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Abstract

Data annotation is a time-consuming and labor-001
intensive process for many natural language002
processing (NLP) tasks. According to a sur-003
vey, the average annotation cost per instance on004
crowdsourcing platforms is $0.11. This high an-005
notation overhead has become a constraint for006
further research in many tasks. As large-scale007
language models (LMs) have achieved signifi-008
cant improvements in many small-sample learn-009
ing tasks, researchers have begun to generate010
data samples by utilizing model hints to re-011
duce the burden of data annotation. However,012
previous research has focused on surface lan-013
guage processing tasks and neglected in-depth014
studies of implicit semantic class tasks (e.g.,015
metaphors), which require models to provide a016
deeper understanding of implicit meanings in017
text. Therefore, the goal of this paper is to ex-018
plore the data generation capabilities of GPT-3019
on processing metaphor tasks. We introduce020
two approaches, Example-based Prompt En-021
hancement (EPE) and Semantics-based Prompt022
Enhancement (SPE). The experimental results023
show that the F1 scores of the two prompts we024
designed are significantly higher on the three025
datasets MOH-X, TroFi and VUAverb test set026
compared to the metaphor data generated di-027
rectly using ChatGPT. Meanwhile, the samples028
generated using EPE and SPE have the same029
competitive performance compared to the man-030
ually labeled data.031

1 Introduction032

Metaphors, as a unique way for people to under-033

stand the world, help understand vague and ab-034

stract concepts in the source domain by extracting035

familiar concepts in the target domain (Lakoff and036

Johnson, 2008). However, current metaphor de-037

tection systems often use supervised methods that038

rely on high-quality manually labeled data. Ac-039

cording to a survey, the average labeling cost per040

instance on crowdsourcing platforms is as high as041

$0.11 (Wang et al., 2021a). Comparatively, gen-042

Figure 1: Data generation process. (a) is the direct sam-
ple generation using GPT-3. (b) and (c) are the prompts
designed in this paper. (b) A sample is randomly sam-
pled in the training set based on the target word "word"
and the label "label" as an example. In (c), the lexi-
cal meaning of the target word is introduced into the
prompt.

erating samples using large language model (e.g., 043

GPT3.5-turbo) APIs becomes a more cost-effective 044

alternative, costing only 0.001 per 1K token input 045

and 0.002 per 1K token output, respectively. How- 046

ever, this raises an interesting question: how to 047

fully utilize GPT-3 to generate high-quality sample 048

data at low cost? 049

Initial research on Large Language Models 050

(LLMs) was done mainly through fine-tuning. Mc- 051

Cann et al. (2018); Rajani et al. (2019) used de- 052

coders (Radford et al., 2018) that were fed ques- 053

tions and context to generate correct responses. An- 054

other common approach is the use of manually 055
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created completions (Trinh and Le, 2018; Petroni056

