
A Illustration of Group and Group Representation in CarFlag-2D463

Domain We consider a small version of CarFlag-2D (see Figure 9) with a grid size of 3x3, where464

the agent (red) must navigate to an unknown target cell (green) in a grid world. The agent can always465

observe its current location but only observe the target cell when it visits the information cell (blue),466

which is also unknown to the agent.467

Observation The observation is a two-channel image size 2x3x3, where the first channel encodes468

the agent’s location and the second encodes the target location. The values of the second channel469

are non-zero only when the agent is at the information cell (Figure 9).470

Actions Movements in four directions (the location does not change if going out of the world).471

a) Domain Description b) Obs. when not
visiting info cell

c) Obs. when at info
cell

Agent Info Cell Target Actions

Figure 9: Illustration of the domain, action, and observation.

Domain Symmetry Consider Scenario 1 and Scenario 2 in Figure 10: Scenario 2 is the rotated472

version of Scenario 1 after a 90◦ counter-clockwise (CCW) rotation. Therefore, an optimal path473

(denoted with colored arrows) in Scenario 1 is equally optimal in Scenario 2 if we rotate the path474

similarly. The same happens if the rotation angle is 180◦ or 270◦. We can capture the rotational475

symmetry using group C4 = {0◦, 90◦, 180◦, 270◦}.

Scenario 1 Scenario 2

Rotate 90o

CCW

Figure 10: Illustration of domain symmetry. Scenario 2 is the rotated version of Scenario 1 after a
90◦ counter-clockwise rotation. An optimal path in Scenario 1 can be rotated similarly to become
optimal in Scenario 2.

476

Scenario 1 Scenario 2

Equivariant
Policy

Rotate 90o

CCW

Figure 11: Illustration of the effect of an equivariant policy: the action is automatically rotated when
the input observation is rotated.

Equivariant Policy We want our policy to automatically capture the domain symmetry above by477

making it equivariant. In Figure 11, we illustrate the property of an equivariant policy π with g478

being a 90◦ CCW rotation. In Scenario 1, given the first observation o, we assume that π already479

knows it should go to the right Go-Right = π(o) towards the information cell. Now, moving to480

Scenario 2, when the first observation is the rotated version of o, denoted as go. An equivariant481

policy automatically calculates the next action in Scenario 2 as:482

π(go) = gπ(o) = g(Go-Right) = Go-Up (4)
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Group Representation From Equation (4), to construct an equivariant policy, we need to define483

how a rotation g acts on an observation at the input (i.e., define go) and on an action at the output484

(i.e., define gπ(o)). For that purpose, besides defining the group, we need to specify the group rep-485

resentation, i.e., defining an observation group representation ρo and an action group representation486

ρa for π (see below).487

Example of Group Acting on Observation and Action The effect of a 900 CCW rotation g488

on the observation via a trivial representation ρo = ρt and the action via a regular representation489

ρa = ρr is illustrated in Figure 12. A trivial representation ρt rotates the observation (like rotating490

the normal image) while keeping the pixel values unchanged (the value in cell 0 is still (00, 01)). In491

contrast, a regular representation ρr permutes the action distribution output, resulting in a different492

action, i.e., Go-Right→ Go-Up). This automatic change only happens if the policy is equivariant.

1 2

3 4 5

6 7 8

Equivariant
Policy

2 5 8

1 4 7

3 6

[0.2, 0.4, 0.3, 0.1]

0.2

0.4

0.3

0.1

Equivariant
Policy [0.4, 0.3, 0.1, 0.2]

0.4

0.3

0.1

0.2

Rotate
90o CCW

Trivial
Representation

Rotate
90o CCW

Regular
Representation

Scenario 1

Scenario 2

Rotate 90o

CCW

Rotate 90o

CCWPermute

Figure 12: Illustration of the effect of a trivial representation acting on the observation (ρo = ρt)
and a regular representation acting on the action (ρa = ρr) with g being a 900 CCW rotation. ρo
rotates the observation and keeps the pixel values unchanged. ρa permutes the action distribution
output, resulting in a different action (Go-Right→ Go-Up).
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B Proof of Theorem 1494

