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Abstract

This paper investigates∼L3 -identifiability, a form
of complete counterfactual identifiability within
the Pearl Causal Hierarchy (PCH) framework, en-
suring that all Structural Causal Models (SCMs)
satisfying the given assumptions provide consis-
tent answers to all causal questions. To simplify
this problem, we introduce exogenous isomor-
phism and propose ∼EI-identifiability, reflecting
the strength of model identifiability required for
∼L3

-identifiability. We explore sufficient assump-
tions for achieving ∼EI-identifiability in two spe-
cial classes of SCMs: Bijective SCMs (BSCMs),
based on counterfactual transport, and Triangu-
lar Monotonic SCMs (TM-SCMs), which extend
∼L2

-identifiability. Our results unify and general-
ize existing theories, providing theoretical guaran-
tees for practical applications. Finally, we lever-
age neural TM-SCMs to address the consistency
problem in counterfactual reasoning, with exper-
iments validating both the effectiveness of our
method and the correctness of the theory.

1. Introduction
The purpose of counterfactual reasoning is to answer ques-
tions about hypothetical, unobserved worlds. It has been
applied in tasks such as fairness evaluation (Kusner et al.,
2017), explanation generation (Karimi et al., 2020), harm
quantification (Richens et al., 2022), and policy optimiza-
tion (Tsirtsis & Rodriguez, 2023). Counterfactual identifi-
cation is a subtask of counterfactual reasoning, aiming to
determine whether all models satisfying certain reasonable
assumptions yield the same answer to a specific counter-
factual question. It is critical to ensure the dependability
of counterfactual reasoning results, as the reasoning out-
comes can only be consistent with the assumptions — and
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thus confirm the reliability of the constructed model — if
counterfactual identifiability is guaranteed.

(Pearl & Mackenzie, 2018) categorized causal questions into
three levels of human cognition, termed the Pearl Causal
Hierarchy (PCH) (Bareinboim et al., 2022). Counterfactual
reasoning corresponds to human imagination, situated at
the highest level L3 of the PCH, encoding the most intri-
cate and nuanced information. Structural Causal Models
(SCMs) provide specific semantics for addressing counter-
factual questions. Counterfactual identifiability on SCMs
guarantees that all SCMs adhering to the assumptions yield
consistent results for L3 quantities. Prior research has con-
strained causal structures to identify specific counterfactual
effects (Shpitser & Pearl, 2008; Correa et al., 2021; Xia
et al., 2023), or limited causal mechanisms to determine
counterfactual outcomes (Lu et al., 2020; Nasr-Esfahany
et al., 2023; Scetbon et al., 2024). Further studies investigate
model identifiability for counterfactuals, offering empirical
evidence that counterfactual outcomes are identifiable (Khe-
makhem et al., 2021; Javaloy et al., 2023).

This work introduces a novel identification target: identifica-
tion across the entire counterfactual layer of the PCH. This
requires that all SCMs satisfying the assumptions yield con-
sistent results for any counterfactual statement. Within the
PCH, since the counterfactual layer L3 encodes all causal
information, the identifiability of the SCMs in L3 implies
that these SCMs provide consistent answers to all causal
questions, rendering them indistinguishable for any causal
statements. Thus, identifiability over the counterfactual
layer represents the most stringent and comprehensive goal
for causal quantity identifiability within the PCH.

To achieve this goal, we first examine the identifiability prob-
lem in causal inference from the perspective of model identi-
fiability in Section 2. In this context, identifiability over the
counterfactual layer is denoted as ∼L3

-identifiability. To
simplify the ∼L3

-identifiability problem, we establish an al-
ternative form of identifiability in Section 3, denoted as∼EI-
identifiability, which is induced by an equivalence relation
termed exogenous isomorphism. This form of identifiability
demonstrates that fully recovering the exogenous variables
of SCMs is unnecessary to ensure consistent results for any
counterfactual quantities, clarifying the strength of assump-
tions required for counterfactual layer identification.
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We then explore sets of assumptions that induce ∼EI-
identifiability, focusing on two special classes of SCMs.
The first class, termed Bijective SCMs (BSCMs), is stud-
ied in Section 4, where we induce exogenous isomorphism
between BSCMs from the perspective of counterfactual
transport (Theorem 4.6), offering a novel interpretation for
counterfactual identifiability. The second class, termed Tri-
angular Monotonic SCMs (TM-SCMs), is examined in Sec-
tion 5. We identify a simple method to induce exogenous
isomorphism between TM-SCMs (Corollary 5.4), which can
be viewed as a strengthened version of ∼L2

-identifiability
for Markovian Causal Bayesian Networks. This corollary
unifies and generalizes prior theories for proving counter-
factual outcome identifiability, indirectly demonstrating that
several models used in previous works for counterfactual
outcome identifiability are theoretically ∼L3

-identifiable.
This provides theoretical guarantees for their safe applica-
tion in practice. Finally, leveraging this theory, we utilize
TM-SCMs parameterized by neural networks in Section 6
to address counterfactual identification and estimation prob-
lems. Experimental results in Section 8 on these models
empirically support the validity of our theory.