et al., 2019), by which the encoder (Devlin et al.,057

2018) is guided to generate content in a specified058

direction, e.g., "Donald Trump is [MASK]", where059

"[MASK]" can be: "former president" or "business-060

man".061

With the continuous development of LLM, the062

emergence of GPT-3 (Brown et al., 2020) has sig-063

nificantly improved the ability of the model to gen-064

erate data samples. However, the large number of065

parameters of GPT-3 also brings the problem of066

difficult fine-tuning. In contrast, prompt learning,067

with its non-invasive nature and no need for model068

fine-tuning or additional additional parameters, has069

become a new approach for many researchers to ex-070

plore data generation. In this area, researchers have071

enabled models to generate multiple samples of the072

same kind through prompts and labels (Ye et al.,073

2022; Meng et al., 2022). Yoo et al. (2021); Wang074

et al. (2021b) designed generic templates and pro-075

vided examples to guide GPT-3 to generate similar076

data while adapting to multiple downstream tasks.077

And in (Meng et al., 2022), the generated data are078

filtered and they are then used for fine-tuning the079

sub-models.080

The above approaches provide new research081

ideas for introducing dataset generation tasks in082

large language models. However, these studies083

mainly focus on data generation for surface lan-084

guage tasks (Wang et al., 2021a; Yoo et al., 2021;085

Wang et al., 2021b; Meng et al., 2022), which of-086

ten rely on information about lexical and syntac-087

tic structures. In contrast to these surface tasks,088

implicit semantic-type tasks (e.g., metaphor, sar-089

casm detection) are more complex and require an090

in-depth understanding of the implicit meanings091

in the text. This understanding does not only in-092

volve textual information in its surface form, but093

also requires consideration of contextual semantic094

relationships and potential inferences.095

Therefore, the aim of this paper is to apply096

prompt learning methods to data generation for097

metaphor detection tasks. We design two prompt098

methods for the metaphor task, one of which is099

the fresh-shot, example-based Prompt Enhance-100

ment (EPE); and the other is the zero-shot, lex-101

ical meaning-based Prompt Enhancement (SPE).102

The latter does not rely on manually labeled sam-103

ples at all and only requires the introduction of the104

WordNet (Miller, 1995; Fellbaum, 1998) knowl-105

edge base. Finally, our contribution is summarized106

as follows: 107

1. To the best of our knowledge, this is the first 108

study to apply GPT-3 to metaphorical sample 109

generation. GPT-3 will generate metaphori- 110

cal or non-metaphorical samples based on the 111

prompt we designed. 112

2. We are the first study to apply the sample less 113

approach of Example-based Prompt Enhance- 114

ment (EPE) to metaphorical sample genera- 115

tion. Compared to direct sample generation, 116

EPE averages 30% higher F1 values on the 117

three test datasets. 118

3. We also designed the zero-sample method of 119

Prompt Enhancement (SPE) based on lexical 120

meaning. This method does not require any 121

manually labeled dataset and achieves similar 122

performance to EPE, even with 10% higher 123

F1 values than EPE on the MOH-X dataset. 124

2 Related Work 125

2.1 Large-scale Language Modeling 126

The core principle of large-scale language model- 127

ing (LLM) lies in revealing the tacit knowledge 128

in the model by simulating task-specific linguistic 129

environments. Since the introduction of the self- 130

attention mechanism (Vaswani et al., 2017), the 131

field of LLM has made a vigorous development. In 132

the research, BERT (Devlin et al., 2018), which 133

uses the Transformer encoder architecture, and 134

GPT (Radford et al., 2018), which uses the Decoder 135

architecture, have emerged. On the basis of BERT, 136

many remarkable variants have emerged, such as 137

RoBERTa (Liu et al., 2019) and DeBERTa (He 138

et al., 2020). And the emergence of GPT-3 (Brown 139

et al., 2020), a third-generation model based on 140

the decoder structure with 175 billion parameters, 141

10 times more than any previous non-sparse lan- 142

guage model, has changed the landscape of LLM. 143

Remarkably, GPT-3 uses only a small number of 144

hints, which include a small number of examples of 145

a specific task as part of the input to train the model, 146

and achieves state-of-the-art performance on a va- 147

riety of tasks. Thus, we are witnessing another 148

important shift in the paradigm of prompt-based 149

natural language processing. 150

2.2 Prompt Learning 151

Unlike previous fine-tuning-based approaches, the 152

goal of prompt learning is to guide the LLM in 153
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a non-fine-tuned manner to generate specific con-154