In this section, we introduce the framework of history representation MDP [63] and prove a support-495

ing lemma before arriving at the proof.496

B.1 History Representation MDP497

A POMDP can be converted into a history representation MDP (HR-MDP) [63] whose state is a498

sufficient statistic of the POMDP history for control, e.g., the well-known Belief-MDP [64] construct499

is a special case of an HR-MDP based on the belief representation. Useful representations such500

as the belief might require a known POMDP model; however, we adopt a model-free approach501

with no such knowledge and therefore use the trivial identity representation whereby the history is502

represented by itself. This effectively converts the POMDP into an equivalent History-MDP, which503

is defined by the tuple (H,A, T̄ , R̄), where:504

T̄ (h, a, h′) = Eo|h,a [I{h′ = hao}] R̄(h, a) = Es|h [R(s, a)] , (5)

where I{·} is the indicator function, and505

Pr(o | h, a) = Es|h

[∑
s′

T (s, a, s′)O(a, s′, o)

]
, (6)

Pr(s′ | h′) ∝ Es|h [T (s, a, s′)]O(a, s′, o) . (7)

B.2 Supporting Lemma506

Lemma 1. The belief function of a group-invariant POMDP (as defined by Definition 1) is group-507

invariant,508

Pr(gs | gh) = Pr(s | h) . (8)

Proof By Induction.509

Base Case. We first prove that the belief after the first observation is invariant. We note here that510

the observation function for the first timestep takes the form O(s, o), with no preceding action.511

Pr(gs0 | go0) ∝ b0(gs0)O(gs0, go0) = b0(s0)O(s0, o0) ∝ Pr(s0 | o0) . (9)

Since Pr(gs0 | go0) and Pr(s0 | o0) are both proportional to the same quantity, and they are both512

normalized to be distributions over states, then they are themselves equal.513

Inductive Step. We then prove that if Pr(st | ht) is invariant, then Pr(st+1 | ht+1) is also invariant.514

Per Equation (7),515

Pr(gst+1 | ght+1) ∝ Pr(gst | ght)T (gst, gat, gst+1)O(gat, gst+1, got+1)

= Pr(st | ht)T (st, at, st+1)O(at, st+1, ot+1) ∝ Pr(st+1 | ht+1) . (10)

Since Pr(gst+1 | ght+1) and Pr(st+1 | ht+1) are both proportional to the same quantity, and they516

are both normalized to be distributions over states, then they are themselves equal. By induction,517

given the base case and the inductive step, the belief function Pr(st | ht) is invariant for any t.518

B.3 Proof519

Proof. We begin by constructing the History-MDP associated with a group-invariant POMDP, and520

showing that it is itself a group-invariant MDP. The transition and reward functions of the History-521

MDP are shown in Equation (5) and satisfy the group invariance properties.522

For this proof, it is simpler to express the history transition function as T̄ (h, a, h′) = Pr(o | h, a),523

where o is the observation (if any exists) s.t. h′ = hao. If no such observation exists, then524

T̄ (h, a, h′) = 0 is trivially invariant. If it does exist, then it is necessarily the last observation525

of h′,526

T̄ (gh, ga, gh′) = Pr(go | gh, ga) =
∑
s,s′

Pr(s | gh) Pr(s′ | s, ga) Pr(go | ga, s′)
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since g permutes the elements of S, we can re-index using s = gs̄ and s′ = gs̄′,527

=
∑
s̄,s̄′

Pr(gs̄ | gh)T (gs̄′ | gs̄, ga)O(go | ga, gs̄′)

=
∑
s,s′

Pr(s | h)T (s′ | s, a)O(o | a, s′) = T̄ (h, a, h′) . (11)

By using s = gs̄, we proceed similarly for history rewards,528

R̄(gh, ga) =
∑
s

Pr(s | gh)R(s, ga) =
∑
s̄

Pr(gs̄ | gh)R(gs̄, ga)

=
∑
s

Pr(s | h)R(s, a) = R̄(h, a) . (12)

Therefore, T̄ (h, a, h′) and R̄(h, a) are invariant, and History-MDPs are group-invariant MDPs. By529

the theory developed in [1], this implies that the optimal Q-value function Q∗(h, a) is invariant and530

that there exists at least one equivariant deterministic optimal policy π∗(h). Moreover,531

V ∗(gh) = Q∗(gh, π∗(gh)) = Q∗(gh, gπ∗(h))

