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Abstract

Data annotation is a time-consuming and labor-
intensive process for many natural language
processing (NLP) tasks. According to a sur-
vey, the average annotation cost per instance on
crowdsourcing platforms is $0.11. This high an-
notation overhead has become a constraint for
further research in many tasks. As large-scale
language models (LMs) have achieved signifi-
cant improvements in many small-sample learn-
ing tasks, researchers have begun to generate
data samples by utilizing model hints to re-
duce the burden of data annotation. However,
previous research has focused on surface lan-
guage processing tasks and neglected in-depth
studies of implicit semantic class tasks (e.g.,
metaphors), which require models to provide a
deeper understanding of implicit meanings in
text. Therefore, the goal of this paper is to ex-
plore the data generation capabilities of GPT-3
on processing metaphor tasks. We introduce
two approaches, Example-based Prompt En-
hancement (EPE) and Semantics-based Prompt
Enhancement (SPE). The experimental results
show that the F1 scores of the two prompts we
designed are significantly higher on the three
datasets MOH-X, TroFi and VUAverb test set
compared to the metaphor data generated di-
rectly using ChatGPT. Meanwhile, the samples
generated using EPE and SPE have the same
competitive performance compared to the man-
ually labeled data.

1 Introduction

Metaphors, as a unique way for people to under-
stand the world, help understand vague and ab-
stract concepts in the source domain by extracting
familiar concepts in the target domain (Lakoff and
Johnson, 2008). However, current metaphor de-
tection systems often use supervised methods that
rely on high-quality manually labeled data. Ac-
cording to a survey, the average labeling cost per
instance on crowdsourcing platforms is as high as
$0.11 (Wang et al., 2021a). Comparatively, gen-
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Figure 1: Data generation process. (a) is the direct sam-
ple generation using GPT-3. (b) and (c) are the prompts
designed in this paper. (b) A sample is randomly sam-
pled in the training set based on the target word "word"
and the label "label" as an example. In (c), the lexi-
cal meaning of the target word is introduced into the
prompt.

erating samples using large language model (e.g.,
GPT3.5-turbo) APIs becomes a more cost-effective
alternative, costing only 0.001 per 1K token input
and 0.002 per 1K token output, respectively. How-
ever, this raises an interesting question: how to
fully utilize GPT-3 to generate high-quality sample
data at low cost?

Initial research on Large Language Models
(LLMs) was done mainly through fine-tuning. Mc-
Cann et al. (2018); Rajani et al. (2019) used de-
coders (Radford et al., 2018) that were fed ques-
tions and context to generate correct responses. An-
other common approach is the use of manually



created completions (Trinh and Le, 2018; Petroni
et al., 2019), by which the encoder (Devlin et al.,
2018) is guided to generate content in a specified
direction, e.g., "Donald Trump is [MASK]", where
"[MASK]" can be: "former president" or "business-

"

man .

With the continuous development of LLM, the
emergence of GPT-3 (Brown et al., 2020) has sig-
nificantly improved the ability of the model to gen-
erate data samples. However, the large number of
parameters of GPT-3 also brings the problem of
difficult fine-tuning. In contrast, prompt learning,
with its non-invasive nature and no need for model
fine-tuning or additional additional parameters, has
become a new approach for many researchers to ex-
plore data generation. In this area, researchers have
enabled models to generate multiple samples of the
same kind through prompts and labels (Ye et al.,
2022; Meng et al., 2022). Yoo et al. (2021); Wang
et al. (2021b) designed generic templates and pro-
vided examples to guide GPT-3 to generate similar
data while adapting to multiple downstream tasks.
And in (Meng et al., 2022), the generated data are
filtered and they are then used for fine-tuning the
sub-models.

