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A Theory: Proofs

Proofs provided for theoretical results of Section 3.

A.1 Uniform noise

Proof. Lemma 3.2:
Let c, ϵ, m∗

k(x), and mk(x) by defined as in Eq 2, Eq 3, and Definition 3.1. So,
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Proof. Corollary 3.2.1:
Minimize Eq 6 with respect to ϵ:
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The 2nd-derivative is strictly positive as long as m̄∗
k > 1

c . Assert:

d

dϵ

[
− 2c

c− 1
m̄∗

k +
2c2ϵ

(c− 1)2
m̄∗

k +
2

c− 1
− 2cϵ

(c− 1)2

]
> 0

2c2

(c− 1)2
m̄∗

k − 2c

(c− 1)2
> 0

2c2

(c− 1)2
m̄∗

k >
2c

(c− 1)2

m̄∗
k >

1

c

therefore setting ϵ = c−1
c gives the global minimum when m̄∗

k > 1
c .

Note that the condition that m̄∗
k > 1

c is not necessary for the proof, but it makes the results sensible
while simplifying the proof. In the case that m̄∗

k = 1
c , i.e. classification is no better or worse than

random chance; Eq 6 is constant and so ϵ = c−1
c trivially minimizes Eq 6. In the case that m̄∗

k < 1
c ,

i.e. classification is worse than random chance; then we get a vacuous result in which label noise
actually improves classification and ϵ = c−1

c maximizes Eq 6.

Proof. Theorem 3.3:
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Let u = mi(x)−mk(x). So,
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A.2 Class-dependent noise

Lemma 3.5 follows from Definition 3.4 and the noisy posterior likelihood given in Eq 9.

Proof. Lemma 3.5: Let c, ϵ, m∗
k(x), and mk(x) by defined as in Eq 2, Eq 3, and Definition 3.4. So,
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The proof of Theorem 3.6 is identical to that of Theorem 3.3 except using the value of mk(x) given
in Eq 9 instead of the value given in Eq 5; or equivalently by simply replacing c in Theorem 3.3 with
s+ 1 to yield Theorem 3.6.
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Figure S1: Deep learning results on synthetic 5D data with class-dependent noise.
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(a) c = 10

0.0 0.2 0.4 0.6 0.8 1.0
noise level

0

20

40

60

80

100

ac
cu

ra
cy

uniform
spread1
resamp
resampinv
gapmax
gapmin

(b) c = 30

0.0 0.2 0.4 0.6 0.8 1.0
noise level

0

20

40

60

80

100

ac
cu

ra
cy

uniform
spread1
resamp
resampinv
gapmax
gapmin

(c) c = 50

Figure S2: Deep learning results on synthetic 5D data with feature-dependent noise.

B Further Synthetic Data Experiments

B.1 Learning details

All of our code and experiments are implemented in Python using the PyTorch [5] deep learning
framework. Synthetic data experiments are performed on an internal cluster where each server node
is equipped with 4 NVIDIA 1080Ti GPUs, paired with a 24-core Intel Broadwell E5-2650 v4 CPU
and 125GB of memory. All of these experiments use a simple neural network architecture with 2
fully-connected hidden layers of width 10 each, with tanh activation functions and softmax final layer.
We use cross-entropy loss with the Adam optimizer with learning rate 0.001 [2]. Various settings
for the architecture, loss function, and optimizer were evaluated on clean data (no label noise) to
determine the best

For each noise setting, it takes about 70 seconds on a single GPU to learn 5 randomly-initialized
models. Therefore, the total computation time for the synthetic data experiments is about 24 compute
hours (8 noise types times 10 noise levels times 16 datasets times 70 seconds). The mitigation
strategies take longer because they require a 5-fold cross validation (for CleanLab) or training dual
networks (for CoTeaching). Therefore, we only evaluate these on a subset of noise types (5 noise
types), and numbers of classes/dimensions (2 datasets) for a compute time of about 21 hours for
CleanLab and 11 hours for CoTeaching.

B.2 Results on 5d Data

Figure S1 shows that the we see the same result on class-dependent noise for 5-dimensional data as
already shown in 2-dimensional data. Accuracy on data trained with class-dependent noise depends
on the level of noise ϵ, as well as the spread, s; but it does not depend directly on the number of
classes, c.

Figure S2 shows that the we see similar trends on feature-dependent noise for 5-dimensional data
as already shown in 2-dimensional data. Accuracy on data trained with gap-max feature-dependent
noise performs worse than other types of noise at low levels, ϵ, of noise. Interestingly, the difference
between feature-dependent and class-dependent noise appears to diminish for an increased number of
classes.
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(b) CoTeaching(solid) against baseline (dashed)

Figure S3: Label noise mitigation methods on synthetic 2D data with 10 classes.
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Figure S4: Label noise mitigation methods on synthetic 5D data with 10 classes.