= Q∗(h, π∗(h)) = V ∗(h) , (13)

this ends our proof by showing that V ∗(h) is invariant.532
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C Environment Details533

C.1 Grid-world Domains534

C.1.1 CarFlag-1D535

• Action: Go-Left or Go-Right536

• Observation (Discrete): The position of the car, the side of the green flag (-1 or 1 if the car537

is at the blue flag, and 0 otherwise)538

• Reward: step reward: -0.01, reaching the green flag: 1.0, and reaching the red flag: -1.0539

• Episode Initialization: The car is randomized such that it is not at the information location540

(blue flag). The goal (green flag) is always either at the leftmost or rightmost end. The red541

flag is on the opposite end542

• Episode Termination: Reaching either flags or an episode lasts more than 50 timesteps543

• World size: The distance between the red and the green flag is 50544

Goal

Info.  Region

GoalAgent

Info.  Spot

Trap

World size = 50

G
rid size = 9

Figure 13: CarFlag-1D and CarFlag-2D domains. The information regions are not visible to the
agent. These domains become asymmetric when the offsets from the information region to the world
center, i.e., d1D and d2D, are non-zero.

C.1.2 CarFlag-2D545

• Action: Right/Left/Up/Down546

• Observation: The observation is encoded as an N × N × 2 image, where N is the grid547

size, the first channel encodes the position of the car, and the second channel encodes the548

position of the green cell. The second channel is only informative when the agent is inside549

the information region (blue)550

• Reward: Reaching the green cell: 1.0, otherwise 0.0551

• Episode Initialization: The agent and the goal cell are randomized such that the minimum552

distance between them is at least two steps. Moreover, both the agent and the goal are not553

initialized inside the information region (blue)554

• Episode Termination: Reached the goal or an episode lasts more than 50 timesteps555

C.2 Robot Manipulation Domains556

For these domains, an episode is terminated when it lasts over 50 timesteps or the task is achieved.557

Because all robot domains share the same observation and action, we only describe them below.558

Action. An action a = (δw, δx, δy, δz, δr), where δw ∈ [0, 1] is the absolute openness of the gripper559

(0: fully open, 1: fully closed), δx,y,z ∈ [−0.05, 0.05] are the displacements of the gripper in the X,560

Y, and Z axis, and δr ∈ [−π/8, π/8] is the angular rotation around the Z axis (see Figure 14a)561

Observation. An observation is a top-down depth image taken from a camera located at the end-562

effector. Specifically, an observation o = (I, k), where I ∈ R84×84 is the depth image and k ∈563

{1, 0} indicates the current holding status of the gripper. I and k are combined to create a unified564

depth observation o ∈ R2×84×84. Moreover, two fingers of the gripper are also projected on I (black565

squares in Figure 14b)566
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YZ
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W

Top-down Depth Image

Grasping Status

Observation

Gripper's Fingers

b

a

Figure 14: Visual description of Drawer-Opening.

Partial Observability. These domains characterize the natural partial observability when certain567

physical properties of objects, e.g., whether a drawer in Figure 14a is unlocked or not, are often568

unobservable using pixel observations alone569

C.2.1 Block-Picking570

• Reward: A reward of 1.0 only when the movable block is picked and brought higher than571

8cm572

• Episode Initialization: The poses of the two blocks are randomized. The arm is initialized573

at a fixed pose574

• Expert Generation: An expert (a planner with access to all object poses) randomly chooses575

one block to pick. If the expert picks the movable block, it will bring the block up to576

achieve the task. Otherwise, the expert keeps trying for several timesteps before switching577

to pick the movable block to achieve the task578

Goal

Movable Immovable

Block-Picking

Goal

Movable

Immovable

Block-Pulling

Immovable
Movable

Goal Pad

Goal

Block-Pushing

Goal

Locked

Unlocked

Drawer-Opening

Figure 15: Robot manipulation domains.