2. Preliminaries
In this section, we provide the background for understand-
ing the problem and describe the problem setting. We begin
by reviewing the relevant concepts of SCMs. In Section 2.1,
we present the definition of SCM and introduce key notions
such as do-intervention and causal order. Subsequently, in
Section 2.2, we leverage these concepts to logically charac-
terize L1, L2, L3 in PCH and define L3-consistency. Next,
in Section 2.3, we introduce counterfactual identification
problem. Finally, in Section 2.4, we elaborate on model
identifiability, establish the connection between causal iden-
tifiability and model identifiability, and motivate the re-
search objective of this work: ∼L3 -identifiability.

Notation We study the problem from a more general
measure-theoretic perspective. Let the probability space
be (Ω,F , P ), where the set Ω is the sample space, the σ-
algebra F on Ω is the event space, and P is the probability
measure. We assume all measurable spaces are standard
Borel. We denote by uppercase X a random variable tak-
ing values from the measurable space (ΩX ,FX), which is
a measurable function from Ω to ΩX , where ΩX is also
called the domain of X . For a given finite index set I, we
use uppercase bold X to denote a collection of random vari-
ables (Xi)i∈I with the associated space (ΩX,FX), where
ΩX =

∏
i∈I ΩXi

and FX =
⊗

i∈I FXi
are the product

space and the product σ-algebra, respectively. For a subset
of indices I ⊆ I, (Xi)i∈I is abbreviated as XI or renamed
as Y with Y ⊆ X, where the corresponding index set is
denoted by IY. The distribution of X is represented by

PX, defined as the pushforward of P under X, such that
PX = X♯P . A set X ∈ FX represents a random event,
with the associated probability term P(X ∈ X ) = PX(X ).

2.1. Structural Causal Model

Definition 2.1 (Structural Causal Model (SCM)). An SCM
is a tuple M = ⟨I,ΩV,ΩU,f , PU⟩, where I is a finite
index set. The product space ΩV =

∏
i∈I ΩVi and ΩU =∏

i∈I ΩUi denote the domain of endogenous and exogenous
variables, respectively. The measurable function f : ΩV ×
ΩU → ΩV = (fi)i∈I specifies the causal mechanisms,
where each fi : ΩVpa(i) × ΩUi

→ ΩVi
is associated with a

set of indices pa(i) ⊆ I. The probability measure PU is
called the exogenous distribution. If PU =

∏
i∈I PUi is a

product measure, the SCM is said to be Markovian.

In this work, we primarily focus on recursive SCMs, which
are defined such that a partial order ⪯ exists on the index
set I, and for any pair of indices i, j ∈ I, if j ⪯ i, then
i /∈ pa(j). If the partial order ⪯ admits a linear extension
≤, we call it the causal order of the SCM, which can be
constructed using a topological sorting algorithm and is not
necessarily unique. Recursiveness ensure that the solution
of the SCM exists and is unique. According to (Bongers
et al., 2016), if an SCM has a unique solution, then there
exists a function Γ such that for almost all u ∈ ΩU and
v ∈ ΩV, v = Γ(u) if and only if v = f(v,u). We refer to
Γ as the solution mapping of the recursive SCM.

SCMs also allow for operations called do-interventions. For
a subset of indices IX ⊆ I, performing an intervention to
set X = VIX to a specific value x corresponds to deriv-
ing a new SCM M[x] = ⟨I,ΩV,ΩU,f[x], PU⟩, called a
submodel. InM[x], f[x] = (fi[x])i∈I is defined such that

fi[x] =

{
xi i ∈ IX,

fi i ∈ I \ IX.

Endogenous variables inM[x] will be denoted as V[x].

Another property of recursive SCMs is that any submodel
is also a recursive SCM. This implies that, in the submodel,
given a value u, the endogenous variables V[x] are deter-
mined as Γ[x](u). Under this premise, the value of the
endogenous variables Y[x] under a given u is represented as
YM[x]

(u) = (Γ[x](u))IY , called the potential response.