The above approaches provide new research
ideas for introducing dataset generation tasks in
large language models. However, these studies
mainly focus on data generation for surface lan-
guage tasks (Wang et al., 2021a; Yoo et al., 2021;
Wang et al., 2021b; Meng et al., 2022), which of-
ten rely on information about lexical and syntac-
tic structures. In contrast to these surface tasks,
implicit semantic-type tasks (e.g., metaphor, sar-
casm detection) are more complex and require an
in-depth understanding of the implicit meanings
in the text. This understanding does not only in-
volve textual information in its surface form, but
also requires consideration of contextual semantic
relationships and potential inferences.

Therefore, the aim of this paper is to apply
prompt learning methods to data generation for
metaphor detection tasks. We design two prompt
methods for the metaphor task, one of which is
the fresh-shot, example-based Prompt Enhance-
ment (EPE); and the other is the zero-shot, lex-
ical meaning-based Prompt Enhancement (SPE).
The latter does not rely on manually labeled sam-
ples at all and only requires the introduction of the
WordNet (Miller, 1995; Fellbaum, 1998) knowl-
edge base. Finally, our contribution is summarized

as follows:

1. To the best of our knowledge, this is the first
study to apply GPT-3 to metaphorical sample
generation. GPT-3 will generate metaphori-
cal or non-metaphorical samples based on the
prompt we designed.

2. We are the first study to apply the sample less
approach of Example-based Prompt Enhance-
ment (EPE) to metaphorical sample genera-
tion. Compared to direct sample generation,
EPE averages 30% higher F1 values on the
three test datasets.

3. We also designed the zero-sample method of
Prompt Enhancement (SPE) based on lexical
meaning. This method does not require any
manually labeled dataset and achieves similar
performance to EPE, even with 10% higher
F1 values than EPE on the MOH-X dataset.

2 Related Work
2.1 Large-scale Language Modeling

The core principle of large-scale language model-
ing (LLM) lies in revealing the tacit knowledge
in the model by simulating task-specific linguistic
environments. Since the introduction of the self-
attention mechanism (Vaswani et al., 2017), the
field of LLM has made a vigorous development. In
the research, BERT (Devlin et al., 2018), which
uses the Transformer encoder architecture, and
GPT (Radford et al., 2018), which uses the Decoder
architecture, have emerged. On the basis of BERT,
many remarkable variants have emerged, such as
RoBERTa (Liu et al., 2019) and DeBERTa (He
et al., 2020). And the emergence of GPT-3 (Brown
et al., 2020), a third-generation model based on
the decoder structure with 175 billion parameters,
10 times more than any previous non-sparse lan-
guage model, has changed the landscape of LLM.
Remarkably, GPT-3 uses only a small number of
hints, which include a small number of examples of
a specific task as part of the input to train the model,
and achieves state-of-the-art performance on a va-
riety of tasks. Thus, we are witnessing another
important shift in the paradigm of prompt-based
natural language processing.

2.2 Prompt Learning

Unlike previous fine-tuning-based approaches, the
goal of prompt learning is to guide the LLM in



a non-fine-tuned manner to generate specific con-
tent. In this task, the LLM plays the role of a
sample less or zero sample learner. Past studies
based on prompt learning are usually categorized
into two main groups: generating annotations and
generating samples. Ye et al. (2022); Meng et al.
(2022) used the method of adding polarity labels to
prompts to guide the model to generate sample con-
tent related to a specified tendency. For example, a
prompt can be constructed such as "Movie reviews
with positive sentiment are". Wang et al. (2021a)
proposed an approach that combines manual and
LLM labeling to mitigate the cost. Yoo et al. (2021)
designed a template to guide the model for sam-
ple annotation or sample generation by introducing
instances of different tasks. Lang et al. (2022) de-
signed a joint training framework of GPT-3 and
BERT for the labeling of classification tasks. This
study only explores the use of prompt learning to
guide the LLM to generate samples, and therefore
does not cover the data labeling part.