C.2.2 Block-Pulling579

• Reward: A reward of 1.0 only when two blocks are in contact580

• Expert Generation: An expert randomly chooses one block to pull towards the other block.581

If the block is pullable, then it will be pulled towards the other block to achieve the task.582

Otherwise, the expert keeps trying for a while before pulling the other block583

C.2.3 Block-Pushing584

• Reward: A reward of 1.0 only when the pushable block is within 5cm from the center of585

the goal pad. The agent additionally receives a penalty of 0.1 per timestep if it changes the586

height of the movable block by 5mm to prevent picking the block instead of pushing it587

• Episode Initialization: The poses of the two blocks and the goal pad are randomly initial-588

ized589
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• Expert Generation: An expert randomly chose one block to push towards the goal pad. If590

the block is pushable, it will then continue pushing until reaching the goal pad. Otherwise,591

the expert keeps trying for several timesteps before doing the same thing with the other592

(pushable) block593

C.2.4 Drawer-Opening594

• Reward: A reward of 1.0 only when the unlocked drawer is opened more than 5cm595

• Episode Initialization: Two drawers are randomly placed next to each other with the same596

heading angle597

• Expert Generation: An expert randomly chooses one drawer to open. If it chooses the598

unlocked drawer, it will then open the drawer to achieve the task. Otherwise, the expert599

keeps opening the unlocked drawer several timesteps before opening the other drawer600
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D Implementation Details601

D.1 Network Structure of Equivariant Recurrent A2C (Equi-RA2C)602

Figure 16 shows the specific architecture of Equi-RA2C used in CarFlag domains. Because the603

actions can be inferred from the observations in these domains, we do not include the feature extrac-604

tor for the previous actions. We also omit the skip-connections. The input representation is some605

representation of the observation ρo, depending on the domains (see below).

RNN Actor
Outputter

RNN Critic
Outputter

Obs. Feature Extractor

Obs. Feature Extractor

Figure 16: The architecture of Equi-RA2C used in CarFlag-1D and CarFlag-2D.
606

Figure 17 shows the details of Equi-RA2C used in CarFlag-1D for the flip2dOnR2 group in the607

escnn 1 [45, 65] library. Notice that the input xt for the LSTM cell using the irreducible represen-608

tation of the flip2dOnR2 group denoted as ρirr. For CarFlag-1D, using this representation in the609

input would negate the signs of every component in xt, i.e., flipping the positions of the car, the sides610

of the green flag, and the previous actions in the history. Because the observation in this domain is611

feature-based, we remove the observation feature extractor and directly feed the observation to the612

equivariant LSTM.

CNN

LSTM Cell

(1, 1)

Actor Outputter

CNN

(1, 1)

CNN

(1, 1)

CNN

(1, 1)

Critic Outputter

CNN

(1, 1)

CNN

(1, 1)

CNN

(1, 1)

Figure 17: Details of Equi-RA2C used in CarFlag-1D for the flip2dOnR2 group. Numbers inside
brackets (blue - on top) denote the value of kernel sizes and strides used for the CNN modules on
the bottom. The numbers next to the representations, e.g., 32ρr, denote the number of feature fields.

613

Figure 18 shows the details of Equi-RA2C used in CarFlag-2D for the C4 group.
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CNN
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CNN
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x2

CNN
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Figure 18: The details of Equi-RA2C used in CarFlag-2D for the C4 group.
614

D.2 Network Structure of Equivariant Recurrent SAC (Equi-RSAC) with C4 Group615

Figure 19 shows the details of Equi-RSAC used in the robot manipulation domains with the C4616

group. The input representation is mixed for the action feature extractor because the action in-617

1https://github.com/QUVA-Lab/escnn
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put has components that transform differently under a rotation. Specifically, given an action618

a = (δw, δx, δy, δz, δr), the trivial representation ρt is chosen for the δw, δz, δr components (which619

should be unchanged under the rotation). In contrast, the standard representation ρs is chosen for620

the lateral components (δx, δy), which should rotate. For the same reason, for the actor outputter,621

ρµ is mixed, i.e., the trivial representations ρt are used for the w, z, r components, and ρs is used for622

the x, y components.
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Figure 19: Details of Equi-RSAC with the robot manipulation domains and the C4 group.

