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ABSTRACT

To embed structured knowledge within labels into feature representations, prior
work (Zeng et al., 2022) proposed to use the Cophenetic Correlation Coefficient
(CPCC) as a regularizer during supervised learning. This regularizer calculates
pairwise Euclidean distances of class means and aligns them with the corresponding
shortest path distances derived from the label hierarchy tree. However, class means
may not be good representatives of the class conditional distributions, especially
when they are multi-mode in nature. To address this limitation, under the CPCC
framework, we propose to use the Earth Mover’s Distance (EMD) to measure the
pairwise distances among classes in the feature space. We show that our exact
EMD method generalizes previous work, and recovers the existing algorithm when
class-conditional distributions are Gaussian. To further improve the computational
efficiency of our method, we introduce the Optimal Transport-CPCC family by
exploring four EMD approximation variants. Our most efficient OT-CPCC variant,
the proposed Fast FlowTree algorithm, runs in linear time in the size of the dataset,
while maintaining competitive performance across datasets and tasks. The code is
available at https://github.com/uiuctml/OTCPCC.

1 INTRODUCTION

Supervised classification problems have been a cornerstone in machine learning. While traditional
classification methods treat class labels as independent entities, there has been a growing interest
in leveraging semantic similarity among classes to improve model performance while following
existing label dependency. This is particularly important in fine-grained classification tasks where
labels are inherently living on a hierarchy, such as in the CIFAR (Krizhevsky & Hinton, 2009) and
ImageNet (Deng et al., 2009) datasets. To capture the hierarchical relationship between classes, Zeng
et al. (2022) made a significant contribution by embedding the tree metric of a given class hierarchy
into the feature space. They introduced a regularizer, the Cophenetic Correlation Coefficient (CPCC),
to correlate the tree metric with the Euclidean distance in the class-conditioned representations. This
approach of encoding hierarchical relationship in the latent space not only led to more interpretable
features compared to other hierarchical classification methods (Shen et al., 2023), but also improved
some generalization performance across multiple datasets.

Despite the value of this framework for embedding class hierarchies, it presents a notable limitation.
Specifically, Zeng et al. (2022) uses the ℓ2 norm between two class Euclidean centroids, or equiva-
lently, maximum mean discrepancy with the linear kernel, as the distance of two class distributions.
However, this approach overlooks the difference of samples within the same class, and thus cannot
fully capture the global structural information given pairs of class-conditional distributions, especially
when they are multi-modal. On the other hand, the use of Optimal Transport (OT) as an alternative to
Euclidean centroids has first gained attention in the context of clustering, where Euclidean centroids
neglect the intrinsic geometry of data distributions (Cuturi & Doucet, 2014). For the same motivation,
we propose addressing the limitation of ℓ2-CPCC (Zeng et al., 2022), by integrating the OT distance,
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also known as the Wasserstein distance, and its variants, as a more effective metric for measuring the
distance between class distributions in the problem of embedding hierarchical representations.

Our contributions are as follows: (i) We first generalize the ℓ2-CPCC with EMD, and propose a
family of OT-CPCC algorithm to address the limitation of using ℓ2 centroids that misrepresents class
relationships. We provide a detailed comparative analysis of ℓ2-CPCC versus OT-CPCC about their
forward and backward computation. (ii) We propose a novel linear time OT approximation algorithm,
FastFT, and apply it in the CPCC framework to learn hierarchical representations that is significantly
more efficient than the cubic time exact EMD solution. (iii) We empirically analyze the advantage of
OT-CPCC over ℓ2-CPCC across a wide range real-world datasets and tasks.

2 PRELIMINARIES

Notation and Problem Setup Throughout the paper we focus on the supervised k-class classi-
fication problem. We denote a sample of input x with label y living in the space of X ⊆ Rp and
Y = [k] := {1 . . . , k}. The dataset D consists of N data pairs {(xi, yi)}Ni=1.

Given the label space Y , we have a corresponding label tree T that characterizes the relationship
between different subsets of Y . In particular, each node of T is associated with a subset of Y: each
leaf node v is associated with a particular class in Y ; any internal node corresponds to the subset that
is the union of its leaf children classes; the root node of T corresponds to the full Y . The metric
function of Y is called tree metric t : Y × Y → R+ which measures the similarity of two class
labels u, v based on the shortest path distance of two leaf nodes on T . Intuitively, the tree T could be
understood as a dendrogram of Y that characterizes the similarity of different classes.

Let Z ⊆ Rd be the representation/feature space. A deep network h is the composition of two
functions hw,θ = gw ◦ fθ : X → ∆k where ∆k is a k − 1 dimensional probability simplex. The
feature encoder fθ contains all layers until the penultimate layer of a neural network. On top of
that, gw : Z → ∆k is a linear classifier with weights w. Let q be the one-hot encoding vector of y.
The parameters θ and w are learned by minimizing L combining the cross entropy loss ℓCE with an
optional regularization termR:

L(x, y;w, θ) =
k∑

i=1

−qi log hw,θ(x)i + λR(x, y, θ). (1)

The hyperparameter λ is the regularization factor which controls the strength of R. The goal of
the problem is to embed the class hierarchical relationship in the feature space. At a high level, the
distance of class-conditioned representations should approximate the tree metric of classes in T . This
extra constraint can be quantitatively characterized by CPCC as the regularizer termR.

2.1 COPHENETIC CORRELATION COEFFICIENT

The Cophenetic Correlation Coefficient (CPCC) (Sokal & Rohlf, 1962) was introduced as a regular-
ization term in Zeng et al. (2022) to embed the class hierarchy T in the feature space. CPCC has the
same formulation as Pearson’s correlation coefficient that measures the linear dependence between
two metrics t and ρ:

CPCC(t, ρ) =

∑
u<v

(t(u, v)− t̄)(ρ(u, v)− ρ̄)

(
∑
u<v

(t(u, v)− t̄)2)−1/2(
∑
u<v

(ρ(u, v)− ρ̄)2)−1/2
, (2)

where ρ is a distance function between u, v on feature space Z , and t̄, ρ̄ are the average of each
metric. Let Du = {(xu

i , u)}mi=1,Dv = {(xv
i , v)}ni=1 ⊆ D be datasets with the same class label u, v.

When ℓ2-CPCC is used as a regularizer in Eq. 1,

ρ(u, v) :=

∥∥∥∥∥∥ 1

m

∑
(xu

i ,u)∈Du

f(xu
i )−

1

n

∑
(xv

j ,v)∈Dv

f(xv
j )

∥∥∥∥∥∥
2

,

which is the ℓ2 distance of the mean of the two class-conditional features. We call zui as the i-th
feature vector with label u, when the context is clear, we drop the superscript u for convenience. By
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Algorithm 1 Greedy Flow Matching

Input: number of features m,n,
weights a = (a1, . . . , am),
b = (b1, . . . , bn)

1: P = Array[m× n]
2: i = 0
3: j = 0
4: while i < m and j < n do
5: P [i, j]← min(a[i], b[j])
6: a[i] −= P [i, j]
7: b[j] −= P [i, j]
8: if a[i] == 0 then

i += 1
9: if b[j] == 0 then

j += 1
Output: P

Algorithm 2 Bottom-up Tree Flow Matching

Input: m,n, a, b, flow tree T
1: P = Array[m× n]
2: for height h from 0 to height(T ) do
3: for each node v at height h do
4: if v is a leaf then
5: Pass its flow to its parent
6: else
7: Ca(v) = {z : a(z) > 0}, Cb(v) = {z :

b(z) > 0}, z is the leaf children of v
8: while ∃za ∈ Ca(v) and zb ∈ Cb(v) do
9: η = min(a(za), b(zb))

10: P (za, zb) += η, a(za) −= η, b(zb) −= η
11: Pass non-zero unmatched flows in either a or b

to its parent
Output: P

maximizing CPCC (λ < 0), ρ follows the relation in t: classes sharing a close common ancestor will
be grouped together while classes with a higher common ancestor are pulled away with respect to
Euclidean distance.

2.2 EXACT EARTH MOVER’S DISTANCE

Earth Mover’s Distance (EMD), or Optimal Transport distances, aims to find the optimal trans-
portation plan between two discrete measures. For Du, let a = (a1, . . . , am) ∈ ∆m which is not
necessarily uniform. Let b defined similarly for Dv , and δz is the Dirac delta at z. Define two discrete
measures as µ =

∑m
i=1 aiδzi , ν =

∑n
j=1 bjδzj . Then, EMD between probability distributions

defined over Z , is the objective value of the following linear program:

min
P
⟨P ,D⟩, s.t. P1n = a, P⊤1m = b. (3)

In Eq.3, ⟨·, ·⟩ is the Frobenius inner product, 1N is the N -dimensional all ones vector, D is the
m × n pairwise distance matrix where Dij = ∥zi − zj∥, and P is called the flow matrix in the
computer science literature, or optimal transport plan in the OT literature, the same size with D with
nonnegative entries. Intuitively, this is a minimum cost flow problem. Both source and target flow
sum to 1, and we want to find the optimal transportation plan P with the minimum cost with respect
to ground similarity D. The norm ∥·∥ depends on the ground metric of D. We use the ∥·∥2 norm as
the ground metric throughout this paper.

When the dimension of the feature is 1, fast computation of the EMD distance exists (Houry et al.,
2024). Instead of solving a linear program in Eq.3, when m = n, ai = bi = 1/n for all i, the closed
form solution for 1d EMD is: EMD1d(µ, ν) =

1
n

∑n
i=1 ∥z(i)−z′(i)∥, and z(i) is the i-th order statistic

of the sequence {z1, · · · zn} after sorting. When m ̸= n, EMD1d generalizes to solving inverse CDF
of µ, ν (Peyré & Cuturi, 2019) which requires approximation. To avoid this approximation, after
sorting, we can compute the flow matrix P (Hoffman, 1963) efficiently via a greedy algorithm in
linear time (Alg.1) and use the inner product objective of EMD in Eq.3 to compute the result. This
greedy flow matching algorithm that generates the optimal transport plan can be used for any m,n,
including the special case when m = n, and fit any non-uniform weights of a, b.

3 CPCC WITH OPTIMAL TRANSPORT

3.1 OT-CPCC FAMILY

Despite its simplicity, the use of class centroids ℓ2 distance as a measure of class distances has two
limitations. First, since there is no guarantee of the distribution of class conditional features, the
class mean difference may not accurately reflect the average pairwise Euclidean distance between
all the pairs of sample. For example, in Fig.1, class v is a non-unimodal (bi-modal in this example)
distribution, which is very likely to happen when class v is an abstract concept, such as coarse classes
like household furniture in CIFAR100 (Krizhevsky & Hinton, 2009) or the collection of diverse dog
breeds in ImageNet Deng et al. (2009). The blue ℓ2 line can be a biased estimation of the average of
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red lines. We will see later (c.f. Sec.3.3) that the direction of blue vector plays an important role in
the feature geometry in ℓ2-CPCC, and therefore we misrepresent the class distribution in ℓ2-CPCC.
Second, it is known (Linial et al., 1994) that, for certain trees such as a basic star graph with three
edges, it is impossible to embed tree metric t into ℓ2 exactly, no matter how large feature dimension
d is. It implies if we use the Euclidean centroids to represent a class, we can never reach the optimal
CPCC value 1 during training, which always cause some loss of hierarchical information in the
learning of structured representation.