tent. In this task, the LLM plays the role of a155

sample less or zero sample learner. Past studies156

based on prompt learning are usually categorized157

into two main groups: generating annotations and158

generating samples. Ye et al. (2022); Meng et al.159

(2022) used the method of adding polarity labels to160

prompts to guide the model to generate sample con-161

tent related to a specified tendency. For example, a162

prompt can be constructed such as "Movie reviews163

with positive sentiment are". Wang et al. (2021a)164

proposed an approach that combines manual and165

LLM labeling to mitigate the cost. Yoo et al. (2021)166

designed a template to guide the model for sam-167

ple annotation or sample generation by introducing168

instances of different tasks. Lang et al. (2022) de-169

signed a joint training framework of GPT-3 and170

BERT for the labeling of classification tasks. This171

study only explores the use of prompt learning to172

guide the LLM to generate samples, and therefore173

does not cover the data labeling part.174

2.3 Metaphor Detection175

For the task of specifying target words and their176

corresponding contexts, metaphor detection aims177

to determine whether the target words are used in178

a metaphorical manner. Compared to tasks such179

as sentiment labeling and question and answer,180

metaphor detection requires the model to have a181

deeper understanding of the implicit meaning of the182

text, a challenge that has typically been addressed183

in prior research by injecting domain knowledge.184

In prior work, researchers have used a variety of185

knowledge injection strategies. Among them, Le186

et al. (2020); Song et al. (2021); Feng and Ma187

(2022) used dependency tree knowledge to direct188

the model to focus on specific syntactic structures.189

Mao and Li (2021); Choi et al. (2021); Su et al.190

(2020) incorporate Part-Of-Speech tagging (POS),191

where Mao and Li (2021) treats POS as a separate192

subtask. In addition, Gong et al. (2020); Klebanov193

et al. (2016); Zhang and Liu (2023) introduced194

the WordNet database (Fellbaum, 1998), where195

Gong et al. (2020); Klebanov et al. (2016) classi-196

fied words into fifteen categories based on semantic197

features, while Zhang and Liu (2023) constructed198

a dichotomous subtask by directly taking the most199

common definitions of words in WordNet as literal200

meanings.201

3 Method 202

This section describes in detail the prompts we 203

designed, each of which will be fine-tuned to fit 204

different metaphorical expression contexts based 205

on the target word. The prompts we design fall 206

into two types, namely example prompt and lexi- 207

cal prompt. In §3.1, we first describe the process 208

of generating metaphorical data with GPT-3. Sub- 209

sequently, in §3.2, we detail the Example-based 210

Prompt Enhancement (EPE) approach, while in 211

§3.3, the Semantics-based Prompt Enhancement 212

(SPE) approach is presented. 213

3.1 GPT-3 Labeling 214

GPT-3 (Brown et al., 2020) is a huge pre-trained 215

language model, and in this paper, we choose 216

GPT3.5-turbo, released by OpenAI, for data tag- 217

ging. GPT3.5-turbo (hereafter GPT-3) supports a 218

16K context window and is optimized for dialogue. 219

Given a sequence, GPT-3 is able to generate output 220

that naturally continues the input and ends with a 221

special stop sign. 222

In the annotation process, we first designed the 223

prompt template according to the metaphor detec- 224

tion task. Subsequently, we filled in the blanks in 225

the prompt according to different target words, la- 226

bels and sample sizes. Specifically, for the target 227

word wk and label yk, there are: 228

{x′n}
Nk
n=1 = GPT-3(Prompt, wi, yi, ni), (1) 229

where x′n denotes the nth sample generated by 230

GPT-3 centering on the target word wi, whose 231

metaphoricity is related to the label yi. Specifi- 232

cally, when yi = 1 or yi = 0, the target word wi 233

behaves as metaphorical or non-metaphorical in 234

the sample set {x′n}
Nk
n=1, respectively. To ensure 235

fairness in testing the dataset, we direct GPT-3 to 236

generate a specified number of samples (i.e., Nk) 237

for each target word and ensure that the distribu- 238

tion of this sample is consistent with the manually 239

labeled dataset (described in §4.1). 240

3.2 Example-based Prompt Enhancement 241

The first prompt we designed was inspired by 242

(Yoo et al., 2021; Wang et al., 2021b), approaches 243

that provide one or more examples for each cate- 244

gory of a given task, with category labeling to fol- 245

low. Based on this intuition, this paper introduces 246

an exemplar-driven generation approach, where a 247

small amount of manually labeled data is used as 248

the main component of the prompt, and the content 249
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Figure 2: The prompt design diagram is shown below. Where wk denotes a specific target word, yk is its label, and
when yk = 1 indicates the metaphorical usage of the generated target word wk. nk denotes the number of samples
generated. In Method 1, "example" denotes the example usage of a certain category (wk, yk), which will be used as
the reference for GPT-3 to generate the metaphorical samples. For Method 2, "meaning x" denotes multiple word
meanings of the target word wk. GPT-3 will generate metaphor samples based on the specific word meanings of the
target word.

