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A Theory: Proofs

Proofs provided for theoretical results of Section 3]

A.1 Uniform noise
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Proof. Corollary[3.2.1}
Minimize Eq [6] with respect to e:
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Note that the condition that m > %

while simplifying the proof. In the case that m}, = %, i.e. classification is no better or worse than

random chance; Eq|§l is constant and so ¢ = <L trivially minimizes Eq @ In the case that m < %,
i.e. classification is worse than random chance; then we get a vacuous result in which label noise

actually improves classification and € = czl maximizes Eq

is not necessary for the proof, but it makes the results sensible
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Let u = m;(x) — my(z). So,
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A.2 Class-dependent noise

Lemma [3.5]follows from Definition [3.4]and the noisy posterior likelihood given in Eq[9}

Proof. Lemma[3.3} Let ¢, €, mj (), and my(z) by defined as in Eq2] Eq[3} and Definition So,
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The proof of Theorem [3.6]is identical to that of Theorem 3.3|except using the value of my, () given
in Eq[J]instead of the value given in Eq[3} or equivalently by simply replacing ¢ in Theorem [3.3] with
s + 1 to yield Theorem [3.6]
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Figure S1: Deep learning results on synthetic 5D data with class-dependent noise.
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Figure S2: Deep learning results on synthetic 5D data with feature-dependent noise.

B Further Synthetic Data Experiments

B.1 Learning details

All of our code and experiments are implemented in Python using the PyTorch [5] deep learning
framework. Synthetic data experiments are performed on an internal cluster where each server node
is equipped with 4 NVIDIA 1080Ti GPUs, paired with a 24-core Intel Broadwell E5-2650 v4 CPU
and 125GB of memory. All of these experiments use a simple neural network architecture with 2
fully-connected hidden layers of width 10 each, with tanh activation functions and softmax final layer.
We use cross-entropy loss with the Adam optimizer with learning rate 0.001 [2]. Various settings
for the architecture, loss function, and optimizer were evaluated on clean data (no label noise) to
determine the best

For each noise setting, it takes about 70 seconds on a single GPU to learn 5 randomly-initialized
models. Therefore, the total computation time for the synthetic data experiments is about 24 compute
hours (8 noise types times 10 noise levels times 16 datasets times 70 seconds). The mitigation
strategies take longer because they require a 5-fold cross validation (for CleanLab) or training dual
networks (for CoTeaching). Therefore, we only evaluate these on a subset of noise types (5 noise
types), and numbers of classes/dimensions (2 datasets) for a compute time of about 21 hours for
CleanLab and 11 hours for CoTeaching.

B.2 Results on 5d Data

Figure [ST|shows that the we see the same result on class-dependent noise for 5-dimensional data as
already shown in 2-dimensional data. Accuracy on data trained with class-dependent noise depends
on the level of noise €, as well as the spread, s; but it does not depend directly on the number of
classes, c.

Figure |S2|shows that the we see similar trends on feature-dependent noise for 5-dimensional data
as already shown in 2-dimensional data. Accuracy on data trained with gap-max feature-dependent
noise performs worse than other types of noise at low levels, €, of noise. Interestingly, the difference
between feature-dependent and class-dependent noise appears to diminish for an increased number of
classes.
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Figure S4: Label noise mitigation methods on synthetic 5D data with 10 classes.

B.3 Results on Mitigation Methods

Fig.[S3|shows the same results as Fig.[S3] but with the accuracy results of the vanilla (no label noise
mitigation strategy) learning approach in dashed lines to make comparison with this baseline easier.

Fig.[S4 compares the clean test accuracy on 10-class, 5-dimensional synthetic data of two label-noise
mitigation methods: CleanLab [4] and CoTeaching [[I]] against the baseline of no mitigation of label
noise. We see that broadly, CleanLab has little positive effect, and in particular may perform worse
than using no mitigation strategy at low levels of feature-dependent noise; while CoTeaching performs
the same or worse than baseline.

