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Abstract

LLMs often fail to meet the specialized001
needs of distinct user groups due to their002
one-size-fits-all training paradigm (Lucy003
et al., 2024) and there is limited research on004
what personalization aspects each group ex-005
pect. To address these limitations, we pro-006
pose a group-aware personalization frame-007
work, Group Preference Alignment (GPA),008
that identifies context-specific variations in009
conversational preferences across user groups010
and then steers LLMs to address those pref-011
erences. Our approach consists of two012
steps: (1) Group-Aware Preference Extrac-013
tion, where maximally divergent user-group014
preferences are extracted from real-world con-015
versation logs and distilled into interpretable016
rubrics, and (2) Tailored Response Genera-017
tion, which leverages these rubrics through018
two methods: a) Context-Tuned Inference019
(GPA-CT), that dynamically adjusts responses020
via context-dependent prompt instructions, and021
b) Rubric-Finetuning Inference (GPA-FT),022
which uses the rubrics to generate contrastive023
synthetic data for personalization of group-024
specific models via alignment. Experiments025
demonstrate that our framework significantly026
improves alignment of the output with respect027
to user preferences and outperforms baseline028
methods through automated evaluations, while029
maintaining robust performance on standard030
benchmarks.031

1 Introduction032

Large Language Models (LLMs) are pivotal in033

modern natural language processing (NLP), driving034

applications such as conversational agents, content035

generation, and automated reasoning (Liu et al.,036

2024; Tian et al., 2024; Mondal et al., 2024). De-037

spite their remarkable capabilities, LLMs often fall038

short in addressing the specialized needs of distinct039

user groups due to their one-size-fits-all train-040

ing paradigm (Lucy et al., 2024). This approach041

predominantly relies on asking human or LLM042

judges to provide ratings (e.g. preferred and dispre- 043

ferred labels) to alternative outputs for the same in- 044

put query to create paired preference data (Ji et al., 045

2024). These approaches assume that human and 046

AI annotators accurately reflect the preferences of 047

the target user population. Moreover, when models 048

are aligned to this preference data, model outputs 049

will be steered toward the most prevalent prefer- 050

ences of the annotator population, even when users 051

express diverse preferences for the same task/query. 052

Broad preference alignment like this can lead 053

LLMs to produce suboptimal outputs for a target 054

user base for two primary reasons. First, the dis- 055

tribution of preferences in the target population 056

may differ from those expressed in the annotator 057

population (e.g., if annotators are generally non- 058

experts within a domain, but the target users are 059

experts). Examples include domain-specific exper- 060

tise (e.g., a mathematician may struggle with aca- 061

demic writing) and cultural norms (e.g., Japanese 062

audiences may prefer narratives on family bonding, 063

while U.S. audiences favor individualistic themes). 064

Second, even across populations, preference dif- 065

ferences may vary with respect to intent/domain 066

(Figure 6 and Table 5). For instance, in education, 067

experts may expect precise terminology and as- 068

sume foundational knowledge, while novices may 069

desire real-world analogies and step-by-step ex- 070

planations. In programming, experts often prefer 071

concise debugging strategies, whereas novices may 072

seek explicit concept explanations with visual aids. 073

Existing methods for group-aware preference 074

adaptation (Balepur et al., 2025; Li et al., 2024a) 075

focus on the first issue only and aim to improve 076

response generation through the use of personas. 077

These approaches either use abstract descriptions of 078

personas or auxiliary data reporting general group 079

preferences (e.g., cultural norms) to generate syn- 080

thetic preference data. However, these methods 081

are limited by the use of external preference sig- 082

nals or internal LLM knowledge of likely prefer- 083
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Sec 3.3.1 Intent specific preference 

extraction based on satisfaction judgements 

I=Code debugging, J=-1, E=User prefers more 

detailed explanation beyond the obvious 

suggestions

I=Code debugging, J=+1, E=User appreciates 

actionable debugging steps with practical 

verification techniques

…

I=Code debugging, J=-1, E=User expects deeper 

analysis rather than generic debugging tips

I=Code debugging, J=+1, E=User prefers 

advanced and precise explanations.

…
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I=Code debugging, J=+1, E=User prefers 

advanced and precise explanations.

Sec 3.1.2 Summarize group differences across preference 
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I=Code debugging, J=-1, E=User prefers more 

detailed explanation beyond the obvious 

suggestions
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Verification
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Figure 1: Overview of GPA Rubric Extraction. It Illustrates group aware preference extraction across two groups
(Expert v. Novice) with conversations about Docker and .env file integration. First intent, satisfaction judgments,
and individual preferences are extracted from conversations (Sec 3.1 and the extracted preferences are grouped into
minibatches and contrasted to extract salient differences across groups and summarize into maximally divergent
intent-specific rubrics (Sec 3.1.2).

Context-Tuned Inference (GPA-CT)3.2.1

To integrate your .env
file with your docker-
compose.yml, start by 

ensuring both files are 

located in the same 

directory; this is crucial 

for them to interact 

properly. In your .env
file, you should list 

environment settings 

such as 

DATABASE_USER=root, 

placing each setting on a 

new line. 

I'm trying to set up Docker 

for the first time for a small 

project and I don't 

understand how to use the 

.env file with Docker 

Compose

No worries! The .env file 

is where you can store 

environment variables, 

like settings or 

configurations, that 

Docker can use.

I made a file that says 

.env and put some 

settings in it like 

DATABASE_USER=root

Classify user intent & group, 

retrieve relevant rubric

I=Code debugging, G=Novice

Augment system prompt to generate 

group-specific tailored response

Code debugging

Verification

Simplicity

Step-by-step

guidance

Technical depth

# Task: You are a helpful 

assistant…

# Conversation History: 

…

# User Input: I made a 

file that says .env and 

put some settings in it 

like 

DATABASE_USER=root

# Output Rules to Follow

Use basic explanations

and give step-by-step 

guidance…

Rubric Finetuning Inference (GPA-FT)3.2.2

To integrate your .env file with your 

docker-compose.yml file, follow these 

steps:

1. Place Both Files in the Same 

Directory: Make sure your .env file and 

docker-compose.yml file are located in the 

same directory. This is important for them 

to work together properly.

2. Create Your .env File: In your .env file, 

list your environment settings. Each 

setting should be on a new line. For 

example…

Classify user group and 

retrieve relevant FT model

G=Novice

# Task: You are a helpful 

assistant…

# Conversation History: …

# User Input: I made a file that 

says .env and put some 

settings in it like 

DATABASE_USER=root

Novice

Example conversation

Figure 2: Illustrates tailored response generation for a
Novice user with a Code debugging intent using GPA-CT
(Sec 3.2.1) and GPA-FT (Sec 3.2.2).

ences for a specified user segment. Specifically,084

they are unlikely to capture the full range of group-085

specific preferences expressed across various con-086

texts, which can be directly observed via in-situ087

user interactions. As users prefer responses for088

varied reasons (Kirk et al., 2024), models tuned089

on preference data should customize outputs to090

meet these user-group specific needs (Salemi et al.,091

2024b; Li et al., 2024a) while also keeping in mind092

that intent further modulates user preferences. This093

highlights the need for group-aware contextual094

preference learning to extract users’ diverse prefer-095

ences for tailored response generation.096

In this paper, we aim to address this issue097

by proposing a novel group-aware customization098

framework, Group Preference Alignment (GPA),099

that automatically identifies context-specific vari-100

ations in conversational preferences across user101

groups and steers LLMs to address those pref- 102

erences. Our approach consists of two compo- 103

nents. First, we propose a method to extract 104

salient group preference differences from real- 105

world conversation logs. We then distill the output 106

into interpretable rubrics that summarize intent- 107

specific guidance for each group (Fig 1). If the 108

groups do not express significant preference dif- 109

ferences on specific intents, the returned rubric 110

set will be empty (See 6), hence signifying no 111

need for customization. Our method is gener- 112

alizable across domains/ user groups (See I). Sec- 113

ond, we propose two methods to use these rubrics 114

to tailor personalized responses for each group: 115

1) Context-Tuned Inference (GPA-CT) dynami- 116

cally adjusts responses via context-dependent in- 117

prompt augmentation which is data-efficient (Fig- 118

ure 7) and training-free, and Rubric-Finetuning 119

Inference (GPA-FT) uses the learnt rubrics to gen- 120

erate contrastive synthetic data to fine-tune separate 121

models towards group-specific preferences (Fig 2). 122

Our experiments on two in-situ conversa- 123

tional datasets (Microsoft Copilot logs and Wild- 124

Chat (Zhao et al., 2024)) demonstrate that models 125

customized with GPA outperform all baseline meth- 126

ods, including static-preference, persona-guided 127

and zero-shot models, using LLM persona-guided 128

evaluation (Koutcheme et al., 2024; Dong et al., 129

2024) and improves user satisfaction (Section 5). 130

Notably, alignment with GPA produces these im- 131

provements without compromising LLM’s core ca- 132

pabilities, as evidenced by robust performance on 133

standard benchmarks such as MT-Bench (Zheng 134
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et al., 2023) and Arena-Hard (Li et al., 2024b).135