B.3 Results on Mitigation Methods

Fig. S3 shows the same results as Fig. S3, but with the accuracy results of the vanilla (no label noise
mitigation strategy) learning approach in dashed lines to make comparison with this baseline easier.

Fig. S4 compares the clean test accuracy on 10-class, 5-dimensional synthetic data of two label-noise
mitigation methods: CleanLab [4] and CoTeaching [1] against the baseline of no mitigation of label
noise. We see that broadly, CleanLab has little positive effect, and in particular may perform worse
than using no mitigation strategy at low levels of feature-dependent noise; while CoTeaching performs
the same or worse than baseline.

C Further Image Benchmark Experiments

C.1 Learning details

These experiments use publicly available code released authors of the various methods on GitHub:
CleanLab [4], MixUp [7], Symmetric cross-entropy (SCE) [6], and Co-teaching [1]. Each of
the methods is run with default parameters found in the corresponding repositories. The GitHub
repositories and the licenses can be found at:

• CleanLab [4] repository us released under MIT license and can be found at
github.com/cgnorthcutt/confidentlearning-reproduce

• MixUp [7] repository us released under MIT and CC-BY-NC licenses and can be found at
github.com/facebookresearch/mixup-cifar10

• SCE [6] repository can be found at
github.com/HanxunH/SCELoss-Reproduce
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• Co-teaching [1] repository can be found at
github.com/bhanML/Co-teaching

Note that SCE [6] and Co-teaching [1] repositories, and the CIFAR10[3] and CIFAR100[3] dataset
do not have license attached to them. The CIFAR10[3] and CIFAR100[3] are publicly available on
Alex Krizhevsky’s website1, and are a subset of the TinyImages dataset, that is no longer available2.

Our code is developed on an internal cluster, where each server node is equipped with 4 NVIDIA
Tesla A100 cards (each with 40 GB of VRAM), paired with a 64-core AMD EPYC cpu and 256GB
of memory. All of our experiments utilize the ResNet-32 architecture across all mitigation methods.

The total amount of compute can be summarized as follows: each experiment with a single mitigation
method would on average take 3 hours. Given total of 8 mitigation methods (including 5 variations of
CleanLab), 12 noise settings, 2 datasets, and 4 methods of generating noise for each datasets, this
results in a total compute requirement of roughly 2304 compute hours.

C.2 Results on CIFAR

In the following section, we include results for all of the mitigation methods tested: 5 CleanLab
variations, MixUp, SCE, and Co-teaching. Each noise mitigation methods was tested on both
CIFAR10[3] and CIFAR100[3]. For each dataset, the error flipping was driven by either VisHash or
ResNet-50 features, and either by the class noise or feature noise.

Table S1: CIFAR10 clean accuracy with error flipping driven by VisHash features.

Class noise s = 1
ϵ = 0.2
s = 2 s = 5 s = 1

ϵ = 0.4
s = 2 s = 5 s = 1

ϵ = 0.6
s = 2 s = 5 s = 1

ϵ = 0.8
s = 2 s = 5

Baseline 78.15 80.01 80.80 58.94 63.49 66.88 35.26 40.62 48.70 15.07 15.28 19.44
CL Argmax 87.86 87.57 87.44 84.66 85.48 85.62 20.81 75.08 81.95 4.78 8.46 51.48
CL Both 88.74 88.55 88.34 84.23 86.66 86.47 20.59 69.14 81.71 4.79 8.41 34.33
CL PBC 88.20 87.93 88.17 84.62 85.89 85.79 20.59 73.99 82.22 5.09 8.07 47.41
CL PBNR 88.33 88.53 88.41 84.65 86.45 86.58 20.78 69.00 81.91 4.91 8.33 34.41
CleanLab 88.41 88.89 88.87 83.39 86.27 86.66 21.74 73.06 81.73 4.51 7.96 50.69
MixUp 90.62 90.45 90.69 77.77 86.33 85.01 12.27 64.29 76.02 5.16 4.59 28.16
SCE 86.21 86.62 87.38 57.42 82.71 84.23 15.53 42.86 63.47 10.68 6.26 15.90
Co-Teaching 87.23 88.12 88.09 67.79 71.31 71.21 22.80 43.33 50.17 6.19 8.91 22.22