2.2. Pearl Causal Hierarchy

(Pearl & Mackenzie, 2018) categorized causal questions into
three levels of human cognition: seeing, doing, and imagin-
ing. To formalize these questions and delineate the logical
differences between the three levels, symbolic languages
L1,L2,L3 are introduced. Each language consists of Li-
statements φ, where every φ ∈ Li is a Boolean combination
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of inequalities between polynomials over probability terms
P(αi). For L1, P(α1) takes the form P(Y ∈ Y), represent-
ing the probability of Y occurring, making L1 a standard
probabilistic logic. L2 introduces interventions, with P(α2)
in the form P(Y[x] ∈ Y), denoting the probability of Y
occurring when X is intervened to x. L3 further encodes
conjunctions under different interventions, making P(α3)
take the form P(Y∗ ∈ Y∗), where Y∗ = (Yj[xj ])j∈1:n rep-
resents the collection of endogenous variables Yj[xj ] from
n submodelsM[x1],M[x2], . . . ,M[xn]. Thus, Y∗ ∈ Y∗ is
logically equivalent to the conjunction

∧
j∈1:n Yj[xj ] ∈ Yj .

An SCMM provides semantics for the symbolic languages
L1,L2,L3. For L3, any term of the form P(Y∗ ∈ Y∗) can
be evaluated byM as PM

Y∗
(Y∗), where PM

Y∗
is called the

counterfactual distribution. Let YM∗ = (YMj[xj ]
)j∈1:n.

Since each Yj[xj ] = YMj[xj ]
◦U almost surely, the PM

Y∗

is the pushforward measure (YM∗)♯PU, yielding:

PM
Y∗

(Y∗) = PU

(
(YM∗)

−1
[Y∗]

)
. (1)

Equation 1 is called L3-valuation. After the L3-valuation, a
statement φ ∈ L3 evaluated byM, denoted as φ(M), can
be checked for validity. If φ(M) holds, we writeM |= φ.

The Pearl Causal Hierarchy (PCH) is defined as the com-
bination of the above syntax and semantics. Specifically,
when an SCMM is given, the collection of observational,
interventional, and counterfactual distributions defined syn-
tactically by L1,L2,L3 and semantically by L1,L2,L3-
valuations constitutes the PCH. In this sense, the PCH en-
capsulates all causal information entailed by an SCM.

Furthermore, the PCH exhibits a strict hierarchy. In terms
of syntax, the representations of the terms P(αi) imply
that L1 ⊊ L2 ⊊ L3. In terms of logical expressiveness,
similar theorems have been established, known as the Causal
Hierarchy Theorem (CHT) (Bareinboim et al., 2022).

To illustrate the expressiveness of Li, consistency is in-
troduced. Let Li(M) = {φ(M) | φ ∈ Li} denote the
Li-theory ofM, then Li-consistency is defined as follows:

Definition 2.2 (Li-Consistency). SCMs M(1) and M(2)

are Li-consistent, denoted M(1) ∼Li
M(2), if their Li-

theories are identical, i.e., Li(M(1)) = Li(M(2)).

The CHT demonstrates that in the PCH, ∼Li
generally does

not imply ∼Lj for i < j, formally indicating that higher
levels possess greater expressiveness than lower levels.

2.3. Counterfactual Identification

In practice, the underlying true SCMM∗ is almost never
fully specified, making direct reasoning onM∗ impracti-
cal. Consequently, researchers rely on partial knowledge
aboutM∗ to address causal questions, which necessitates

constructing a proxy M′ that satisfies this partial knowl-
edge and performing equivalent reasoning onM′. Causal
identification is the task of proving or reasoning whether
any proxy constructed from partial knowledge provides con-
sistent answers to specific causal questions.

For example, when the true SCM M∗ is assumed to be
Markovian and both observational distribution and the
causal graph are available, constructing a Markovian Causal
Bayesian Network (CBN) suffices to answer any causal
question in L2 via truncated factorization (Pearl, 2009).
Thus, Markovian CBNs can be regarded as identifiable at
the intervention level. When the Markovian assumption
fails, semi-Markovian CBNs can still answer a subset of
causal questions in L2 using do-calculus.

Regarding counterfactuals, as they represent the highest
level in the PCH, achieving counterfactual identifiability
requires stricter conditions and more complex methodolo-
gies. For instance, even Markovian CBNs cannot ensure
consistency when answering certain L3 questions (Nasr-
Esfahany & Kiciman, 2023). Prior research on counterfac-
tual identification often focuses on identifying a subset of
counterfactual statements φφφ ⊆ L3. These efforts can be
categorized into constraining causal structures to identify
counterfactual effects, such as (Shpitser & Pearl, 2008), or
constraining causal mechanisms to identify counterfactual
outcomes, such as (Nasr-Esfahany et al., 2023).