2 Problem Definition and Notations136

We hypothesize that intent-driven user preferences137

can be automatically extracted from real-world con-138

versation logs between human and AI agents, en-139

abling more effective model alignment than tradi-140

tional methods that do not incorporate direct user141

feedback. Consider a user group G that generates142

queries for a specific intent I. The responses from143

the LLM, denoted as YI = LLM(XI), receive user144

judgments JG(YI) in the form of thumb feedback145

or implicit textual feedback (eg. thanking the AI).146

When these preferences diverge from the general147

population’s judgments JP (YI), we hypothesize148

that aligning the model with group-specific signals149

will improve response relevance and user satisfac-150

tion. Note that if JG(YI) ≈ JP (YI), alignment to151

JG(YI) will simply reinforce existing preferences152

in the general population without degrading perfor-153

mance. Unlike RLHF (Ouyang et al., 2022) and154

RLAIF (Bai et al., 2022), which optimize for major-155

ity preferences, our approach leverages in-situ user156

judgments to achieve fine-grained, group-specific157

alignment, that is of particular use when user needs158

deviate significantly from broader norms.159

Let C = {C1, C2, . . . , Cn} represent a set of160

conversations from a collection of users, where161

each Ci is an individual conversation. Let each162

conversation Ci, consisting of t interaction turns163

of user-agent utterances, be represented as: Ci =164

[U1, A1, . . . , Ut, At]. Here, Ut refers to a user ut-165

terance and At refers to an AI agent response.166

The user-agent conversations Ci often consist of167

multiple turns, i.e., t ≥ 1. Each conversation168

Ci is labeled with a predicted intent Ii (see e.g.,169

Wan et al. (2024)). Each conversation turn Ut170

has been labeled with a user satisfaction judgment171

Ji ∈ [−1,+1] using Lin et al. (2024) and intent172

Ii Wan et al. (2024)). Finally, we assume that173

each user u is associated with one of two groups,174

ie. u ∈ G or u ∈ G′. Note that in cases where175

contrasting group labels are unavailable, GPA can176

also be used by comparing a single group G against177

the overall population P . We do not make any as-178

sumptions about |G| as long as there are sufficient179

interactions from users in G to extract preferences.180

3 Group Preference Alignment (GPA)181

Our GPA framework enables context-aware, user-182

group-specific adaptation, ensuring more precise183

and effective model alignment beyond more con- 184

ventional preference optimization using auxiliary 185

annotators. The overall approach to align models 186

with in-situ preferences involves two main steps: (i) 187

Generating rubrics with group-aware preference ex- 188

traction (Section 3.1), and (ii) Tailoring responses 189

based on the extracted rubrics (Section 3.2). We 190

discuss each in more detail below. 191

3.1 Group-Aware Preference Extraction 192

GPA automatically identifies context-specific vari- 193

ations in conversational preferences across user 194

groups G and G′ and summarizes the divergent 195

preferences into rubrics (Figure 1 and Algorithm 1). 196

Specifically, given conversations regarding specific 197

intents I from users in G and G′, we first extract 198

satisfaction judgments J from user responses. The 199

algorithm then uses the judgments to infer indi- 200

vidual preferences E that explain the user’s pos- 201

itive or negative feedback (Section 3.1.1). Next, 202

the preferences are summarized into generalized 203

preference aspects A, capturing salient differences 204

between two groups (Section 3.1.2). The resulting 205

group-specific rubrics serve as the foundation for 206

group-aware customization. 207

3.1.1 Extract Intent-Specific Preferences 208

Algorithm 1 (Lines 1-13) show how we learn group- 209

specific preference rubrics based on user conversa- 210

tions and their corresponding intent labels or con- 211

text. The input includes a conversation set C, user 212

groups G and G′, intent labels I, a Likert scale 213

threshold ℓ, and a minibatch size m. The algorithm 214

processes each conversation Ci consisting of ti in- 215

teraction turns. For each turn Sj , the algorithm 216

checks whether the turn expresses implicit satis- 217

faction (SAT) or dissatisfaction (DSAT) judgment 218

through a function J (Sj). If the turn expresses 219

SAT or DSAT (ie. abs(J (Sj)) = 1), we use an 220

LLM to infer individual preferences and generate 221

an explanation (E+ or E− for SAT and DSAT judg- 222

ments respectively) [Prompts in 11 and 12]. These 223

explanations, E+ and E−, are then grouped by in- 224

tent Ik for each user group G and G′. At the end of 225

this phase, the preferences are organized into sets 226

by user groups, intents and satisfaction. 227

3.1.2 Summarize Group Differences 228

Algorithm 1 (Lines 14-30) describe how group- 229

specific preferences are summarized into intent- 230

specific rubrics. For each intent Ik ∈ I, the algo- 231

rithm partitions the preferences of each user group 232
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(G,G′) into minibatches of size m. The algorithm233

then iterates over pairs of minibatches, one from234

each group, and summarizes/updates the divergent235

aspects of their expressed preferences. Specifically,236

for a pair of minibatches (Ea
G,Ik

and Eb
G′,Ik

), the al-237

gorithm extracts a set of aspects A that summarize238

how a preference differs across the two groups (see239

Figure 1 for illustration). The algorithm also esti-240

mates a divergence score r based on Likert scale241

to rate the significance of each aspect. If the diver-242

gence score r exceeds a threshold ℓ, indicating a243

significant difference in preferences between the244

two groups, the aspect Aab is added to the rubric245

for the current intent RIk . Each iteration is pro-246

vided the aspects from the previous round, so the247

algorithm can update/refine the aspects as it pro-248

cesses all the minibatches. The process continues249

until all significant divergent aspects have been250

identified and included in RIk . Finally, the rubric251

for this intent is added to the global rubric list R.252

The algorithm returns the full set of rubrics R and253

an interpretation of each rubric. These capture the254

distinct preference patterns of the two user groups255

across intents.256

3.2 Response Tailoring257

After learning rubrics in section 3.1, we outline the258

following two methods to align LLMs based on259

these learnt rubrics/preferences. The first method,260

GPA-CT, involves dynamically augmenting prompts261

to produce group-aware tailored responses. It dy-262

namically adjusts the LLM prompts incorporating263

learnt rubrics from 3.1 during inference, condi-264

tioned on intent and user group identified for each265

conversation (Section 3.2.1). The second approach,266

GPA-FT uses learnt rubrics to synthetically augment267

conversational data with paired responses that re-268

flect group-specific preferences conditioned on spe-269

cific intents. This process produces a tailored set270

of preference data. We finetune a group-specific271

LLM using this enriched dataset to enhance their272

alignment to the targeted group (Section 3.2.2).273

3.2.1 GPA-CT: Dynamic Context-Tuning274

Context-tuning with GPA-CT is an adaptive process275

that infers the user’s group and intent, retrieves276

the relevant rubrics for that intent, and then mod-277

ifies the instructions sent to the LLM to gener-278

ate the next output (Algorithm 2 in Appendix B279

and Figure 2). Unlike finetuning, which adjusts a280

model’s weights based on a fixed training dataset,281

context-tuning allows for dynamic adjustments to282

the model’s prompt based on real-time analysis of 283

user intent and group membership. This means the 284

model can adapt to the specific needs of different 285

user groups on-the-fly without requiring special- 286

ized group-specific models. GPA-CT offers several 287

advantages over finetuning, including the flexibility 288

to adapt to user-specific needs without retraining 289

and enhanced efficiency as it avoids the extensive 290

resources typically required for finetuning. 291

3.2.2 GPA-FT: Rubric-Guided Contrastive 292

Data Generation and Fine-tuning 293

Rather than merely fine-tuning LLMs with the train- 294

ing data comprising of preference signals from 295

user groups (G and G′), we use our learned rubrics 296

to generate more realistic contrastive pairs that 297

vary according to observed preference dimensions. 298

GPA-FT may be favored over GPA-CT in situations 299

where the LLM is less steerable with prompt-tuning 300

(eg. smaller models) and/or when lower latency 301

is desired. Specifically, we finetune LLMs using 302

synthetic training data generated with intent- and 303

group-aware rubrics to reflect in-situ user pref- 304

erences. Algorithm 4 (Appendix B) describes 305

our approach to rubric-guided data generation. It 306

takes as input our dataset of conversations and 307

augments the existing AI responses with paired 308

responses of opposing preference polarity, condi- 309

tioned on the group-aware rubrics. Consider a con- 310

versation Si up to the jth user utterance, with Aj 311

referring to the corresponding AI response, and 312

J (Si) ∈ {+1,−1} referring to the user satisfac- 313

tion judgment for Aj . To generate contrastive aug- 314

mented samples, we modify responses as follows: 315

If J (Si) = +1 (preferred response), we generate a 316

dispreferred response Aaug by instructing the LLM 317

to incorporate features from the opposing group’s 318

rubric for that intent. Otherwise, if J(Si) = −1 319

(dispreferred response), we generate a preferred 320

response Aaug by instructing the LLM to align the 321

output with the user’s group rubric for that intent. 322

When applied to the full training data, the proce- 323

dure produces an augmented dataset Daug where 324

each original instance is paired with a contrastive 325

sample: Taug = (Si, Aaug, −J (Si)). Note that 326

Jaug = −J (Si) ensures contrastive preference 327

learning. Next, we train separate models for each 328

user group. Given a prompt S and responses A+ 329

(preferred) and A− (dispreferred), the likelihood 330

of selecting the preferred response is modeled as: 331

Pθ(A+|S) =
efθ(S,A+)

efθ(S,A+) + efθ(S,A−)
(1) 332
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Figure 3: Rubrics/Aspects on which Experts and Novices Differ in the Education and Programming Domains as
extracted from BingChat Dataset on 3 intents (Information Requests, Program Inquiry, Information Seeking) with
the Likert-Scale Rating (1-5) on the x-axis and aspect/rubric names on the y-axis.

