where

• {v1, ...., vm1} ⇢ [(�,�̄)SL(µ, µ̄) .

• {v1+m1 , ..., vm1+m2} ⇢ SL(0), and each each vi is a Jordan chain of length 1.

• {vm1+m2+1, ..., vm1+m2+m3} ⇢ SL(0), (vi, vi+1) is a Jordan chain of length 2, and vi =
Lvi+1.
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• m1 +m2 +m3 = 2n.

Lemma C.22. If w = (w1, w2, ..., w2n)> 6= 0 is a type 1 generalized eigenvectors of L correspond-
ing to 0 eigenvalue , then the first n components (w1, w2, ..., wn)> = 0, and the the last n components
(wn+1, ..., w2n)> 2 ker(�AA

>) .

If s = (s1, s2, ..., s2n)> 6= 0 is a type 2 generalized eigenvectors of L corresponding to 0 eigenvalue
, then (s1, ..., sn)> 6= 0 and (s1, ..., sn)>, (sn+1, ..., s2n)> 2 ker(�AA

>).

Proof. Firstly, note that type 1 generalized eigenvectors of L corresponding to 0 are just vectors in
ker(L). Thus if w is a type 1 generalized eigenvectors of L corresponding to 0, we have

L · w =

2

4
0 �AA

>

I 0

3

5 · (w1, w2, ..., w2n)
>

=

2

64

�AA
>
· (wn+1, ..., w2n)>

(w1, ..., wn)>

3

75 = 0

Thus (w1, w2, ..., wn)> = 0 and (wn+1, ..., w2n)> 2 ker(�AA
>) .

Secondly, if s = (s1, s2, ..., s2n)> 6= 0 is a type 2 generalized eigenvectors of L corresponding to 0
eigenvalue, then we have

L · s 6= 0 and L
2
· s = 0.

Since

L
2
· s =

2

4
�AA

> 0

0 �AA
>

3

5 · (s1, s2, ..., s2n)
>

=

2

64

�AA
>
· (sn+1, ..., s2n)>

�AA
>(s1, ..., sn)>

3

75 = 0

This implies (s1, ..., sn)>, (sn+1, ..., s2n)> 2 ker(�AA
>). Moreover, since s is a type 2 generalized

eigenvector, we have (s1, ..., sn)> 6= 0.

From the correspondence between real generalized vectors and real Jordan blocks as described in
Proposition C.13, the real Jordan form JL of L under a similar transformation by real generalized
modal matrix ML has form

JL =

2

666666666666664

m1 columnsz }| {
Jµ1,µ̄1

. . .
Jµm1/2,µ̄m1/2

m2 columnsz }| {
0

. . .
0

m3 columnsz }| {
J
2
0

. . .
J
2
0

3

777777777777775

(153)

Jµk,µ̄k =

"
Re(µk) �Im(µk)

Im(µk) Re(µk)

#
are real Jordan blocks corresponding to conjugate eigenvalue

(µk, µ̄k) and J
2
0 =


0 1
0 0

�
is the real Jordan block corresponding to the type 2 generalized eigenvec-
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tors of 0 eigenvalue. Thus we have

e
tJL = �

m1
i=1(e

tJµi,µ̄i )�m2
i=1 I1 �

m3
i=1 e

tJ
2
0 (154)

where

• e
tJµi,µ̄i is defined in (132) with � = 0, m = 1. Thus elements in e

tJµi,µ̄i are in O(1).

• I1 = [1] 2 R1⇥1.

• e
tJ

2
0 is defined in (130) with µ = 0,m = 2. Matrix elements in e

tJ
2
0 are in O(t).

More precisely, we have

e
tJL =

2

66666666664

. . .
. . .

1 t

1
. . .

1 t

1

3

77777777775

z }| {
m1 +m2

z }| {
m3 columns

(155)

and only elements in the upper diagonal of the last m3 columns belongs to O(t), other elements are
all bounded function of t.

Lemma C.23. Let (etL)i denote the i-th row of etL. Then we have

• If AA
> has 0 eigenvalues, then for i 2 {1, 2, ..., n}, elements in (etL)i are bounded and for

i 2 {n+ 1, n+ 2, ..., 2n}, (etL)i belongs to O(t).

• If AA
> doesn’t have 0 eigenvalues, all elements in e

tL are bounded.

Proof. Let (ML)�1 = [p1, p2, ..., p2n], pi 2 R2n be the inverse of the real generalized modal matrix
of L, then we have

e
tL = ML(e

tJL [w1, w2, ..., w2n]). (156)

If AA> has 0 eigenvalues, from (155), we have e
tJLwi has form

2

66666666666664

...

...

...
t

O(1)
...
t

O(1)

3

77777777777775

9
>>=

>>;
2 O(1), m1 +m2 rows

9
>>>>=

>>>>;

m3 rows

. (157)
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From Lemma C.22, the first n rows of ML has form

2

66666666666666664

0 0 0
0 0 0
0 0 0
...

...
...

0 0 0

· · · · · ·
... vm+2

... · · ·
... v2n

0 0 0

...
...