C Further Image Benchmark Experiments

C.1 Learning details

These experiments use publicly available code released authors of the various methods on GitHub:
CleanLab [4], MixUp [7]], Symmetric cross-entropy (SCE) [6], and Co-teaching [1]. Each of
the methods is run with default parameters found in the corresponding repositories. The GitHub
repositories and the licenses can be found at:

* CleanLab [4] repository us released under MIT license and can be found at
github.com/cgnorthcutt/confidentlearning-reproduce

» MixUp [7] repository us released under MIT and CC-BY-NC licenses and can be found at
github.com/facebookresearch/mixup-cifari10

* SCE [6] repository can be found at
github.com/HanxunH/SCELoss-Reproduce


github.com/cgnorthcutt/confidentlearning-reproduce
github.com/facebookresearch/mixup-cifar10
github.com/HanxunH/SCELoss-Reproduce

» Co-teaching [[1] repository can be found at
github.com/bhanML/Co-teaching

Note that SCE [6] and Co-teaching [1]] repositories, and the CIFAR10[3]] and CIFAR100[3]] dataset
do not have license attached to them. The CIFAR10[3] and CIFAR100[3] are publicly available on
Alex Krizhevsky’s websit and are a subset of the Tinylmages dataset, that is no longer availabl

Our code is developed on an internal cluster, where each server node is equipped with 4 NVIDIA
Tesla A100 cards (each with 40 GB of VRAM), paired with a 64-core AMD EPYC cpu and 256GB
of memory. All of our experiments utilize the ResNet-32 architecture across all mitigation methods.

The total amount of compute can be summarized as follows: each experiment with a single mitigation
method would on average take 3 hours. Given total of 8 mitigation methods (including 5 variations of
CleanLab), 12 noise settings, 2 datasets, and 4 methods of generating noise for each datasets, this
results in a total compute requirement of roughly 2304 compute hours.

C.2 Results on CIFAR

In the following section, we include results for all of the mitigation methods tested: 5 CleanLab
variations, MixUp, SCE, and Co-teaching. Each noise mitigation methods was tested on both
CIFAR10[3] and CIFAR100[3]. For each dataset, the error flipping was driven by either VisHash or
ResNet-50 features, and either by the class noise or feature noise.

Table S1: CIFARI10 clean accuracy with error flipping driven by VisHash features.

=02 e=04 e=0.6 e=0.8
Class noise s=1 s=2 s=5|s=1 s=2 s= s=1 s=2 s=5|s=1 s=2 s=5
Baseline 78.15 80.01 80.80 | 58.94 6349 66.88 | 3526 40.62 4870 | 15.07 1528 1944
CL Argmax 87.86 87.57 87.44 | 84.66 8548 85.62 | 20.81 75.08 8195 | 4.78 8.46 51.48
CL Both 88.74  88.55 8834 | 8423 86.66 86.47 | 20.59 69.14 81.71 | 4.79 8.41 34.33
CL PBC 8820 8793 88.17 | 84.62 8589 8579 | 20.59 7399 8222 | 5.09 8.07 47.41
CL PBNR 88.33 88.53 8841 | 84.65 8645 86.58 | 20.78  69.00 8191 | 491 8.33 34.41
CleanLab 88.41 88.89 8887 | 83.39 86.27 86.66 | 21.74  73.06 81.73 | 4.51 7.96 50.69
MixUp 90.62 9045 90.69 | 77.77 86.33  85.01 | 1227 6429 76.02 | 5.16 4.59 28.16
SCE 86.21 86.62 8738 | 5742 8271 84.23 | 1553 42.86 63.47 | 10.68 6.26 15.90

Co-Teaching 87.23  88.12  88.09 67:79 7131  71.21 | 22.80 4333  50.17 | 6.19 8.91 22.22

Feature noise |

Baseline 7692 7743 7873 | 59.86 60.84 63.72 | 3589 3949 40.70 | 16.81 16.87  17.55
CL Argmax 86.96 86.75 87.09 | 82.50 83.71 84.69 | 3144 5633 76.64 | 22.86 2329 2771
CL Both 87.97 8824 88.18 | 81.44 84.78 8595 | 32.89 5096 70.67 | 21.93 2095 21.36
CL PBC 87.95 88.02 87.96 | 81.55 84.11 84.65 | 3259 5412 76.74 | 22.18  22.63  26.12
CL PBNR 8775 8776  87.75 | 81.30  84.67 86.01 | 32.06 51.66 70.43 | 21.88  21.58  22.06
CL Conf Joint | 88.56  88.47  88.55 | 82.47 8430 86.03 | 32.06 5690 76.04 | 22.10 2258  26.37
MixUp 88.70 89.85 89.83 | 76.14 7830 8248 | 41.75 5359 60.15 | 1096  13.08 2543
SCE 8726 87.65 8739 | 7471 7770  83.68 | 23.97 33.65 6698 | 1881 17.03  15.52