where fθ(S,A) is a scoring function parameterized333

by θ, representing the model’s preference align-334

ment. The DPO objective is to maximize the log-335

likelihood of the chosen response:336

LDPO = E(S,A+,A−)∼Daug
[logPθ(A+|S)] (2)337

By optimizing LDPO, the model learns to prefer338

responses aligned with group-specific rubrics339

while discouraging responses reflecting dispre-340

ferred aspects. We train two specialized DPO mod-341

els (PθG and PθG′ ) using contrastive samples from342

Daug for each (See Algorithm 5, Appendix B) for343

how we apply the finetuned models for inference).344

This results in: [1] PθG , optimized to generate re-345

sponses aligned with the preferences of user group346

G. [2] PθG′ , optimized for user group G′ 1.347

4 Experimental Setup348

We evaluate GPA using real-world conversational349

logs from Microsoft Copilot and Wildchat (Zhao350

et al. (2024)) data. For the intent category pro-351

gramming and software, we use 8000 Copilot con-352

versations and 8200 WildChat conversations. We353

group conversations into expert (i.e., G; Copilot:354

2200, WildChat: 6000) and novice (i.e., G′; Copilot:355

5800, WildChat: 2000) groups by using an auxil-356

iary expertise classifier 2, (Copilot: 5800 novice,357

2200 expert; WildChat: 6000 expert, 2000 novice).358

Next, we consider the intent category Creative writ-359

ing and editing in WildChat and form user groups360

based on metadata, specifically location, partition-361

ing users into USA (8000 conversations) and China362

(800 conversations) (Full Dataset Statistics in Ap-363

pendix). We partitioned the above datasets into364

90:10 train:test split to ensure no training signal365

1We also experiment with KTO but found DPO to be supe-
rior (Appendix H)

2We manually inspected 100 random conversations and
found that the classification was reliable (κ = 0.88 agreement
computed between the first author and GPT-4o).

leakage. Next, we use predicted SAT/DSAT judg- 366

ments to learn divergent preferences on the training 367

data. Following Lin et al. (2024) and the taxonomy 368

proposed by Shi et al. (2024), we used GPT-4o 369

to classify bot responses resulting in a subsequent 370

user SAT, DSAT, or Neither judgment. We fine- 371

tune using synthetic data constructed from the full 372

training set. 373

Models and GPA Baselines. For rubric extrac- 374

tion, we use GPT-4o and for tailored response 375

generation (GPA-CT and GPA-FT), we use two 376

base LLMs (M ): gemma-2-9b-it3 (Team et al., 377

2024) and Meta-Llama-3-8B4 (Grattafiori et al., 378

2024). We compare GPA-CT and GPA-FT against 379

several baselines: a) Zero-shot (Base) responses, 380

b) Persona-Aware (Persona-P): which augments 381

the input prompt with persona (P) information to 382

mimic responses from specific user-groups through 383

role-playing behavior, (Prompt 10) c) Persona- 384

Criteria-Aware (Static-P): which uses M to first 385

generate preference criteria for G and G′, and 386

then append the generated criteria to the prompt 387

(Prompt 9), d) KTO (KTO-P): which fine-tunes an 388

LLM with SAT and DSAT samples to tailor towards 389

each persona using KTO (Ethayarajh et al., 2024), 390

e) KTO-Augmented (KTO-P’): which also uses 391

KTO to finetune an LLM on the SAT and DSAT 392

samples from each persona, this time augmented 393

with the contrastive pairs generated by rubrics. 394

Evaluation Metrics. We evaluate responses 395

across three key dimensions: 1) Customization 396

to User-Group Preferences: We assess align- 397

ment with group-specific preferences using Win- 398

Tie-Lose (WTR) rates computed via GPT-4o-as- 399

a-Judge with Persona-Role Playing (Dong et al., 400

2024) (Prompt 18). We also report WTR results for 401

3https://huggingface.co/google/gemma-2-9b-it
4https://huggingface.co/meta-llama/

Meta-Llama-3-8B
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Model LLM Pref (W/L/T) LLM conf ≥ 75 LLM Pref (W/L/T) LLM conf ≥ 75

Intent=Programming/Group=Novice Intent=Programming/Group=Expert

GPA-CT vs Base 65.82 / 25.00 / 9.18 67.53 / 32.47 57.10 / 42.04 / 0.86 57.46 / 42.54
GPA-CT vs Persona 60.44 / 31.96 / 7.60 73.97 / 26.3 61.10 / 38.30 / 0.6 61.91 / 38.09
GPA-CT vs Static 56.43 / 37.43 / 6.14 80.00 / 20.00 57.38 / 41.47 / 1.6 59.05 / 40.95

GPA-FT vs Base 71.29 / 25.87 / 2.84 68.05 / 31.95 53.17/ 40.62 / 5.56 56.15 / 43.84
GPA-FT vs Persona 70.98 / 27.76 / 1.26 68.84 / 31.16 58.80 / 40.62 / 5.0 59.62 / 40.37
GPA-FT vs Static 66.88 / 32.18 / 0.95 60.64 / 39.36 59.65 / 39.77 / 0.56 57.72 / 42.27

GPA-FT vs GPA-CT 63.09 / 36.59 / 0.32 57.59 / 42.41 53.12 / 38.35 / 0.28 58.99 / 41.00

Intent=Writing/Group=USA Intent=Writing/Group=China

GPA-CT vs Base 45.5 / 53.5 / 1.0 54.1 / 45.9 58.5 / 23.9 / 17.6 88.57 / 11.42
GPA-CT vs Persona 55.5 / 42.5 / 2.0 59.5 / 40.5 53.6 / 28.73 / 17.60 60.0 / 40.00
GPA-CT vs Static 67.02 / 31.00 / 1.98 67.10 / 32.90 52.11 / 32.3 / 15.59 68.57 / 31.43

GPA-FT vs Base 55 / 26.5 / 18.5 62.2 / 37.8 55.22 / 20.84 / 23.94 60.95 / 39.04
GPA-FT vs Persona 77 / 21.5 / 1.5 82.4 / 17.5 35.21 / 40.84 / 23.95 32.38 / 67.62
GPA-FT vs Static 85 / 14.5 / 0.5 88.5 / 11.5 28.16 / 54.92 / 16.92 47.61 / 52.39

GPA-FT vs GPA-CT 85.5 / 14 / 0.5 71.4 / 28.6 39.43 / 40.84 / 19.73 40.95 / 59.05

Table 1: Table showing the WR Evaluation of GPA-CT and GPA-FT on Wildchat Creative Writing Domain across
countries/culture, and Bing Dataset on Programming Domain. LLM conf=Expected Confidence (Dong et al., 2024),
W/L/T=win/lose/tie rates of our methods against baselines.

Confidence-Estimated LLMs (Dong et al., 2024)402

at a confidence threshold correlated with human403

judgment. To mitigate positional bias, we av-404

erage win rates by swapping response positions.405

2) Oracle-Guided Satisfaction Estimation: We406

identify responses that significantly deviate from407

DSAT-classified reference responses to minimize408

negative follow-up feedback. This evaluation mea-409

sures whether our methods generate fewer dissat-410

isfactory signals than baselines, focusing solely411

on response differences without considering user412

personas (Prompt 16). Success is determined by413

the number of times our responses outperform414

baselines in WTR comparisons. 3) Quality Eval-415

uation on Standard Benchmarks: We assess416

the generalization of GPA-CT and GPA-FT using417

two open-ended instruction-following benchmarks:418

MT-Bench (Zheng et al., 2023) and Arena-Hard419

(Li et al., 2024b). This ensures that our models420

maintain strong performance in general instruction-421

following tasks despite group-aware alignment. We422

follow each benchmark’s evaluation protocol, re-423

porting Win Rate (WR) for Arena-Hard (with GPT-424

4o as the judge) and the average MT-Bench score425

using default inference strategies.426

5 Main Results and Findings427

GPA-FT excels when ample finetuning data is428

available, while GPA-CT remains robust in lower-429

data settings. GPA-FT using Llama consistently430

Model WR LR TR ∆ (%) MT-Bench
Base 8.320
Novice GPA-FT 49.11 39.10 8.62 +10.01 8.334
Expert GPA-FT 47.89 42.88 6.41 +5.01 8.212
US GPA-FT 47.56 43.80 8.64 +3.76 8.256
China GPA-FT 48.49 38.34 9.02 + 10.15 8.300

Table 2: Comparison against LLama Base on Arena-
Hard Benchmark (Win/Lose/Tie, and Win-Lose ∆) and
evaluation on MT-Bench.

Setup Win (%) Lose (%) Tie (%)

GPA-CT vs Base 69.61% 29.41% 0.98%
GPA-CT vs Persona 65.69% 33.33% 0.98%
GPA-CT vs Static 76.70% 21.36% 1.94%

Table 3: WTR against the baselines (Win determines
the number of times GPA-CT is chosen over others) on
Wildchat Programming when compared against refer-
ence DSAT Evaluation using Llama.