2.3 Metaphor Detection

For the task of specifying target words and their
corresponding contexts, metaphor detection aims
to determine whether the target words are used in
a metaphorical manner. Compared to tasks such
as sentiment labeling and question and answer,
metaphor detection requires the model to have a
deeper understanding of the implicit meaning of the
text, a challenge that has typically been addressed
in prior research by injecting domain knowledge.
In prior work, researchers have used a variety of
knowledge injection strategies. Among them, Le
et al. (2020); Song et al. (2021); Feng and Ma
(2022) used dependency tree knowledge to direct
the model to focus on specific syntactic structures.
Mao and Li (2021); Choi et al. (2021); Su et al.
(2020) incorporate Part-Of-Speech tagging (POS),
where Mao and Li (2021) treats POS as a separate
subtask. In addition, Gong et al. (2020); Klebanov
et al. (2016); Zhang and Liu (2023) introduced
the WordNet database (Fellbaum, 1998), where
Gong et al. (2020); Klebanov et al. (2016) classi-
fied words into fifteen categories based on semantic
features, while Zhang and Liu (2023) constructed
a dichotomous subtask by directly taking the most
common definitions of words in WordNet as literal
meanings.

3 Method

This section describes in detail the prompts we
designed, each of which will be fine-tuned to fit
different metaphorical expression contexts based
on the target word. The prompts we design fall
into two types, namely example prompt and lexi-
cal prompt. In §3.1, we first describe the process
of generating metaphorical data with GPT-3. Sub-
sequently, in §3.2, we detail the Example-based
Prompt Enhancement (EPE) approach, while in
§3.3, the Semantics-based Prompt Enhancement
(SPE) approach is presented.

3.1 GPT-3 Labeling

GPT-3 (Brown et al., 2020) is a huge pre-trained
language model, and in this paper, we choose
GPT3.5-turbo, released by OpenAl, for data tag-
ging. GPT3.5-turbo (hereafter GPT-3) supports a
16K context window and is optimized for dialogue.
Given a sequence, GPT-3 is able to generate output
that naturally continues the input and ends with a
special stop sign.

In the annotation process, we first designed the
prompt template according to the metaphor detec-
tion task. Subsequently, we filled in the blanks in
the prompt according to different target words, la-
bels and sample sizes. Specifically, for the target
word wy, and label ¥y, there are:

{ac;l}f:[il = GPT-3(Prompt, w;, y;,n;), (1)

where z/, denotes the nth sample generated by
GPT-3 centering on the target word w;, whose
metaphoricity is related to the label y;. Specifi-
cally, when y; = 1 or y; = 0, the target word w;
behaves as metaphorical or non-metaphorical in
the sample set {az%}ffil, respectively. To ensure
fairness in testing the dataset, we direct GPT-3 to
generate a specified number of samples (i.e., Ng)
for each target word and ensure that the distribu-
tion of this sample is consistent with the manually
labeled dataset (described in §4.1).

3.2 Example-based Prompt Enhancement

The first prompt we designed was inspired by
(Yoo et al., 2021; Wang et al., 2021b), approaches
that provide one or more examples for each cate-
gory of a given task, with category labeling to fol-
low. Based on this intuition, this paper introduces
an exemplar-driven generation approach, where a
small amount of manually labeled data is used as
the main component of the prompt, and the content
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Figure 2: The prompt design diagram is shown below. Where wy, denotes a specific target word, yy, is its label, and
when y; = 1 indicates the metaphorical usage of the generated target word wy,. n denotes the number of samples
generated. In Method 1, "example" denotes the example usage of a certain category (wg, yx), which will be used as
the reference for GPT-3 to generate the metaphorical samples. For Method 2, "meaning x" denotes multiple word
meanings of the target word wy. GPT-3 will generate metaphor samples based on the specific word meanings of the

target word.

of the exemplars guides the model in generating
metaphorical or non-metaphorical samples of the
specified type.