of the exemplars guides the model in generating250

metaphorical or non-metaphorical samples of the251

specified type.252

Sample Selection. For each target word wk and253

context xk, there exists and only one label yk254

corresponding to it, where yk = 1 denotes the255

metaphorical usage of the target word wk and256

yk = 0 denotes the non-metaphorical usage. In257

this paper, we adopt VUAverb train set(Leong258

et al., 2018, 2020) as the sample set, denoted as259

D = (xi, wi, yi)|1 ≤ i ≤ N , where xi, wi, yi are260

the text, the target word, and the corresponding261

label, respectively. In the specific implementation,262

we divide D into subsets Dk based on the target263

word wk and the corresponding label yk. For each264

category Dk, we randomly select a sample dk as an265

example.266

Prompt construction. For the category set Dk,267

the number of categories nk, and the category ex-268

ample dk = (xk, wk, yk), we populate prompt 1269

(see Method 1 in Figure 2). where word = wk270

specifies the target word, yk = 1, 0 denotes the271

metaphorical or non-metaphorical usage of the tar-272

get word to be generated, and n = nk specifies273

the number of generation, i.e., GPT-3 is required274

to generate nk samples with different description275

styles. It is worth noting that the above number of276

samples setting is consistent with the distribution277

of the manually labeled dataset.278

3.3 Semantics-based Prompt Enhancement 279

Lexical Meaning Search. WordNet (Miller, 1995; 280

Fellbaum, 1998) is a hierarchically structured lexi- 281

cal database in which each word forms links with 282

other related words to represent semantic connec- 283

tions between them. In metaphor detection tasks, 284

WordNet is a commonly used external knowledge 285

base by researchers and has been shown to help 286

improve metaphor detection performance (Gong 287

et al., 2020; Klebanov et al., 2016; Zhang and Liu, 288

2023). Zhang and Liu (2023) considered the most 289

commonly used meanings of target words in Word- 290

Net as literal meanings and introduced the subtask 291

of Basic Sense Discrimination (BSD). Inspired by 292

these studies, this paper also utilizes WordNet to 293

obtain multiple meanings of target words. For any 294

target word wk, as well as the verb meaning sets Vk 295

retrieved from WordNet (Vk is sorted by frequency 296

of use), we refer to (Zhang and Liu, 2023) and 297

consider the first two commonly used meanings 298

as literal meanings, while considering the rest of 299

them as metaphorical meanings. For any lexical 300

meaning vj ∈ Vk: 301

vj ∈

{
Vk,l 0 < j ≤ 2 and yk = 0

Vk,m j > 2 and yk = 1,
(2) 302

where Vk,l and Vk,m denote the literal and 303

metaphorical lexical sense sets of the target word 304

wk, respectively. The label yk = 0 indicates that 305
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wk is used non-metaphorically, while yk = 1 indi-306