outperforms all baselines when sufficient finetun- 431

ing data is available, particularly in the Novice 432

and US groups (Table 1). In the Novice cate- 433

gory, GPA-FT achieves a 71.29% Win Rate (WR) 434

vs. Base, compared to 65.82% for GPA-CT, show- 435

ing that finetuning helps models better adapt to 436

novice preferences. A similar trend is observed 437

in the US Writing group, where GPA-FT achieves 438

an 85% WR vs. Static, outperforming GPA-CT at 439

67.02% WR. Conversely, GPA-CT is more effec- 440

tive when data is scarce (also evident in Figure 7), 441

as seen in China and Expert groups. Against the 442

Base model, GPA-FT achieves only a 55.22% WR 443
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in China, while GPA-CT performs slightly better444

at 58.5% WR, indicating that in-context adaptation445

is more useful in this setting. These observations446

also hold on the Wildchat Dataset where we ob-447

serve a drop in the WTR of GPA-FT compared with448

GPA-CT (Table 4), since the Novice Groups have449

correspondingly fewer samples.450

Base models such as Llama/Gemma are tuned451

more towards US Preferences and Expert452

Groups compared to China/Novice Groups.453

Table 1 shows that for Expert groups, Base is the454

hardest baseline to beat, reinforcing the fact that455

pretrained models are already aligned with expert456

preferences. For example, GPA-FT vs. Base in457

Expert groups achieves only a 53.12% WR, com-458

pared to 71.29% WR for Novice users, indicating459

that Base already reflects expert-style responses460

well. The same trend appears in US-based writing461

conversations, where GPA-CT and GPA-FT struggle462

more against the Base model than against Persona463

or Static baselines, proving that pretraining biases464

favor Western-aligned outputs. Similar observa-465

tions also hold true when Gemma is used as the466

base model (Table 19).467

GPA-CT improves overall satisfaction compared468

to baselines. Results in Table 3 (computed on469

the DSAT Signals in the Wildchat Programming470

Domain) using Llama show that GPA-CT consis-471

tently wins against all setups, achieving the highest472

win rate against Static (76.70%), followed by Base473

(69.61%) and Persona (65.69%). This suggests474

that GPA-CT generates responses that better align475

with user expectations and reduces dissatisfaction476

signals when compared with other baselines.477

GPA-FT does not compromise model perfor-478

mance on other benchmarks. We evaluate our479

LLama-based GPA-FT models on MT-Bench and480

Arena-Hard to assess if their instruction-following481

performance degrades on standard benchmarks as482

done by Shi et al. (2024). Table 2 confirms that483

GPA-FT does not compromise performance on the484

instruction-following benchmarks. The MT-Bench485

scores for GPA-FT models remain close to the Base486

model (8.320), with Novice GPA-FT (8.334) even487

slightly outperforming it. Similarly, Arena-Hard488

results show a positive win-loss delta (∆) across all489

groups, with China GPA-FT (+10.15%) and Novice490

GPA-FT (+10.01%) achieving the highest gains.491

Even in Expert (+5.01%) and US (+3.76%) cate-492

gories, GPA-FT maintains competitive performance.493

Figure 4: Bar plot evaluating Gemma outputs from
intent-aware rubric creation vs intent-unaware rubric
creation using GPA-CT. Results shows that intent/con-
text heavily impacts performance when GPA approach is
used to personalize responses on BingChat Test Set.

Overall these findings reinforce the fact that group 494

preference alignment via fine-tuning does not lead 495

to overfitting or loss of generalization. 496

6 Further Analysis 497

User preferences vary across cultures and do- 498

mains. Cultural background significantly shapes 499

user preferences, even for the same intent. US users 500

prefer personal engagement and detailed narratives, 501

while Chinese users favor clarity and structured 502

summaries in writing and creative content (Table 5). 503

Similarly, when expertise remains constant but the 504

domain shifts from Education to Programming, ex- 505

perts prioritize different aspects—educators value 506

comprehensiveness and critical analysis, whereas 507

programmers focus on specificity, error handling, 508

and debugging (Figure 3). 509

Intent-Specific Rubrics are important for bet- 510

ter group-preference alignment compared to 511

generic ones. To investigate the impact of in- 512

tents in preference learning, we extracted rubrics 513

from the Bing expertise groups in two ways: with- 514

out considering intent and with intent-awareness. 515

These rubrics were then used for context-tuning on 516

a held-out test set, followed by WTR evaluation us- 517

ing Persona-based evaluation (Appendix 18). The 518

results show a notable drop in WR when intent 519

was not used (Figure 4), demonstrating that intent- 520

aware rubric extraction leads to more personalized, 521

contextually aligned responses. 522

Preference Rubrics degrade significantly when 523

expertise labels are randomly flipped, indicat- 524

ing robustness. We assess the robustness of our 525

extracted rubrics by randomly flipping expertise 526

labels and extracting out the preference rubrics us- 527

ing GPA. Figure 5 highlights the impact of random 528
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Figure 5: Illustrates how random shuffling of expertise
labels impacts rubric generation. It reveals that, for
most intents, shuffling results in the extraction of pre-
dominantly invalid rubric items, ultimately reducing the
overall quality and number of valid rubric extractions.

shuffling of expertise labels on rubric generation529

across various intents, where the validity of gen-530

erated rubrics is determined by a self-correcting531

evaluation prompt from GPA. The results demon-532

strate that valid rubric generation is most successful533

under the original generation strategy (Gen) with534

correctly aligned expertise labels. However, as ex-535

pertise labels are randomly shuffled (R1, R2, R3),536

the number of valid rubrics decreases significantly,537

often to zero, which confirm the robustness of our538

extracted rubrics.539

7 Related Work540

Customization of user interactions to better serve541

both individual and group preferences has a long542

history of research in a range of fields that leverage543

language technology. These include recommender544

systems (Cho et al., 2002; Zhou et al., 2012),545

search and information retrieval (Teevan et al.,546

2005; Tabrizi et al., 2018), education (McHugh547

et al., 2020; Domenichini et al., 2024), and health-548

care (Wang et al., 2020; Li et al., 2024d).549

Meanwhile, LLMs are trained in a550

one-size-fits-all paradigm (Lucy et al.,551

2024) where large-scale ratings from auxiliary552

human annotators or LLMs in a paired preference553

setup is used to teach models to generate preferred554

responses. This can make them difficult to555

customize. Nevertheless, recent work (Zeng556

et al., 2023; Sorensen et al., 2024) has begun to557

advocate for the need for LLMs to serve more558

diverse preferences through pluralistic alignment.559

Much of the work in LLM customization has560

focused on personalizing systems to the indi-561

vidual (Kirk et al., 2024; Salemi et al., 2024b). 562

These have used a variety of different approaches, 563

including retrieval-augmented generation (Salemi 564

et al., 2024a), memory (Zhang et al., 2023), 565

parameter-efficient fine-tuning (Tan et al., 2024), 566

and reinforcement learning (Poddar et al., 2024). 567

Personalized LLM systems have also been applied 568

to diverse applications, such as contextual query 569

suggestion (Baek et al., 2024) and document 570

creation (Mondal et al., 2024). 571

Recently some attempts have been made at mod- 572

eling a large number of individual characteristics 573

at scale, such as with a thousand preferences (Lee 574

et al., 2025) or a million personas (Ge et al., 2024). 575

However, the focus on modeling group prefer- 576

ences has been limited to a few recent research ef- 577

forts (Feng et al., 2024; Zhao et al., 2023; Ramesh 578

et al., 2024). Crucially, none of these methods 579

leverage real-world conversational data at scale to 580

learn these group preferences. While some recent 581

work has begun to incorporate feedback from in- 582

situ user-AI interactions in order to improve mod- 583

els (Shi et al., 2024; Li et al., 2024c), their focus has 584

been different from modeling group preferences. 585

Thus, to the best of our knowledge, our paper is 586

the first attempt at using large-scale satisfaction sig- 587

nals from human-AI conversation logs to customize 588

LLM responses with group preference alignment 589

(More in Appendix A). 590

8 Conclusion 591

In this work we address a critical gap in group- 592

aware personalization of LLMs by developing our 593

Group Preference Alignment (GPA) framework. 594

This framework identifies and incorporates diverse 595

conversational preferences of distinct user groups 596

via a two-step process of Group-Aware Prefer- 597

ence Extraction and Tailored Response Genera- 598

tion. Our experiments demonstrate that GPA sig- 599

nificantly enhances the alignment of LLM out- 600

puts with group-specific preferences. GPA out- 601

performs baseline methods with respect to prefer- 602

ences while maintaining robust performance on the 603

standard information-following benchmarks. This 604

work paves the way for developing more person- 605

alized and contextually aware LLMs using in-situ 606

interactions using interpretable rubrics, which will 607

ultimately improve user satisfaction and engage- 608

ment. Due to increased transparency, this approach 609

can be scaled up in legal/healthcare and other such 610

high-stake domains. 611
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Limitations612

While Group Preference Alignment (GPA) frame-613

work significantly improves user-group-specific re-614

sponse alignment, it has a few limitations:615

a) Dependence on Predefined User Groups: The616

effectiveness of GPA relies on the availability of617

well-defined user groups with sufficient interaction618

data. In cases where user preferences are highly619

individualized or overlap across groups, extracting620

meaningful rubrics becomes challenging.621

b) Scalability of Rubric Extraction: The frame-622

work extracts group-specific rubrics from conver-623

sation logs, which can be computationally expen-624

sive for large datasets. Additionally, the process625

assumes that conversational preferences remain sta-626

ble within each group, which may not always be627

the case.628

c) Contextual Drift Over Time: User preferences629

evolve, especially in dynamic domains like technol-630

ogy and education. The extracted rubrics may be-631

come outdated, requiring periodic updates to main-632

tain alignment with current user expectations.633

d) Applicability Across Domains: While GPA634

is tested on education, programming, and writing635

domains, its generalization to other highly special-636

ized fields (e.g., legal or medical domains) remains637

unexplored. Future work should assess its adapt-638

ability to such contexts.639
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A Additional Related Work 1141