...

3

77777777777777775

z }| {
m1 +m2

z }| {
m3 columns

9
>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>;

n rows

. (158)

The first n rows of MLe
tJLpi is the matrix-vector product of (158) and (157), we can see the term t

in (157) will product with term 0 in (158), thus the first n rows of MLe
tJLpi belong to O(1). The

last n rows of MLe
tJLpi belong to O(t) because there may exist nonzero elements in the last n rows

of ML that can product with t in (157).

If AA> doesn’t have 0 eigenvalues, from Lemma C.21, all elements in e
JLt are bounded and since

e
tL = ML(etJL(ML)�1, thus all elements in e

tL are bounded.

The covariance evolution directly follows from above calculation.

Proof of covariance in continuous time equation. Denote

P (t0) =

"
Var(y1(t0)) Cov(y1(t0), X1(t0))

Cov(y1(t0), X1(t0)) Var(X1(t0))

#

and e
tL =

"
A(t) B(t)

C(t) D(t)

#
. Since P (t+ t0) = e

tL
P (t0)(etL)>, we have

P (t+ t0) =

"
A(t) B(t)

C(t) D(t)

#"
Var(y1(t0)) Cov(y1(t0), X1(t0))

Cov(y1(t0), X1(t0)) Var(X1(t0))

#2

4
(A(t))> (C(t))>

(B(t))> (D(t))>

3

5

=

"
A(t)Var(y1(t0)) +B(t)Cov(y1(t0), X1(t0)) A(t)Cov(y1(t0), X1(t0)) +B(t)Var(X1(t0))

C(t)Var(y1(t0)) +D(t)Cov(y1(t0), X1(t0)) C(t)Cov(y1(t0), X1(t0)) +D(t)Var(X1(t0))

#2

4
(A(t))> (C(t))>

(B(t))> (D(t))>

3

5

=

2

4
(AVar(y1) +BCov)A> + (ACov +BVar(X1))B> (AVar(y1) +BCov)C> + (ACov +BVar(X1))D>

(CVar(y1) +DCov)A> + (CCov +DVar(X1))B> (CVar(y1) +DCov)C> + (CCov +DVar(X1))D>

3

5

=

"
Var(y1(t0 + t)) Cov(y1(t0 + t), X1(t0 + t))

Cov(y1(t0 + t), X1(t0 + t)) Var(X1(t0 + t))

#

From Lemma C.23, if AA
> has 0 eigenvalue, elements in A(t), B(t) are bounded and elements in

C(t), D(t) are in O(t) and there exist elements in C(t), D(t) belongs to ⇥(t) , thus from above
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equation we have Var(y1(t0 + t)) 2 O(1), Cov(y1(t0), X1(t0 + t)) 2 ⇥(t),Var(X1(t0 + t)) 2

⇥(t2). Moreover, if AA
> doesn’t have 0 eigenvalue, Lemma C.23 implies all elements in

A(t), B(t), C(t), D(t) are bounded, thus all elements in P (t+ t0) are bounded.

C.2.2 COVARIANCE EVOLUTION OF EULER DISCRETIZATION

Proof. The Euler discretization of (147) with step size ⌘ can be written as

2

4
y
t

1

X
t

1

3

5 =

2

4
y
t�1
1

X
t�1
1

3

5+

2

4
0 �⌘AA

T

⌘I 0

3

5 ·

2

4
y
t�1
1

X
t�1
1

3

5 =

2

4
I �⌘AA

T

⌘I I

3

5 ·

2

4
y
t�1
1

X
t�1
1

3

5 . (159)

We want to prove if (yt1, Xt

1) evolve as this equation, then Cov(yt1),Cov(X
t

1) have exponential

growth rate. This can be done by calculating the real Jordan normal form of

2

4
I �⌘AA

T

⌘I I

3

5. Since

AA
>
2 Rn⇥n is a diagonalizable matrix, there exists a matrix P , such that

PAA
>
P

�1 =

2

664

�1

�2

. . .
�n

3

775 (160)

where �1, ..., �n are eigenvalues of AA
>. Moreover, since AA

> is a positive semidefinite matrix, we
have �i � 0, i 2 [n].

Then we have

"
P

P

#2

4
I �⌘AA

T

⌘I I

3

5

2

4
P

�1

P
�1

3

5 =

2

666666666664

1 ��1⌘

1 ��2⌘

. . . . . .
1 ��n⌘

⌘ 1
⌘ 1

. . . . . .
⌘ 1

3

777777777775

.