Class u Class v

Mean u Mean v

Figure 1: Comparison between EMD
(weighted sum of red lines) and the class
mean ℓ2 distance (blue line).

How to overcome the above limitations? Instead of find-
ing a one-to-one correspondence of a label and a point
estimate of a class, we represent a label class with all
samples that belong to the class, which leads to EMD-
CPCC. We call the set of data-weight pairs containing
m class-u conditioned features as µ = {(zi, ai)}mi=1 and
define ν similarly for the dataset containing n class-v
conditioned features. The weight ai can be set as uni-
form (1/m) by default, or non-uniform if external prior
knowledge is available. We propose EMD-CPCC by im-
plementing ρ(u, v) := EMD(µ, ν). In Eq.3, P depends
on D derived from each sample in two datasets. Besides,
EMD is actually a generalization of ℓ2 method:
Proposition 3.1 (EMD reduces to ℓ2 between
means of Gaussian with same covariance).
EMD(N (µz,Σ),N (µz′ ,Σ)) = ∥µz − µz′∥.

Although EMD has many appealing properties, the computational cost of EMD is high, where the
time complexity of linear programming is cubic time with respect to the data size. Many following
work provides approximation methods to reduce the computational cost, such as Sinkhorn (Cuturi,
2013), Sliced Wasserstein Distance (SWD) (Bonneel et al., 2015), Tree Wasserstein Distance (TWD)
(Yamada et al., 2022; Le et al., 2019; Takezawa et al., 2021), and FlowTree (FT) (Backurs et al., 2020)
(detailed discussion of approximation methods in App.A). Similarly, we can replace ρ with all other
EMD approximation methods, and we call all of them as the OT-CPCC family. As a side remark,
since all approximation methods provide a P satisfying constraints in Eq.3 and since EMD is lower
bounded by ℓ2 (see proof of Prop.3.1 in App.C), all OT-CPCC methods are still lower bounded by ℓ2.

3.2 FAST FLOWTREE

FlowTree (Backurs et al., 2020) is a tree-based method where the structure of the tree T is
learned using QuadTree (Samet, 1984) to approximate the Euclidean space. Once the tree has been
built, it firsts compute the optimal flow matrix Pt using t as the ground metric with a linear time
bottom-up as shown in Alg.2 (Kalantari & Kalantari, 1995) (see App.Fig.8 in for visualization).
Then, it estimates EMD with ⟨Pt,Dℓ2⟩. Given the tree, the time complexity of computing the FT is
O((m+ n)d log(dΦ)) where Φ is the maximum Euclidean distance of any two feature vectors.
Our Fast FlowTree The main computational bottleneck of FT is the construction of the tree.
However, in our case, we have access to T given as prior knowledge, and thus we can skip the tree
construction step. To apply tree-based EMD approximation methods, instead of building a QuadTree
in FT, we first construct an augmented tree by extending the leaves of the original label tree T with
samples. Specifically, since each leaf node in T corresponds to a class, we extend each leaf node by
adding all samples from the corresponding class, as demonstrated in Fig.2. We set all extended edges
to have edge weight 1, and assign the instance weight ai for each data point. The resulting algorithm
that applies Alg.2 to the augmented label tree is called Fast FlowTree (FastFT).

Key Insight that allows FastFT to be more efficient than FT is that the tree metric between any
two data samples from different classes is always identical in the augmented tree T , which allows
us to reduce the computation of Pt to 1d OT greedy flow matching using Alg.1. Now we can prove
that Alg.1 and Alg.2 are equivalent given our constructed augmented tree in Fig.2, and the time
complexity of FastFT is O((m+ n)d), which is optimal among all OT variants.
Theorem 3.2 (Correctness of Fast FlowTree). For any augmented label tree T , Alg. 1 and Alg. 2
return the same EMD approximation. The Fast FlowTree can be computed in O((m+ n)d).
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Method Time Complexity ∂L
∂θ exact Use Tree

ℓ2 O((nk + k2)d) ✓ N/A
EMD Õ(n(d+ n2 log n)) ✓

Sinkhorn Õ(n2(d+ I)) ✓
TWD Õ(n2dI) ✓
SWD Õ(np(d+ log n))

FT Õ(nd log(dΦ)) ✓

FastFT Θ̃(nd) ✓

Table 1: Time complexity comparison of different CPCC
methods. Let I be the number of iterations for iterative
methods, p be the number of projections for SWD, Φ
be the maximum Euclidean distance of any two feature
vectors. We use ·̃ to represent a factor of k2. For simplicity
we assume m = n. In the batch learning setting, d can
be much larger than n particularly for the fine-grained
classification problems. See App.I for detailed analysis.

A B C

D E

F G
H

1/5

A → F → B
A → H → C

1/2 1/2

Figure 2: An example of augmented T .
Leaves become samples of each class,
and each sample is assigned some weight
(ex., uniform) within a class. Whenever
we call FastFT-CPCC, only a subtree
rooted at the lowest common ancestor
of a pair of class label will be used. For
example, we use subtree rooted at F to
compute optimal flow of samples with
label A,B, and subtree rooted at H for
samples with label A,C.

Please refer to App.D for proof details of Theorem 3.2. Note that all OT-CPCC methods inherently
need Ω((m + n)d) because we access each of m + n data point once and look at each entry in
d-dimensions. Additionally, FastFT can be applied to any label tree with no restriction on structure or
edge weights. To control the importance of data points, the flexibility of FastFT can be achieved by
tuning ai.

Comparison of OT-methods on Synthetic Dataset To further understand the behavior of different
OT approximation methods, we present experiments on synthetic datasets in Fig.3 (see App.J for more
details). We first measured the computation time for different OT methods across datasets of varying
sizes. Second, we evaluated the error of different OT approximation methods, along with the ℓ2
distance of the mean of two datasets, in approximating EMD. Two different scenarios were considered,
either both distributions were Gaussian or non Gaussian. Under Gaussian distribution, the OT
methods’ results were closely aligned with the ℓ2 method, except for SWD, which supports Prop.3.1
and implies the similarity in performance between OT and ℓ2-CPCC under Gaussian distributions. In
non-Gaussian distribution scenario, notable differences emerged between OT methods and ℓ2, where
SWD is closer to ℓ2 measurement. FastFT demonstrated exceptional advantage as an approximation
method, outperforming Sinkhorn in both computational speed and precision.

0 500 1000 1500 2000 2500 3000
dataset size n
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EMD
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Figure 3: Efficiency and approximation error comparison of OT methods on synthetic datasets.

3.3 DIFFERENTIABILITY ANALYSIS OF OT-CPCC

Since we use some non-differentiable algorithms during training (ex., linear programming in EMD,
sorting in SWD, tree construction in TWD, greedy algorithm in FT and FastFT), it is unclear
how does the backpropagation algorithm work exactly in this problem. Thanks to the Danksin’s
theorem (Danskin, 1966) and the structure of the underlying optimization problem, we can still
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efficiently compute the gradients of OT-CPCC. For simplicity, let us consider the case of EMD-CPCC,
i.e., ρ = EMD exactly. The other approximate variants can be analyzed in a similar way.

The underlying challenge of the problem is to take derivatives of the optimal value of a minimization
problem. We state the differentiability section of Danskin’s theorem formally and prove a lemma:
Theorem 3.3 (Danskin (1966)). Let V (x) = maxz∈C f(x, z), and Z0(x) is the set of z that achieve
the maximum of V at x. If f : Rn × C → R is continuous and C is compact, then the subgradient of
V is the convex hull of set {∂f(x,z)∂x : z ∈ Z0}. Particularly, if Z0 = {z∗}, ∂V

∂x = ∂f(x,z∗)
∂x .

Lemma 3.4. Denote P ∗ as the optimal flow of EMD problem, then ∂ρEMD
∂θ = P ∗ · ∂D∂θ .

Proof. We rewrite the objective function as a maximization problem: ρEMD = −maxP∈C −⟨P ,D⟩.
Roughly speaking, Danksin’s theorem states that the derivative of maximization problems can be
evaluated at the optimum. We can get (sub-)differential of ρEMD with respect to θ with one step of
chain rule:

∂ρEMD

∂θ
=

∂ρEMD

∂D
· ∂D
∂θ

= −∂−⟨P ∗,D⟩
∂D

· ∂D
∂θ

= P ∗ · ∂D
∂θ

,

where the last term comes from the original flow of backpropagation containing the gradients with
respect to network parameters. The key takeaway is the gradient of ρEMD w.r.t. the network parameters
does not require the gradient from P in the EMD setting, although P depends on θ. ■

Differentiability for Other OT-CPCC Methods The application of Danskin’s relies on the opti-
mality of P ∗. How about the other approximation methods? The differentiability is not a problem
in Sinkhorn as the iterative algorithm only involves matrix multiplication. But for the SWD, TWD,
FT, the approximate solutions (the flow matrix P ) for these methods are not explicitly formulated
as solutions to an optimization problem. Following EMD, except for the Sinkhorn variant, our
method is to treat flow matrix P always as a constant for these approximation methods, and stop the
gradient through P . For example, in Fast FlowTree, since the tree flow matrix P depends only on
the structure of the tree based on external information and not on the model parameters θ, we have
∂ρFastFT

∂θ
:= PFastFT · ∂D∂θ .

To provide a more fine-grained understanding of the proposed method, in what follows we analyze
the gradients of the proposed CPCC variants and compare them with the ℓ2-CPCC.

Gradient of ℓ2-CPCC If we want to know the difference between ℓ2-CPCC and EMD-CPCC,
assume the same input and the same network parameters, ignoring the cross-entropy loss, the
only difference of the gradient starts from the distance calculation between two classes. Assume
representations from two classes are Z ∈ Rm×d, Z ′ ∈ Rn×d.

∂ρl2
∂Z

=
∂

∂Z
∥µz − µz′∥ =

1( 1
m1⊤Z − 1

n1
⊤Z ′)

m
∥∥∥ 1
mZ⊤1− 1

nZ
′⊤1

∥∥∥ .
Let i-th row of Z be Zi·. Each row of ∂ρl2

∂Z is the same, so
∂ρl2
∂Zi·

=
µz − µz′

m ∥µz − µz′∥
.

Gradient of EMD-CPCC Let D ∈ Rm×n be the cost matrix and P is any constant flow matrix:

ρEMD = ⟨P ∗,D(Z,Z ′)⟩ =
∑
i,j

P ∗
ij

∥∥Zi· − Z ′
j·
∥∥ .

Let’s calculate the derivative by rows of Z. We only keep the terms related to Zi·.

∂ρEMD

∂Zi·
=

∂

∂Zi·

∑
j

P ∗
ij

∥∥Zi· − Z ′
j·
∥∥ =

n∑
j=1

P ∗
ij

Zi· − Z ′
j·∥∥Zi· − Z ′
j·
∥∥ .

Note that since P ∗ is the optimal solution of a linear program, it is a sparse matrix with at most
m+ n− 1 non-zero entries (Peyré et al., 2019, Proposition 3.4). As a comparison to the gradient of
ℓ2-CPCC, which assigns equal importance to all data points and only depends on the direction of
class centroids, the gradient of EMD-CPCC assigns different importance to each pair of data points
and depends on the pairwise transport probability between data points. From this analysis, we can see
that the gradient provided by EMD-CPCC is more fine-grained and informative than that of ℓ2-CPCC.
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4 EXPERIMENTS

For a fair comparison, we closely aligned our implementation with Zeng et al. (2022) to ensure
consistency. This section will cover dataset benchmarks, the multi-modality of features, downstream
hierarchical classification retrieval, and interpretability analysis. A detailed description of training
hyperparameters is provided in App.F, along with additional experiments, including the effect of label
hierarchy structure, label hierarchy tree weights, optimal transport flow settings (distribution of a in
Eq.3), and comparisons with non-CPCC hierarchical methods, in App.H. Throughout this section,
the Flat objective is the standard cross entropy loss in Eq.1 with λ = 0 without tree information.