In this paper, we use LLMs as evaluators to mea- 1142

sure the quality of system generations. Despite 1143

prior work pointing to some pitfalls with this ap- 1144

proach, such as bias (Koo et al., 2023) and prefer- 1145

ential scoring (Liu et al., 2023), using LLMs with 1146

judicious prompting for evaluation of language and 1147

information systems has become common prac- 1148

tice (Zheng et al., 2023; Koutcheme et al., 2024). 1149

Recent efforts have applied the LLM-as-a-judge 1150

paradigm to evaluating a variety of applications 1151

such as translation (Kocmi and Federmann, 2023) 1152

and summarization (Jain et al., 2023); notably these 1153

also include personalization (Dong et al., 2024). 1154

B Algorithm Pseudocode 1155

This appendix summarizes the pseudocode for 1156

GPA-CT and GPA-FT methods. Algorithm 1 depicts 1157

the procedure for extracting the group-aware pref- 1158

erence rubric which is used in both methods. In- 1159

ference for GPA-CT is next summarized in Algo- 1160

rithm 2. For GPA-FT, we next describe the training 1161

procedure in Algorithm 3, and the pseudocode for 1162

generating the augmentented training examples for 1163

finetuning using the rubric is shown in Algorithm 4. 1164

Finally, Algorithm 5 applies the fine tuned mod- 1165

els for GPA-FT inference. We simply need to look 1166

up the appropriate group-aware model to use for 1167

generation. 1168

C Intent Creation 1169

The process of creating sub-intents within a do- 1170

main from user conversations involves an iterative 1171

clustering approach. This method refines the set of 1172

intents through successive iterations, ensuring that 1173

each domain’s sub-intents are optimally defined 1174

based on the conversation data. 1175

Let C = {C1, C2, . . . , Cn} represent the entire 1176

conversation history, where each Cj is an individ- 1177

ual conversation. First, we prompt each conversa- 1178

tion Cj to identify its intent. Let Ij denote the in- 1179

tent of conversation Cj . The intent extraction func- 1180

tion can be represented as: Ij = Intent(Cj). This 1181

step generates a set of intents I = {I1, I2, . . . , In} 1182

corresponding to each conversation in the pool. 1183

Next, the entire conversation pool C is divided 1184

into m mini-batches B1, B2, . . . , Bm, where each 1185

mini-batch Bk contains a subset of conversa- 1186

tions: Bk = {Ck1, Ck2, . . . , Ckl} for k = 1187

1, 2, . . . ,m. For each mini-batch Bk, we use 1188

the intents Ik1, Ik2, . . . , Ikl associated with the 1189
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Model Novice Expert

GPA-CT vs Base 84.3 / 15.6 65.77 / 34.22
GPA-CT vs Persona 73.4 / 26.5 61.74 / 38.25
GPA-CT vs Static 76.5 / 23.4 55.03 / 44.91

GPA-FT vs Base 64.51 / 35.48 54.12 / 45.88
GPA-FT vs Persona 51.62 / 48.38 63.54 / 36.45
GPA-FT vs Static 45.12 / 54.83 58.86 / 41.13

GPA-FT vs GPA-CT 44.22 / 55.78 56.16 / 43.84

Table 4: Results for Wildchat with LLama. LLM expected confidence (EC) [LLM conf ≥ 75] W/L/T=win/lose/tie

Algorithm 1 Group-Aware Preference Extraction
Require: Conversation set C; User groups G and G′; Intent labels I
Require: Likert scale threshold ℓ; Minibatch size m
Ensure: RubricR
1: Step 1: Preference Judgement and Explanation Extraction
2: E+ = []; E− = []
3: for each conversation Ci ∈ C with ti turns do
4: for j = [1..ti] do
5: Sj = [U1, A1, . . . , Uj ]Ci

6: # If tj contains judgment, extract pref expectation
7: if J (Sj) == +1 then
8: E+ = E+∪ { LLM.InferUserExpectation (Sj ,J (Sj))}
9: if J (Sj) == -1 then

10: E− = E−∪ { LLM.InferUserExpectation (Sj ,J (Sj))}
11: # Group prefs E+ and E− by intent Ik for each group
12: EG,Ik = {E+ | Ci ∈ G, Ci matches Ik} ∪ {E− | Ci ∈ G, Ci matches Ik}
13: EG′,Ik

= {E+ | Ci ∈ G′, Ci matches Ik} ∪ {E− | Ci ∈ G′, Ci matches Ik}
14: Step 2: Aspect-Based Rubric Construction
15: # Initialize an empty list of rubric items
16: R = []
17: for each intent Ik ∈ I do
18: # Uniformly partition each explanation set into minibatches
19: EG,Ik = {E1G,Ik

, . . . , En1
G,Ik
} s.t. ∀a |EaG,Ik

| = m

20: EG′,Ik
= {E1G′,Ik

, . . . , En2
G′,Ik

} s.t. ∀b |EbG′,Ik
| = m

21: AIk = []; rIk = {}
22: for each pair of minibatches (EaG,Ik

, EbG′,Ik
) do

23: # Extract/update divergent aspects A
24: # Score group divergence on Likert scale r
25: [Aab, rab] = LLM.ExtractAspectsAndLikert (EaG,Ik

, EbG′,Ik
,AIk )

26: AIk = Aab; rIk [Aab] = rab

27: RIk = []
28: for each aspect Ak ∈ AIk do
29: if rIk [Ak] > ℓ then
30: RIk ←RIk ∪ {Ak}
31: R← R∪ {RIk}
32: returnR

Algorithm 2 GPA-CT: Inference
Require: Partial conversation Si = [U1, A1, . . . , Uj ] up to jth user utterance
Require: RubricR
Ensure: LLM answer Aj

1: Step 1: Classify user group and intent
2: Ii = Intent(Si)
3: Gi = Group(Si)
4: Step 2: Retrieve Rubric and Augment Prompt
5: Ri = RIi

6: Aj = LLM.ModifyPrompt(Si,Gi,Ri)
7: return Aj

conversations in that mini-batch to perform in-1190 tent clustering. Let Ck represent the set of 1191
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Algorithm 3 GPA-FT Training
Require: Training conversation set C
Require: J are the user’s preference judgements for the AI turn-level responses A
Require: RubricR
Require: ModelBase is the base LLM model
Ensure: ModelFT is fine-tuned model dictionary per group
1: Step 1: Generate Synthetic Data
2: for each group G,G′ do
3: Taug,G = []
4: for each conversation Ci ∈ C do
5: Ii = Intent(Ci)
6: Gi = Group(Ci)
7: Taug,Gi = Taug,Gi ∪ {Ci}
8: for j = [1..ti] do
9: Sj = [U1, A1, . . . , Uj ]Ci

10: Sj,aug = RubricGuidedDataGeneration(Sj , Ii,Gi,R[Ii])
11: Taug,Gi = Taug,Gi ∪ {Sj,aug}
12: Step 2: FineTune LLM for each group
13: ModelFT = {}
14: for each group G,G′ do
15: ModelFT [Gi] = FineTuneLlm(ModelBase, Taug,Gi , J )

Algorithm 4 Rubric-Guided Data Generation
Require: Training example T = [Si, Aj ,J (Si)], where Si = [U1, A1, . . . , Uj ] is a conversation up to jth user utterance, Aj

is the AI response, and J (Si) is the user’s preference judgement for Aj

Require: Intent Ii, Group Gi, RubricRIi

Ensure: Augmented training data Taug

1: # Generate Augmented Training Example with Rubric
2: if J (Si) == +1 then
3: # Output is preferred by user, modify to include dispreferred group aspects
4: Aaug = LLM.ModifyPrompt(Si,G′,Ri)
5: Taug = [Si, Aaug,−1]
6: if J (Si) == -1 then
7: # Output is dispreferred by user, modify to include preferred group aspects
8: Aaug = LLM.ModifyPrompt(Si,Gi,Ri)
9: Taug = [Si, Aaug,+1]

10: return Taug

Algorithm 5 GPA-FT: Inference
Require: Partial conversation Si = [U1, A1, . . . , Uj ] up to jth user utterance
Require: Per-group, fine-tuned model dictionary ModelFT

Ensure: LLM answer Aj

1: Step 1: Classify user group
2: Gi = Group(Si)
3: Step 2: Retrieve Group-Aware Model and generate response
4: ModelFT = ModelFT [Gi]
5: Aj = ModelFT,Di(Si)
6: return Aj