Sample Selection. For each target word wy, and
context x, there exists and only one label yj
corresponding to it, where y, = 1 denotes the
metaphorical usage of the target word wy and
yr = 0 denotes the non-metaphorical usage. In
this paper, we adopt VUAverb train set(Leong
et al., 2018, 2020) as the sample set, denoted as
D = (zj,w;,y;)|1 <i < N, where x;, w;, y; are
the text, the target word, and the corresponding
label, respectively. In the specific implementation,
we divide D into subsets Dy, based on the target
word wy, and the corresponding label y. For each
category Dy, we randomly select a sample dj, as an
example.

Prompt construction. For the category set Dy,
the number of categories ny, and the category ex-
ample d, = (x,wg, yx), we populate prompt 1
(see Method 1 in Figure 2). where word = wy,
specifies the target word, y, = 1,0 denotes the
metaphorical or non-metaphorical usage of the tar-
get word to be generated, and n = ny specifies
the number of generation, i.e., GPT-3 is required
to generate ng samples with different description
styles. It is worth noting that the above number of
samples setting is consistent with the distribution
of the manually labeled dataset.

3.3 Semantics-based Prompt Enhancement

Lexical Meaning Search. WordNet (Miller, 1995;
Fellbaum, 1998) is a hierarchically structured lexi-
cal database in which each word forms links with
other related words to represent semantic connec-
tions between them. In metaphor detection tasks,
WordNet is a commonly used external knowledge
base by researchers and has been shown to help
improve metaphor detection performance (Gong
et al., 2020; Klebanov et al., 2016; Zhang and Liu,
2023). Zhang and Liu (2023) considered the most
commonly used meanings of target words in Word-
Net as literal meanings and introduced the subtask
of Basic Sense Discrimination (BSD). Inspired by
these studies, this paper also utilizes WordNet to
obtain multiple meanings of target words. For any
target word wy;, as well as the verb meaning sets Vg
retrieved from WordNet (Vy is sorted by frequency
of use), we refer to (Zhang and Liu, 2023) and
consider the first two commonly used meanings
as literal meanings, while considering the rest of
them as metaphorical meanings. For any lexical
meaning v; € Vj:

Vil
Vk,m

0<j<2andy; =0

Uje .
j>2and y; =1,

2

where Vj; and Vj,, denote the literal and
metaphorical lexical sense sets of the target word
wy, respectively. The label y;, = 0 indicates that



wyg, is used non-metaphorically, while y;, = 1 indi-
cates that wy, is used metaphorically.

Prompt Construction. The prompt construction
method is detailed in Method 2 in Figure 2. Similar
to §3.2, for the input message (wy, Y, nk ), we first
specify word = wy, and then ask the model to
generate ny, metaphorical or non-metaphorical sen-
tences based on the value of 4 (0 or 1). However,
the difference is that we consider the literal lexical
set Vj; and the metaphorical lexical set V, ,,, of
the target word wy. Specifically, we first divide
based on the number of samples to be generated,
for y;, = 1, there are:

Nk, = ceil(ng/| Vi), 3)

where ceil is an upward rounding function, |V |
denotes the number of word meanings, and ny, ;
denotes the number of samples that need to be
generated using the ¢th word meaning. Then, we
make n = ny, 1, meaning = v; to generate 7y,
samples of metaphors with different styles and with
v1 lexical meanings. Repeat until n; samples have
been generated.

4 Experiment

In this section, we will conduct experiments on
samples generated by GPT-3. We use three clas-
sical datasets from the metaphor detection task,
namely VUAverb, TroFi, and MOH-X. where
VUAverb training set will be used for training or
extracting examples, while VUAverb test set, TroFi,
and MOH-X will be used for testing. In §4.1, we
will describe these three datasets in detail, with
special treatment for VUAverb. §4.2 describes the
experiments, including the classifiers used for fine-
tuning the model and the experiments that need to
be performed. Finally, in §4.3, we will detail the
execution details of the experiments.