Table 2: Dataset Statistics.

Dataset # train # test
CIFAR10 50K 10K
CIFAR100 50K 10K

INAT 500K 100K
L17 88K 3.4K
N26 132K 5.2K
E13 334K 13K
E30 307K 12K

source

target

train/test

Figure 4: Hierarchical data
split. Source and target dataset
share the same coarse labels
but different fine labels.

Table 3: Preciseness of hierarchical information.

Dataset Objective TestCPCC

CIFAR10

Flat 58.83 (8.80)
ℓ2 99.94 (0.02)

FastFT 99.95 (0.00)
EMD 99.95 (0.01)

Sinkhorn 99.94 (0.01)
SWD 99.98 (0.00)

CIFAR100

Flat 22.13 (0.84)
ℓ2 83.08 (0.11)

FastFT 93.85 (0.05)
EMD 89.60 (0.34)

Sinkhorn 93.81 (0.10)
SWD 73.17 (2.66)

INAT

Flat 31.97 (0.00)
ℓ2 67.01 (0.04)

FastFT 73.20 (0.03)
EMD 65.80 (0.01)

Sinkhorn 73.20 (0.04)
SWD 50.88 (0.03)

Dataset Objective TestCPCC

L17

Flat 47.63 (1.18)
ℓ2 92.30 (0.35)

FastFT 91.71 (0.15)
Sinkhorn 91.77 (0.44)

SWD 95.10 (0.51)

N26

Flat 29.77 (0.53)
ℓ2 93.03 (0.32)

FastFT 92.68 (0.21)
Sinkhorn 93.31 (0.24)

SWD 92.40 (0.05)

E13

Flat 49.20 (0.86)
ℓ2 92.02 (0.08)

FastFT 91.97 (0.20)
Sinkhorn 91.30 (0.57)

SWD 88.32 (0.50)

E30

Flat 51.33 (0.09)
ℓ2 93.37 (0.19)

FastFT 91.81 (0.44)
Sinkhorn 91.89 (0.61)

SWD 89.88 (0.68)

4.1 DATASETS

We conducted experiments across 7 diverse datasets, CIFAR10, CIFAR100 (Krizhevsky & Hinton,
2009), BREEDS benchmarks (Santurkar et al., 2021) including four settings LIVING17 (L17 ),
ENTITY13 (E13 ), ENTITY30 (E30 ), NONLIVING26 (N26 ), and iNaturalist-mini (Van Horn et al.,
2018) (INAT ) to thoroughly evaluate the efficacy and influence of OT-CPCC methods. The dataset
statistics is shown in Tab.2. Note that BREEDS and INAT are larger scale datasets with high
resolution images. As subsets of ImageNet, BREEDS inherit a more complicated label hierarchy and
more realistic, possibly multi-modal class distributions. The major difference from ImageNet is that
BREEDS ’s class hierarchy is manually calibrated so that it reflects the visual hierarchy instead of
the WordNet semantic hierarchy in the original ImageNet, which removes ill-defined hierarchical
relationships unrelated to vision tasks.

4.2 EXISTENCE OF MULTI-MODE CLASS-CONDITIONED FEATURE DISTRIBUTION

To verify our hypothesis in Fig.1, we aim to determine whether class-conditioned clusters exhibit a
multi-modal structure in practice. We track the class-conditioned features during training: at each
epoch, for each class-conditioned feature cluster, we fit a Gaussian Mixture Model (GMM) with the
number of components ranging from 1 to 10. We report the optimal number of components based
on the lowest Akaike Information Criterion (AIC), averaged across all fine-level class labels. If the
best number of Gaussian components exceeds 1, this may indicate the presence of a multi-modal
structure in the feature distributions, assuming a sufficiently large batch size. From Fig.5, with
default training hyperparameters in App.F, we observe that this phenomenon occurs across most
datasets for both ℓ2-CPCC and OT-CPCC training, suggesting that using optimal transport distances
in CPCC computation is more appropriate.
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Figure 5: The average best number of components
of learned features (left) across training epochs on
CIFAR100 for different CPCC methods (right) for
the ℓ2-CPCC final trained features for all datasets.

Figure 6: CIFAR100 Euclidean UMAP for
ℓ2-CPCC (left) vs. EMD-CPCC (right).
Each cluster represents a fine label and we
color data sample by coarse labels.

4.3 HIERARCHICAL CLASSIFICATION AND RETRIEVAL

Table 4: Generalization performance on coarse level. The prefix of metric represents the split of test
set: s = source, t = target. The average number of three seeds are reported. See the detailed version
including standard deviation in Tab.16,17 and performance on each BREEDS setting is in Tab.18,19.
Due to the computation complexity, we do not report EMD results on training BREEDS from scratch.

Dataset Objective sAcc tAcc sMAP tMAP Dataset sAcc tAcc sMAP tMAP

CIFAR10

Flat 99.58 87.30 99.22 89.66

INAT

94.63 38.81 70.41 34.00

FastFT 99.61 87.79 99.91 93.04 94.66 39.43 72.90 35.63
EMD 99.61 87.45 99.88 93.07 94.64 41.01 73.87 35.58

Sinkhorn 99.61 87.41 99.87 92.60 94.30 36.94 68.75 34.92
SWD 99.56 87.63 99.36 90.12 94.52 39.38 75.13 38.11

CIFAR100

Flat 86.17 43.09 82.07 42.09

BREEDS

93.85 82.43 74.47 66.50

FastFT 86.96 44.29 91.71 42.20 94.25 82.89 92.84 79.69
EMD 86.93 44.03 91.82 42.32 - - - -

Sinkhorn 86.93 43.99 91.61 42.45 94.42 83.51 91.84 79.33
SWD 86.42 43.35 87.24 42.39 94.41 82.96 83.58 72.38

Table 5: Generalization performance on fine level.

Dataset Objective sAcc tAcc sMAP Dataset sAcc tAcc sMAP

CIFAR10

ℓ2 96.96 55.71 99.22

INAT

88.62 26.78 56.10

FastFT 96.90 55.99 99.24 88.49 27.10 56.21
EMD 97.05 56.12 99.24 88.68 26.78 56.83

Sinkhorn 96.95 54.89 99.27 88.08 26.77 51.56
SWD 96.96 59.21 99.45 88.46 26.78 54.19

CIFAR100

ℓ2 80.98 23.76 77.52

BREEDS

82.66 45.95 62.86

FastFT 81.09 24.71 78.72 82.58 45.75 63.95
EMD 81.32 23.15 78.88 - - -

Sinkhorn 80.99 23.53 78.51 82.99 46.87 61.54
SWD 80.50 26.18 86.82 82.90 46.33 76.24

Hierarchical Dataset Split For downstream classification and retrieval, we split each dataset into
source and target subsets, with both further divided into train and test sets, as illustrated in Fig.4.
The source and target datasets share the same level of coarse labels but differ in fine labels, where
the fine level refers to the more granular class labels that are exactly one level below the coarse
labels. For example, in CIFAR10, the source set includes the fine labels (deer, dog, frog,
horse) and (ship, truck), while the target set includes (bird, cat) and (airplane,
automobile). Both sets share the same coarse labels: animal and transportation. We
include details of hierarchical construction and splits for other datasets in App.E.
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Given the hierarchical splits, we define two evaluation protocols. First, we pretrain on the source-train
set and evaluate on the source-test set, where the train and test distributions are i.i.d. Second, we
pretrain on the source-train set and evaluate on the target-test set, introducing a subpopulation shift
(Santurkar et al., 2021) between the train and test distributions. For each protocol, we conduct
classification and retrieval experiments at two levels of granularity.

Metrics For classification experiments, we measure performance using accuracy (Acc). At the fine
level, source accuracy is computed directly using any pretrained model, while coarse source accuracy
is calculated by summing the fine-level probabilities for predictions that share the same coarse parent
label. Since the source and target sets share the same coarse labels, coarse target accuracy can be
similarly computed using the model pretrained on the source split. For fine target accuracy, after
pretraining on the source set, we train a linear classifier on top of the frozen pretrained encoder
for one-shot learning on the target-train set and evaluate it on the target-test set. We include the
visualization of all types of classification tasks evaluation in Fig.9 in the Appendix.

For retrieval experiments, we use mean average precision (MAP) as the evaluation metric. Given a
model pretrained on the source set, we compute the fine or coarse class prototypes by calculating the
Euclidean centroid of the class-conditioned features. Using these class prototypes, we compute the
cosine similarity score between the prototypes and test points, and evaluate whether test points are
most similar to the class prototype with the same label via average precision. Since the source and
target sets have different fine labels, we do not include target MAP in Tab.5.

Discussion OT-CPCC outperforms ℓ2-CPCC consistently on fine level tasks: the oracle for the
fine level tasks should be Flat, and Zeng et al. (2022) reported that ℓ2-CPCC does not perform
well for several fine level tasks due to the constraint on coarse level. Tab.5 shows that OT-CPCC
methods shows better fine-level performance than ℓ2, while maintaining hierarchical information
simultaneously. Besides, OT-CPCC outperforms the Flat baseline consistently on coarse level tasks as
expected in Tab.4, which implies OT-CPCC methods successfully include the additional hierarchical
information by optimizing the regularizer. In Fig.6, we visualize the learned hierarchical embeddings
using UMAP (McInnes et al., 2018), with Euclidean distance as the similarity metric. We observe
that ℓ2-CPCC displays a clearer coarse-level grouping pattern, likely due to the direct optimization of
CPCC in Euclidean space. However, EMD-CPCC also retains a significant amount of hierarchical
information and demonstrates better separation between fine-level classes, which aligns with the
results observed in our classification and retrieval tasks.

4.4 INTERPRETABILITY EVALUATION
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Figure 7: Test CPCC for various batch size, regularization strength, and architecture, from left to
right. FastFT consistently performs the best across all settings.

A model is more interpretable when its representations accurately capture hierarchical information.
CPCC is a natural measure of the precision of the hierarchical structure embedded in corresponding
metric spaces. Unlike rank-based metrics, where only the relative order of distances matters, CPCC
not only requires the correct ranking of distances (i.e., fine classes sharing the same coarse class
should be closer than fine classes with different coarse parents), but is also influenced by the absolute
values of the node-to-node distances, because CPCC is affected by the given label tree weights.
Therefore, we report CPCC, a stricter metric, on the test set. In Tab.3, we present ℓ2-CPCC for the
Flat and ℓ2 objectives, and use the corresponding OT distances for the OT-CPCC experiments.
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We observe that OT-CPCC preserves more hierarchical information, leading to better interpretability.
As shown in Tab.3, in 5 out of 7 datasets, an OT-CPCC method achieves the best TestCPCC score. For
E13 and E30, OT-CPCC methods slightly underperform compared to ℓ2, likely due to the BREEDS
representations being less multi-modal than those of other datasets, as indicated in Tab.5.