(161)

This matrix is similar to

2

4
I �⌘AA

T

⌘I I

3

5, thus they have same character polynomial defined by
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det(µI�

2

666666666664

1 ��1⌘

1 ��2⌘

. . . . . .
1 ��n⌘

⌘ 1
⌘ 1

. . . . . .
⌘ 1

3

777777777775

) (162)

= det(

2

666666666664

µ� 1 �1⌘

µ� 1 �2⌘

. . . . . .
µ� 1 ��n⌘

�⌘ µ� 1
�⌘ µ� 1

. . . . . .
�⌘ µ� 1

3

777777777775

) (163)

= det(

2

664

(µ� 1)2 + �1⌘
2

(µ� 1)2 + �2⌘
2

. . .
(µ� 1)2 + �n⌘

2

3

775) (164)

=
nY

i=1

((µ� 1)2 + �i⌘
2) (165)

Recall we have �i � 0, i 2 [n], thus the root of character polynomial is µj , µ̄j = 1± i
p
�j⌘, j 2 [n].

Moreover, we have |µj |= 1 + �j⌘
2
� 1. Thus by Proposition C.16, elements in

2

4
I �⌘AA

T

⌘I I

3

5
t

have an exponential growth rate as ⇥(|µ|t), where µ is the eigenvalue of AA
> which has largest

norm.

Since

P (t) =


Var(yt1) Cov(yt1, X

t

1)
Cov(Xt

1, y
t

1) Var(Xt

1)

�
(166)

=

2

4
I �⌘AA

T

⌘I I

3

5
t�t0

2

4
Var(yt01 ) Cov(yt01 , X

t0
1 )

Cov(Xt0
1 , y

t0
1 ) Var(Xt0

1 )

3

5 (

2

4
I �⌘AA

T

⌘I I

3

5
t�t0

)> (167)

Since elements in matrix

2

4
I �⌘AA

T

⌘I I

3

5
t�t0

has growth rate ⇥(|µ|t), thus elements in P (t) has

growth rate ⇥(|µ|2t).

C.2.3 COVARIANCE EVOLUTION OF SYMPLECTIC DISCRETIZATION

We firstly determine the Symplectic discretization of continuous FTRL (147) with Euclidian norm
regularizer.

Lemma C.24. Discrete continuous FTRL (147) with (Type I method), we get
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2

4
y
n+1
1

X
n+1
1

3

5 =

2

4
I �⌘AA

>

⌘ I � ⌘
2
AA

>

3

5 ·

"
y
n

1

X
n

1

#
. (168)

Proof. Directly calculate gives

y
t+1
1 = y

t

1 � ⌘AA
>
X

t

1, (169)

X
t+1
1 = X

t

1 + ⌘y
t+1
1 (170)

= X
t

1 + ⌘y
t

1 � ⌘
2
AA

>
X

t

1. (171)

Combine above gives
2

4
y
n+1
1

X
n+1
1

3

5 =

2

4
I �⌘AA

>

⌘ I � ⌘
2
AA

>

3

5 ·

"
y
n

1

X
n

1

#
. (172)

This finish the proof.

Let M⌘ =

2

4
I �AA

>
· ⌘

⌘ I �AA
>
· ⌘

2

3

5. Since AA
> is diagonalizable, and AA

>’s eigenvalues are all

non-negative, there exists a matrix P 2 Rn⇥n and P invertible, such that

P
�1

AA
>
P =

2

664

�1

�2

. . .
�n

3

775 (173)

where �1, ..., �n � 0 are eigenvalues of AA
>.

Lemma C.25. M⌘ has real eigenvalues if and only if AA
> has 0 eigenvalue, and in this case the

only real eigenvalue of M⌘ equals to 1. Moreover, every image eigenvalue of M⌘ has norm equals
to 1.

Proof. With (173), we have

det(µI �M⌘) = det(

2

4
µ� I AA

>
⌘

�⌘ µ� I +AA
>
⌘
2

3

5) (174)

= det((µ� I)(µ� I +AA
>
⌘
2) +AA

>
⌘
2) (175)

= det(µ2
� 2µ+ I + µAA

>
⌘
2) (176)

(173)
= det(

2

664

µ
2
� 2µ+ 1 + µ⌘

2
�1

µ
2
� 2µ+ 1 + µ⌘

2
�2

. . .
µ
2
� 2µ+ 1 + µ⌘

2
�n

3

775)

(177)

=
nY

i=1

(µ2
� 2µ+ 1 + µ⌘

2
�i) (178)

From above, we can see if µ makes det(µI �M⌘) = 0, then there exists some i 2 [n], such that

µ
2
� 2µ+ 1 + µ⌘

2
�i = 0. (179)
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(179) is a quadratic function about µ, and has solution µ =
(2�⌘2�i)±

p
(⌘2�i�2)2�4

2 .

To make µ 2 R, we need (⌘2�i � 2)2 � 4 � 0. For sufficient small ⌘ (⌘2�i  2), that can only
happen when �i = 0, and in this case we have µ = 1. Moreover, if (⌘2�i � 2)2 � 4 < 0, we have

kµk
2 = k

(2� ⌘
2
�i)± i

p
4� (⌘2�i � 2)2

2
k
2 (180)

=
(2� ⌘

2
�i)2 + 4� (⌘2�i � 2)2

4
(181)

= 1 (182)

Thus we have

• M⌘ has a real eigenvalue if and only if � = 0 is an eigenvalue of AA
>, and in this case the

real eigenvalue of M⌘ equals to 1.

