
Instance-Dependent Partial Label Learning

Ning Xu, Congyu Qiao, Xin Geng∗, and Min-Ling Zhang
School of Computer Science and Engineering, Southeast University, Nanjing 210096, China

MOE Key Laboratory of Computer Network and Information Integration, China
{xning, qiaocy, xgeng, zhangml}@seu.edu.cn

A Appendix

A.1 Calculation Details of Eq. (5)

log p(L,Φ,A) = log p(D,L,Φ,A)− log p(D | L,Φ,A) (1)

Multiply both sides by qw(D | L,Φ,A), and for D integral:∫
D

qw(D | L,Φ,A) log p(L,Φ,A)dD =

∫
D

qw(D | L,Φ,A)(log p(D,L,Φ,A)

− log p(D | L,Φ,A))dD.

(2)

On the left side, log p(L,Φ,A) is independent of D:

log p(L,Φ,A) =

∫
D

qw(D | L,Φ,A)(log p(D,L,Φ,A)− log p(D | L,Φ,A))dD

=

∫
D

qw(D | L,Φ,A)(log
p(D,L,Φ,A)

qw(D | L,Φ,A)
− log

p(D | L,Φ,A))

qw(D | L,Φ,A
)dD

=

∫
D

qw(D | L,Φ,A)(log
p(D,L,Φ,A)

qw(D | L,Φ,A)
dD

+KL [qw(D | L,Φ,A)‖p(D | L,Φ,A)] .

(3)

On the right side, the first term is called ELBO:

LELBO =

∫
D

qw(D | L,Φ,A)(log
p(D,L,Φ,A)

qw(D | L,Φ,A)
dD

=

∫
D

qw(D | L,Φ,A)(log
p(D)p(L,Φ,A | D)

qw(D | L,Φ,A)
dD

= Eqw(D|L,Φ,A) [log pη(L,Φ,A | D)]−KL [qw(D | L,Φ,A)‖p(D)] .

(4)

Then we have

log p(L,Φ,A) = LELBO +KL [qw(D | L,Φ,A)‖p(D | L,Φ,A)] . (5)

A.2 Proofs of Theorem 1

Definition 1 Let Z1, . . . , Zn be n i.i.d. random variables drawn from a probability distribution
µ,H = {h : Z → R} be a class of measurable functions. Then the expected Rademacher complexity
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ofH is defined as

Rn(H) = EZ1,...,Zn∼µEσ

[
sup
h∈H

1

n

n∑
i=1

σih (Zi)

]
where σ = (σ1, . . . , σn) are Rademacher variables taking the value from {−1,+1} with even
probabilities.

The risk estimator in Eq. (12) can be rewritten as:

R̂V (f) =
1

n

n∑
i=1

c∑
j=1

χji `(f(xi), e
yj ). (6)

where χji =
d
yj
i∑

yj∈Si
d
yj
i

if yj ∈ Si and χji = 0 otherwise. Then we define a function space as:

GV =

(x, S) 7→
c∑
j=1

χj`(f(x), eyj ) | f ∈ F

 (7)

Let R̃n (GV ) be the expected Rademacher complexity of GV , i.e.

R̃n (GV ) = Ep(x,S)Eσ

[
sup
g∈GV

1

n

n∑
i=1

σig (xi, Si)

]
. (8)

Then we have

Lemma 1 Suppose the loss function ` is bounded by M , i.e., M = supx∈X ,f∈F,yj∈Y `(f(x), y),
then for any δ > 0, with probability at least 1− δ,

sup
f∈F

∣∣∣RV (f)− R̂V (f)∣∣∣ ≤ 2R̃n (GV ) +
M

2

√
log 2

δ

2n
.

Proof. In order to prove this lemma, we first show that the one direction supf∈F RV (f)− R̂V (f)
is bounded with probability at least 1 − δ/2, and the other direction can be similarly shown. Sup-
pose an example (xi, Si) is replaced by another arbitrary example (x′i, S

′
i), then the change of

supf∈F RV (f)− R̂V (f) is no greater than M/(2n), since ` is bounded by M. By applying McDi-
armid’s inequality [9], for any δ > 0, with probability at least 1− δ/2,

sup
f∈F

RV (f)− R̂V (f) ≤ E

[
sup
f∈F

RV (f)− R̂V (f)

]
+
M

2

√
log 2

δ

2n
(9)

By symmetrization [10], we can obtain

E

[
sup
f∈F

RV (f)− R̂V (f)

]
≤ 2R̃n (GV ) (10)