cates that wk is used metaphorically.307

Prompt Construction. The prompt construction308

method is detailed in Method 2 in Figure 2. Similar309

to §3.2, for the input message (wk, yk, nk), we first310

specify word = wk, and then ask the model to311

generate nk metaphorical or non-metaphorical sen-312

tences based on the value of yk (0 or 1). However,313

the difference is that we consider the literal lexical314

set Vk,l and the metaphorical lexical set Vk,m of315

the target word wk. Specifically, we first divide316

based on the number of samples to be generated,317

for yk = 1, there are:318

nk,i = ceil(nk/|Vk,l|), (3)319

where ceil is an upward rounding function, |Vk,l|320

denotes the number of word meanings, and nk,i321

denotes the number of samples that need to be322

generated using the ith word meaning. Then, we323

make n = nk,1,meaning = v1 to generate nk,1324

samples of metaphors with different styles and with325

v1 lexical meanings. Repeat until nk samples have326

been generated.327

4 Experiment328

In this section, we will conduct experiments on329

samples generated by GPT-3. We use three clas-330

sical datasets from the metaphor detection task,331

namely VUAverb, TroFi, and MOH-X. where332

VUAverb training set will be used for training or333

extracting examples, while VUAverb test set, TroFi,334

and MOH-X will be used for testing. In §4.1, we335

will describe these three datasets in detail, with336

special treatment for VUAverb. §4.2 describes the337

experiments, including the classifiers used for fine-338

tuning the model and the experiments that need to339

be performed. Finally, in §4.3, we will detail the340

execution details of the experiments.341

4.1 Dataset342

VUAverb. The VU Amsterdam Metaphor Corpus343

(VUAMC) (Steen et al., 2010) metaphorically an-344

notates each lexical unit in a subset of the British345

National Corpus (BNC Consortium, 2007) (Edition346

et al.), using the MIPVU program for the annota-347

tion. Based on VUAMC, several different variants348

of the VUA corpus have emerged, among which349

VUAverb is the verb version of the VUA corpus. In350

this paper, we use the VUAverb dataset mentioned351

in the metaphor detection shared task (Leong et al.,352

2018, 2020). In this dataset, the VUAverb train353

set is used for example selection and generation of 354

identically distributed samples, while the VUAverb 355

test set is used for sample testing. The training set 356

contains 15516 samples and the test set contains 357

5873 samples. 358

VUAverb Cuts. In the VUAverb train set, some 359

verbs were over-sampled, e.g., "say" (509), "go" 360

(506), while most of the verbs were extremely 361

under-sampled. Statistically, among the 1875 verbs 362

in the VUA train samples, there are only 257 verbs 363

with number greater than 10 (13.7% of the total), 364

while there are 781 verbs with number equal to 1 365

(41.7% of the total). To alleviate the problem of 366

uneven distribution of the number of samples in 367

the training set, we trimmed the VUAverb train 368

set. Specifically, we first divided the data based 369

on verbs and labeling information (metaphorical or 370

non-metaphorical). Then, sample categories with 371

numbers greater than 10 were identified, and 10 372

samples of the total number were randomly se- 373

lected as the final samples of the category. After 374

the cropping was completed, 7,900 pieces of sam- 375

ple data were obtained. 376

TroFi. TroFi (Birke and Sarkar, 2006) is a verb- 377

target focused dataset containing the literal and 378

metaphorical usage of 50 English verbs from the 379

1987-1989 Wall Street Journal corpus (Charniak 380

et al., 2000). We used the (Choi et al., 2021; Zhang 381

and Liu, 2023) version of the TroFi dataset, which 382

contains a total of 3717 samples. These samples 383

cover rich verb instances and provide diverse con- 384

textual information. 385

MOH-X. The MOH dataset was originally created 386

by (Mohammad et al., 2016), and its construction 387

methodology involves first extracting polysemous 388

verb samples from WordNet, and then metaphor- 389

ically labeling the sentences via a crowdsourcing 390

platform. To ensure the quality of the dataset an- 391

notation, (Mohammad et al., 2016) adopted a 70% 392

annotation consistency criterion. A subset of MOH, 393

MOH-X (Shutova et al., 2016), which is referenced 394

to mainstream anaphora detection systems (Choi 395

et al., 2021; Zhang and Liu, 2023), excludes in- 396

stances with pronouns, subordinate subjects or ob- 397

jects. In this paper, MOH-X is used as a test set. 398

4.2 Experimental Setup 399

The ChatGPT inference used in this paper is ac- 400

cessed via the OpenAI API. Unless otherwise 401

stated, we chose GPT3.5-turbo as the generator 402

tool, and the temperature was kept constant at 0.7. 403
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Dataset RoBERTa-base RoBERTa-large

DG EPE∗ SPE∗ ∆ gain DG EPE∗ SPE∗ ∆ gain

M
O

H
-X

Acc. 0.585 0.589 0.718 0.069 0.611 0.601 0.766 0.073
F1 0.385 0.536 0.681 0.224 0.453 0.574 0.722 0.195

Pre. 0.774 0.625 0.798 -0.063 0.785 0.625 0.906 -0.020
Rec. 0.256 0.469 0.594 0.276 0.319 0.531 0.6 0.247

Tr
oF

i

Acc. 0.579 0.607 0.637 0.043 0.597 0.571 0.641 0.009
F1 0.225 0.578 0.564 0.346 0.37 0.583 0.583 0.213

Pre. 0.567 0.543 0.592 0.001 0.579 0.506 0.59 -0.031
Rec. 0.14 0.618 0.538 0.438 0.271 0.688 0.576 0.361

V
U

A
ve

rb
-t

r Acc. 0.723 0.701 0.716 -0.015 0.711 0.697 0.726 0.001
F1 0.318 0.559 0.475 0.199 0.283 0.53 0.527 0.246

Pre. 0.613 0.503 0.537 -0.093 0.562 0.498 0.55 -0.038
Rec. 0.215 0.629 0.425 0.312 0.189 0.567 0.506 0.348

Table 1: Experimental results are shown. We trained GPT-3 on samples generated according to different strategies,
covering three datasets, MOH-X, TroFi and VUAverb test set. We used three different strategies, including Direct
Generation of Samples (DG), Example-based Prompt Enhancement (EPE) strategy, and Semantics-based Prompt
Enhancement (SPE) strategy. Among them, EPE and SPE are new methods that we propose. In the evaluation
process, we use four metrics, namely Accuracy (Acc.), F1 Score (F1), Precision (Pre.) and Recall (Rec.), with F1 as
the core evaluation metric. ∆ denotes the difference between the mean of EPE and SPE and DG

Dataset Tokens Sentences % Met.