• Every image eigenvalue of M⌘ has norm equals to 1.

Lemma C.26. The largest Jordan blocks corresponding to µ = 1 have size 2.

Proof. As in proposition C.10, the number of size k Jordan blocks corresponding to eigenvalue 1 is
determined by the dimension of linear space ker(M⌘ � I)k and ker(M⌘ � I)k�1. Since similar
matrixes have same minimal polynomial and same kernel space, thus we can change M⌘ to any
similar matrix. Thus by (173), we only need to consider


P 0
0 P

�
M⌘


P

�1 0
0 P

�1

�
� I =

2

666666666664

0 ��1⌘

0 ��2⌘

. . . . . .
0 ��n⌘

⌘ ��1⌘
2

⌘ ��2⌘
2

. . . . . .
⌘ ��n⌘

2

3

777777777775

(183)

Our claim is : k = 3 is the smallest number to make ⇢k = 0 in proposition C.10, thus by proposition
C.10 the largest Jordan block corresponding to eigenvalue 1 have size 2 .

As shown in lemma C.25, 1 is an eigenvalue of M⌘ if and only if 0 is an eigenvalue of AA
>. Assume

0 is an eigenvalue of AA
> with multiplicity m, then it is easy to see (183) has rank 2n�m. A direct

calculate show the square of (183) equals to

2

666666666664

��1⌘
2

��1⌘
3

��2⌘
2

��2⌘
3

. . . . . .
��n⌘

2
��n⌘

3

��1⌘
3

��1⌘
2 + �

2
1⌘

4

��2⌘
3

��2⌘
2 + �

2
2⌘

4

. . . . . .
��n⌘

3
��n⌘

2 + �
2
n
⌘
4

3

777777777775

(184)

Thus if 0 is an eigenvalue of AA
> with multiplicity m, then there are 2m rows in (184) be 0, thus

(184) has rank 2n� 2m, this shows the ⇢2 in proposition C.10 is not zero, which implies there exists
Jordan blocks with size 2⇥ 2 corresponding to eigenvalue 1.
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Moreover, the cubic of (183) equals to

2

666666666664

�
2
1⌘

4
�1⌘

3
� �

3
1⌘

5

�
2
2⌘

4
�2⌘

3
� �

3
2⌘

5

. . . . . .
�
2
n
⌘
4

�n⌘
3
� �

3
n
⌘
5

��1⌘
3 2�21⌘

4
� �

3
1⌘

6

��2⌘
3 2�22⌘

4
� �

3
2⌘

6

. . . . . .
��n⌘

3 2�2
n
⌘
4
� �

3
n
⌘
6

3

777777777775

(185)

We can see the rank of (185) is also 2n � 2m, thus ⇢3 in proposition C.10 is zero. This finish the
proof of our claim.

The following lemma determines M⌘’s type 1 and type 2 generalized eigenvectors of M⌘ correspond-
ing to eigenvalue µ = 1. Recall v 2 R2n is a type 2 generalized eigenvectors of M⌘ corresponding
to eigenvalue µ = 1 if v 2 ker(M⌘ � I)2 but v /2 ker(M⌘ � I).

Lemma C.27. Let x, y 2 Rn, then

(1) If (x, y) 2 R2n is a type 2 generalized eigenvectors of M⌘ corresponding to eigenvalue
µ = 1, then x, y 2 ker(AA

>) and x 6= 0.

(2) If (x, y) 2 R2n is a type 1 generalized eigenvectors of M⌘ corresponding to eigenvalue
µ = 1, then y 2 ker(AA

>) and x = 0.

Proof. We have

(M⌘ � I)2 =


�AA

>
⌘
2 (AA

>)2⌘3

�AA
>
⌘
3

�AA
>
⌘
2 + (AA

>)2⌘4

�
. (186)

Thus if (x, y) 2 ker(M⌘ � I)2, we have

�AA
>
⌘
2
x+ (AA

>)2⌘3y = 0 (187)

�AA
>
⌘
3
x+ (�AA

>
⌘
2 + (AA

>)2⌘4)y = 0 (188)

(188)� ⌘ · (187) gives

�AA
>
⌘
2
y = 0. (189)

Thus we have y 2 ker(AA
>), and take this back to (188), we get x 2 ker(AA

>).

Moreover, it is directly to verify if (x, y) 2 ker(M⌘ � I), then x = 0 and y 2 ker(AA
>). Thus if

(x, y) is a type 2 generalized eigenvector, x 2 ker(AA
>), x 6= 0 and y 2 ker(AA

>).

Lemma C.28. For an image eigenvalue µ 6= 1 of M⌘ , the largest real Jordan blocks corresponding
to µ have size 2.