clusters of intents formed within mini-batch Bk:1192

Ck = Cluster({Ik1, Ik2, . . . , Ikl}). After process-1193

ing each mini-batch Bk, the intent clusters Ck1194

are updated to refine clustering based on the new1195

batch of data. The update can be represented as:1196

Ck+1 = Update(Ck). This process continues iter-1197

atively as each mini-batch is processed. Once all1198

mini-batches have been processed, the final set of1199

intent clusters, Cfinal, is obtained. This set repre-1200

sents the most prominent clusters of intents after1201

all conversations have been analyzed. Here, Cfinal1202

is the final set of intent clusters that are most sig- 1203

nificant across the entire conversation history. This 1204

mathematical framework outlines the process of 1205

extracting, clustering, and refining intents from a 1206

pool of conversations. By dividing the data into 1207

mini-batches and iteratively updating the clusters, 1208

we can identify the most prominent intents that re- 1209

flect the dominant themes within the conversation 1210

history. 1211
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D Prompts1212

The GPA-CT and GPA-FT methods use a number of1213

LLM prompts which we describe in this appendix.1214

User expectation is inferred for both satisfaction1215

and dissatisfaction. The prompt for inferring user1216

expectation for satisfaction in line 8 of Algorithm 11217

can be found in the prompt in Figure 11 titled1218

LLM.InferUserExpectation (During SAT). Simi-1219

larly, inferring the user expection in line 10 of Al-1220

gorithm 1 under the dissatisfaction condition can1221

be accomplished using the following prompt the1222

prompt titled LLM.InferUserExpectation (During1223

DSAT). The Likert Rating is computed using the1224

LLM.ComputeLikertRating prompt in Figure 13.1225

The ModifyPrompt in Figure 14 is used to gen-1226

erate a response from the LLM. This prompt is1227

used for GPA-CT inference in Algorithm 2 and1228

Rubric-Guided Data Generation in Algorithm 4.1229

The Persona results are generated with the Per-1230

sonaEvaluation prompt presented in Table 17 and1231

Table 18. The win-lose-tie rates for the results1232

presented in Section 5 is shown in the prompt1233

titled PersonaEvaluationWinRate in Figure 18.1234

Figure 16 provides the Individual DSAT Eval-1235

uation Prompt. Finally, labelling a user’s ex-1236

pertise in a conversation is accomplished using1237

the LLM.ExpertiseLabellingPrompt prompt in Fig-1238

ure 15.1239

E Expert and Novice Preferences1240

Preference examples for experts and novices for1241

the Education and Programming domains can be1242

found in Figure 6.1243

F GPA Results for Gemma1244

Many of the results presented in Section omputed1245

by finetuning LLaMA. In Table 19, we report1246

GPA-CT and GPA-FT results for the Gemma model.1247

The results demonstrate that both the GPA-CT and1248

GPA-FT methods perform well when Gemma is1249

used as the base model.1250

G Generated Conversational Examples1251

To provide additional insights to the reader, we1252

report example generated conversations from Ed-1253

ucation Domain for the Novice group. Conversa-1254

tional examples from the Base, Persona, Static, and1255

GPA-CT models are presented, in addition to the1256

original conversation. Furthermore, we provide the1257

reasons and scores returned by the GPT4o judge.1258

Original 1259

User: Hi Bing! What is shared-living? 1260

Agent: Hello, this is Bing. Shared-living is 1261

a term that describes living with others in a 1262

way that benefits one’s health, social life, and 1263

environment. Some examples of shared-living 1264

are cohousing communities, where people share 1265

common spaces and facilities, and student houses, 1266

where students live together and share expenses. 1267

According to some sources[1][2][3], shared-living 1268

can offer advantages such as lower costs, more 1269

social support, and better preservation of historic 1270

buildings. 1271

User: Thanks Bing 1272

Agent: You’re welcome. Is there anything else I 1273

can help you with? 1274

1275

User: What is the meaning of major and minor 1276

in the context of American education? 1277

Agent: In the context of American education, a 1278

major is the main field of study that a student 1279

chooses to pursue during their bachelor’s degree, 1280

while a minor is a secondary or complementary 1281

field of study that requires fewer courses[1][4]. 1282

For example, a student can major in engineering 1283

and minor in economics. The terms major 1284

and minor reflect the increasing specialization 1285

and diversity of the undergraduate curriculum 1286

in American higher education[5]. (Labelled as SAT) 1287

1288

User: Thanks Bing! 1289

Agent: You’re welcome. Have a great day! 1290

1291

Base 1292

You’re welcome! In American education, major 1293

and minor refer to areas of study within a college 1294

or university degree program. 1295

• Major: This is your primary field of study. 1296

You’ll take the majority of your courses in this 1297

subject, and it’s what you’ll officially graduate 1298

with a degree in (e.g., a Bachelor of Arts in 1299

History). 1300

• Minor: This is a secondary area of study that 1301

you choose to complement your major. You’ll 1302

take fewer courses in a minor compared to 1303

your major, but it allows you to explore an- 1304

other subject of interest and gain a broader 1305

skill set (e.g., a History major with a minor in 1306

Political Science). 1307
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1) Use precise mathematical terminology and symbols (e.g., P(A∣B)P(A|B)P(A∣B)), 
2) Assume familiarity with intersection and probability rules., 
3) Reference advanced concepts such as Bayes' theorem if needed

1) Use familiar, relatable analogies to simplify abstract concepts (e.g., sports scenarios), 
2) Avoid complex symbols or mathematical jargon unless explained visually or 
step-by-step. 3) Focus on practical relevance rather than theoretical depth.

User: "Why does this code raise an UnboundLocalError when using a global 
variable in a function?"

System Response: "Python treats all assignments within a function as local 
scope unless declared otherwise. You need to declare the variable using the 
global keyword to modify it."

1) Use concise and technical explanations (e.g., "Python defaults to local scope.").
2) Reference best practices 
3) Assume familiarity with basic programming terms like 'local' and 'global.'

User: "Why is this Python code giving an error about a variable?"

System Response: "In Python, variables inside functions are treated 
differently from variables outside them. If you want to use a variable from 
outside, you need to write global variable_name inside your function."

1) Use concise and technical explanations (e.g., "Python defaults to local scope.").
2) Reference best practices 
3) Assume familiarity with basic programming terms like 'local' and 'global.'

Intent of the Expert and Novice Group : Explain conceptual Errors

Figure 6: Comparison of expert and novice preferences across the education and programming domains for the
intent of explaining conceptual errors. The extracted rubrics dynamically adapt based on expertise level and domain,
demonstrating the effectiveness of preference extraction in context-specific learning scenarios, when novices might
have similar expectations but expectations of experts vary.

Choosing a major and minor can help you focus1308

your academic path, explore your interests, and1309

prepare for your future career. Let me know if you1310

have any other questions!1311

Persona1312

Hey there! "Major" and "minor" in American ed-1313

ucation refer to the subjects you focus on during1314

your college years. Think of it like this:1315

• Major: This is your main area of study. It’s1316

what you’ll spend most of your time learning1317

about and what will ultimately be listed on1318

your diploma. For example, if you major in1319

Computer Science, you’ll take lots of classes1320

about programming, algorithms, and software1321

development.1322

• Minor: This is a secondary area of study that1323

you choose in addition to your major. It’s a1324

way to explore another subject you’re inter-1325

ested in and gain some extra knowledge. So,1326

if you major in Computer Science, you could1327

minor in something like Mathematics or Art1328

History.1329

Choosing a major and minor helps you specialize1330

in a field you’re passionate about and build a well-1331

rounded education. Hope that clears things up! Let 1332

me know if you have any other questions. 1333

Static 1334

Hey there! "Major" and "minor" are like special- 1335

izations you choose when you’re in college. Think 1336

of it like this: you’re building a house. 1337

• Major: This is the main part of the house, like 1338

the bedrooms, living room, and kitchen. It’s 1339

the biggest part and what you’ll spend most 1340

of your time studying. It’s what you want to 1341

become an expert in, like computer science, 1342

history, or biology. 1343

• Minor: This is like a smaller room, like a 1344

study or a sunroom. It’s something you’re 1345

interested in, but not as much as your major. 1346

It could be something related to your major, 1347

like math for a computer science major, or 1348

something completely different, like music. 1349

So, you pick a major to focus on, and you can 1350

choose a minor to explore something else you like! 1351

CT 1352

In American education, "major" and "minor" de- 1353

scribe your areas of focus during college. Think of 1354
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your major as your primary area of study. You’ll1355