623

D.3 Implementation Using The ESCNN Library624

Given the definition of each equivariant component above, we can easily implement it with escnn.625

For instance, the following PyTorch [66] code defines the observation feature extractor in Figure 18a626

with ReLU as a non-linearity component:627

import escnn.nn as enn

# Define group C4
s = escnn.gspaces.rot2dOnR2(4)

# Define in/out representations
repr_i = enn.FieldType(s, 2*[s.trivial_repr])
repr_m0 = enn.FieldType(s, 2*[s.regular_repr])
repr_m1 = enn.FieldType(s, 4*[s.regular_repr])
repr_m2 = enn.FieldType(s, 8*[s.regular_repr])
repr_o = enn.FieldType(s, 16*[s.regular_repr])

obs_feature_extractor = enn.SequentialModule(
enn.R2Conv(repr_i, repr_m0, 3, 1),
enn.ReLU(repr_m0),
enn.R2Conv(repr_m0, repr_m1, 3, 1),
enn.ReLU(repr_m1),
enn.R2Conv(repr_m1, repr_m2, 3, 1),
enn.ReLU(repr_m2),
enn.R2Conv(repr_m2, repr_o, 3, 1),
enn.ReLU(repr_o),

)

Implementing the mixed representation is also straightforward by summing different field628

types. In order to create the actor and the critic, we simply chain components by using the629

SequentialModule as in native PyTorch.630

D.4 Training Details631

We implement using PyTorch. The batch size for all agents is 32 (episodes). The replay buffer632

has a capacity of 100,000 transitions. We use the Adam optimizer [67] with a learning rate of 3e-633

4 for actors and critics and 1e-3 for optimizing α for SAC-based agents. The target entropy H̄634
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for SAC-based agents is -dim(A) followed the common practice, and α is initialized at 0.1. After635

prepopulating the replay buffer with 80 expert episodes, the buffer is filled with 20 episodes with636

random actions. We use the same 1:1 environment/gradient step ratio for all agents.637

D.5 Implementing Equivariant LSTM638

We implement the equivariant LSTM [47] based on a public code of ConvLSTM [48] at https:639

//github.com/Hzzone/Precipitation-Nowcasting as the authors did not release the official640

code.641
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E Baseline Details642

RA2C [51] We modified the code at https://github.com/ikostrikov/643

pytorch-a2c-ppo-acktr-gail. We used 16 environments in parallel and used recurrent644

policies. Other hyper-parameters are kept at default.645

DPFRL [14] We used the authors’ code at https://github.com/Yusufma03/DPFRL. We used646

30 particles, MGF particle aggregation type, and the hidden dimension is 128.647

RAD [54] We collected depth images of size 90x90 to perform random cropping to reduce the size648

to 84x84. We perform the same type of random cropping for every depth image within an episode.649

DrQ [55] We used random shift of ±4 pixels as suggested by the original work. The same type of650

shifting is used for every depth image within a sequence. We also followed the authors’ suggestions651

when using the numbers of augmentations for calculating the Q-targets and the Q-values are K = 2652

and M = 2, respectively.653

SLAC [56] We used a Pytorch implementation at https://github.com/toshikwa/slac.654

pytorch, which has been benchmarked against the performance reported in the original paper. We655

pre-train the latent variable model for 2k steps before iterating between data collection, model up-656

date, and evaluation. We also pre-fill the replay buffer with the same number of expert and random657

episodes before training and use four extra augmented episodes for each episode during training658

to ensure a fair comparison. The sequence length is extended from 8 (originally) to 50 (maximum659

episode length). We varied the sequence length for better performance, but the performance did not660

improve much. For any episode shorter than 50 steps, we zero-pad dummy transitions in front.661

DreamerV2 [52] We used the official code at https://github.com/danijar/dreamerv2. For662

CarFlag domains, we mainly keep the default hyper-parameters (suggested by the authors). In663

CarFlag-2D, the observation image is extended to have the size of 64×64×3 by zero-padding664

around the original image and is added with a dummy channel (all zero).665

DreamerV3 [53] We used the official code at https://github.com/danijar/dreamerv3 and666

performed similar steps like in the case of DreamerV2. We used the small world models with about667

18M trainable parameters (predefined in the repo’s configuration file) for our CarFlag domains.668
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F Visualization of SLAC Reconstructed Images669

Figure 20 shows the comparison between the depth images produced by the trained latent model of670

SLAC [56] (top row) and the ground-truth ones (bottom row) in Block-Pulling after 40k training671

steps. It can be seen that small squares representing the gripper have been reconstructed quite well,672

but the model fails to reconstruct the two blocks representing the gripper’s position in the scene.673

Reconstructed

Ground-Truth

Figure 20: Images reconstructed by the latent model of SLAC [56] in Block-Pulling: recon-
structed (top row), ground-truth (bottom row).
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G Visualization of Data Augmentations674

We show visualizations of different ways for augmenting the observations withing a training se-675

quence in Drawer-Opening: random rotation (Figure 21), random crop (Figure 22), and random676

shift (Figure 23). Note that the same operation (rotation/crop/shift) is applied similarly to every677

observation in an episode. For each training episode, we perform this augmentation four times to678

generate four auxiliary episodes.