VUAverb_tr 15,516 7,479 27.9%
VUAverb_te 5,873 2,694 29.9%
MOH-X 647 647 48.7%
TroFi 3,737 3,737 43.5%

Table 2: Dataset statistics. tr: training set. te: test
set. tokens: number of vocabulary units or samples
to be tested. sent.: total number of sentences, %Met.:
proportion of metaphor samples to total samples

For the choice of classifiers, we used RoBERTa404

(Liu et al., 2019), considering both base and large405

versions, and imported the weight parameters from406

the Huggingface library (Wolf et al., 2019), respec-407

tively. For the output of the model, we borrowed408

some of the model ideas designed in (Choi et al.,409

2021) and used the output of the hidden layer corre-410

sponding to the target word for classification. The411

classification layer consists of a fully connected412

layer with weights initialized using random seeds.413

This time, we designed two experiments. For414

Experiment 1, we first obtain the Direct Genera-415

tion (DG) data samples, and the two sample sets416

we designed based on Example-based Prompt En-417

hancement (EPE) and Semantics-based Prompt En-418

hancement (SPE) generation. We fine-tuned the419

three sample sets using RoBERTa, where the DG420

sample served as a control group. For Experiment 421

2, we compare the manually labeled data (AN) with 422

the samples from our proposed EPE and SPE, and 423

the generated sample data will use RoBERTa-large 424

as a classifier. 425

The samples generated in Experiment 1 will be 426

tested on MOH-X, TroFi, and VUAverb test set, 427

while for Experiment 2, we only use MOH-X for 428

testing. Due to the lack of validation sets, we divide 429

the above three datasets according to a 1:1 ratio of 430

word types (e.g., "go", "get") and labels (0 or 1). 431

Eventually, the number of validation and test sets 432

for TroFi is 1869 and 1868, respectively, for MOH- 433

X is 316 and 331, and for VUAverb test set is 2934 434

and 2939, respectively. 435

4.3 Implementation Details 436

In this experiment, we use the Adam (Kingma and 437

Ba, 2014) optimizer with an initialized learning 438

rate of 3e-5. The learning rate is controlled by a lin- 439

ear warm-up scheduler, during which the learning 440

rate is gradually increased, where the length of the 441

warm-up period is set to 3 epochs. we set a dropout 442

rate of 0.2, and keep the size of the hidden layer 443

at 768. The batch size for training, validation, and 444

testing was set to 200, and the maximum number 445

of training rounds was set to 30. The maximum 446

length of sentences was 150 tokens, the metaphori- 447
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cal weights are set to 3. All the experiments were448