2.4. Model Identifiability

SCMs are a special class of generative models, where the
exogenous distribution and causal mechanisms can be inter-
preted as the latent distribution and generative function of
the model, respectively. Identifiability has been a continu-
ously discussed topic in the literature, appearing in represen-
tation learning (Bengio et al., 2013), causal discovery (Gly-
mour et al., 2019), causal representation learning (Schölkopf
et al., 2021), and causal quantity inference (Pearl, 2009).
Providing a broad definition of identifiability may lead to
ambiguity. Borrowing from the definition of identifiability
in (Khemakhem et al., 2020), these notions of identifiability
can be unified through equivalence classes:

Definition 2.3 (∼-Identifiability). Let A denote a set of
assumptions, [A] = {M |M |= A} includes all models
satisfying the assumptions, and ∼ denote an equivalence
relation between models. Then a model is said to be ∼-
identifiable from A, or identifiable up to ∼-equivalence
class, if for anyM(1),M(2) ∈ [A],M(1) ∼M(2).

We now interpret the problem of causal identifiability from
the perspective of ∼-identifiability. Suppose the causal
question involves a set of Li-statements φφφ ⊆ Li, and
two SCMsM(1) andM(2) are said to be φφφ-consistent if
φφφ(M(1)) = φφφ(M(2)). Since φφφ-consistency is an equiva-
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lence relation between SCMs, denoted asM(1) ∼φφφM(2),
the problem of causal identification with respect to φφφ can be
reframed as a problem of ∼φφφ-identifiability.

The CHT states that when A contains only low-level knowl-
edge, ∼φφφ-identifiability is often unattainable. Achieving
this requires assuming higher-level information. For in-
stance, under the assumptions of known L1 observational
distribution, causal graph, and Markovianity, the causal
graph encodes structural constraints on L2, enabling the
constructed CBN to answer all questions in L2. Since the
union of all statements φφφ ⊆ L2 equals L2, this property is
also referred to as ∼L2 -identifiability.

This paper focuses on ∼L3-identifiability, which is an
enhanced version of ∼L2-identifiability, requiring ∼φφφ-
identifiability for any φφφ ⊆ L3. If A satisfies ∼L3

-
identifiability, then by the definition of L3-consistency, any
M(1),M(2) ∈ [A] satisfy M(1) ∼L3

M(2). Since L3

represents the highest level in the PCH and encodes all
causal information of the SCM, if M(1) ∼L3 M(2), the
two models are indistinguishable under any causal state-
ment. Therefore, ∼L3

-identifiability is the ultimate goal for
causal identifiability within the PCH.

3. Exogenous Isomorphism
∼L3

-identifiability, by definition, is not straightforward to
handle, as it is indirectly defined through the PCH rather
than directly based on the model itself. Therefore, we aim to
find a simpler model-based identifiability notion that implies
∼L3 -identifiability, thereby simplifying the problem.

One possible choice is =-identifiability, which requires
uniquely identifying the generative model. Some prior
works have achieved =-identifiability (Xi & Bloem-Reddy,
2023), which indirectly induces ∼L3

-identifiability. This
serves as one approach to addressing∼L3

-identifiability, but
the required assumptions are often too strong. An alternative
property is defined via counterfactual equivalence (Peters
et al., 2017, Proposition 6.49), which—while not insisting
on uniqueness of the causal mechanisms—does demand full
recovery of the exogenous distribution.

Between =-identifiability, counterfactual equivalence and
∼L3

-identifiability, there should exist other forms of ∼-
identifiability, as counterfactual reasoning does not require
a completely fixed latent representation. This is akin to hu-
mans being able to answer “what-if” questions without fully
understanding the underlying factors of the physical world.
Identifying such a form of ∼-identifiability is a goal worth
exploring. Motivated by this, we have identified an equiva-
lence relation between SCMs, denoted as ∼EI and referred
to as exogenous isomorphism, for which ∼EI-identifiability
strictly implies ∼L3

-identifiability, yet it is weaker than the
previous two. This characterization more precisely reflects

the strength of model identifiability required to achieve com-
plete counterfactual identifiability.

Let the recursive SCMsM(k) = ⟨I,ΩV,Ω
(k)
U ,f (k), P

(k)
U ⟩

share the index set I and the domain of endogenous vari-
ables ΩV. For a given endogenous value v ∈ ΩV, we
abbreviate f

(k)
i (vpa(k)(i), ·) as f

(k)
i (v, ·). Exogenous iso-

morphism is then defined as:

Definition 3.1 (Exogenous Isomorphism). Recursive SCMs
M(1) and M(2) are said to be exogenously isomorphic,
denoted M(1) ∼EI M(2), if there exists a shared causal
ordering ≤ and function h : Ω

(1)
U → Ω

(2)
U satisfying:

• Component-wise Bijection: For each i ∈ I , h = (hi)i∈I ,
where hi : Ω

(1)
Ui
→ Ω

(2)
Ui

is a bijection;

• Exogenous Distribution Isomorphism: P (2)
U = h♯P

(1)
U ;

• Causal Mechanism Isomorphism: For each i ∈ I, for
almost every u

(1)
i ∈ Ω

(1)
Ui

and all v ∈ ΩV,

f
(2)
i (v, hi(u

(1)
i )) = f

(1)
i (v, u

(1)
i ).