Proof. The proof is similar to lemma C.26. Let µ 6= 1 be an image eigenvalue of M⌘, by (179),
there exists an eigenvalue �i of AA

> to make

µ
2
� 2µ+ 1 + µ⌘

2
�i = 0. (190)

Moreover, the algebraic multiplicity of µ as an eigenvalue of M⌘ is same as the algebraic multiplicity
of � as an eigenvalue of AA

>. We assume µ 6= 1 has algebraic multiplicity m.
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Consider the matrix

µ�


P 0
0 P

�
M⌘


P

�1 0
0 P

�1

�
=

2

666666666664

µ� 1 �1⌘

µ� 1 �2⌘

. . . . . .
µ� 1 �n⌘

�⌘ µ� 1 + �1⌘
2

�⌘ µ� 1 + �2⌘
2

. . . . . .
�⌘ µ� 1 + �n⌘

2

3

777777777775

(191)

It is easy to see if

µ
2
� 2µ+ 1 + µ⌘

2
�i = 0 (192)

the i-th and n+ i-th row of (191) are linearly dependent. Moreover, if if µ as rank m, the multiplicity
of �i as an eigenvalue of AA

> is also m. So there are m rows in the first n rows of (191) linearly
dependent on m rows in the last n rows of (191). Thus if µ as rank m, (191) has rank 2n�m.

A directly calculate shows the square of (191) equals to
2

66666664

(µ� 1)2 � �1⌘
2

�1⌘(2µ� 2 + �1⌘
2)

. . . . . .
(µ� 1)2 � �n⌘

2
�n⌘(2µ� 2 + �n⌘

2)
�⌘ ��1⌘

2 + (µ� 1 + �1⌘)2

. . . . . .
�⌘ ��n⌘

2 + (µ� 1 + �n⌘)2

3

77777775

(193)

Moreover, if µ and �i satisfy (192), the i-th row and n+ i-th row are linearly dependent, thus same
as matrix in (191), has rank 2n�m if µ is an eigenvalue of M⌘ with multiplicity m.

Thus we have ⇢2 = 0 in proposition C.10, this implies the real Jordan blocks of a pair of conjugate
eigenvalues (µ, µ̄) have size 2.

Lemma C.29. Let t be a positive integer, and (Mt

⌘
)i be the i-th row of the matrix M

t

⌘
for i =

1, 2, ..., 2n. We have

• If AA
> is singular, then for 1  i  n, elements in (Mt

⌘
)i is bounded, for n+ 1  i  2n,

elements in (Mt

⌘
)i have growth rate O(t).

• If AA
> is non-singular, then for all 1  i  2n, elements in (Mt

⌘
)i is bounded.

Proof. Denote the real generalized modal matrix of M⌘ by M , then we have M
t

⌘
= MJ

t

M⌘
M

�1,
where JM⌘ is the real Jordan normal form of M⌘ . If AA

> has 0 eigenvalue, then from Lemma C.25
and Lemma C.26, 1 is the only possible real eigenvalue of M⌘ , and the largest size real Jordan block
have size 2. Moreover in this case, form Lemma C.27 the real generalized modal matrix of M⌘ has
same structure as the real generalized modal matrix of L as in (158), thus the proof follows from a
same argument as in Proposition C.23.

If AA> doesn’t have 0 eigenvalue, all eigenvalues of M⌘ are image numbers and form Lemma C.25
these eigenvalues have norm 1. From Lemma C.28 the largest size real Jordan blocks of M⌘ is 2⇥ 2,
thus from Proposition C.16 with m = 1, all elements in J

t

M⌘
are bounded, thus all elements in M

t

⌘

are bounded.
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The covariance evolution of Symplectic discretization directly follows from above calculations.

Denote the covariance matrix at time t+ t0 by P (t+ t0) and M
t

⌘
=


A

t
B

t

C
t

D
t

�
, then we have

P (t+ t0) =

2

4
Var(yt+t0

1 ) Cov(yt+t0
1 , X

t+t0
1 )

Cov(Xt+t0
1 , y

t+t0
1 ) Var(Xt+t0

1 )

3

5 (194)

= M
t

⌘

2

4
Var(yt01 ) Cov(yt01 , X

t0
1 )

Cov(Xt0
1 , y

t0
1 ) Var(Xt0

1 )

3

5 (Mt

⌘
)> (195)

=


A

t
B

t

C
t

D
t

�2

4
Var(yt01 ) Cov(yt01 , X

t0
1 )

Cov(Xt0
1 , y

t0
1 ) Var(Xt0

1 )

3

5 (

2

4
A

t
B

t

C
t

D
t

3

5)> (196)

=

2

4
A

tVar(yt01 ) +B
tCov(Xt0

1 , y
t0
1 ) A

tCov(yt01 , X
t0
1 ) +B

tVar(Xt0
1 )

C
tVar(yt01 ) +D

tCov(Xt0
1 , y

t0
1 ) C

tCov(yt01 , X
t0
1 ) +D

tVar(Xt0
1 )

3

5 (

2

4
(At)> (Ct)>

(Bt)> (Dt)>

3

5)>

(197)

The finial equation (197) equals to
2

4
P

t

1 P
t

2

P
t

3 P
t

4

3

5 , (198)

where

P
t

1 = (AtVar(yt01 ) +B
tCov)(At)> + (AtCov +B

tVar(Xt0
1 ))(Bt)>, (199)