Feature noise
Baseline 76.92 77.43 78.73 59.86 60.84 63.72 35.89 39.49 40.70 16.81 16.87 17.55
CL Argmax 86.96 86.75 87.09 82.50 83.71 84.69 31.44 56.33 76.64 22.86 23.29 27.71
CL Both 87.97 88.24 88.18 81.44 84.78 85.95 32.89 50.96 70.67 21.93 20.95 21.36
CL PBC 87.95 88.02 87.96 81.55 84.11 84.65 32.59 54.12 76.74 22.18 22.63 26.12
CL PBNR 87.75 87.76 87.75 81.30 84.67 86.01 32.06 51.66 70.43 21.88 21.58 22.06
CL Conf Joint 88.56 88.47 88.55 82.47 84.30 86.03 32.06 56.90 76.04 22.10 22.58 26.37
MixUp 88.70 89.85 89.83 76.14 78.30 82.48 41.75 53.59 60.15 10.96 13.08 25.43
SCE 87.26 87.65 87.39 74.71 77.70 83.68 23.97 33.65 66.98 18.81 17.03 15.52
Co-Teaching 87.15 87.24 88.01 64.04 67.77 70.50 28.76 35.09 46.70 12.41 14.23 17.68

1https://www.cs.toronto.edu/~kriz/cifar.html
2Please see http://groups.csail.mit.edu/vision/TinyImages/
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Table S2: CIFAR10 clean accuracy with error flipping driven by ResNet50 features.

Class noise s = 1
ϵ = 0.2
s = 2 s = 5 s = 1

ϵ = 0.4
s = 2 s = 5 s = 1

ϵ = 0.6
s = 2 s = 5 s = 1

ϵ = 0.8
s = 2 s = 5

CL Argmax 87.68 87.72 87.15 84.08 85.68 85.18 28.11 76.19 81.24 4.93 16.44 41.60
CL Both 88.51 88.36 88.42 83.45 86.19 86.44 27.08 70.65 79.86 4.47 13.76 27.20
CL PBC 88.37 88.01 88.29 84.44 86.04 85.72 26.51 74.12 81.50 4.65 15.02 40.64
CL PBNR 88.06 88.04 88.40 83.45 86.33 86.44 27.29 70.31 79.75 4.47 14.66 26.84
CL Conf Joint 88.35 89.10 88.67 82.78 86.50 86.45 25.54 74.18 81.09 4.38 13.86 42.06
MixUp 90.39 90.99 90.47 77.38 84.51 84.30 11.63 64.97 66.61 4.91 5.95 30.39
SCE 86.36 87.29 87.43 50.76 82.77 84.20 12.83 35.97 61.02 10.33 5.94 11.72
Co-Teaching 87.07 87.61 88.29 67.15 70.70 71.70 22.21 45.73 48.29 5.50 6.42 21.21

Feature noise
CL Argmax 87.41 87.24 87.13 83.57 84.56 84.97 38.51 66.82 78.81 9.90 10.10 30.75
CL Both 88.37 88.56 88.18 82.73 85.76 86.51 42.64 59.91 73.92 9.05 10.40 20.89
CL PBC 88.02 87.90 88.07 84.13 85.27 85.24 44.50 65.34 78.61 9.49 9.71 29.25
CL PBNR 88.25 87.96 88.09 83.27 85.87 85.96 41.94 60.20 74.43 8.85 10.45 21.25
CL Conf Joint 88.63 88.89 88.69 83.03 85.72 86.29 41.58 66.40 78.86 9.01 10.07 30.88
MixUp 88.91 90.17 89.99 74.61 80.04 82.40 36.87 59.57 66.65 11.31 12.36 27.38
SCE 86.64 87.48 87.52 63.50 76.46 83.95 16.85 21.37 62.90 16.00 14.61 15.29
Co-Teaching 86.52 87.33 88.25 65.21 66.49 69.98 27.37 34.99 47.09 9.74 9.48 16.82

Table S3: CIFAR100 clean accuracy with error flipping driven by VisHash features.