The implication of∼EI-identifiability for∼L3 -identifiability
is formally stated in the following theorem:

Theorem 3.2 (∼EI Implies∼L3
). For recursive SCMsM(1)

andM(2), ifM(1) ∼EIM(2), thenM(1) ∼L3
M(2).

Sketch of proof The mechanism isomorphism of each fi
can be progressively deduced into the potential responses,
ensuring V

(1)
M∗

= V
(2)
M∗
◦h. Given P

(2)
U = h♯P

(1)
U , we have

(V
(2)
M∗
◦h)♯P (1)

U = (V
(2)
M∗

)♯(h♯P
(1)
U ), i.e., (V(1)

M∗
)♯P

(1)
U =

(V
(2)
M∗

)♯P
(2)
U . Thus, all L3-evaluations forM(1) andM(2)

are identical, and any statement φ ∈ L3 yields the same
result. Therefore,M(1) ∼L3

M(2). For a detailed proof,
see Appendix A.2.

4. Bijective SCM
Once identifiability is defined, the next step is to explore
the assumption sets that induce identifiability. In this work,
for simplicity, we target some special settings of recursive
SCMs. Throughout, the set of positive integers {i | l ≤ i ≤
r, i ∈ N+} is abbreviated as l : r for l, r ∈ N+. Moreover,
we assume that for each i ∈ I, the domain of exogenous
variables ΩUi and the domain of endogenous variables ΩVi

are both indexed Rdi with 1:di as the index set. That is, both
exogenous and endogenous variables are random vectors,
and the nested index set I = {(i, j) | i ∈ I, j ∈ 1 : di}
indexes the individual dimensions of ΩU and ΩV.

Since the cardinalities of the exogenous and endogenous
domains are equal, a bijection can be established between
these domains. A bijection implies no information loss. If
the causal mechanism is also bijective, then for any obser-
vation in the endogenous domain, a distinguishable latent
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encoding can be identified in the exogenous domain. Below,
we formally define this specific setting of SCMs:

Definition 4.1 (Bijective SCM (BSCM)). A recursive SCM
M is called a bijective SCM (BSCM) if its solution mapping
Γ is a bijection.

Proposition 4.2. A recursive SCMM is a BSCM if and
only if fi(v, ·) is a bijection for every i ∈ I and all v ∈ ΩV.

For BSCMsM(1) andM(2), since their solution mappings
Γ(k) : Ω

(k)
U → ΩV are bijections, it is evident that the

composition (Γ(2))−1 ◦ Γ(1) : Ω
(1)
U → Ω

(2)
U is also a bijec-

tion. Given that exogenous isomorphism requires a bijec-
tion between Ω

(1)
U and Ω

(2)
U , a natural question arises: can

(Γ(2))−1◦Γ(1) directly serve as an exogenous isomorphism?
The following theorem provides a precise answer.

Theorem 4.3 (BSCM-EI). If two BSCMsM(1) andM(2)

share a common causal order≤ and the same observational
distribution PV, then M(1) ∼EI M(2) if and only if for
every i ∈ I, there exists a bijection hi : Ω

(1)
Ui
→ Ω

(2)
Ui

such
that for all v ∈ ΩV,

(f
(2)
i (v, ·))−1 ◦ (f (1)

i (v, ·)) = hi

almost surely.1

4.1. ∼EI-Identification for BSCM

To derive assumption sets that imply ∼EI-identifiability,
we need to restrict our perspective to a single SCM M.
Consider the conditions in Theorem 4.3, where there exists
a function hi : Ω

(1)
Ui
→ Ω

(2)
Ui

such that for all v ∈ ΩV,

(f
(2)
i (v, ·))−1 ◦ (f (1)

i (v, ·)) = hi holds almost surely. Now,
consider different v,v′ ∈ ΩV. Since both f

(1)
i (v, ·) and

f
(2)
i (v, ·) are bijections, by the associativity of composition,

(f
(1)
i (v′, ·))◦(f (1)

i (v, ·))−1 = (f
(2)
i (v′, ·))◦(f (2)

i (v, ·))−1

almost surely, where both sides come from the SCMM,
and we explicitly name this concept as follows:

Definition 4.4 (Counterfactual Transport). For a BSCMM,
the function KM : ΩV × ΩV × ΩV → ΩV is called the
counterfactual transport if KM = (KM,i)i∈I and for every
i ∈ I and all v,v′ ∈ ΩV, the component KM,i(·,v,v′) =
(fi(v

′, ·)) ◦ (fi(v, ·))−1.