run on cloud servers with a single A100 80G GPU.449

To ensure that the model adequately learns the dis-450

tribution of the dataset, we set the epoch to be451

greater than 20, and the model parameters that452

reach the maximum F1 value on the validation sam-453

ples are used for testing on the test set.454

5 Result455

5.1 Evaluation Metric456

Four evaluation metrics are commonly used for457

metaphor detection tasks. Among them, accuracy458

indicates the number of correctly categorized sam-459

ples as a proportion of the total number of sam-460

ples; precision measures the extent to which the461

model correctly predicts, focusing on the propor-462

tion of samples that the model determines to be in463

the positive category that are truly in the positive464

category; recall measures the model’s ability to cor-465

rectly identify positively categorized samples (true466

instances); and the F1 score is a metric that com-467

bines precision and recall and is used to balance468

the model’s accuracy and recall. In this experiment,469

we also use accuracy, precision, recall and F1 score470

as evaluation metrics, which are denoted as "Acc.",471

"Pre.", "Rec." and "F1" respectively.472

5.2 Results473

This subsection analyzes in detail the experimental474

results of the two experiments designed in §4.2.475

Experiment 1 aims at exploring the performance476

of directly generated (DG) samples with samples477

generated by the two methods we designed, i.e.,478

Example-based Prompt Enhancement (EPE) and479

Semantic-based Prompt Enhancement (SPE), on480

three test sets, namely, the MOH-X, TroFi, and481

VUAverb test set. In contrast, Experiment 2 fo-482

cuses on comparing the performance of manually483

labeled (AN) data with EPE and SPE on the MOH-484

X test set.485

Experiment 1. The experimental results are de-486

tailed in Table 1. The results show that the recall487

of Directly Generated Data (DG) is low on all the488

three datasets (25.6%, 15.0% and 21.5% in the489

base model, and 31.9%, 27.1% and 18.9% in the490

large model, respectively). This suggests that gen-491

erating metaphor samples directly using GPT-3 is492

quite challenging, and the large model does not493

understand the difference between metaphors and494

non-metaphors well.495

Compared to DG, in the Example-based Prompt496

Dataset Methods

EPE SPE AN ∆ gain

MOH-X 0.574 0.722 0.789 0.067
TroFi 0.583 0.583 0.641 0.058
VUA 0.53 0.527 0.697 0.167

Table 3: We compare samples from Example-based
Prompt Enhancement (EPE) and Semantics-based
Prompt Enhancement (SPE) with manually labeled data
(AN) from the VUAverb train set. We only consider
the F1 evaluation metrics on the three datasets MOH-X,
TroFi and VUAverb test set. ∆ denotes the difference
between the maximum value of EPE and SPE and the
AN.

Enhancement (EPE) and Semantics-based Prompt 497

Enhancement (SPE) approaches, both on the 498

RoBERTa base and large models, the performance 499

of the models on the three datasets can be signifi- 500

cantly improved. Taking EPE as an example, the 501

F1 metrics of its base model on the three datasets 502

are 0.536 (+15.1%), 0.578 (+35.3%) and 0.559 503

(+24.1%), respectively. While the F1 metrics for 504

the SPE base model were 0.681 (+29.6%), 0.564 505

(+33.9%) and 0.475 (+15.7%). On the MOH-X 506

dataset, SPE even outperforms EPE (+14.5% and 507

+14.8% on the base and large models, respectively), 508

suggesting that the zero-sample approach that we 509

designed outperforms the less-sample approach in 510

some aspects. 511

However, on the VUAverb test set, the perfor- 512

mance gap of SPE is larger (-8.4% on the base 513

model) compared to EPE. This may be due to the 514

fact that EPE uses samples with similar distribution 515

as the test set as a result of the example. Finally, 516

we observe that on the VUAverb test set, the F1 517

performance of DG and EPE on the large model is 518

instead lower than that of the base model, which 519

may be due to the overfitting phenomenon caused 520

by the increase in model parameters. Instead, SPE 521

was able to reduce the risk of fitting by providing 522

data diversity by introducing external lexical mean- 523

ings. Compared to the base model, the F1 value of 524

the large model is 0.527 (+5.2%). 525

Experiment 2. The experimental results are de- 526

tailed in Table 3. It can be observed that the man- 527

ually labeled data performs better on all three test 528

sets, which indicates that there is still a gap in 529

the current use of GPT-3 as a data generation tool. 530

Specifically, the F1 scores of AN on MOH-X, TroFi 531

and VUAverb test set reach 78.9%, 64.1% and 532
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69.7%, which are 6.7%, 5.8% and 16.7% higher533

than the maximum values of EPE and SPE, respec-534

tively. Since the AN data was composed using the535

VUAverb train set trimming, the performance on536

the VUAverb test set should be better. For MOH-X537

and TroFi, competitive performance was achieved538

using our designed prompts, confirming the effec-539

tiveness of EPE and SPE in generating metaphori-540

cal data.541

6 Ablation Experiment542

Methods MOH-X

Acc. F1 Pre. Rec.

DG 0.585 0.385 0.774 0.256
SPE w/o 0.560 0.653 0.544 0.819
SPE 0.718 0.681 0.798 0.594

Table 4: Ablation experiments targeting Semantics-
based Prompt Enhancement (SPE). DG: Direct Genera-
tion, SPE w/o denotes SPE without the use of metaphori-
cal or non-metaphorical descriptions. samples generated
by the three methods were tested only on the MOH-X
dataset.