4.1 Dataset

VUAverb. The VU Amsterdam Metaphor Corpus
(VUAMCO) (Steen et al., 2010) metaphorically an-
notates each lexical unit in a subset of the British
National Corpus (BNC Consortium, 2007) (Edition
et al.), using the MIPVU program for the annota-
tion. Based on VUAMC, several different variants
of the VUA corpus have emerged, among which
VUAuverb is the verb version of the VUA corpus. In
this paper, we use the VUAverb dataset mentioned
in the metaphor detection shared task (Leong et al.,
2018, 2020). In this dataset, the VUAverb train

set is used for example selection and generation of
identically distributed samples, while the VUAverb
test set is used for sample testing. The training set
contains 15516 samples and the test set contains
5873 samples.

VUAverb Cuts. In the VUAverb train set, some
verbs were over-sampled, e.g., "say" (509), "go"
(506), while most of the verbs were extremely
under-sampled. Statistically, among the 1875 verbs
in the VUA train samples, there are only 257 verbs
with number greater than 10 (13.7% of the total),
while there are 781 verbs with number equal to 1
(41.7% of the total). To alleviate the problem of
uneven distribution of the number of samples in
the training set, we trimmed the VUAverb train
set. Specifically, we first divided the data based
on verbs and labeling information (metaphorical or
non-metaphorical). Then, sample categories with
numbers greater than 10 were identified, and 10
samples of the total number were randomly se-
lected as the final samples of the category. After
the cropping was completed, 7,900 pieces of sam-
ple data were obtained.

TroFi. TroFi (Birke and Sarkar, 2006) is a verb-
target focused dataset containing the literal and
metaphorical usage of 50 English verbs from the
1987-1989 Wall Street Journal corpus (Charniak
et al., 2000). We used the (Choi et al., 2021; Zhang
and Liu, 2023) version of the TroFi dataset, which
contains a total of 3717 samples. These samples
cover rich verb instances and provide diverse con-
textual information.

MOH-X. The MOH dataset was originally created
by (Mohammad et al., 2016), and its construction
methodology involves first extracting polysemous
verb samples from WordNet, and then metaphor-
ically labeling the sentences via a crowdsourcing
platform. To ensure the quality of the dataset an-
notation, (Mohammad et al., 2016) adopted a 70%
annotation consistency criterion. A subset of MOH,
MOH-X (Shutova et al., 2016), which is referenced
to mainstream anaphora detection systems (Choi
et al., 2021; Zhang and Liu, 2023), excludes in-
stances with pronouns, subordinate subjects or ob-
jects. In this paper, MOH-X is used as a test set.

4.2 Experimental Setup

The ChatGPT inference used in this paper is ac-
cessed via the OpenAl API. Unless otherwise
stated, we chose GPT3.5-turbo as the generator
tool, and the temperature was kept constant at 0.7.



RoBERTa-base

RoBERTa-large

Dataset — —
DG EPE* SPE* Agan DG EPE* SPE* A gain
v Acc. 0.585 0589 0.718 0.069 0.611 0.601 0.766  0.073
- F1 0385 0536 0681 0224 0453 0574 0.722  0.195
S Pre. 0774 0.625 0.798 -0.063 0.785 0.625 0.906 -0.020
= Rec. 0.256 0469 0.594 0.276 0.319 0531 0.6 0.247
Acc. 0.579 0.607 0.637 0.043 0.597 0.571 0.641  0.009
% F1 0225 0578 0564 0346 037 0583 0.583 0.213
= Pre. 0567 0543 0.592 0.001 0579 0506 059 -0.031
Rec. 0.14 0618 0.538 0438 0.271 0.688 0.576 0.361
£ Acc. 0723 0.701 0.716 -0.015 0.711 0.697 0.726  0.001
% F1 0318 0559 0475 0.199 0283 0.53 0.527 0.246
Z Pre. 0613 0503 0537 -0.093 0.562 0498 055 -0.038
E Rec. 0.215 0.629 0425 0312 0.189 0.567 0.506 0.348