Under Markovianity, the practical meaning of counterfactual
transport is the transport between conditional distributions:

1The BGM proposed in (Nasr-Esfahany et al., 2023) corre-
sponds to the fi of a BSCM. Furthermore, component-wise bi-
jection and causal mechanism isomorphism in exogenous isomor-
phism are described as BGM equivalence. Therefore, Theorem 3.2
extends (Nasr-Esfahany et al., 2023, Proposition 6.2).

Proposition 4.5. If the BSCMM is Markovian, then for
almost all v,v′ ∈ ΩV, the conditional distributions satisfy
PVi|Vpa(i)

(·,v′) = (KM,i(·,v,v′))♯PVi|Vpa(i)
(·,v).2

Combining this with Theorem 3.2, we find that when all
counterfactual transports are fixed, ∼EI-identifiability can
be achieved. Let the following assumptions be defined: (i)
ABSCM:M is a BSCM; (ii)A≤: the total order≤ is a causal
order forM; (iii)APV

: the observational distribution ofM
is PV with strictly positive density; (iv) AK: there exists a
function K : ΩV ×ΩV ×ΩV → ΩV = (Ki)i∈I such that
counterfactual transport KM = K almost surely.

Let A{BSCM,≤,PV,K} = {ABSCM,A≤,APV
,AK}. Then:

Theorem 4.6 (EI-ID from Counterfactual Transport). An
SCM is ∼EI-identifiable from A{BSCM,≤,PV,K}.

Verifying the assumption set AK in practice is challeng-
ing, making Theorem 4.6 difficult to apply. By combining
Proposition 4.5 and considering Markovian BSCMs, a nat-
ural direction is to identify specific types of transport that
are always well-defined between conditional distributions.
One such transport, the KR transport, is constructed using
one-dimensional conditional cumulative density functions
in 1 : d order, ensuring that the mass at each point of the
distribution follows a lexicographical order, and:

Lemma 4.7 (Santambrogio 2015, Proposition 2.18). Given
any two distributions P and P ′ on Rd with strictly positive
densities, the KR transport T : Rd → Rd such that P =
T♯P

′ always exists and is almost surely unique.

The KR transport induces a special case of A{BSCM,≤,PV,K}
in Theorem 4.6. Let the following assumptions be defined:
(i) AM: M is Markovian; (ii) AKR: for each i ∈ I, the
counterfactual transport component KM,i is almost surely
equivalent to the KR transport.

Let A{BSCM,≤,M,PV,KR} = {ABSCM,A≤,AM,APV
,AKR}.

Then:

Theorem 4.8 (EI-ID from KR Transport). An SCM is ∼EI-
identifiable from A{BSCM,≤,M,PV,KR}.

Nevertheless, in most practical scenarios, conditional cumu-
lative density functions are unknown, and one often only
has access to samples from the distributions. Therefore, KR
transport cannot be constructed as defined, motivating the
need for a tractable approximation of KR transport. This
leads to a more practical subclass of BSCMs.

2A more general notion of counterfactual transport was defined
in (Lara et al., 2024) from the perspective of coupling between
conditional distributions. In this paper, the counterfactual transport
in Markovian BSCMs (Definition 4.4 and Proposition 4.5) is a
special instance of their more general framework.
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5. Triangular Monotonic SCM
We call a function T(x) = (Tj(x1:j−1, xj))j∈1:d, where
T : Rd → Rd, a triangular mapping if the j-th component
Tj depends only on x1:j . The name originates from the fact
that the Jacobian matrix of such a mapping is triangular.
For a triangular mapping T, we define its monotonicity
signature ξ(T) = (ξ(Tj))j∈1:d as:

ξ(Tj) =


1 ∀x1:j−1 ∈ Rj−1, Tj(x1:j−1, ·) is s.m.i.
−1 ∀x1:j−1 ∈ Rj−1, Tj(x1:j−1, ·) is s.m.d.
0 otherwise

,

where s.m.i. and s.m.d. abbreviate strictly monotonically
increasing and decreasing, respectively. If d =

∑d
j=1 ξ(Tj),

i.e., every component is consistently s.m.i., we call T a trian-
gular monotonic increasing (TMI) mapping. TMI mappings
are closely related to KR transport:

Lemma 5.1 (Jaini et al. 2019, Theorem 1). Given any two
distributions P and P ′ on Rd with strictly positive densities,
if a TMI mapping T : Rd → Rd satisfies P = T♯P

′, then
T is almost surely equivalent to the KR transport.