P
t

2 = (AtVar(yt01 ) +B
tCov)(Ct)> + (AtCov +B

tVar(Xt0
1 ))(Dt)>, (200)

P
t

3 = (CtVar(yt01 ) +D
tCov)(At)> + (CtCov +D

tVar(Xt0
1 ))(Bt)>, (201)

P
t

4 = (CtVar(yt01 ) +D
tCov)(Ct)> + (CtCov +D

tVar(Xt0
1 ))(Dt)>. (202)

From Lemma C.29, when AA
> is non-singular, all elements in M

t

⌘
are bounded, thus elements in

P (t+t0) is bounded. When AA
> is singular, elements in A

t
, B

t are bounded and elements in C
t
, D

t

has linear growth rate, thus Var(yt) 2 O(1), Cov(Xt
, y

t) 2 ⇥(t) and Cov(Xt

i
, X

t

j
) 2 ⇥(t2).

D DETAILS OF SECTION "LAST"
D.1 RIEMANNIAN GAME DYNAMICS

We collect minimum amount of terminologies on Riemannian game dynamics, for a complete
treatment on this topic, we refer to Mertikopoulos & Sandholm (2018). For the case of population
game G(A, v) where A is the strategy set and v is the set of utilities, the gain from motion from state
x 2 X along z 2 RA is defined as

G
v(x; z) =

X

↵2A
v↵(x)z↵.

The cost of motion C(x; z) represents the intrisic difficulty of moving from state x along a given
displacement vector z, and it is defined to be

C(x; z) =
1

2
gx(z, z)

where g is a smooth assignment of symmetric positive definite matrices gx to each state x 2 X . The
vector of motion from state x is required to maximize the difference between the gain of motion
G

v(x; z) and the cost of motion C(x; z) subject to

ẋ = argmax
z2TxX

{G
v(x; z)� C(x; z)}. (203)

The dynamics equation 203 is called Riemannian game dynamics.
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D.2 SYMPLECTIC GEOMETRY

Symplectic form. In order to present Gromov’s non-squeezing theorem and its implication in
uncertainty principle, we need some terminology of Symplectic Geometry. Roughly speaking,
symplectic geometry studies the geometry of the space (of even dimension) equipped with the
symplectic form. Take Euclidean geometry for example, it studies the vector space Rn with an inner
product structure h, i : Rn

⇥ Rn
! R called the Euclidean structure. A symplectic form on a even

dimensional space Rn is a skew-symmetric bilinear map !(·, ·) : Rn
⇥ Rn

! R, satisfying

• !(u, v) = �!(v, u) for all u, v 2 Rn.

• !(v, v) = 0 for all v 2 Rn.

• !(u, v) = 0 for all v 2 Rn implies that u = 0.

A typical symplectic form is the bilinear map defined by matrix J =

✓
0 In

�In 0

◆
, where In

denotes the identity matrix on Rn. A basis {u1, ..., un, v1, ..., vn} of R2n is called !-standard if
!(uj , uk) = �!(vj , vk) = 0 and !(uj , vk) = �jk.

Symplectomorphism. A symplectomorphism ' between symplectic vector spaces (Rn
,!) and

(Rn
,!

0) is a linear isomorphism ' : Rn
! Rn such that '⇤

!
0 = !, where ('⇤

!
0)(u, v) :=

!
0('(u),'(v)). More generally, let f : (Rn

,!) ! (Rn
,!

0) be a diffeomorphism. Then f is a
symplectomorphism if f⇤

!
0 = !. These definitions generalize to manifold settings, but further

discussion is beyond the scope of current paper. In the plane, symplectic form represents area, so a
symplectic mapping is equivalent to an area preserving mapping.

Linear symplectic width. The main technique in the analysis of general regularizers is to leverage
the power of symplectic geometry, especially a classic work of Gromov in 1980’s Gromov (1985),
to obtain a lower bound for the covariance of the conjugate coordinates. It is known as "Gromov’s
Non-squeezing Theorem",

Theorem D.1 (Gromov, 1985.). If R < r, there does not exist Hamiltonian map ' : R2n
! R2n

such that '(B(r)) ⇢ Z(R), where B(r) = {(x, y) 2 R2n : kxk2 + kyk
2
 r

2
} and Z(R) =

{(x, y) 2 R2n : x2
i
+ y

2
i
 R

2
} for any i 2 [n].

Gromov’s non-squeezing theorem asserts the following fact: Let B(r) be a ball in the phase space
Rn

⇥ Rn, with center (a, b) and radius r: B(r) : kx� ak
2 + ky � bk

2
 r

2. The orthogonal
projection of this ball on any plane of coordinates alway contains a disc of radius r. Now suppose that
the ball is moved by a Hamiltonian flow '(t, ·), i.e., each point of B(r) serves as an initial condition
of a system of Hamiltonian equations. By Liouville’s Theorem, the image '(t, B(r)) at any moment
t has the volume the same as the initial shape ball B(r), but the shape is distorted. If we pair the
conjugate coordinates xi and yi, then the projection of the deformed ball on any (xi, yi)-plane will
never decrease below its original value ⇡r2. The FTRL algorithm induces a linear Hamiltonian
system whose solution is a linear symplectic mapping on phase space Rn1 ⇥ Rn1 . It suffices to
consider a narrowed concept called “Linear symplectic width" which is defined below.