Table 1: Experimental results are shown. We trained GPT-3 on samples generated according to different strategies,
covering three datasets, MOH-X, TroFi and VUAverb test set. We used three different strategies, including Direct
Generation of Samples (DG), Example-based Prompt Enhancement (EPE) strategy, and Semantics-based Prompt
Enhancement (SPE) strategy. Among them, EPE and SPE are new methods that we propose. In the evaluation
process, we use four metrics, namely Accuracy (Acc.), F1 Score (F1), Precision (Pre.) and Recall (Rec.), with F1 as
the core evaluation metric. A denotes the difference between the mean of EPE and SPE and DG

Dataset Tokens Sentences Y% Met.
VUAverb_tr 15,516 7,479 27.9%
VUAverb_te 5,873 2,694 29.9%
MOH-X 647 647 48.7%
TroFi 3,737 3,737 43.5%

Table 2: Dataset statistics. tr: training set. te: test
set. tokens: number of vocabulary units or samples
to be tested. sent.: total number of sentences, %Met.:
proportion of metaphor samples to total samples

For the choice of classifiers, we used RoBERTa
(Liu et al., 2019), considering both base and large
versions, and imported the weight parameters from
the Huggingface library (Wolf et al., 2019), respec-
tively. For the output of the model, we borrowed
some of the model ideas designed in (Choi et al.,
2021) and used the output of the hidden layer corre-
sponding to the target word for classification. The
classification layer consists of a fully connected
layer with weights initialized using random seeds.

This time, we designed two experiments. For
Experiment 1, we first obtain the Direct Genera-
tion (DG) data samples, and the two sample sets
we designed based on Example-based Prompt En-
hancement (EPE) and Semantics-based Prompt En-
hancement (SPE) generation. We fine-tuned the
three sample sets using ROBERTa, where the DG

sample served as a control group. For Experiment
2, we compare the manually labeled data (AN) with
the samples from our proposed EPE and SPE, and
the generated sample data will use RoBERTa-large
as a classifier.

The samples generated in Experiment 1 will be
tested on MOH-X, TroFi, and VUAverb test set,
while for Experiment 2, we only use MOH-X for
testing. Due to the lack of validation sets, we divide
the above three datasets according to a 1:1 ratio of
word types (e.g., "go", "get") and labels (0 or 1).
Eventually, the number of validation and test sets
for TroFi is 1869 and 1868, respectively, for MOH-
X is 316 and 331, and for VUAverb test set is 2934
and 2939, respectively.

4.3 Implementation Details

In this experiment, we use the Adam (Kingma and
Ba, 2014) optimizer with an initialized learning
rate of 3e-5. The learning rate is controlled by a lin-
ear warm-up scheduler, during which the learning
rate is gradually increased, where the length of the
warm-up period is set to 3 epochs. we set a dropout
rate of 0.2, and keep the size of the hidden layer
at 768. The batch size for training, validation, and
testing was set to 200, and the maximum number
of training rounds was set to 30. The maximum
length of sentences was 150 tokens, the metaphori-



cal weights are set to 3. All the experiments were
run on cloud servers with a single A100 80G GPU.
To ensure that the model adequately learns the dis-
tribution of the dataset, we set the epoch to be
greater than 20, and the model parameters that
reach the maximum F1 value on the validation sam-
ples are used for testing on the test set.

5 Result

5.1 Evaluation Metric

Four evaluation metrics are commonly used for
metaphor detection tasks. Among them, accuracy
indicates the number of correctly categorized sam-
ples as a proportion of the total number of sam-
ples; precision measures the extent to which the
model correctly predicts, focusing on the propor-
tion of samples that the model determines to be in
the positive category that are truly in the positive
category; recall measures the model’s ability to cor-
rectly identify positively categorized samples (true
instances); and the F1 score is a metric that com-
bines precision and recall and is used to balance
the model’s accuracy and recall. In this experiment,
we also use accuracy, precision, recall and F1 score
as evaluation metrics, which are denoted as "Acc.",
"Pre.", "Rec." and "F1" respectively.