Co-Teaching 87.15 8724 88.01 | 6404 67.77 7050 | 28.76  35.09 46.70 | 1241 1423  17.68

"https://www.cs.toronto.edu/ kriz/cifar.html
*Please see http://groups.csail.mit.edu/vision/TinyImages/
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Table S2: CIFAR10 clean accuracy with error flipping driven by ResNet50 features.

e=0.2 e=0.4 e=0.6 e=0.8
Class noise s=1 s=2 s=5]|s= s=2 s=5|ls=1 s=2 s=5|s=1 s=2 s=5
CL Argmax 87.68 87.72 87.15 | 84.08 85.68 85.18 | 28.11 76.19 81.24 | 4.93 16.44  41.60
CL Both 88.51 88.36 8842 | 8345 86.19 8644 | 27.08 70.65 79.86 | 4.47 13.76  27.20
CL PBC 88.37 88.01 88.29 | 8444 86.04 8572 | 26.51 74.12 81.50 | 4.65 15.02  40.64
CL PBNR 88.06 88.04 8840 | 8345 8633 86.44 | 27.29 7031 79.75 | 447 14.66  26.84
CL ConfJoint | 88.35 89.10 88.67 | 82.78 86.50 86.45 | 2554 74.18 81.09 | 4.38 13.86  42.06
MixUp 90.39 90.99 9047 | 77.38 8451 8430 | 11.63 6497 66.61 | 491 5.95 30.39
SCE 86.36 87.29 8743 | 50.76 8277 84.20 | 12.83 3597 61.02 | 10.33 5.94 11.72

Co-Teaching 87.07 87.61 8829 | 67.15 70.70  71.70 | 2221 45773 4829 | 5.50 6.42 21.21

Feature noise |

CL Argmax 8741 8724 87.13 | 83.57 8456 8497 | 3851 66.82  78.81 | 9.90 10.10  30.75

CL Both 88.37 8856 88.18 | 82.73 85.76  86.51 | 42.64 5991 7392 | 9.05 1040  20.89
CL PBC 88.02 8790 83.07 | 84.13 8527 8524 | 4450 6534 78.61 | 9.49 9.71 29.25
CL PBNR 88.25 8796 88.09 | 8327 85.87 8596 | 4194 6020 7443 | 8.85 1045  21.25
CL Conf Joint | 88.63  88.89  88.69 | 83.03 85.72 86.29 | 41.58 66.40 78.86 | 9.01 10.07  30.88
MixUp 8891 90.17 89.99 | 7461 80.04 8240 | 36.87 59.57 66.65 | 11.31 1236 27.38
SCE 86.64 87.48 8752 | 63.50 7646 8395 | 16.85 21.37 6290 | 16.00 14.61 15.29

Co-Teaching 86.52 8733 8825 | 6521 6649 6998 | 27.37 3499 47.09 | 9.74 9.48 16.82

Table S3: CIFAR100 clean accuracy with error flipping driven by VisHash features.

e=0.2 e=0.4 e=0.6 e=0.8
Class noise s = s=2 s=5|s= s=2 s=5|ls=1 s=2 s=5|s= s=2 s=5
Baseline 5744 5720 5751 | 4224 4549 4781 | 2432 2943  34.17 | 10.37 10.63 15.24
CL Argmax 51.72 5024  50.67 | 33.52 4270 44.35 | 9.09 1822 3143 | 3.64 421 7.73
CL Both 5339 5392 5440 | 3428 42.89 4755 | 9.55 18.53  30.21 | 3.56 4.37 7.31
CL PBC 5294 5222 5249 | 3429 4352 4569 | 9.29 18.14 3252 | 3.52 4.39 7.71
CL PBNR 5330 5326  53.85 | 35.13 42.13 4753 | 8.84 1894  29.57 | 3.75 4.49 6.74
CL Conf Joint | 51.27 5279  53.59 | 32.84 4095 45.06 | 9.11 16.36 30.30 | 3.83 4.10 6.60
MixUp 64.79 65.18 65.68 | 50.65 57.35 58.27 | 18.64 34.07 4823 | 5.00 7.58 17.93
SCE 54.88 56.18 5493 | 33.72 46.87 50.54 | 1259 1996 36.70 | 6.26 8.72 12.16