Ablation Study In our experiments with CIFAR100, shown in Fig.7, we investigated the impact of
batch size, the regularization factor λ in Eq.1, and architecture on TestCPCC. Given CIFAR100’s large
number of fine classes, the average sample size per class is relatively small when applying CPCC with
a standard batch size of 128. Consequently, there is minimal difference between using the centroid
of a few data points, as in ℓ2-CPCC, and using pairwise distances for each data point in OT-CPCC.
Therefore, larger batch sizes allow OT-CPCC to better capture class distributions, potentially leading
to a more significant advantage in the quality of the learned hierarchy. We compared TestCPCC
across various settings, including batch sizes of [64, 128, 512, 1024], λ values of [0.01, 0.05, 0.1,
0.5, 1, 2], and backbones such as ResNet18, ResNet34, ResNet50 (He et al., 2016), ViT-B/16, and
ViT-L/16 (Dosovitskiy, 2020), using ℓ2, EMD, or FastFT CPCC. Across all comparisons, we observe
that FastFT > EMD > ℓ2 in terms of the quality of the learned hierarchy, highlighting the advantage
of optimal transport-based methods.

5 RELATED WORK

Learning Hierarchical Representations We discuss methods that operate on feature represen-
tations, thereby directly influencing the geometry of the representation space when hierarchical
information is provided. DeViSE (Frome et al., 2013) is an early multimodal work to align image
and text embedding evaluated on a hierarchical precision metric to reflect semantic knowledge in the
representation. Ge et al. (2018); Zhang et al. (2016) modify triplet loss to capture class similarity
for metric learning or image retrieval. Barz & Denzler (2019); Garg et al. (2022) embed classes on
hypersphere based on hierarchical similarity, and similar ideas have been explored in the hyperbolic
space (Kim et al., 2023) where tree can be embedded with low distortion. Yang et al. (2022) provides
a multi-task proxy loss for deep metric learning. Nolasco & Stowell (2022) proposes a ranking loss
to make Euclidean distance of feature close to a target d-dim sequence determined by the rank of
tree metric. We work on the extension of Zeng et al. (2022) which is a special type of hierarchical
methods where a regularizer is used. For a broader discussion on various hierarchical methods, we
direct readers to the summary provided by Bertinetto et al. (2020).

OT Methods and Hierarchical Learning The application of Optimal Transport (OT) in hierar-
chical learning contexts is explored in a limited number of studies. Ge et al. (2021), for instance,
substitutes the conventional cross-entropy with a novel loss function that optimally transports the
predictive distribution to the ground-truth one-hot vector, modifying the ground metric as tree metric
and thus utilizing the hierarchical structure of the classes. Additionally, SEAL (Tan et al., 2023) em-
ploys the TWD to construct a latent hierarchy, enhancing traditional supervised and semi-supervised
learning methodologies. It can be demonstrated that, given a tree T , the optimization process for
TWD aligns with ℓ1 loss optimization and is upper bounded by the SumLoss baseline introduced
by Zeng et al. (2022). Consequently, these methodologies can be categorized as hierarchical loss
functions rather than regularization methods discussed in this work.

6 CONCLUSION

Building upon Zeng et al. (2022) using CPCC as a regularizer to learn structured representations,
we have identified and targeted the limitations inherent in ℓ2-CPCC. Our proposed OT-CPCC family
provides a more nuanced measurement of pairwise class distances in feature space, effectively
capturing complex distributions theoretically and empirically. Furthermore, our novel linear FastFT
algorithm itself is interesting in nature for OT communities. FastFT-CPCC can be viewed as a
successful application in learning tasks, and we welcome future work to investigate more on the
properties of our greedy approach.
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APPENDIX

A APPROXIMATION METHODS OF EARTH MOVER’S DISTANCE

Most approximation methods do not rely on any tree structure. Sinkhorn (Cuturi, 2013) is a fully
differentiable approximation method which leverages the entropic regularization setup of EMD and
the convergence of doubly stochastic matrix. Sliced Wasserstein Distance (SWD) (Bonneel et al.,
2015) projects data to 1 dimension through a random projection matrix and uses EMD1d for fast
calculation, but the quality of approximation highly relies on the number of random projections. Tree
Wasserstein Distance (TWD) (Yamada et al., 2022; Le et al., 2019; Takezawa et al., 2021) is a tree
based approximation algorithm that can be written in the closed matrix form ∥diag(w)B(a− b)∥1,
where w contains weights of T and B is a 0-1 internal nodes by leaf nodes matrix that represents if a
node is the ancestor of a leaf node. To make sure TWD is a good approximation, an extra step of
lasso regression is performed to learn w such that the tree metric approximates Euclidean distance
between features with iterative gradient based method. In Yamada et al. (2022), it requires us to learn
the tree distance between all pairs of nodes, which leads to quadratic computational complexity with
respect to sample size as shown in Tab.1.

B COMPARISON OF STRUCTURED REPRESENTATION LEARNING AND
LEARNING LABEL REPRESENTATIONS

Generally speaking, the problem of structured representation learning and the problem of learning
label representations, or learning label embeddings, are two different topics. In label representation
learning, each label is mapped to a high-dimensional vector for downstream tasks. For example,
in standard multi-class classification, we typically use one-hot vector embeddings. Alternative
approaches include using a soft label to assign probability values in (0,1) to each class (Nguyen et al.,
2014), or learning label embeddings (Weston et al., 2011; Sun et al., 2017; Liu et al., 2024). Label
representation learning methods have various downstream applications, such as text summarization
(Sun et al., 2017), novelty detection (Barz & Denzler, 2019), and extreme classification (Jalan & Kar,
2019; Tagami, 2017; Bhatia et al., 2015; Yu et al., 2014; Evron et al., 2018; Gupta et al., 2019).

While ℓ2-CPCC falls into this category, OT-CPCC methods are not label embedding methods. Instead
of representing a class with a Euclidean centroid in ℓ2, OT-CPCC methods intentionally avoid this step
by considering a more nuanced relationship between labels. OT-CPCC relies on pairwise relationships
between data points from two classes to include more complex distributional geometry during learning.
Since these methods depend on data point relations, there is no one-to-one correspondence between a
label and a representation.

C EMD-CPCC GENERALIZES ℓ2-CPCC

We can show EMD-CPCC is a generalization of previous work of ℓ2-CPCC through the following
proposition.
Proposition 3.1 (EMD reduces to ℓ2 between means of Gaussian with same covariance).
EMD(N (µz,Σ),N (µz′ ,Σ)) = ∥µz − µz′∥.

Proof. Since µ, ν in EMD definition are probability measures, the definition of EMD can be general-
ized to continuous distributions as well. Denote Z the random variable from µ, Z ′ from ν, and q the
coupling between µ and ν, then EMD can be also expressed in the following p-Wasserstein (Wp)
form when p = 1:

Wp =

(
inf
q

∫
Z×Z

∥zi − zj∥p q(zi, zj)dzizj
) 1

p

= inf
q
(E∥Z − Z ′∥p)

1
p (4)

With this definition, our statement can be proved in two steps. First, we want to show the lower bound
of EMD is ∥µz − µz′∥ for any pairs of input random variables. By one step application of Jensen’s

15



Published as a conference paper at ICLR 2025

inequality, since every norm is convex, we have the following result from the expectation form ofW1

in Eq.4:

W1 = inf E ∥Z − Z ′∥ ≥ inf ∥E(Z − Z ′)∥
= ∥EZ − EZ ′∥ = ∥µz − µz′∥ (5)

Second, we need to show EMD ≤ ∥µz − µz′∥ for the given Gaussian constraints. Following the
convexity of quadratic function, apply Jensen’s again, we have:

W2
1 = (inf E ∥Z − Z ′∥)2 ≤ inf E(∥Z − Z ′∥)2 =W2

2 (6)

Dowson & Landau (1982) showed the following analytical form of

W2
2 = ∥µz − µz′∥2 + tr

(
Σz +Σz′ − 2(ΣzΣz′)1/2

)
(7)

This distance metric is also sometimes called Bures-Wasserstein (Bures) distance. The trace term
becomes 0 if Σz = Σz′ = Σ.

■

D DETAILS FOR FAST FLOW TREE CPCC ALGORITHM

In this section, we first present the full pseudocode to compute FastFT-CPCC in Alg.3. Compared to
FlowTree (Backurs et al., 2020) which uses the helper function in Alg.2 (Kalantari & Kalantari, 1995),
we replace the greedy_flow_matching algorithm with Alg.1 which aligns with algorithm that
computes the 1 dimensional OT transportation plan.

Algorithm 3 Train with Fast FlowTree CPCC

input epoch E, batch size B, train data D = {(xi, yi)}Ni=1, dictionary S
1: for iteration = 0, 1, . . . , E − 1 do
2: for batch = 0, 1, . . . , ⌊N/B⌋ do
3: assume there are k classes in batch
4: for (a, b) in

(
k
2

)
pairs of classes do

5: za = (a1, . . . , am)
6: zb = (b1, . . . , bn)
7: if (m,n) in S or (n,m) in S then
8: P ← S[(m,n)]
9: else

10: P ← greedy_flow_matching(m,n,a=unif,b=unif) {Alg.1}
11: S[(m,n)]← P
12: idx← P.nonzero() {store nonzero index tuples of P}
13: ρ(a, b) = 0
14: for (i, j) in idx do
15: ρ(a, b) += P [i, j] · norm(za[i], zb[j])
16: Calculate Eq.1 with CPCC asR
17: Update network parameters with backpropagation

Now we prove the correctness of Fast Flow Tree algorithm and its relation to 1 dimensional optimal
transport distance.
Theorem 3.2 (Correctness of Fast FlowTree). For any augmented label tree T , Alg. 1 and Alg. 2
return the same EMD approximation. The Fast FlowTree can be computed in O((m+ n)d).

Proof Sketch We can observe that the blue code blocks, which contain the update rule of the flow
matrix, are almost identical between Alg.1 and Alg.2. According to Kalantari & Kalantari (1995),
Alg.2 provides the optimal flow matrix for the optimal transport problem using the tree metric as
the ground metric in D. From Fig.1, the tree distance between any two samples in the augmented
tree is always the same, meaning the order of encountering any vertex within the source or target
distribution does not matter. This effectively reduces the FlowTree problem in Alg.2 to a flat 1d EMD
problem in Alg.1. The major difference between two algorithms is that, unlike Alg.2, Alg.1 does not
require passing the flow from the leaf to the root node.
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Proof. Alg.2 will not start to match leaves until the current node has children from two different
distributions, or in our context, from two different fine labels. This is because of the while statement
in line 8: based on our construction of T in Fig.2, if the current node v is either a leaf or a fine label
node, then all of its children are from either Ca(v) or Cb(v), so we will jump to line 11 to send all
flows to v’s parent. Therefore, the matching starts at the lowest common ancestor of two label nodes.

Now we have v as the lowest common ancestor of two fine class nodes (ex., F or H in Fig.2). Before
entering line 9, we always pass unmatched demands to the parent, and we can see the demands are
always from one label until we reach the lowest common ancestor. From Fig.2, we also know at this
point, we have collected all flows from both labels. Therefore, the sum of flow is 1 for both fine label
nodes when the matching starts.

Both Alg.2 and Alg.1 greedily remove one sample from either distribution. The greedy plan is always
feasible and no unmatched flow is left after one scan of all m+ n features, because we inherently
remove the the same amount of flow from both distributions every iteration in the while loop. Thus,
on our T , we can skip most steps in Alg.2: bottom up step in line 2, looping through all vertices at
height h, the if-else check from line 4-7, and the last step of passing unmatched demands to parents
are all unnecessary. Alg.2 terminates immediately once we run through all while loop steps, thus
reducing to Alg.1.