By further taking into account the other side supf∈F R̂V (f)−RV (f), we have for any δ > 0, with
probability at least 1− δ,

sup
f∈F

∣∣∣RV (f)− R̂V (f)∣∣∣ ≤ 2R̃n (GV ) +
M

2

√
log 2

δ

2n
. (11)

Lemma 2 Assume the loss function `(f(x), eyj ) is L-Lipschitz with respect to f(x)(0 < L <∞)
for all yj ∈ Y. Then, the following inequality holds:

R̃n (GV ) ≤
√
2L

c∑
j=1

Rn

(
Hyj

)
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Table 1: Characteristic of the benchmark datasets.
Dataset #Train #Test #Features #Class Labels avg. #CLs_U avg. #CLs_F
MNIST 60,000 10,000 784 10 5.50 4.94

Fashion-MNIST 60,000 10,000 784 10 5.51 4.61
Kuzushiji-MNIST 60,000 10,000 784 10 5.49 4.34

CIFAR-10 50,000 10,000 3,072 10 5.49 2.74
Yeast 1,187 297 8 10 5.54 2.83

Texture 4,400 1,100 40 11 5.99 2.52
Synthetic Control 480 120 60 6 3.59 2.27

Dermatology 293 73 34 6 3.54 2.35
20Newsgroups 15,076 3,770 300 20 10.48 3.36

Table 2: Characteristic of the real-world PLL datasets.
Dataset #Train #Test #Features #Class Labels avg. #CLs Task Domain

Lost 898 224 108 16 2.23 automatic face naming [4]
MSRCv2 1,406 352 48 23 3.16 object classification [8]
BirdSong 3,998 1000 38 13 2.18 bird song classification [2]

Soccer Player 13,978 3,494 279 171 2.09 automatic face naming [12]
Yahoo! News 18,393 4,598 163 219 1.91 automatic face naming [5]

where
Hyj =

{
h : x 7→ fyj (x) | f ∈ F

}
,

Rn

(
Hyj

)
= Ep(x)Eσ

[
sup
h∈Hyj

1

n

n∑
i=1

h (xi)

]
.

(12)

Proof. As χji =
d
yj
i∑

yj∈Si
d
yj
i

if yj ∈ Si and χji = 0 otherwise for each example (xi, Si), we have∑c
i=j χ

j
i = 1 and χji ∈ [0, 1]. In this way, we can obtain R̃n (GV ) ≤ Rn(` ◦F) where ` ◦F denotes

{` ◦ f | f ∈ F}. Since Hyj =
{
h : x 7→ fyj (x) | f ∈ F

}
and the loss function `(f(x), eyj ) is

L-Lipschitz with respect to f(x)(0 < L <∞) for all yj ∈ Y , by the Rademacher vector contraction
inequality, we have Rn(` ◦ F) ≤

√
2L
∑c
j=1 Rn

(
Hyj

)
.

Based on Lemma 1 and 2, Theorem 1 is proven through

R(f̂V )−R (f?) = R(f̂V )− R̂V (f̂) + R̂V (f̂)− R̂V (f?) + R̂V (f?)−R (f?)

≤ R(f̂V )− R̂V (f̂) + R̂V (f?)−R (f?)

≤ 2 sup
f∈F
|RV (f)− R̂V (f)|

≤ 4R̃n (GV ) +M

√
log 2

δ

2n

≤ 4
√
2L

c∑
j=1

Rn

(
Hyj

)
+M

√
log 2

δ

2n
.

(13)

A.3 Details of Experiments

We collect four widely used benchmark datasets including MNIST [7], Fashion-MNIST [11],
Kuzushiji-MNIST [3], and CIFAR-10 [6], and five datasets from the UCI Machine Learn-
ing Repository [1], including Yeast, Texture, Dermatology, Synthetic Control, and
20Newgroups. The average number of candidate labels (avg. #CLs_F) for each corrupted dataset by
instance-dependent generating procedure and he average number of candidate labels (avg. #CLs_U)
for each corrupted dataset by uniform generating procedure are also recorded in Table 1.
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In addition, five real-world PLL datasets are adopted, which are collected from several application
domains including Lost [4], Soccer Player [12] and Yahoo!News [5] for automatic face
naming from images or videos, MSRCv2 [8] for object classification, and BirdSong [2] for bird
song classification. The average number of candidate labels (avg. #CLs) for each real-world partial
label data set is also recorded in Table 2.

On all the above datasets, we take the average accuracy of the last ten epochs as the accuracy for each
trial. All the experiments are conducted on NVIDIA GeForce RTX 2080 GPUs.
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