5.2 Results

This subsection analyzes in detail the experimental
results of the two experiments designed in §4.2.
Experiment 1 aims at exploring the performance
of directly generated (DG) samples with samples
generated by the two methods we designed, i.e.,
Example-based Prompt Enhancement (EPE) and
Semantic-based Prompt Enhancement (SPE), on
three test sets, namely, the MOH-X, TroFi, and
VUAverb test set. In contrast, Experiment 2 fo-
cuses on comparing the performance of manually
labeled (AN) data with EPE and SPE on the MOH-
X test set.
Experiment 1. The experimental results are de-
tailed in Table 1. The results show that the recall
of Directly Generated Data (DG) is low on all the
three datasets (25.6%, 15.0% and 21.5% in the
base model, and 31.9%, 27.1% and 18.9% in the
large model, respectively). This suggests that gen-
erating metaphor samples directly using GPT-3 is
quite challenging, and the large model does not
understand the difference between metaphors and
non-metaphors well.

Compared to DG, in the Example-based Prompt

Dataset Methods

EPE SPE AN A gain
MOH-X 0.574 0.722 0.789 0.067
TroFi 0.583 0.583 0.641 0.058
VUA 0.53 0.527 0.697 0.167

Table 3: We compare samples from Example-based
Prompt Enhancement (EPE) and Semantics-based
Prompt Enhancement (SPE) with manually labeled data
(AN) from the VUAverb train set. We only consider
the F1 evaluation metrics on the three datasets MOH-X,
TroFi and VUAverb test set. A denotes the difference
between the maximum value of EPE and SPE and the
AN.

Enhancement (EPE) and Semantics-based Prompt
Enhancement (SPE) approaches, both on the
RoBERTa base and large models, the performance
of the models on the three datasets can be signifi-
cantly improved. Taking EPE as an example, the
F1 metrics of its base model on the three datasets
are 0.536 (+15.1%), 0.578 (+35.3%) and 0.559
(+24.1%), respectively. While the F1 metrics for
the SPE base model were 0.681 (+29.6%), 0.564
(+33.9%) and 0.475 (+15.7%). On the MOH-X
dataset, SPE even outperforms EPE (+14.5% and
+14.8% on the base and large models, respectively),
suggesting that the zero-sample approach that we
designed outperforms the less-sample approach in
some aspects.

However, on the VUAverb test set, the perfor-
mance gap of SPE is larger (-8.4% on the base
model) compared to EPE. This may be due to the
fact that EPE uses samples with similar distribution
as the test set as a result of the example. Finally,
we observe that on the VUAverb test set, the F1
performance of DG and EPE on the large model is
instead lower than that of the base model, which
may be due to the overfitting phenomenon caused
by the increase in model parameters. Instead, SPE
was able to reduce the risk of fitting by providing
data diversity by introducing external lexical mean-
ings. Compared to the base model, the F1 value of
the large model is 0.527 (+5.2%).

Experiment 2. The experimental results are de-
tailed in Table 3. It can be observed that the man-
ually labeled data performs better on all three test
sets, which indicates that there is still a gap in
the current use of GPT-3 as a data generation tool.
Specifically, the F1 scores of AN on MOH-X, TroFi
and VUAverb test set reach 78.9%, 64.1% and



69.7%, which are 6.7%, 5.8% and 16.7% higher
than the maximum values of EPE and SPE, respec-
tively. Since the AN data was composed using the
VUAverb train set trimming, the performance on
the VUAverb test set should be better. For MOH-X
and TroFi, competitive performance was achieved
using our designed prompts, confirming the effec-
tiveness of EPE and SPE in generating metaphori-
cal data.

6 Ablation Experiment

Methods MOH-X

Acc. F1 Pre. Rec.
DG 0.585 0.385 0.774 0.256
SPEw/o 0560 0.653 0.544 0.819
SPE 0.718 0.681 0.798 0.594

Table 4: Ablation experiments targeting Semantics-
based Prompt Enhancement (SPE). DG: Direct Genera-
tion, SPE w/o denotes SPE without the use of metaphori-
cal or non-metaphorical descriptions. samples generated
by the three methods were tested only on the MOH-X
dataset.