Alg.1, or the flow matrix solution for 1-d EMD problem, can be used when Monge Property or north-
west-corner rules (Hoffman, 1963) hold. It can be shown by induction that this O(m+ n) greedy
algorithm can be applied whenever the following constraint is satisfied: if {(zi, ai)}, {(zj , bj)} are
indexed (1d feature, weight) sequences, for indices i1 < i2 and j1 < j2:

Di1,j1 +Di2,j2 ≤Di1,j2 +Di2,j1 (8)

If two sequences are ordered (in ascending order) by metric defining D, we have zi1 ≤ zi2 and
zj1 ≤ zj2 . There are in total six cases for any i1 < i2, j1 < j2:

1. If zj1 ≤ zj2 ≤ zi1 ≤ zi2 , then Eq.8⇔��zi1���−zj1���+zi2���−zj2 ≤��zi1���−zj2���+zi2���−zj1 holds.
2. If zj1 ≤ zi1 ≤ zj2 ≤ zi2 , then Eq.8 ⇔ zi1���−zj1���+zi2 − zj2 ≤ zj2 − zi1�

��+zi2���−zj1 holds
because zi1 ≤ zj2 .

3. If zj1 ≤ zi1 ≤ zi2 ≤ zj2 , then Eq.8⇔ zi1���−zj1���+zj2 − zi2 ≤��zj2 − zi1 + zi2���−zj1 holds
because zi1 ≤ zi2 .

4. If zi1 ≤ zj1 ≤ zj2 ≤ zi2 , then Eq.8⇔ zj1���−zi1���+zj2 − zi2 ≤��zj2���−zi1 + zi2 − zj1 holds
because zj1 ≤ zi2 .

5. If zi1 ≤ zj1 ≤ zi2 ≤ zj2 , then Eq.8⇔ zj1���−zi1���+zj2 − zi2 ≤��zj2���−zi1 + zi2 − zj1 holds
because zj1 ≤ zi2 .

6. If zi1 ≤ zi2 ≤ zj1 ≤ zj2 , then Eq.8⇔��zj1���−zi1���+zj2���−zi2 ≤��zj2���−zi1���+zj1���−zi2 holds.

Therefore, if two sequences are ordered with respect to some metric, Eq.8 is satisfied.

Recall we need the extra sorting step in the beginning of 1d OT plan to apply the greedy flow matching
algorithm. The distance function in Eq.8 is decided by the ground metric of EMD, which does not
make any difference for 1 dimensional features. In Flow Tree, a tree is constructed with QuadTree
such that the tree distance of any two features is close to the ℓ2 distance between them. In this case,
in EMD computation, we can improve computational efficiency by Flow Tree. With extended label
tree T , because all same class sample leaves belong to one single parent, we have a special case here
where the tree distance of any two samples from µ, ν are always the same, satisfying Eq.8 vacuously.
This statement fails only if we assign different edge weights for each sample during the extension
of label tree, and does not depend on the weights of original label tree. To avoid the limitation on
the extended edge weights, we can instead assign different weights ai for each sample to adjust the
importance of each dat points. Therefore, FastFT is still very flexible.

For the time complexity, Alg.1 requires at most O(m+n) steps from line 4. The most time-consuming
aspect is computing the d-dimensional distance of O(m+ n) pairs in D, since there will be at most
m + n nonzero values in D after applying the greedy matching algorithm, which makes the final
time complexity as O((m+ n)d). ■
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Figure 8: Example run of Alg.2 Bottom-up Tree Flow Matching.
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E DATASET HIERARCHY CONSTRUCTION

In this section, we discuss the details of dataset hierarchies and how we created the dataset splits.
Throughout the main body of this paper, we consider a two-level hierarchy: coarse and fine. For
each coarse node, except for BREEDS, we split the coarse node’s fine children into approximately
40% for the target set and 60% for the source set. Following this procedure, the splits are detailed
in Tables 6, 7, 8, 9, 10, 11, and 12. The original class labels for CIFAR10 and CIFAR100 are
from https://www.cs.toronto.edu/~kriz/cifar.html, for iNaturalist from https:
//github.com/visipedia/inat_comp/tree/master/2021, and for BREEDS from
WordNet (Miller, 1995).

The CIFAR10 hierarchy was manually constructed by us, while the CIFAR100 hierarchy is provided
in the original dataset. In INAT, fine and coarse classes correspond to the class and phylum labels
from the original annotations. These higher-level labels are particularly suitable for evaluating multi-
modal settings, where OT-CPCC methods may have a more significant advantage over ℓ2-CPCC.

In Zeng et al. (2022), fine classes in BREEDS are defined one level deeper than the original labels.
However, due to the large number of classes and limited samples per class within a batch, the
distinction between ℓ2-CPCC and OT-CPCC can become less apparent. To address this, we employ
a three-level hierarchy, using the labels from Santurkar et al. (2021) as fine labels and setting their
parent categories as mid and coarse labels. Consequently, due to BREEDS setting, the fine classes
are the same for both source and target datasets, so there is no source-target split in Tables 9, 10,
11, and 12. Despite this hierarchical structure, as seen in Fig.5, BREEDS exhibits relatively low
multi-modality. With this design, in Sec.4.3, for classification and retrieval experiments, one-shot
fine-tuning is not required for BREEDS on the target split.

Table 6: CIFAR10 hierarchy and data split.

Coarse Source Target
animal deer, dog, frog bird, cat
transportation ship, truck airplane, automobile

Table 7: CIFAR100 hierarchy and data split.

Coarse Source Target
aquatic mammals otter, seal, whale beaver, dolphin
fish ray, shark, trout aquarium fish, flat fish
flowers roses, sunflowers, tulips orchids, poppies
food containers cans, cups, plates bottles, bowls
fruit and vegetables oranges, pears, sweet pepper apples, mushrooms
household electrical devices lamp, telephone, television clock, computer keyboard
household furniture couch, table, wardrobe bed, chair
insects butterfly, caterpillar, cockroach bee, beetle
large carnivores lion, tiger, wolf bear, leopard
large man-made outdoor things house, road, skyscraper bridge, castle
large natural outdoor scenes mountain, plain, sea cloud, forest
large omnivores and herbivores chimpanzee, elephant, kangaroo camel, cattle
medium-sized mammals possum, raccoon, skunk fox, porcupine
non-insect invertebrates snail, spider, worm crab, lobster
people girl, man, woman baby, boy
reptiles lizard, snake, turtle crocodile, dinosaur
small mammals rabbit, shrew, squirrel hamster, mouse
trees palm, pine, willow maple, oak
vehicles 1 motorcycle, pickup truck, train bicycle, bus
vehicles 2 streetcar, tank, tractor lawn-mower, rocket
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Table 8: INAT hierarchy and data split.

Coarse Source Target
Arthropoda Diplopoda, Hexanauplia, Insecta,

Malacostraca, Merostomata
Arachnida, Chilopoda

Chordata Ascidiacea, Aves, Elasmobranchii,
Mammalia, Reptilia

Actinopterygii, Amphibia

Cnidaria Hydrozoa, Scyphozoa Anthozoa
Echinodermata Echinoidea, Holothuroidea, Ophi-

uroidea
Asteroidea

Mollusca Cephalopoda, Gastropoda, Polypla-
cophora

Bivalvia

Ascomycota Lecanoromycetes, Leotiomycetes,
Pezizomycetes, Sordariomycetes

Arthoniomycetes, Dothideomycetes

Basidiomycota Dacrymycetes, Pucciniomycetes,
Tremellomycetes

Agaricomycetes

Bryophyta Polytrichopsida, Sphagnopsida Bryopsida
Tracheophyta Liliopsida, Lycopodiopsida, Magno-

liopsida, Pinopsida, Polypodiopsida
Cycadopsida, Gnetopsida

Table 9: LIVING17 dataset hierarchy.

Coarse Fine
bird grouse, parrot
amphibian salamander
reptile, reptilian turtle, lizard, snake, serpent, ophidian
arthropod spider, crab, beetle, butterfly
mammal, mammalian dog, domestic dog, Canis familiaris, wolf, fox, domestic cat, house cat,

Felis domesticus, Felis catus, bear, ape, monkey

Table 10: NONLIVING26 dataset hierarchy.

Coarse Fine
structure, place dwelling, home, domicile, abode, habitation, dwelling house, fence,

fencing, mercantile establishment, retail store, sales outlet, outlet, out-
building, roof

paraphernalia ball, bottle, digital computer, keyboard instrument, percussion instru-
ment, percussive instrument, pot, stringed instrument, timepiece, time-
keeper, horologe, wind instrument, wind

food, nutrient squash
apparel, toiletries bag, body armor, body armour, suit of armor, suit of armour, coat of

mail, cataphract, coat, hat, chapeau, lid, skirt
conveyance, transport boat, bus, autobus, coach, charabanc, double-decker, jitney, motorbus,

motorcoach, omnibus, passenger vehicle, car, auto, automobile, machine,
motorcar, ship, truck, motortruck

furnishing chair

F TRAINING HYPERPARAMETERS

We conducted all experiments with NVIDIA RTX A6000. The architectural and training setups for
each dataset are as follows:
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Table 11: ENTITY13 dataset hierarchy.

Coarse Fine
living thing, animate thing bird, reptile, reptilian, arthropod, mammal, mammalian
non-living thing garment, accessory, accoutrement, accouterment, craft, equipment, fur-

niture, piece of furniture, article of furniture, instrument, man-made
structure, construction, wheeled vehicle, produce, green goods, green
groceries, garden truck

Table 12: ENTITY30 dataset hierarchy.

Coarse Fine
living thing, animate thing serpentes, passerine, passeriform bird, saurian, arachnid, arachnoid,

aquatic bird, crustacean, carnivore, insect, ungulate, hoofed mammal,
primate, bony fish

non-living thing barrier, building, edifice, electronic equipment, footwear, legwear,
garment, headdress, headgear, home appliance, household appliance,
kitchen utensil, measuring instrument, measuring system, measuring de-
vice, motor vehicle, automotive vehicle, musical instrument, instrument,
neckwear, sports equipment, tableware, tool, vessel, watercraft, dish,
vegetable, veggie, veg, fruit

F.1 CIFAR10, CIFAR100

We conduct training from scratch using ResNet18, following the ResNet architecture design where
the first convolution layer employs a 3x3 kernel size, while the max pooling layer is omitted. The
images are preprocessed by normalizing them according to CIFAR10/CIFAR100’s mean and standard
deviation. We augment the training data by first zero-padding the images by 4 pixels, then cropping
them back to their original dimensions, applying a 50% chance of horizontal flipping, and randomly
rotating the images between -15 and 15 degrees.

For CIFAR10, the pretraining process spans 100 epochs with a batch size of 64. The learning rate
begins at 0.01 and is decreased by a factor of 10 every 60 steps, with momentum set at 0.9 and
weight decay set to 5× 10−4 in the SGD optimizer. For CIFAR100, the pretraining process spans
200 epochs with a batch size of 128. The learning rate begins at 0.1 and is decreased by a factor of 5
every 60 steps, with momentum set at 0.9 and weight decay set to 5× 10−4 in the SGD optimizer.
Additionally, for both datasets, in the fine-level one-shot transfer learning, we train for 100 epochs
starting at a learning rate of 0.1, which is reduced by a factor of 10 every 60 steps. CPCC is applied
to coarse, fine level and λ in Eq.1 is set to 1. The ratio between the distance between two fine classes
sharing the same coarse parent and those sharing different parents is 1:2.