Co-Teaching 5585 58.66 59.65 | 37.79 41.83 4529 | 21.11 2443 28.00 | 6.72 9.28 11.57

Feature noise |

Baseline 53.80 54.13  54.64 | 37.17 3873 39.34 | 2038 21.00 2271 | 7.94 8.38 8.72
CL Argmax 48.82 4943 4933 | 3294 37.00 39.70 | 1093 15.17 2139 | 6.47 6.70 7.52
CL Both 5279 5383 5441 | 3627 3742 4258 | 1330 1525 19.86 | 6.49 6.72 7.20
CL PBC 50.78  51.13  52.03 | 3457 38.14 4150 | 11.56 15.64 22.12 | 6.69 6.67 7.23
CL PBNR 52.16  51.88 5347 | 34.02 3730 41.06 | 12.75 1554 19.50 | 6.52 6.79 7.44
CL Conf Joint | 51.74 5275  53.53 | 3342 3636 4058 | 11.91 14.64 2256 | 6.56 6.86 8.04
MixUp 63.10 62.67 63.42 | 47.73 5034 51.87 | 27.06 29.86 33.76 | 9.16 10.55  13.28
SCE 5343  54.02  55.51 | 3243  36.66 4239 | 942 11.70  17.61 | 7.29 7.41 7.76

Co-Teaching 58.40 58.16 59.28 | 35.71 3893  40.80 | 14.12 1440 17.05 6:17 6:28 6.08

Table S4: CIFAR100 clean accuracy with error flipping driven by ResNet50 features.

e=0.2 e=0.4 e=0.6 e=0.8
Class noise s=1 s=2 s=5|s= s=2 s=5|s=1 s=2 s=5|s= s=2 s=5
CL Argmax 50.63 5147 5041 | 3545 43.88 4538 | 8.50 19.19  34.05 | 3.37 447 8.36
CL Both 5335  54.13 54.89 | 3537 44.82 4839 | 9.31 19.86  31.72 | 3.40 5.34 8.01
CL PBC 51.72  53.04 5244 | 3536 45770 47.00 | 9.27 20.04 34.62 | 3.30 4.80 9.22
CL PBNR 52.82 53778 54.56 | 36.25 4457 4747 | 9.68 19.54  31.41 | 3.58 5.07 8.20
CL ConfJoint | 52.07 53.71 5394 | 3432 43.17 45.61 | 8.76 19.22 3215 | 3.27 4.49 7.59
MixUp 65.00 6630 64.75 | 5048 59.76 61.61 | 1857 35.89 5191 | 4.70 6.93 19.68
SCE 5578 5559 56.32 | 36.72 48.75 51.55 | 1541 27.14 3932 | 592 10.27 12.84

Co-Teaching 5633 5850 59.34 | 38.87 4251 4433 | 2098 2524 2929 | 6.79 9.63 12.64

Feature noise |

CL Argmax 47.14 4846  48.65 | 27.19 3085 3933 | 7.92 11.61  18.08 | 2.55 3.26 4.05

CL Both 4997  51.57 5249 | 2846 3146 3947 | 8.69 11.88  17.09 | 3.48 3.67 3.98
CL PBC 4934  50.87 50.67 | 27.96 3326 40.22 | 8.42 1276 1933 | 2.64 3.14 3.95
CL PBNR 4893 5093 5175 | 28.67 31.51 3949 | 846 11.83  16.54 | 3.17 3.72 3.72
CL Conf Joint | 48.33  49.60 51.28 | 26.35 30.10 3851 | 8.59 11.82  18.61 | 2.70 3.64 4.09
MixUp 61.20 62.00 63.56 | 46.47 50.63 53.01 | 25.01 2942 36.18 | 6.62 7.03 11.67
SCE 5231 5430 5441 | 3420 3841 4419 | 9.16 1275 1925 | 3.82 4.57 4.81

Co-Teaching 56.19 5735 58.60 | 35.14 37.78 4126 | 13.89 1443 16.77 | 491 4.54 5.09
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