Definition D.2 (Linear symplectic width, Hsiao & Scheeres (2006)). The linear symplectic width of
an arbitrary subset A ⇢ R2n, denoted as wL(A), is defined as:

wL(A) = sup
r2R+

�
⇡r

2 : �(B2n(r)) ⇢ A for some � 2 ASp(R2n)
 
,

where ASp(R2n) denotes the group of affine symplectomorphisms, i.e., linear map followed by
translation.

D.3 PROOF OF THEOREM 5.2
The first ingredient in proving Proposition 5.2 is based on standard results of Taylor series method in
Benaroya & Han (2005). Suppose Y = g(X) where X is a random variable with µX the mean value.
A full Taylor expansion of Y = g(X) about the mean value yields

Y = g(X)|X=µX + (X � µX)
dg

dx
|X=µX +

1

2!
(X � µX)2

d
2
g

dx2
|X=µX + ...
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and the expectation is given by

µY = g(µX) +
�
2
X

2
g
00(µX) + ...

which holds due to E[X � µX ]=0. Furthermore, the variance of Y can be estimated as follows.

�
2
Y
= E[Y 2]� µ

2
X

w g
2(µX) + �

2
X

�
[g0(µX)]2 + g(µX)g00(µX)

�
�

✓
g(µX) +

�
2
X

2
g
00(µX)

◆2

.

(204)

Therefore, if we assume that �4
X

⌧ �
2
X

which can be implied by �X ⌧ 1, the approximation to
order �2

X
for the variance is

�
2
Y
w �

2
X
(g0(µX))

2
.

This estimate enables one to focus only on the linearization of a general differentiable map on the
multivariable case, with inevitably some extra assumption on higher order derivatives. In general,
suppose Y = g(X1, ..., Xn), the Taylor series expansion about the mean value of each variable yield

Var[Y ] =
nX

i=1

✓
@g(µ1, ..., µn)

@Xi

◆2

�
2
i
+

nX

i=1

nX

j=1,j 6=i

✓
@g(µ1, ..., µn)

@Xi

◆✓
@g(µ1, ..., µn)

@Xj

◆
⇢ij�i�j+...

where ⇢ij =
Cov(Xi,Xj)

�i�j
.

The other ingredient we need is the linear symplectic width evolving under a time-dependent lin-
ear Hamiltonian flow, which is the result of Hsiao & Scheeres (2006). In the setting of classic
mechanics, the position and momentum (q,p) in a Hamiltonian system, the covariance matrix of
X = (q1, ..., qn, p1, ..., pn) is given by

P = E[XX
>]

where we assume the system is zero-mean for convenience. If the system is linear

Ẋ = A(t)X

with X(t) = �(t, t0)X0 its solution, then the covariance is mapped as P = �P0�>. Furthermore, if
we partition P into blocks such that

P =

2

64
P11 . . . P1n

...
. . .

...
Pn1 . . . Pnn

3

75

where

Pij =

2

4
E[qiq>j ] E[qip>j ]

E[piq>j ] E[pip>j ]

3

5 .

Then Theorem 3 of Hsiao & Scheeres (2006) asserts that

|Pii(t)| �

✓
wL(P0)

⇡

◆2

for all i = 1, ..., n.

The third ingredient is the Taylor expansion of differential mapping f : V ! W between higher
dimensional spaces Conrad. In general suppose V = Rn and W = Rm. Let U ⇢ V be open and let
fi : U ! R denote the ith component of f , so f is described as a map f = (f1, ..., fm). Let p � 0
be a non-negative integer. Then f is Cp map if and only if all p-fold iterated partial derivatives of the
fi’s exist and are continuous on U . Suppose Hom(V,W ) be the space of linear mappings from V to
W . Then the higher derivative D

p
f is a multi-linear mapping from V

p
! W , i.e.,

D
p
f : U ! Mult(V p

,W ),

where V
p = V ⇥ ...⇥ V is the p-th fold of Cartesian product of V . Choose a 2 U and r > 0 such

that a small neighborhood br(a) ⇢ U for a choice of norm on V . Choose h =
P

hjej 2 V with
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khk < r. For non-negative integer k  p, the higher order derivative as multi-linear mapping acting
on TaU is given by the following expression,

(Dk
f)(a)

k!
(h(k)) =

X

i1+...+in=k

1

i1!...in!
h
in
1 ...h

in
n

@
k
f

@x
i1
1 ...@x

in
n

(a)

where h
(k) = (h, ..., h) 2 V

k and the sum is taken overa ll ordered n-tuples (i1, ..., in) of non-
negative integer whose sum is k. To be more concrete