F.2 BREEDS

We train a ResNet18 model from scratch originally designed for ImageNet, where the first convolution
layer uses a 7x7 kernel. Adhering to the BREEDS training setup, we use a batch size of 128, an
initial learning rate of 0.1, and SGD optimization with a weight decay of 10−4. For the ENTITY13
and ENTITY30 datasets, the model is trained for 300 epochs, reducing the learning rate by a factor
of 10 every 100 steps, while for LIVING17 and NONLIVING26, we extend training to 450 epochs,
with the learning rate divided by 10 every 150 steps. Data augmentation for the training set includes
a RandomResizedCrop to 224x224, horizontal flipping with a 50% probability, and color jittering
that adjusts brightness, contrast, and saturation within a range of 0.9 to 1.1. The test set, on the other
hand, is resized to 256x256 and then center-cropped to 224x224.

Since in our experiments with BREEDS, the source and target split share the same set of fine labels,
to calculate fine target accuracy, it is unnecessary to use one-shot transfer learning. We directly use
the source set pretrained models for target fine accuracy evaluation.
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To apply CPCC methods, we backtrack two levels up to find the mid and coarse labels from the
original class labels in BREEDS. CPCC is applied to mid and coarse level and λ in Eq.1 is set to 1.
The ratio between the distance between two fine classes sharing the same coarse parent and those
sharing different parents is 1:2.

F.3 INAT

We fine-tune an ImageNet-pretrained ResNet18 model where checkpoint can be downloaded
in Pytorch (torchvision.models.resnet18(weights=’IMAGENET1K_V1’),
https://pytorch.org/vision/main/models/generated/torchvision.
models.resnet18.html). The images are preprocessed by normalizing them with
mean=[0.466, 0.471, 0.380] and standard deviation=[0.195, 0.194, 0.192]. We augment the training
data by cropping a random portion (scale=(0.08, 1.0), ratio=(0.75, 1.33)) of image and resize it to
224x224, and apply a 50% chance of horizontal flipping. We use a batch size of 1024. The learning
rate begins at 0.1 and is decreased by a factor of 5 every 60 steps, with momentum set at 0.9 and
weight decay set to 5× 10−4 in the SGD optimizer. In the downstream one-shot fine-tuning task, we
train for 60 epochs starting at a learning rate of 0.05, which is reduced by a factor of 10 every 15
steps. CPCC is applied to coarse, fine level and λ in Eq.1 is set to 0.1. The ratio between the distance
between two fine classes sharing the same coarse parent and those sharing different parents is 1:3.
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Figure 9: Visualization of the evaluation of hierarchical classification.

G HIERARCHICAL BASELINE OBJECTIVES

In this section, we introduce the details of hierarchical objectives we used in Fig.12.

Flat is the naive cross entropy loss only on the fine level, so the expression is:

LFlat(x, yfine) =
∑

(x,y)∈D

ℓFlat(yfine, h(x)). (9)

We adopt all hierarchical baselines from the comparative study in Zeng et al. (2022), including:

Multi-Task Learning (MTL) (Caruana, 1997), where the backbone model is trained with two linear
heads—one for coarse classes and one for fine classes—each with a cross-entropy loss. The total
loss, LMTL, is the sum of these two cross-entropy terms, with a scaling coefficient of 1 for both.
Curriculum Learning (Curr) (Bengio et al., 2009) involves two training phases: first, training a
coarse head for 50 epochs, followed by training the full network with a fine head for 200 epochs,
starting from the coarse-trained features, assuming that coarse classification is an easier task. Sum
Loss (Hu et al., 2018) uses only one fine classifier head, where coarse predictions are obtained by
summing the fine class probabilities for the same coarse parent and applying a second cross-entropy
loss. Hierarchical Cross Entropy (HXE) (Bertinetto et al., 2020) is the sum of weighted cross-
entropy losses (α = 0.4), where the hierarchical structure is incorporated into the log-probabilities.
The same paper also introduces Soft Label (Soft), which uses a single softmax loss based on the
height of the least common ancestor between label pairs, with a hyperparameter β = 10. Quadruplet
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Loss (Quad) (Zhang et al., 2016) extends triplet loss by defining two types of positive labels based on
the hierarchy. For detailed mathematical expressions of these objectives, refer to App.C in Zeng et al.
(2022).

We also include several recently published hierarchical losses:

Soft Hierarchical Consistency (SHC) (Garg et al., 2022) is the combination of MTL and Sum
Loss. For a two level hierarchy, they jointly train a two-headed network. Define the network as
h : X → ∆k1

×∆k2
with a shared feature encoder f : X → Z and two classifiers gcoarse : Z →

∆k1
, gfine : Z → ∆k2

, with k1 as the number of coarse classes and k2 the number of fine classes.
The ground truth coarse probability pcoarse = gcoarse(f(·)) is the output of coarse head after softmax
normalization, and p̂coarse is derived from the output of fine head. Let W be a k1 by k2 matrix
representing the relationships in the label tree: if a fine class i belongs to a coarse class j, then Wji

is 1, else the entry is set to 0. Then p̂coarse = Wgfine(f(·)), so the probability of belonging to a given
coarse class is the sum of the probabilities of its fine class descendants in the tree. Then, the SHC
loss is defined as the Jensen-Shannon Divergence between these two probability distributions:

LSHC(x, ycoarse, yfine) = JSD(pcoarse(x, ycoarse)||p̂coarse(x, yfine)). (10)

In Garg et al. (2022), LSHC is used in the combination with Flat cross entropy loss. Therefore, we
treat it as a counterpart of CPCC losses and use LFlat + λ · LSHC as the training loss, with λ = 1.

Geometric Consistency (GC) (Garg et al., 2022) is also computed under the MTL two-head
pipeline. The coarse classifier can be decomposed to a linear layer and softmax function, i.e., let
Wc ∈ Rd×k1 , gcoarse(·) = softmax(Wc(·)), and we define Wf similarly for the linear fine layer.

LGC(x, ycoarse, yfine) =

k1∑
i=1

1− cos (Wc
i ,Ŵ

c
i ). (11)

As in SHC, GC aims to force the similarity between the predicted coarse weight and the true coarse
weight. Here, Wc

i is part of the linear classifier corresponds to each coarse class, and the predicted

coarse weight Ŵc
i =

∑
j∈children(i) W

f
j /

∥∥∥∑j∈children(i) W
f
j

∥∥∥ is the normalized sum of a part of fine
classifiers based on the hierarchical relationship. We combine LGC with Flat cross entropy during
training and set λ in Eq.1 as 1.

RankLoss (Rank) (Nolasco & Stowell, 2022) proposes a ranking loss to make Euclidean distance
of feature ρ close to the target d-dim sequence determined by the rank of tree metric:

Lrank(x, ycoarse, yfine) =
1

p

∑
p

(1− Ip)(ρ− TargetRank(ρ)). (12)

In this equation above, Ip is an indicator variable which shows whether the rank of pairwise ℓ2 feature
distance is the same as the rank of pairwise tree metric distance, and TargetRank is a function reflecting
hierarchical similarity. Since this loss does not focus on discriminative tasks like classification, we
combine it with Flat cross entropy, setting λ = 1 in Eq.1 for downstream tasks evaluation.

H ADDITIONAL EXPERIMENTS

H.1 EFFECT OF TREE DEPTH

Although in the main body we focus on a depth-3 label hierarchy consisting of a root node, a coarse
level, and a fine level, we also test whether our method can be applied to more complex trees. In
CIFAR100, beyond the standard fine-coarse levels, we introduce a mid level by grouping 5 fine
classes from the same coarse class into two smaller groups (2 + 3). Additionally, we create a coarser
level by grouping two alphabetically neighboring coarse classes into a single coarser label. For
example, for 10 fine labels, the hierarchical grouping is highlighted by the following color scheme:
{[(orchids, poppies) (roses, sunflowers, tulips)] [(bottles, bowls) (cans, cups, plates)]}.

In Fig.10, we aligned the axes to sort the fine labels based on the hierarchical structure for embeddings
learned using trees of varying depth. We then computed the fine-to-fine class distances using either
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Figure 10: CIFAR100 class embedding pairwise distance matrix for different types of label tree with
varying tree depth.

the EMD or FastFT metric. On the left of Fig.10, we used the standard fine-coarse CIFAR100 label
tree, where a clear pattern of twenty 5x5 coarse blocks appears on the diagonal for both optimal
transport methods. In the middle of Fig.10, we applied CPCC to the fine-mid-coarse hierarchy, and
within each 5x5 coarse block, we observed the expected fine-grained 2x2 + 3x3 patterns. Similarly,
on the right of Fig.10, when we included the coarser grouping, we could observe the merging of
neighboring 5x5 coarse blocks.

Table 13: EMD and FastFT performance for tree with different depths on the full CIFAR100 dataset.
The batch size is set to 128.

Objective Setup CPCC FineAcc CoarseAcc

EMD
depth = 3 88.80 71.91 82.21
depth = 4 85.09 72.59 82.93
depth = 5 88.64 72.20 82.50

FastFT
depth = 3 90.75 72.71 83.31
depth = 4 87.86 72.45 83.05
depth = 5 90.27 72.56 83.04

We also include metrics for the preciseness of hierarchical information and hierarchical classification
in Tab.13. As observed in Fig.10, the tree information is well-learned, leading us to expect high
CPCC scores across all settings in Tab.13. For the hierarchical classification metrics, within the same
OT method, the difference between FineAcc and CoarseAcc is small. It is worth noting that, because
we train on the full CIFAR100 dataset for visualization purposes, the source-target hierarchical
split shown in Fig.4 is not applied here. Both FineAcc and CoarseAcc are reported on the original
CIFAR100 test set. This suggests that even when the tree used is not identical to the label hierarchy
associated with the dataset, an approximate tree with a similar structure is sufficient for classification
tasks.

In summary, EMD-CPCC is a flexible structured representation learning method that adapts well
to complex hierarchies, while FastFT-CPCC serves as a good approximation to EMD-CPCC. This
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observation is consistent with the results in Tab.3, where optimal transport methods achieve higher
Test CPCC values.

H.2 EFFECT OF TREE WEIGHTS

Figure 11: CIFAR100 class embedding pairwise distance matrix for different types of label tree with
varying tree weights.

In this section, we demonstrate that all CPCC methods, including OT-CPCC, are influenced by input
tree weights. In Fig.11, we begin with the original unweighted CIFAR100 tree (where all edges
have a default weight of 1) and modify the edge weights of a subtree representing the coarse label
aquatic_mammals, which includes five fine labels: beaver, dolphin, otter, seal, and
whale. We visualize the learned representation through a distance matrix, as described in Sec.H.1.
From left to right in Fig.11, the edge weights of this subtree are set to 1, 2, and 4, respectively.
Consequently, we observe a color shift in the top-left coarse block of the matrix, with the block
gradually darkening as the subtree weights increase. This demonstrates the flexibility of OT-CPCC
methods, which can successfully embed weighted trees, and highlights why CPCC is a sensitive
and effective metric for evaluating the interpretability and quality of the hierarchical information
embedded in the learned representation, as discussed in Sec.4.4.