take the majority of your classes in this subject and1356

earn your degree in it (like a Bachelor of Arts in1357

English or a Bachelor of Science in Computer Sci-1358

ence).1359

A minor is a smaller area of study that you choose1360

to complement your major. You’ll take fewer1361

classes in this subject, but it demonstrates knowl-1362

edge in a different field. It can make your resume1363

stand out to potential employers or broaden your1364

overall education.1365

For example, if you’re majoring in History, you1366

might minor in Political Science.1367

CT vs Base1368

"Reason": "The user is a novice in the education1369

domain, and the conversation history indicates they1370

are seeking clear and straightforward explanations.1371

Both options provide a definition of major and mi-1372

nor in the context of American education, but Op-1373

tion A is more concise and uses simpler language,1374

which is more suitable for a novice. Option A1375

also provides examples that are easy to understand.1376

This approach aligns with the user’s need for a1377

basic understanding without overwhelming them1378

with too much detail. Option B, while also clear,1379

uses slightly more complex language and structure,1380

which might be less accessible to a novice. There-1381

fore, Option A is preferred for its simplicity and1382

clarity.", "Output": "Option A", "Confidence": 751383

CT vs Persona1384

"Reason": "The user is a novice in the education1385

domain, and the response should be clear and in-1386

formative. Option A provides a straightforward1387

explanation of what a major and minor are, with1388

examples that illustrate the concept. It explains the1389

primary and secondary focus of study and how they1390

complement each other. Option B, while also infor-1391

mative, includes more examples and additional ben-1392

efits of having a major and minor, which might be1393

slightly more detailed than necessary for a novice.1394

However, both options are suitable, but Option A is1395

more concise and directly addresses the user’s ques-1396

tion without additional information that might over-1397

whelm a novice.", "Output": "Option A", "Confi-1398

dence": 75.1399

CT vs Static1400

"Reason": "The user is a novice in the education1401

domain, as indicated by the task instruction. Option1402

A provides a straightforward and concise explana- 1403

tion of the terms ’major’ and ’minor’ in American 1404

education, which is suitable for someone new to 1405

the field. It clearly defines both terms and pro- 1406

vides simple examples to illustrate the concepts. 1407

Option B, while also informative, is more detailed 1408

and includes additional information that might be 1409

overwhelming for a novice. It also uses more tech- 1410

nical language and provides an example that might 1411

be more suited for someone with a bit more back- 1412

ground knowledge. Given the user’s novice status, 1413

Option A is more appropriate as it is easier to un- 1414

derstand and directly addresses the user’s likely 1415

level of knowledge.", "Output": "Option A", "Con- 1416

fidence": 75. 1417

H Additional Results 1418

Both GPA-FT and GPA-CT can generate more satis- 1419

factory responses than the original DSAT responses. 1420

We compare each of the model responses with the 1421

actual DSAT responses from Experts and Novice 1422

Samples and prompt GPT4-o to decide which of 1423

the response would increase satisfaction level given 1424

the conversation history and the followup dissatis- 1425

factory user feedback. Next, we observe whether 1426

our methods are chosen over the true dissatisfac- 1427

tory responses and we show results in Table 21. 1428

We found that compared to baselines, GPA-FT and 1429

GPA-CT provides higher winrates. 1430

In Figure 7, we plot how the training set size 1431

used to compute the rubric for GPA-CT affects the 1432

WinRate (WR). 1433

DPO with preference data is the optimal choice 1434

for GPA-FT. Table 20 clearly shows that DPO 1435

consistently achieves the highest win rates, making 1436

it the best choice for the GPA-FT approach. DPO 1437

vs. Base achieves a 73.36% Win Rate, significantly 1438

outperforming other methods, demonstrating that 1439

DPO leads to stronger preference alignment com- 1440

pared to the base model. Additionally, DPO vs. 1441

KTO-Only (70.61% WR) and DPO vs. KTO- 1442

Augmented (61.46% WR) indicate that DPO still 1443

maintains a strong advantage over KTO-based ap- 1444

proaches, reinforcing its robustness in fine-tuning. 1445

Rubric augmentation using KTO does help, as 1446

KTO-Augmented vs. Base achieves a 67.63% Win 1447

Rate, showing an improvement over KTO vs. Base 1448

(53.41%). However, KTO-based models still fall 1449

short of DPO’s performance, especially when com- 1450

paring DPO vs. KTO-Augmented, where DPO 1451

wins 61.46% of the time. This suggests that while 1452
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Figure 7: Learning Curve to Show that GPA-CT is a
data-efficient algorithm. We vary the training data size
(100, 500, 1000, 1500, 2000 samples) for extracting our
preference rubrics across the Expert and Novice Groups
on Wildhat Programming Domain and observe the Win-
Rate over the base model on a held-out test set using
Prompt 17. We observe the performance becomes stable
using only 1000 examples for rubric creation, making it
a data-efficient customization approach.

rubric augmentation improves alignment, it is not1453

as effective as preference optimization through1454

DPO. Thus, DPO is the optimal choice for GPA-FT.1455

I Note on Generalizability1456

GPA is generalizable across domain and user-1457

groups. Results in Table 7 and Table 8 provide1458

insights into GPA-CT’s generalization across differ-1459

ent cultural and expertise-based user groups, evalu-1460

ated at varying EC (confidence) thresholds (65, 70,1461

75). The results compare GPA-CT against Base,1462

Persona, and Static setups in two domains: India vs.1463

US (Cultural Evaluation) and Education (Novice1464

vs. Expert Evaluation).1465

1. Cultural Generalization (India vs. US) Con-1466

sistent Gains Over Base: GPA-CT consistently out-1467

performs the Base model across EC thresholds,1468

with a win rate increasing from 60.57% (EC=65)1469

to 63.52% (EC=75), showing stable adaptation1470

across cultural contexts. Stronger Performance1471

Against Persona Static: The win rate vs. Per-1472

sona remains stable (65%), while GPA-CT shows1473

stronger gains vs. Static at EC=70 (72.22%), in-1474

dicating that contextual fine-tuning provides ad-1475

vantages over rigid static responses. Higher EC1476

Improves Differentiation: The lose rate decreases1477

slightly at EC=75, suggesting that higher confi-1478

dence filtering leads to better generalization. 2.1479

Expertise Generalization (Novice vs. Expert in Ed-1480

ucation Domain) Performance Is More Balanced: 1481

Compared to cultural evaluation, win rates in the 1482

education domain are more balanced across exper- 1483

tise groups, suggesting that novices and experts 1484

respond similarly to GPA-CT’s responses. Slight 1485

Gains Over Persona: GPA-CT vs. Persona win rate 1486

remains around 51-52%, indicating Persona-based 1487

fine-tuning is already well-aligned with education- 1488

based responses. Better Adaptation Over Static: 1489

GPA-CT outperforms Static consistently (55.19% 1490

win rate at EC=65 and 54.90% at EC=75), rein- 1491

forcing the advantage of dynamic context-aware 1492

models over fixed prompts. 1493

GPA-CT generalizes well across cultural differ- 1494

ences (India vs. US), maintaining a consistent win 1495

rate across EC thresholds. Higher EC filtering en- 1496

hances performance differentiation, particularly in 1497

cultural evaluations. Performance in the education 1498

domain is more balanced across expertise levels, 1499

with smaller gains over Persona but consistent ad- 1500

vantages over Static. EC thresholds affect gener- 1501

alization differently—higher EC benefits cultural 1502

evaluations more than expertise-based evaluations. 1503
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User Groups Intent Rubric Item Description

US vs China Writing Assistance

Personal Connection and Passion Western users seek vivid, personal en-
gagement, while Eastern users prefer
clear and concise communication, em-
phasizing empathy and understanding.

Historical and Anecdotal Content Western users favor detailed historical
accounts with personal anecdotes, while
Eastern users prefer straightforward sum-
maries with clear information.

Perspective and Tone Western users prefer second-person per-
spective, addressing the audience di-
rectly, while Eastern users expect the bot
to acknowledge and appreciate their con-
tributions.

Refinement in Narrative Style Western users prefer advanced vocabu-
lary and polished narrative styles, while
Eastern users value clarity, conciseness,
and brevity.

US vs China Creative Content Creation

Story Continuation US users prefer detailed and struc-
tured script outlines, while Eastern users
expect more imaginative and action-
packed continuations.

Role-Playing Engagement US users may expect the assistant to ask
for specifications, while Eastern users
expect immediate role-play engagement.

Humour and Creative Titles Both groups enjoy humorous and cre-
ative titles, but Eastern users emphasize
playful and whimsical text more.

Cultural Resonance and Poetic Elements Both groups value cultural resonance,
but Eastern users place more emphasis
on poetic elements.

US vs India Writing Assistance
Acknowledgment and Appreciation Indian users expect explicit appreciation

and acknowledgment of their contribu-
tions, while US users do not emphasize
this as much.

Personal Connection and Passion US users prefer vivid engagement with
emotions and enthusiasm, while Indian
users prioritize shared goals and inclu-
sive language.

Engaging and Descriptive Style US users prefer engaging and descriptive
styles with coherence, while Indian users
focus on vivid and friendly tones.

US vs India Creative Content Creation Story Continuation US users prefer structured and detailed
script outlines, while Indian users expect
more imaginative and action-packed sto-
ries.

Bedtime Story Personalization US users expect generic stories, while
Indian users prefer more personalized
and interactive bedtime storytelling.

Table 5: Rubric Items Differentiating the Preferences Across User Groups (Separated by Country/Cultural Context)
in the domain of Creative Writing and Editing where Likert Scale rating is greater than 3.
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User Groups Intent Rubric Item Description

US vs China Information Seeking

Grammatical Explanation Both user groups expect clear and accu-
rate explanations of grammatical correct-
ness. There is no observed difference in
their expectations regarding this aspect

Clarification of Translations Both groups expect clear and accurate clar-
ifications regarding translations of book ti-
tles. There is no observed difference in their
expectations for this aspect."

List of Frequently Quoted Sentences Both groups expect well-organized and rel-
evant lists of frequently quoted sentences
from books. There is no observed differ-
ence in their expectations for this aspect.

Explanation of Setting and Plot Both groups expect clear explanations of
how the setting enhances the plot, but West-
ern users may prefer more straightforward
and concise answers. This results in a mi-
nor difference in expectations.

Table 6: Rubric Items Differentiating the Preferences Across User Groups (Separated by Country/Cultural Context)
in the domain of Creative Writing and Editing where Likert Scale rating is less than 3, signifying no major difference
in expectations/preferences when their intent is to seek information in the domain of Creative Writing and Assistance.

Model EC = 65 EC = 70 EC = 75

Llama-India and US

GPA-CT vs Base 0.6057 / 0.3942 0.6038 / 0.3961 0.6352 / 0.3647
GPA-CT vs Persona 0.6490 / 0.3509 0.6473 / 0.3526 0.6666 / 0.3333
GPA-CT vs Static 0.6473 / 0.3526 0.7222 / 0.2661 0.6666 / 0.3333

Table 7: Performance comparison of GPA-CT models prompt-tuned with India and US Persona at different EC levels

Model EC = 65 EC = 70 EC = 75

Education Domain

GPA-CT vs Base 0.5259 / 0.4740 0.5259 / 0.4740 0.5229 / 0.4771
GPA-CT vs Persona 0.5140 / 0.5259 0.5140 / 0.5259 0.5271 / 0.5229
GPA-CT vs Static 0.5519 / 0.4481 0.5519 / 0.4481 0.5490 / 0.4599

Table 8: Performance comparison of models in the Education Domain at different EC thresholds.

LLM.StaticPrompting
[1] Overview
Tell me the expectations of a persona in a domain from the chatbot. Answer in a few sentences.

Table 9: Static

LLM.PersonaRole-Playing
[1] # OVERVIEW
You will be given a conversation between a User and an AI agent. Your task is to generate response
that would tailor to a persona in the domain domain.

Table 10: Persona-Role Playing Response Generation
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LLM.InferUserExpectation (During SAT)
[1] # OVERVIEW
You will be given a conversation between a User and an AI agent. Your task is to assess the reasons
of user’s happiness based on the conversation history and the bot response.
# TASK:
Classify the user’s intent from the conversation conversation history. Also determine what the user
expects from the bot and why the user finds the bot’s response user remarks useful. Determine based
on whatever the user remarks after the bot’s response user remarks.
# ANSWER FORMAT
Format your output as JSON Object where the keys are user-intent, user-expectation-from-bot and
reasons-for-happiness. Do not output anything else except this.