@
k
f

@x
i1
1 ...@x

in
n

(a) =

✓
@
k
f1

@x
i1
1 ...@x

in
n

(a), ...,
@
k
fm

@x
i1
1 ...@x

in
n

(a)

◆

which is a vector in W . The Taylor formula for differentiable mapping f : V ! W is given as
follows,

f(a+ h) =
pX

j=0

(Dj
f)(a)

j!
(h(j)) +Rp,a(h)

in W , where

Rp,a(h) =

Z 1

0

(1� t)p�1

(p� 1)!
((Dp

f)(a+ th)� (Dp
f)(a))(h(p))dt

satisfies
kRp,a(h)k  Cp,h,a khk

p
, lim

h!0
Cp,h,a = 0

with
Cp,h,a = sup

t2[0,1]

k(Dp
f)(a+ th)� (Dp

f)(a)k

p!
.

With above settings, we are ready to prove the theorem.

Proof. Denote X = (Xt0
i
, y

t0
i
) for short, and let �t(X) be the flow of Hamiltonian system of X .

The Taylor expansion with respect to mean of X , say µ, is computed as follows,

�t(X) = �t(µ) +D�t(µ)(X � µ) +
1

2
D

2
�t(X)(X � µ)(2) + ...

Since the covariance matrix of the random vector given X as a random vector is encoded in the
covariances of �i

t
(X) and �j

t
(X) for i, j 2 [n], i.e., Cov(�i

t
(X),�j

t
(X)). The fundamental property

of covariance implies that for each pair (i, j), Cov(�i
t
(X),�j

t
(X)) is an infinite sum of covariances

given by the Taylor formular. By assumption on the covariance of the initial input X such that
the covariance is small, it suffices to use covariance matrix of D�t(µ)(X � µ) to approximate the
covariance matrix of �t(X), since all the terms other than the linear ones in Cov(�i

t
(X),�j

t
(X)) is

of the higher power of the entries of X � µ. Formally we have

Cov(�t(X)) ⇡ Cov(D�t(µ)(X � µ)).

Since we further assume that the Hamiltonian flow �t(·) has Lipschitz derivatives of arbitrary order,
uniformly, the remainder in the approximation is bounded by a constant multiplied by higher power
of entries in the covariance matrix of X . Recall that we use notation X = (Xt0

i
, y

t0
i
), and apply

Theorem 3 of Hsiao & Scheeres (2006) to the linear part D�t(µ)(X � µ) in the Taylor formula, we
have

(�X
t

i,↵
�y

t

i,↵
)2 � (Cov(Xt

i,↵
, y

t

i,↵
))2 �

w
2
L
(P0)

⇡2

provided the remainder in approximation is zero. Thus for any number strictly less than w
2
L(P0)
⇡2 , say

1
2
w

2
L(P0)
⇡2 , as long as the covariance entries are small enough, we can have

(�X
t

i,↵
�y

t

i,↵
)2 � (Cov(Xt

i,↵
, y

t

i,↵
))2 �

1

2

w
2
L
(P0)

⇡2
.

The proof completes.
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E EXPERIMENTS FOR NON-SINGULAR CASES.
In this section we provide more numerical experiments on the non-singular cases to complete the ver-
ification of Theorem 5.1. We provide experimental results on the evolution of Var(X1,1),Var(y1,1),
the first components of X1 and y1, where (X1, y1) evolve as continuous FTRL equation, Symplectic
discretization. In all experiments, we assume that the payoff matrix is in R2⇥2, thus X1, y1 2 R2, and
at initial time the covariance matrix Cov(y1, X1) is [[8, 2, 1, 3], [2, 13, 7, 9], [1, 7, 9, 2], [3, 9, 2, 10]] 2
R4⇥4, which is the same as the setting mentioned in the main text.

Continuous time FTRL. We illustrate how Var(X1,1(t)) and Var(y1,1(t)) evolve with contin-
uous time FTRL with payoff matrices A4 = [[1,�2], [�1, 1]], A5 = [[2,�3], [�1, 5]], A6 =
[[2,�1.5], [�2, 3]], see (a)(b) Figure 6. In (a) the Var(X1,1(t)) is bounded, and in (b) Var(y1,1(t))
is bounded, which support results of continuous time part in Theorem 5.1 for the non-singular cases.

(a) Var(X1,1(t)), non-singular (b) Var(y1,1(t)), non-singular

Figure 6: Variance evolution of continuous FTRL

Symplectic discretization. We illustrate how Var(Xt

1,1) and Var(yt1,1) evolves with symplec-
tic discretization, the payoff matrices are given as follows: B4 = [[1,�1.1], [�1, 1]], B5 =
[[1,�1.2], [�1, 1]], B6 = [[1,�1.3], [�1, 1]], see Figure 7. From the experimental results, we can
see the variance behavior of symplectic discretization is same as continuous case, which support
results of symplectic discretization part of Theorem 5.1 for the non-singular cases.

(a) Var(Xt
1,1), non-singular (b) Var(yt

1,1), non-singular

Figure 7: Variance evolution of Symplectic discretization
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