Class noise s = 1
ϵ = 0.2
s = 2 s = 5 s = 1

ϵ = 0.4
s = 2 s = 5 s = 1

ϵ = 0.6
s = 2 s = 5 s = 1

ϵ = 0.8
s = 2 s = 5

Baseline 57.44 57.20 57.51 42.24 45.49 47.81 24.32 29.43 34.17 10.37 10.63 15.24
CL Argmax 51.72 50.24 50.67 33.52 42.70 44.35 9.09 18.22 31.43 3.64 4.21 7.73
CL Both 53.39 53.92 54.40 34.28 42.89 47.55 9.55 18.53 30.21 3.56 4.37 7.31
CL PBC 52.94 52.22 52.49 34.29 43.52 45.69 9.29 18.14 32.52 3.52 4.39 7.71
CL PBNR 53.30 53.26 53.85 35.13 42.13 47.53 8.84 18.94 29.57 3.75 4.49 6.74
CL Conf Joint 51.27 52.79 53.59 32.84 40.95 45.06 9.11 16.36 30.30 3.83 4.10 6.60
MixUp 64.79 65.18 65.68 50.65 57.35 58.27 18.64 34.07 48.23 5.00 7.58 17.93
SCE 54.88 56.18 54.93 33.72 46.87 50.54 12.59 19.96 36.70 6.26 8.72 12.16
Co-Teaching 55.85 58.66 59.65 37.79 41.83 45.29 21.11 24.43 28.00 6.72 9.28 11.57

Feature noise
Baseline 53.80 54.13 54.64 37.17 38.73 39.34 20.38 21.00 22.71 7.94 8.38 8.72
CL Argmax 48.82 49.43 49.33 32.94 37.00 39.70 10.93 15.17 21.39 6.47 6.70 7.52
CL Both 52.79 53.83 54.41 36.27 37.42 42.58 13.30 15.25 19.86 6.49 6.72 7.20
CL PBC 50.78 51.13 52.03 34.57 38.14 41.50 11.56 15.64 22.12 6.69 6.67 7.23
CL PBNR 52.16 51.88 53.47 34.02 37.30 41.06 12.75 15.54 19.50 6.52 6.79 7.44
CL Conf Joint 51.74 52.75 53.53 33.42 36.36 40.58 11.91 14.64 22.56 6.56 6.86 8.04
MixUp 63.10 62.67 63.42 47.73 50.34 51.87 27.06 29.86 33.76 9.16 10.55 13.28
SCE 53.43 54.02 55.51 32.43 36.66 42.39 9.42 11.70 17.61 7.29 7.41 7.76
Co-Teaching 58.40 58.16 59.28 35.71 38.93 40.80 14.12 14.40 17.05 6.17 6.28 6.08

Table S4: CIFAR100 clean accuracy with error flipping driven by ResNet50 features.

Class noise s = 1
ϵ = 0.2
s = 2 s = 5 s = 1

ϵ = 0.4
s = 2 s = 5 s = 1

ϵ = 0.6
s = 2 s = 5 s = 1

ϵ = 0.8
s = 2 s = 5

CL Argmax 50.63 51.47 50.41 35.45 43.88 45.38 8.50 19.19 34.05 3.37 4.47 8.36
CL Both 53.35 54.13 54.89 35.37 44.82 48.39 9.31 19.86 31.72 3.40 5.34 8.01
CL PBC 51.72 53.04 52.44 35.36 45.70 47.00 9.27 20.04 34.62 3.30 4.80 9.22
CL PBNR 52.82 53.78 54.56 36.25 44.57 47.47 9.68 19.54 31.41 3.58 5.07 8.20
CL Conf Joint 52.07 53.71 53.94 34.32 43.17 45.61 8.76 19.22 32.15 3.27 4.49 7.59
MixUp 65.00 66.30 64.75 50.48 59.76 61.61 18.57 35.89 51.91 4.70 6.93 19.68
SCE 55.78 55.59 56.32 36.72 48.75 51.55 15.41 27.14 39.32 5.92 10.27 12.84
Co-Teaching 56.33 58.50 59.34 38.87 42.51 44.33 20.98 25.24 29.29 6.79 9.63 12.64

Feature noise
CL Argmax 47.14 48.46 48.65 27.19 30.85 39.33 7.92 11.61 18.08 2.55 3.26 4.05
CL Both 49.97 51.57 52.49 28.46 31.46 39.47 8.69 11.88 17.09 3.48 3.67 3.98
CL PBC 49.34 50.87 50.67 27.96 33.26 40.22 8.42 12.76 19.33 2.64 3.14 3.95
CL PBNR 48.93 50.93 51.75 28.67 31.51 39.49 8.46 11.83 16.54 3.17 3.72 3.72
CL Conf Joint 48.33 49.60 51.28 26.35 30.10 38.51 8.59 11.82 18.61 2.70 3.64 4.09
MixUp 61.20 62.00 63.56 46.47 50.63 53.01 25.01 29.42 36.18 6.62 7.03 11.67
SCE 52.31 54.30 54.41 34.20 38.41 44.19 9.16 12.75 19.25 3.82 4.57 4.81
Co-Teaching 56.19 57.35 58.60 35.14 37.78 41.26 13.89 14.43 16.77 4.91 4.54 5.09
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