TMI mappings can be further generalized. For a triangular
mapping T, if d =

∑d
j=1 |ξ(Tj)|, i.e., every component is

either consistently s.m.i. or s.m.d., we call T a triangular
monotonic (TM) mapping. TM mappings, in addition to be-
ing bijective due to monotonicity, exhibit special properties:
they remain TM mappings under inversion, composition,
and selection of contiguous components. Moreover, their
monotonicity signatures adhere to specific rules, which are
elaborated in Appendix A.4. Crucially, for two TM map-
pings T(1) and T(2) with identical monotonicity signatures,
T(2) ◦ (T(1))−1 is always a TMI mapping.

Next, we aim to relate the solution mapping Γ of an SCM to
TM mappings. However, TM mappings are defined over the
index set 1 :d, whereas SCMs are defined over the nested
index set I = {(i, j) | i ∈ I, j ∈ 1 : di}. To bridge this
gap, we introduce the concept of flattening, a generalization
of permutation. For a finite index set I, we call a bijection
ι : I → 1 : |I| a flattening mapping of I, and flattening
refers to re-indexing according to ι. Define the re-indexing
Pι :

∏
i∈I ΩXi

→
∏|I|

i=1 ΩXi
such that for every i ∈ I,

Pι((xi)i∈I) = (xι−1(j))j∈ι[I],

where ι[I] is the image set. Since ι is bijective, Pι is also
bijective, and for any J ⊆ 1: |I|, we have

(P−1
ι )((xj)j∈J) = (xι(i))i∈ι−1[J],

where ι−1[I] is the pre-image set.

For the nested index set I and a total order ≤ on I, if
a flattening mapping ι satisfies ι(i, j) − ι(i, j′) = j − j′

for any (i, j), (i, j′) ∈ I and ι(i, j) < ι(i′, j′) for any
(i, j), (i′, j′) ∈ I with i < i′, we call it a vectorization
under ≤. In other words, vectorization merges all random
vectors into a unified order. Based on whether the solution
mapping Γ is a TM map under vectorization, we define a
more specialized class of SCMs:

Definition 5.2 (Triangular Monotonic SCM (TM-SCM)).
A recursive SCMM is called a triangular monotonic SCM
(TM-SCM) if there exists a vectorization ι under a causal
order such that the re-indexed Pι ◦ Γ is a TM mapping.

Proposition 5.3. A recursive SCMM is a TM-SCM if and
only if fi(v, ·) is a TM mapping and there exists ξi such that
ξ(fi(v, ·)) = ξi for every i ∈ I and all v ∈ ΩV.

5.1. ∼EI-Identification for TM-SCM

As a subclass of BSCMs, TM-SCMs allow the assumption
set in Theorem 4.8 to be further simplified. The new iden-
tifiability strategy is specifically tied to TM-SCMs. Let
A{TM-SCM,≤,M,PV} = {ATM-SCM,A≤,AM,APV

}, where
ATM-SCM states thatM is a TM-SCM. Then:

Corollary 5.4 (EI-ID from Triangular Monotonicity). An
SCM is ∼EI-identifiable from A{TM-SCM,≤,M,PV}.

Sketch of Proof By combining the definition of TM-
SCMs with the properties of TM mappings, any counterfac-
tual transport in a TM-SCM is a TMI mapping. Furthermore,
under Markovianity, given the causal order ≤ and observa-
tional distribution PV, the KR transport is almost uniquely
determined by Lemmas 4.7 and 5.1, which then implies
Theorem 4.8. A detailed proof is provided in Appendix A.4.

Corollary 5.4 (together with Theorem 3.2) can be viewed
as a strengthened version for Markovian CBNs, which ex-
hibits ∼L2

-identifiability, i.e., SCMs are ∼L2
-identifiable

from A{≤,M,PV}. Corollary 5.4 augments A{≤,M,PV} with
the additional assumption ATM-SCM, strengthening ∼L2-
identifiability to ∼L3 -identifiability.