This section discusses the impact of the addi-
tional addition of metaphorical descriptions to the
Semantics-based Prompt enhancement (SPE) on
the quality of the GPT-3 generated dataset. Specifi-
cally, the direct use of word meanings (SPE w/0)
did not add metaphorical or non-metaphorical de-
scriptions, as shown in Figure 2: "where the verb
are used metaphorically / non-metaphorically". We
used RoBERTa-base to train the model on the gen-
erated dataset and then tested it on MOH-X, TroFi
and VUAverb test set respectively.

Table 4 compares the performance results of
directly generated samples (DG), SPE without
metaphorical descriptions (SPE w/o0), and SPE with
metaphorical descriptions on the three datasets.
The results show that SPE w/o still outperforms
the directly generated sample using GPT-3. Its F1
value on the MOH-X dataset is 65.3% (+26.8%
increase). However, the SPE with metaphori-
cal descriptions achieved the best performance
on all three test datasets, at 68.1% (+2.8% in-
crease). This suggests that the metaphorical and
non-metaphorical nature of generating samples
through word sense segmentation alone is slightly
insufficient. Adding qualification of metaphorical
or non-metaphorical in the prompts could help to

further improve the quality of GPT-3 generated
data.

7 Conclusion

Manual labeling of datasets is usually time- and
money-consuming, especially in metaphor detec-
tion tasks, where the quality of the dataset depends
on the educational level of the subjects. To ad-
dress this problem, this paper investigates how
to generate metaphor datasets using GPT-3. We
propose two approaches, namely Example-based
Prompt Enhancement (EPE) and Semantics-based
Prompt Enhancement (SPE). For EPE, we need a
certain number of manually labeled samples, i.e.,
one example for the target word and label. Then,
GPT-3 generates the specified number of samples
based on the given example. For SPE, we sort
the word meanings given in WordNet in order of
frequency, considering the first two as literal mean-
ings and the rest as metaphorical meanings. Then,
we ask GPT-3 to generate metaphorical or non-
metaphorical samples based on the specified word
meanings. The experimental results show that the
data generated using the EPE and SPE methods can
significantly improve the performance of the down-
stream model on the metaphor detection fine-tuning
task compared to generating samples directly using
GPT-3.

8 Limitations

In this paper, we investigate the problem of how
to generate a metaphorical dataset using GPT-3.
We propose two methods, namely Example-based
Prompt Enhancement (EPE) and Semantics-based
Prompt Enhancement (SPE). First of all, the data
generated by the above two methods are consis-
tent with the distribution of the VUAverb dataset,
which may lead to the discrepancy between the
generated metaphor dataset and the actual distribu-
tion. In addition, the EPE method obtains examples
from VUAverb based on the target words and labels
(whether they are metaphorical usage or not), i.e.,
the number of instances obtained is proportional to
the number of target word types, which may lead to
a higher number of instances required. In practice,
manually labeling these numbers of samples would
likewise require a larger cost. In future work, we
will aim to explore ways to ensure the quality of
metaphor sample generation while minimizing the
number of instances.



9 Ethics Statement

In this paper, we detail how GPT-3 was utilized
to generate the metaphorical dataset. The datasets
used and the research papers cited were obtained
from publicly available sources, and we strictly
adhere to academic and research ethics guidelines
to ensure the legitimacy and transparency of the
research process. We place particular emphasis
on transparency and openness of information, and
are committed to providing clear methodological
descriptions and experimental details so that other
researchers can understand and reproduce our re-
search. We encourage other researchers in our aca-
demic community to conduct responsible research
and adhere to best practices in knowledge sharing
to advance the continued development of the field.
Through open information sharing, we expect to
foster broader collaboration and deeper understand-
ing of the metaphor detection task.
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