This section discusses the impact of the addi-543

tional addition of metaphorical descriptions to the544

Semantics-based Prompt enhancement (SPE) on545

the quality of the GPT-3 generated dataset. Specifi-546

cally, the direct use of word meanings (SPE w/o)547

did not add metaphorical or non-metaphorical de-548

scriptions, as shown in Figure 2: "where the verb549

are used metaphorically / non-metaphorically". We550

used RoBERTa-base to train the model on the gen-551

erated dataset and then tested it on MOH-X, TroFi552

and VUAverb test set respectively.553

Table 4 compares the performance results of554

directly generated samples (DG), SPE without555

metaphorical descriptions (SPE w/o), and SPE with556

metaphorical descriptions on the three datasets.557

The results show that SPE w/o still outperforms558

the directly generated sample using GPT-3. Its F1559

value on the MOH-X dataset is 65.3% (+26.8%560

increase). However, the SPE with metaphori-561

cal descriptions achieved the best performance562

on all three test datasets, at 68.1% (+2.8% in-563

crease). This suggests that the metaphorical and564

non-metaphorical nature of generating samples565

through word sense segmentation alone is slightly566

insufficient. Adding qualification of metaphorical567

or non-metaphorical in the prompts could help to568

further improve the quality of GPT-3 generated 569

data. 570

7 Conclusion 571

Manual labeling of datasets is usually time- and 572

money-consuming, especially in metaphor detec- 573

tion tasks, where the quality of the dataset depends 574

on the educational level of the subjects. To ad- 575

dress this problem, this paper investigates how 576

to generate metaphor datasets using GPT-3. We 577

propose two approaches, namely Example-based 578

Prompt Enhancement (EPE) and Semantics-based 579

Prompt Enhancement (SPE). For EPE, we need a 580

certain number of manually labeled samples, i.e., 581

one example for the target word and label. Then, 582

GPT-3 generates the specified number of samples 583

based on the given example. For SPE, we sort 584

the word meanings given in WordNet in order of 585

frequency, considering the first two as literal mean- 586

ings and the rest as metaphorical meanings. Then, 587

we ask GPT-3 to generate metaphorical or non- 588

metaphorical samples based on the specified word 589

meanings. The experimental results show that the 590

data generated using the EPE and SPE methods can 591

significantly improve the performance of the down- 592

stream model on the metaphor detection fine-tuning 593

task compared to generating samples directly using 594

GPT-3. 595

8 Limitations 596

In this paper, we investigate the problem of how 597

to generate a metaphorical dataset using GPT-3. 598

We propose two methods, namely Example-based 599

Prompt Enhancement (EPE) and Semantics-based 600

Prompt Enhancement (SPE). First of all, the data 601

generated by the above two methods are consis- 602

tent with the distribution of the VUAverb dataset, 603

which may lead to the discrepancy between the 604

generated metaphor dataset and the actual distribu- 605

tion. In addition, the EPE method obtains examples 606

from VUAverb based on the target words and labels 607

(whether they are metaphorical usage or not), i.e., 608

the number of instances obtained is proportional to 609

the number of target word types, which may lead to 610

a higher number of instances required. In practice, 611

manually labeling these numbers of samples would 612

likewise require a larger cost. In future work, we 613

will aim to explore ways to ensure the quality of 614

metaphor sample generation while minimizing the 615

number of instances. 616
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9 Ethics Statement617

In this paper, we detail how GPT-3 was utilized618

to generate the metaphorical dataset. The datasets619

used and the research papers cited were obtained620

from publicly available sources, and we strictly621

adhere to academic and research ethics guidelines622

to ensure the legitimacy and transparency of the623

research process. We place particular emphasis624

on transparency and openness of information, and625

are committed to providing clear methodological626

descriptions and experimental details so that other627

researchers can understand and reproduce our re-628

search. We encourage other researchers in our aca-629

demic community to conduct responsible research630

and adhere to best practices in knowledge sharing631

to advance the continued development of the field.632

Through open information sharing, we expect to633

foster broader collaboration and deeper understand-634

ing of the metaphor detection task.635
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