Table 14: EMD and FastFT performance for tree with different edge weights within
aquatic_mammals classes on the full CIFAR100 dataset. The batch size is set to 1024.

Objective Setup CPCC FineAcc CoarseAcc

EMD
weight 1x 89.13 75.76 85.50
weight 2x 88.85 75.57 85.22
weight 4x 79.86 75.56 85.35

FastFT
weight 1x 92.12 75.43 85.43
weight 2x 92.57 75.38 85.10
weight 4x 84.23 75.57 84.98

We use the same experimental settings as those described in Sec.H.1. While the classification
metrics remain comparable, the most significant trend emerges in the CPCC metric. As shown in
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Fig.11, we observe the expected pattern in the top-left block, which changes as the edge weights
are multiplied. However, as the injected hierarchy deviates further from the given label hierarchy, it
becomes increasingly unnatural. The increased weights make the tree embedding more challenging,
resulting in a drop in CPCC values for larger weights.

H.3 EFFECT OF FLOW WEIGHT

In Eq.3, the flow weight vectors a and b are set to uniform by default in all other experiments.
However, in practice, these vectors can be customized by the user if prior information about the data
distribution is available, which may significantly influence the learned embeddings. On CIFAR100,
we tested three different flow weight settings:

• Uniform (unif): default setting where we assume each data point is uniformally sampled
from the class distribution, so a = (1/m, . . . , 1/m) and b = (1/n, . . . , 1/n).

• Distance (dist): is an adaptive weighting method where during training, we compute
the Euclidean centroid of each class and compute the distance of each sample to the
corresponding class centroid. Then we can apply softmax function to normalize the distances
into probabilities. Mathematically, if two class representations are Z,Z ′, then for each entry
of flow weight vector, ai =

exp(Zi−µz)∑m
j=1 exp(Zj−µz)

, bi =
exp(Z′

i−µz′ )∑n
j=1 exp(Z′

j−µz′ )
.

• Inverse-Distance (inv): is similar to dist, yet the only difference is we set the weight to be
inversely scaled by the distance to the centroid, so the expressions of the flow weights are
ai =

exp(µz−Zi)∑m
j=1 exp(µz−Zj)

, bi =
exp(µz′−Z′

i)∑n
j=1 exp(µz′−Z′

j)
.

From Tab.15, we observe two key findings: first, tuning the flow weights can lead to improvements
in out-of-distribution generalization metrics for the target set, but this comes at the expense of
in-distribution source metrics. Second, the most significant differences are seen in the CPCC values,
where it is nearly impossible to recover hierarchical information on the test set when using the
Distance flow weight for both EMD and FastFT. The low interpretability scores suggest that not all
flow weight settings are suitable for hierarchy learning.

Table 15: Comparison of FastFT and EMD methods with different optimal transport flow weighting
schemes across fine and coarse metrics, with cell colors representing the magnitude of values.

Objective Weight CPCC Fine Metrics Coarse Metrics
sAcc sMAP tAcc sAcc sMAP tAcc tMAP

FastFT
unif 93.85 81.32 78.88 23.15 86.96 91.71 44.29 42.20

dist 9.30 78.90 67.33 25.28 85.18 91.47 45.00 43.78
inv 66.52 79.73 68.31 25.45 85.81 92.03 43.70 43.70

EMD
unif 89.60 80.99 78.51 23.53 86.93 91.82 44.03 42.32

dist 19.87 79.23 73.79 26.05 85.91 91.30 43.55 42.53
inv 98.13 79.51 75.84 26.80 86.05 91.22 44.15 42.13

I ANALYSIS FOR THE TIME COMPLEXITY OF OT APPROXIMATION METHODS

In this section, we provide the details and references for the reported time complexities in Tab.1.

In the following time complexity analysis, denote b as batch size. We assume each class-conditioned
cluster has the same size n, which implies b = nk, where k is the number of classes.

For ℓ2, given one batch of batch size b, computing Euclidean centroids for all classes requires
scanning through all d-dimensional data points once, which requires O(bd) = O(nkd). We have at
most k classes in one batch, so computing the pairwise distances between class centroids will cost
O(k2d). The total cost for ℓ2 is O((nk + k2)d).
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Table 16: Detailed generalization performance on fine level. Each value is the mean (std) of three
seeds of experiments. Flat directly optimizes on the fine level classes, so we treat it as the upper
bound of fine metrics and colored in grey. The bold values have the largest mean for a column metric
within a dataset, ignoring the upper bound.

Dataset Objective sAcc tAcc sMAP Dataset sAcc tAcc sMAP

CIFAR10

Flat 96.92 (0.14) 54.23 (6.92) 99.43 (0.02)

INAT

88.70 (0.01) 26.77 (0.04) 63.97 (0.04)
ℓ2 96.96 (0.16) 55.71 (7.38) 99.22 (0.06) 88.62 (0.01) 26.78 (0.04) 56.10 (0.05)

FastFT 96.90 (0.13) 55.99 (8.19) 99.24 (0.02) 88.49 (0.01) 27.10 (0.04) 56.21 (0.05)
EMD 97.05 (0.18) 56.12 (7.63) 99.24 (0.02) 88.68 (0.00) 26.78 (0.04) 56.83 (0.00)

Sinkhorn 96.95 (0.08) 54.89 (8.59) 99.27 (0.03) 88.08 (0.00) 26.77 (0.04) 51.56 (0.04)
SWD 96.96 (0.05) 59.21 (4.42) 99.45 (0.03) 88.46 (0.00) 26.78 (0.04) 54.19 (0.03)

CIFAR100

Flat 80.53 (0.31) 28.44 (1.89) 86.47 (0.21)

BREEDS

82.08 (0.26) 45.19 (0.38) 73.74 (0.46)
ℓ2 80.98 (0.17) 23.76 (1.01) 77.52 (0.12) 82.66 (0.41) 45.95 (0.40) 62.86 (0.38)

FastFT 81.09 (0.18) 24.71 (0.90) 78.72 (0.19) 82.58 (0.34) 45.75 (0.45) 63.95 (0.36)
EMD 81.32 (0.19) 23.15 (0.40) 78.88 (0.18) - - -

Sinkhorn 80.99 (0.12) 23.53 (0.48) 78.51 (0.20) 82.99 (0.31) 46.87 (0.40) 61.54 (0.55)
SWD 80.50 (0.33) 26.18 (1.04) 86.82 (0.22) 82.90 (0.30) 46.33 (0.16) 76.24 (0.39)

Table 17: Detailed generalization performance on coarse level. Each value is the mean (std) of three
seeds of experiments. ℓ2 directly optimizes on the coarse level classes, so we treat it as the upper
bound of coarse metrics and colored in grey.

Dataset Objective sAcc tAcc sMAP tMAP Dataset sAcc tAcc sMAP tMAP

CIFAR10

ℓ2 99.60 (0.01) 87.51 (0.97) 99.88 (0.03) 92.84 (0.63)

INAT

94.52 (0.00) 40.86 (0.01) 74.34 (0.05) 37.35 (0.01)
Flat 99.58 (0.07) 87.30 (0.59) 99.22 (0.05) 89.66 (0.38) 94.63 (0.00) 38.81 (0.01) 70.41 (0.04) 34.00 (0.13)

FastFT 99.61 (0.06) 87.79 (0.41) 99.91 (0.03) 93.04 (0.57) 94.66 (0.00) 39.43 (0.02) 72.90 (0.05) 35.63 (0.01)
EMD 99.61 (0.03) 87.45 (0.60) 99.88 (0.03) 93.07 (0.63) 94.64 (0.00) 41.01 (0.01) 73.87 (0.01) 35.58 (0.01)

Sinkhorn 99.61 (0.05) 87.41 (0.53) 99.87 (0.03) 92.60 (0.13) 94.30 (0.00) 36.94 (0.02) 68.75 (0.02) 34.92 (0.00)
SWD 99.56 (0.04) 87.63 (0.62) 99.36 (0.09) 90.12 (0.43) 94.52 (0.00) 39.38 (0.01) 75.13 (0.03) 38.11 (0.01)

CIFAR100

ℓ2 87.00 (0.13) 44.55 (0.39) 92.13 (0.23) 43.03 (0.55)

BREEDS

94.24 (0.30) 83.13 (0.23) 95.00 (0.25) 81.73 (0.32)
Flat 86.17 (0.26) 43.09 (0.55) 82.07 (0.34) 42.09 (0.26) 93.85 (0.20) 82.43 (0.27) 74.47 (0.52) 66.50 (0.39)

FastFT 86.96 (0.13) 44.29 (0.33) 91.71 (0.11) 42.20 (0.44) 94.25 (0.27) 82.89 (0.31) 92.84 (0.27) 79.69 (0.34)
EMD 86.93 (0.28) 44.03 (0.31) 91.82 (0.14) 42.32 (0.31) - - - -

Sinkhorn 86.93 (0.10) 43.99 (0.37) 91.61 (0.31) 42.45 (0.09) 94.42 (0.21) 83.51 (0.30) 91.84 (0.42) 79.33 (0.38)
SWD 86.42 (0.26) 43.35 (0.71) 87.24 (0.29) 42.39 (0.30) 94.41 (0.25) 82.96 (0.17) 83.58 (0.60) 72.38 (0.43)

For OT methods, we have k class-conditioned clusters, resulting in O(k2) pairs of matrices as input
for all OT methods. For each pair, the computation time of OT methods can range from linear to
cubic with respect to n. For instance, each FastFT computation takes O(nd) as shown in Theorem
3.2, so the total computation time becomes O(k2nd). In general, the computation time for all OT
methods can be expressed as O(k2 · OT-time). Next, we elaborate on the “OT-time” term.

For EMD, the complexity is typically O(n3 log n) in the past literature (Cuturi, 2013), which primarily
focuses on the influence of the number of samples n. However, in our setting, because d >> n, we
aim to emphasize the effect of d. In the time complexity expression for EMD, the O(n3 log n) term
arises from solving the linear programming problem, while the O(nd) term accounts for computing
the objective function ⟨P ,D⟩. Due to the sparse nature of the linear programming solution, there are
only O(n) non-zero values in P . Consequently, we compute O(n) d-dimensional pairwise distances
in D, making the dot product computation require O(nd) in total. Therefore, the overall complexity
of EMD is O(n(d+ n2 log n)).

To get the approximated flow matrix, Sinkhorn (Cuturi, 2013) mainly depends on the iterative matrix
scaling algorithm. For each I iteration, we normalize the row and column of a matrix of size O(n2),
so the complexity for running this iterative algorithm is O(n2I). Unlike in EMD, the approximated
flow matrix P derived from Sinkhorn is not sparse. Therefore, the dot product of the objective
function will now take O(n2d) in total. The total complexity of Sinkhorn is O(n2(d+ I)).

To obtain the approximated flow matrix, Sinkhorn (Cuturi, 2013) relies on the iterative matrix
scaling algorithm. During each of the I iterations, we normalize the rows and columns of a matrix
of size O(n2), resulting in a complexity of O(n2I) for the iterative algorithm. Unlike EMD, the
approximated flow matrix P derived from Sinkhorn is not sparse. Consequently, computing the dot
product for the objective function requires O(n2d) in total. Therefore, the overall complexity of
Sinkhorn is O(n2(d+ I)).
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Table 18: Fine level generalization performance for each BREEDS setting.