Original

Random
Rotation

Figure 21: Visualization of randomly rotated augmentations in Drawer-Opening: original obser-
vations (top row), randomly rotated observations (bottom row).

679

Original

RAD
Random
Crop

Figure 22: Visualization of randomly cropped augmentation for RAD [54] in Drawer-Opening:
original observations (top row), randomly cropped observations (bottom row).

Original

DrQ
Random
Shift

Figure 23: Visualization of randomly shifted augmentation for DrQ [55] in Drawer-Opening: orig-
inal observations (top row), randomly shifted observations (bottom row).
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H Ablation Studies680

H.1 Equivariant Actor or Critic Only681

In Figure 24, we additionally show the learning performance when only either actor or critic is682

equivariant in Block-Pushing and Drawer-Opening. From the figure, having an equivariant critic683

(purple) is more beneficial than having an equivariant actor (blue). However, having both being684

equivariant (green) yields the best performance.685

(a) Block-Picking (b) Block-Pulling

(c) Block-Pushing (d) Drawer-Opening

Figure 24: Comparing the effect of only using equivariant actor or critic.
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H.2 Different Symmetry Groups686

Figure 25 shows the performance when the C4 and C8 symmetry groups in the robot manipulation687

domains. Using C4 is much better than using C8 in Block-Pushing, but the two groups perform688

similarly in the remaining domains. Furthermore, it is possible to use other group symmetries which689

extend Cn with reflection, such as the dihedral groups D4 or D8.690

(a) Block-Picking (b) Block-Pulling

(c) Block-Pushing (d) Drawer-Opening

Figure 25: Comparing the effect of using symmetry groups C4 and C8.
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H.3 Randomly Initialized Cell and Hidden States of Equivariant LSTM691

Figure 26 shows the performance when the equivariant LSTM is initialized with random instead692

of zero cell and hidden states. Random initialization results in a worse performance because the693

equivariance of the actor and the critic is broken. However, our method is generally robust to this694

change when the performance is still better than the baselines.695

(a) Block-Picking (b) Block-Pulling

(c) Block-Pushing (d) Drawer-Opening

Figure 26: Comparing the performance when initializing the cell and hidden states of the equivariant
LSTM with zero and random values. Random initialization results in a worse performance because
the actor and the critic’s equivariance is broken.
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I Additional Experimental Results696

I.1 Performance in Asymmetric CarFlag Domains697

Figure 27 shows the evaluation success rates in asymmetric variants of CarFlag domains with698

different offsets.

(a) Asym-CarFlag-1D w/ positive offsets (b) Asym-CarFlag-1D w/ negative offsets

(c) Asym-CarFlag-2D w/ positive offsets (d) Asym-CarFlag-2D w/ negative offsets

Figure 27: Learning performance with asymmetric version of CarFlag domains.

699

I.2 Performance in Variants of CarFlag Domains700

Figure 28 show the evaluation success rates in different variants of CarFlag domains with a different701

world size and grid size. Our equivariant agent still outperforms other baselines.

(a) CarFlag-1D with world size 40 (b) CarFlag-2D with grid size 11

Figure 28: Learning performance in CarFlag domains with different sizes.
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I.3 Effect of Rotational Augmentation703

Figure 29 shows that including rotational augmented episodes significantly improves the learning704

performance of equivariant agents. These rotational augmented episodes possibly help equivariant705

agents distinguish different discrete rotations within a group, thus boosting performance.

(a) Block-Picking (b) Block-Pulling

(c) Block-Pushing (d) Drawer-Opening

Figure 29: Comparing the performance of our equivariant agents when using/not using rotational
augmentation episodes.
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I.4 Effect of Number of Demonstration Episodes707

Figure 30 shows that the performance improves when using more demonstrations in all domains, as708

expected.

(a) Block-Picking (b) Block-Pulling

(c) Block-Pushing (d) Drawer-Opening

Figure 30: Using different numbers of demonstration episodes.
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