Table 11: LLM.InferUserExpectation (During SAT)

LLM.InferUserExpectation (During DSAT)
[1] # OVERVIEW
You will be given a conversation between a User and an AI agent. Your task is to assess the reasons
of user’s frustration based on the conversation history and the bot response.
# TASK:
Classify the user’s intent from the conversation conversation history. Also determine what the user
expects from the bot and why the user finds the bot’s response user remarks frustrating. Determine
based on whatever the user remarks after the bot’s response user remarks.
# ANSWER FORMAT
Format your output as JSON Object where the keys are user-intent, user-expectation-from-bot and
reasons-for-frustration. Do not output anything else except this.

Table 12: LLM.InferUserExpectation (During DSAT)
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LLM.ComputeLikertRating
[1] # OVERVIEW
# Task Overview:
You have to compare expectations of two user groups based on some aspects in {domain-name}, and
provide ratings of 1-5 depending on how much different are their expectations from the bot while
interaction. You have to update the comparison output based on what was observed previously
{previous-observations} and the current observed differences in expectations between group 1 and
group 2 described below. Make sure that if there is no observed datapoints for an aspect in either
expert or novice category, provide the least rating in that case.
# Primary Intent
Intent : {intent-cluster-of-the-user}
# Expectations of Group 1
{expectation-of-group 1}
# Expectations of Group 2
{expectation-of-group 2}
# Annotation Guidelines on a scale of 1-5
1 : It indicates there is no observed difference between the expectation of two groups on this aspect,
2 : It indicates there is a minor difference between the expectation of two groups on this aspect,
3 : It indicates moderate difference between the expectation of two groups on this aspect,
4 : It indicates remarkable difference between the expectation of two groups on this aspect,
5 : It indicates undoubetedly stark difference between the expectation of two groups on this aspect.
# Output Format
Format your output as JSON where keys are aspects and values are 1) ratings from 1-5 and 2)
Interpretation of the rating in 2-3 sentences.

Table 13: LLM.ComputeLikertRating

LLM.ModifyPrompt
[1] # OVERVIEW
# Task
You will be provided with a conversation between a user and bot. Based on the conversation history,
you have to generate a suitable response. Make sure that you follow some rules while generating the
response.
# Conversation History
{conversation-history}
# User Input
{user-input}
# Some Rules to Follow
{reminder}
# Output Format
Format your output as a JSON Object with response as key. Do not output anything else except this
JSON.

Table 14: LLM.ModifyPrompt
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LLM.ExpertiseLabelling
[1] # OVERVIEW
# OVERVIEW
You will be given a conversation history between a User and an AI agent. Your task is to determine
user’s expertise in the subject of the conversation.
# USER EXPERTISE
User expertise levels in a conversation subject range from novice, indicating a lack of familiarity
with fundamental concepts, to expert or master, denoting a deep understanding of relevant
vocabulary, concepts, and principles.
- Novice: A subject novice is a person who has little or no familiarity with a specific topic or domain.
A subject novice may ask questions that are vague, general, irrelevant, or based on incorrect
assumptions. A subject novice may also have difficulty understanding the terminology, concepts, or
arguments of experts or more knowledgeable people in the subject. They may ask basic or general
questions that can be answered by simple definitions, examples, or facts. They may not be aware of
the sources, methods, concepts, or terminology that are relevant to the subject.
- Intermediate: A subject intermediate is someone who has some basic knowledge or familiarity with
a certain topic, but not enough to be considered an expert or a novice. A subject intermediate can ask
general questions that reflect their curiosity or interest in the topic, but not very specific or complex
ones that require deeper understanding or analysis. A subject intermediate might have learned some
terms or concepts related to the topic, but not how to apply them in different contexts or situations.
- Expert: A subject expert is someone who can apply relevant concepts and terminology to different
scenarios and problems. They can analyze and interpret data, compare and contrast different
methods or approaches, and justify their reasoning with evidence. The user also demonstrates
curiosity and interest in the subject by asking questions that go beyond the surface level and explore
the deeper implications and connections of the topic. He has a deep and comprehensive
understanding of a specific topic or field, and can use specialized terms and references to
communicate their knowledge. A subject expert can state accurate facts, provide relevant examples,
and cite authoritative sources related to their topic or field.
- Unknown: There is not enough information to determine the user’s expertise.
## OUTPUT FORMAT ##
Format your output as JSON Object with key as Expertise-label and values as either Novice,
Intermediate, Expert or Unknown.
## INPUT ##
Conversation History
## OUTPUT ##

Table 15: Prompt to Classify Expertise Labels
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LLM.IndividualDSATEvaluation
[1] # OVERVIEW
# Task
In the conversation context between user and assistant: {conversation_history}, based on user
utterance : {user_utterance}, when the bot responds : {bot_response}, the user felt {label}, then he
provides a feedback by commenting {feedback_comment}.
You have to compare Option A and Option B and judge which response is very different from
reference bot response {bot_response}, such that the user will not provide a followup comment
{feedback_comment}.
# Option A
{optionA}
# Option B
{optionB}
# Output Format
Format your output as a JSON Object with keys as Option and reasoning. Output either Option A or
Option B or can’t decide. You should not output anything except the JSON. Do not judge based on
user expertise. Judge only based on which response is very different from reference bot response
{bot_response}.

Table 16: Individual DSAT Evaluation

LLM.PersonaEvaluationwithEC
[1] OVERVIEW
Task
Imagine yourself as a persona in the domain domain. Based on your persona and the conversation
history, you have to judge which response would you prefer among Option A and Option B along
with the step-by-step reasoning.
Additionally, assess your confidence in this decision by assigning a certainty level from 1 to 100.
Use the following guidelines to assign the certainty level:
1–20 (Uncertain): The user profile provides insufficient or minimal evidence. The decision is largely
based on weak or indirect hints.
21–40 (Moderately Confident): There is noticeable evidence supporting a preference, though it is
not comprehensive, and other interpretations are possible. 41–60 (Quite Confident): You find clear
and convincing evidence that supports your prediction, though it is not entirely decisive.
61–80 (Confident): The user profile contains strong evidence that clearly supports your prediction,
with very little ambiguity.
81–100 (Highly Confident): The user profile provides direct and explicit evidence that decisively
supports your prediction
# Conversation History
{conversationhistory}
# Option A
option1
# Option B
option2
# Output Format
Format your output as a JSON Object with keys as Reason, Output, Confidence. Output the
step-by-step reasoning and then Option A or Option B and the confidence value from 1-100. You
should not output anything except the JSON.

Table 17: Prompt used for LLM-as-a-Personalized-Judge as borrowed from (Dong et al., 2024)
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LLM.PersonaEvaluationwithoutEC
[1] OVERVIEW
Task
Imagine yourself as a persona in the domain domain. Based on your persona and the conversation
history, you have to judge which response would you prefer among Option A and Option B along
with the step-by-step reasoning.
Task
Imagine yourself as a persona in the domain domain. Based on your persona and the conversation
history, you have to judge which response would you prefer among Option A and Option B along
with the step-by-step reasoning.
# Conversation History
{conversation-history}
# Option A
option1
# Option B
option2
# Output Format
Format your output as a JSON Object with key as Reason and Output. Output the step-by-step
reasoning and then Option A or Option B or can’t decide. You should not output anything except the
JSON.

Table 18: Prompt used for LLM-as-a-Personalized-Judge with tie

Model LLM Pref (W/L/T) LLM conf ≥ 75 LLM Pref (W/L/T) LLM conf ≥ 75

Intent=Programming/Group=Novice Intent=Programming/Group=Expert

GPA-CT vs Base 0.6930 / 0.3041 / 0.0029 0.5797 / 0.4203 0.4489 / 0.5426 / 0.085 0.4696 / 0.5304
GPA-CT vs Persona 0.5702 / 0.4298 / 0.0000 0.5430 / 0.4570 0.5824 / 0.4063 / 0.114 0.5924 / 0.4076
GPA-CT vs Static 0.5754 / 0.4187 / 0.0058 0.5300 / 0.4700 0.5625 / 0.4290 / 0.085 0.6364 / 0.3636

GPA-FT vs Base 0.6842 / 0.2953 / 0.0205 0.6426 / 0.3574 0.5966 / 0.4034/ 0.0000 0.5676 / 0.4324
GPA-FT vs Persona 0.6439 / 0.4561/ 0.0000 0.5290 / 0.4710 0.6676 / 0.3295 / 0.0028 0.6939 / 0.3061
GPA-FT vs Static 0.6433 / 0.3480 / 0.0088 0.5807 / 0.4193 0.6761 / 0.3210 / 0.0028 0.6842 / 0.3158

GPA-FT vs GPA-CT 0.5351 / 0.4649 / 0.0000 0.5426 / 0.4574 0.6903 / 0.3097 / 0.0000 0.6764 / 0.3236

Table 19: GPA-CT and GPA-FT results on the BingChat dataset for Gemma for the Novice and Expert groups. The
LLM expected confidence ≥ 75 is reported and W/L/T=win/lose/tie.
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Comparison Win % Lose %

DPO vs Base 73.36% 26.64%
DPO vs KTO-Augmented 61.46% 38.54%
DPO vs KTO-Only 70.61% 29.39%
KTO vs Base 53.41% 46.59%
KTO-Augmented vs Base 67.63% 32.37%

Table 20: Win/Loss Percentages of Different Finetuning
Methods on BingChat Test Set justifying our best choice
of DPO for our remaining GPA-FT experiments.
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Win Rates Lose Rates Tie Rates

GPA-FT 0.4848 0.2504 0.2648
GPA-CT 0.4877 0.2470 0.2653
Static 0.4283 0.3014 0.2703
Persona 0.4252 0.2491 0.3257
Base 0.4333 0.5167 0.0500

Table 21: Normalized Win, Lose, and Tie Rates
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