Dataset Objective sAcc tAcc sMAP

L17

Flat 85.15 (0.30) 46.31 (0.31) 85.94 (0.18)
ℓ2 85.74 (0.69) 47.50 (0.73) 74.07 (0.61)

FastFT 85.21 (0.38) 46.47 (0.75) 74.46 (0.16)
Sinkhorn 85.80 (0.49) 48.37 (0.69) 70.50 (0.53)

SWD 85.88 (0.26) 47.50 (0.09) 86.65 (0.51)

N26

Flat 79.76 (0.27) 36.06 (0.37) 70.75 (1.14)
ℓ2 80.58 (0.54) 37.08 (0.26) 55.51 (0.50)

FastFT 80.78 (0.52) 36.69 (0.19) 58.87 (0.42)
Sinkhorn 81.74 (0.26) 38.16 (0.14) 57.54 (0.92)

SWD 81.79 (0.25) 37.71 (0.09) 76.03 (0.05)

E13

Flat 84.37 (0.24) 56.04 (0.27) 74.04 (0.34)
ℓ2 84.77 (0.18) 55.69 (0.37) 66.92 (0.16)

FastFT 85.04 (0.15) 56.66 (0.44) 67.96 (0.64)
Sinkhorn 85.00 (0.15) 57.14 (0.40) 64.47 (0.20)

SWD 84.49 (0.18) 56.82 (0.12) 75.39 (0.54)

E30

Flat 79.05 (0.23) 42.35 (0.57) 64.23 (0.17)
ℓ2 79.54 (0.21) 43.51 (0.23) 54.92 (0.23)

FastFT 79.29 (0.32) 43.16 (0.42) 54.49 (0.23)
Sinkhorn 79.40 (0.33) 43.82 (0.38) 53.66 (0.53)

SWD 79.42 (0.52) 43.28 (0.34) 66.87 (0.45)

Table 19: Coarse level generalization performance for each BREEDS setting.

Dataset Objective sAcc tAcc sMAP tMAP

L17

ℓ2 93.13 (0.62) 79.03 (0.29) 93.93 (0.54) 69.13 (0.42)
Flat 92.68 (0.39) 78.35 (0.37) 76.66 (0.26) 56.13 (0.36)

FastFT 93.33 (0.26) 78.37 (0.47) 92.11 (0.23) 65.44 (0.24)
Sinkhorn 93.11 (0.20) 79.50 (0.43) 89.14 (0.36) 63.88 (0.32)

SWD 92.96 (0.41) 78.66 (0.26) 83.92 (0.38) 59.66 (0.21)

N26

ℓ2 88.94 (0.42) 70.24 (0.50) 89.59 (0.26) 68.40 (0.52)
Flat 88.44 (0.12) 68.98 (0.41) 61.20 (1.01) 50.86 (0.16)

FastFT 88.83 (0.75) 69.43 (0.42) 83.89 (0.40) 65.22 (0.75)
Sinkhorn 89.94 (0.35) 70.70 (0.41) 83.14 (0.78) 66.07 (0.85)

SWD 89.88 (0.34) 69.93 (0.04) 74.06 (0.57) 58.50 (0.48)

E13

ℓ2 97.80 (0.04) 91.51 (0.01) 98.25 (0.04) 94.15 (0.09)
Flat 97.53 (0.12) 91.30 (0.16) 83.89 (0.13) 82.37 (0.31)

FastFT 97.80 (0.01) 91.78 (0.13) 97.69 (0.13) 93.21 (0.10)
Sinkhorn 97.63 (0.02) 91.97 (0.14) 97.53 (0.23) 92.77 (0.18)

SWD 97.67 (0.13) 91.69 (0.06) 91.43 (0.72) 87.71 (0.16)

E30

ℓ2 97.07 (0.10) 91.74 (0.10) 98.24 (0.14) 95.28 (0.24)
Flat 96.75 (0.18) 91.10 (0.15) 76.12 (0.66) 76.65 (0.74)

FastFT 97.02 (0.07) 91.98 (0.23) 97.65 (0.32) 94.90 (0.26)
Sinkhorn 96.99 (0.25) 91.87 (0.22) 97.54 (0.31) 94.59 (0.18)

SWD 97.12 (0.13) 91.55 (0.31) 84.89 (0.74) 83.66 (0.88)

For FT (Backurs et al., 2020), the most computationally expensive step is the tree construction
using the QuadTree algorithm. Backurs et al. (2020) demonstrate that this tree can be built in
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O(nd log(dΦ)). Once the tree is constructed, as shown in Lemma 3.1 of Backurs et al. (2020), FT
requires O(n(d + log(dΦ))) to run the bottom-up algorithm and compute the objective function,
which is less expensive than the tree construction. Thus, the total complexity of FT is O(nd log(dΦ)).

For Fast FlowTree, please refer to the proof of Thm. 3.2.

For TWD, we follow Algorithm 1 in Yamada et al. (2022). The first step is to construct a tree. To
save computation, instead of using QuadTree, we leverage the same technique as in FastFT to use our
augmented tree, making this step O(1). For each of the I iterations in supervised learning, we need
to compute all entries in the pairwise distance matrix D, which requires O(n2d). Thus, even when
the tree structure is known, the total complexity of TWD is O(n2dI).

Finally, we want to highlight that Fig.3 is evaluated with k = 2, where we vary the number of samples
in one source and one target distribution. In this scenario, although the theoretical computational
complexities for ℓ2 and Fast FlowTree are both O(nd), we observe that ℓ2 scales better in practice.
This is due to the effect of standard vectorization optimizations in common matrix operation packages,
which leverage parallelism along the dimension of n.

I.1 COMPARISON TO OTHER HIERARCHICAL BASELINES

In Fig.12, we compared OT-CPCC methods with other hierarchical objectives described in Sec.G, and
we report the Fine/Coarse Metric Avg., which averages all source/target classification and retrieval
metrics. Based on CPCC, fine, and coarse metrics, we observe that OT-CPCC methods behave
similarly to ℓ2-CPCC, exhibiting higher CPCC values and stronger performance on coarse metrics,
but lower fine metrics (though OT methods still outperform ℓ2 on fine metrics, as shown in Tab.5). In
contrast, all other hierarchical baseline objectives perform more like flat cross-entropy methods, with
the opposite trend—lower CPCC and coarse metrics but relatively higher fine metrics. Additionally,
we excluded Rank loss from the correlation plot on the right side of Fig.12, as Tab.20 suggests that
Rank loss is not suitable for any of the downstream tasks used in our evaluation, making it an outlier
compared to the other objectives.

Objective CPCC
ℓ2 83.08

FastFT 93.85
EMD 89.60

Sinkhorn 93.81
SWD 73.17

Flat 22.13
MTL 37.07
Curr 22.70

SumLoss 27.48
HXE 22.65
Soft 50.90
Quad 24.01
SHC 30.68
GC 21.88

Rank 24.75
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Figure 12: Left: Comparison of CPCC for hierarchical baselines on CIFAR100. Right: CPCC against
coarse and fine metrics average. Rank is an outlier, so its value is removed from the visualization.

J IMPLEMENTATION DETAILS FOR SYNTHETIC DATASETS EXPERIMENTS

Computational Efficiency We measured the computation time for different OT methods across
datasets of varying sizes. This involved generating two random 128-dimensional datasets of identical
shape and recording the wall-clock time for a single distance computation. This process was repeated
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Table 20: Comparison of fine and coarse metrics for Flat vs. Rank Loss.

Objective Fine Metrics Coarse Metrics
sAcc tAcc sMAP sAcc tAcc sMAP tMAP

Flat 80.53 28.44 86.47 86.17 43.09 82.07 42.09
Rank 77.89 20.48 74.39 83.41 39.25 46.60 24.31

10 times, and the average time was reported. For illustrative purposes, we fixed the number of
projections at 10 for SWD, and the regularization parameter at 10 for Sinkhorn, the same as in our
experiment setting in Tab.4,5.

Approximation Error We evaluated the error of different OT approximation methods, along with
the ℓ2 distance of the mean of two datasets, in approximating EMD. Two different distribution
scenarios were considered:

• Gaussian Distribution: Here, both distributions were created as Gaussian distributions
with different means (1 and 4, respectively) and the same standard deviation of 1.

• Non-Gaussian Distribution: For this scenario, we generated the dataset from Gaussian
mixtures. One dataset combined Gaussian distributions with means of 0 and 5, while the
other merged Gaussian distributions with means of 2 and 3, all of them with a standard
deviation of 1.

Other experiment settings were consistent with those detailed in the Computational Efficiency
paragraph above.

K COMPARISON OF RUNTIME OF OT-CPCC ON REAL-WORLD DATASETS

Table 21: Comparison of the wall clock runtime of OT-methods on real datasets for training one
epoch. The results are averaged for three random seeds.

Dataset Objective Per Epoch (s) Dataset Objective Per Epoch (s)
Flat 85.88 (3.69) Flat 147.67 (4.54)
ℓ2 83.78 (9.80) ℓ2 149.39 (1.24)

FastFT 85.21 (4.26) FastFT 132.01 (3.24)
EMD 87.70 (2.43) EMD 234.68 (4.40)

Sinkhorn 85.65 (4.15) Sinkhorn 165.69 (4.60)

CIFAR10
(b=128)

SWD 92.90 (4.65)

INAT
(b=1024)

SWD 152.52 (8.90)

We include the wall clock run times for training different CPCC methods over one epoch in Tab.21,
using two distinct settings: CIFAR10 with a batch size of 128 and model training from scratch, and
INAT with a batch size of 1024 and model fine-tuning from an ImageNet checkpoint. Despite the
differences in settings, we observe that FastFT consistently runs significantly faster than exact EMD
computation and outperforms the other two approximation methods, SWD and Sinkhorn. This aligns
with our theoretical analysis in Tab.1 and observations on synthetic data in Fig. 3. When comparing
FastFT to ℓ2, we find that FastFT is not much slower, and in the case of INAT, it is even faster than ℓ2.
Thus, we can confidently conclude that our proposed method, especially FastFT, is scalable.

Similar to ℓ2, one could argue for using another closed-form Wasserstein expression, the Bures-
Wasserstein distance (as defined in Eq.7), in CPCC optimization. However, Bures depends on the
covariance term of the source and target distributions, which requires at least O(nd2) computation.
As shown in Tab.1, in ℓ2, calculating the mean of a class-conditioned cluster only requires O(nd),
and all other OT methods have a linear d term in their time complexity. In CIFAR100, even with a
large batch size of 1024, n is approximately 1024/100 ≈ 10, assuming all classes are of equal size.
Using ResNet18 as the backbone, d = 512, which is typically much larger than n. Therefore, the d2

factor from computing the covariance matrix in Bures can make it prohibitively expensive in our case.
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Table 22: Comparison of the wall clock runtime of Bures-CPCC vs. OT-CPCC on real datasets for
training one batch. The results are averaged for three random seeds.

Dataset Objective Per Batch (s)
ℓ2 0.35 (0.18)

CIFAR100 EMD 1.94 (0.12)
Bures 33.77 (4.73)

To verify this, we computed the running time for CIFAR100 (batch size = 128) for different methods
in Tab.22, considering one batch update. The results are averaged over three random seeds.

As observed in Tab.22, Bures-Wasserstein is significantly slower than both ℓ2 and EMD due to its
quadratic dependence on d. Therefore, for scalability concerns, covariance-based Wasserstein metrics
are not well-suited to our problem setup.
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