Moreover, this extends and unifies the theoretical results
in (Lu et al., 2020, Theorem 1), (Nasr-Esfahany et al., 2023,
Theorem 5.1), and (Scetbon et al., 2024, Theorem 2.14).
Specifically, these theorems focus on counterfactual identi-
fiability from the perspectives of bijectivity, monotonicity,
and Markovianity, demonstrating identifiability based on
abduction-action-prediction. Compared to these results,
our theoretical contributions offer the following advance-
ments: (i) Generalizing the measurable space of each en-
dogenous variable from a scalar R to a vector Rdi , enabling
support for a broader class of SCMs; (ii) Demonstrating
∼EI-identifiability based on exogenous isomorphism theory
(i.e. Theorem 3.2), which implies ∼L3 -identifiability rather
than merely the identifiability of counterfactual outcomes.
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6. Neural TM-SCM
Problem formulation Consider the true underlying SCM
M∗ = ⟨I,ΩV,Ω∗

U,f∗, P ∗
U⟩, where Ω∗

U, f∗, and P ∗
U are

unknown. AssumingM∗ is a Markovian TM-SCM with
causal order ≤, how can one construct a parameterized
proxy SCM Mθ = ⟨I,ΩV,ΩUθ

,fθ, PUθ
⟩ based on the

observational dataset DV = {vi | v(i) ∼ PV}Ni=1 such that
Mθ is as L3-consistent withM∗ as possible?

According to Corollary 5.4 and Theorem 3.2, this prob-
lem is equivalent to constructing Mθ such that it satis-
fies A{TM-SCM,≤,M,PV} as closely as possible. This entails
four construction objectives: (i) G1: Mθ |= ATM-SCM,
meaning thatMθ belongs to the TM-SCM class; (ii) G2:
Mθ |= A≤, meaning that ≤ is one of the causal orders
ofMθ. (iii) G3: Mθ |= AM, meaning thatMθ satisfies
Markovianity. (iv) G4: Mθ |= APV

, meaning that Mθ

induces the observational distribution PV.

To satisfy G1,Mθ must be a TM-SCM or one of its spe-
cial subclasses. Furthermore, in this paper, we primarily
focus on neural networks that provide the parameters θ for
Mθ, thereby referring to it as a neural TM-SCM. Previ-
ous works have constructed neural SCMs that satisfy this
requirement in the scalar case; we categorize these works
into four categories and propose corresponding prototype
models as extensions to the vector case:

• DNME: Constraint the causal mechanism fi,θ to be a TM
mapping, such that the causal mechanism

fi,θ(vpa(i),ui) = bi,θ(vpa(i)) + ai,θ(vpa(i))⊙ ui, (2)

where ai,θ(vpa(i)),bi,θ(vpa(i)) ∈ Rdi with vector ai,θ
always strictly positive, and ⊙ denotes component-wise
multiplication. Since the Jacobian matrix of fi,θ w.r.t. ui

is diagonal, it is named Diagonal Noise MEchanism, such
as LSNM (Immer et al., 2023).

• TNME: Constraint the causal mechanism fi,θ to be a TM
mapping, such that the causal mechanism

fi,θ(vpa(i),ui) = bi,θ(vpa(i)) +
(
Ai,θ(vpa(i))

)
u⊺
i , (3)

where Ai,θ(vpa(i)) ∈ Rdi×di ,bi,θ(vpa(i)) ∈ Rdi with
matrix Ai,θ always a strictly positive lower triangular
matrix. Since the Jacobian matrix of fi,θ w.r.t. ui is lower
triangular, it is named Triangular Noise MEchanism, such
as FiP (Scetbon et al., 2024).

• CMSM: Constraint the re-indexed solution mapping
Pι ◦ Γθ to be a TM mapping by composing multiple
TM mappings

Pι ◦ Γθ = T1,θ ◦ · · · ◦Tn,θ, (4)

where each Ti,θ can be an autoregressive affine transfor-
mation in normalizing flows (Dinh et al., 2017). Since

the solution map Γθ is constructed by composing multi-
ple mappings, it is named Composed Mapped Solution
Mapping, such as CausalNF (Javaloy et al., 2023).

• TVSM: Constraints the re-indexed solution mapping
Pι ◦ Γθ to be a TM mapping by defining it as the flow
constructed from the solution to the ODE{

dx(t) = vθ(x(t), t) dt,

x(0) = v0,
(5)

where the vector field vθ is a Lipschitz continuous triangu-
lar mapping. According to the Picard–Lindelöf theorem,
such flows are TMI, see Lemma A.21 in Appendix A.4.
Since the solution map Γθ is implied by a triangular
velocity field, it is named Triangular Velocity Solution
Mapping, such as CFM (Khoa Le et al., 2025).

The relationship between these related works and TM-SCM
is detailed in Appendix B.4, and the implementation details
of the four prototype models can be found in Appendix C.

To satisfy G2, the causal mechanisms fθ in the constructed
SCM need to maintain a specific causal structure to de-
rive the causal order ≤. When parameterizing the causal
mechanisms fi,θ as in (Xia et al., 2023), we address the
issue of inappropriate additional independence assump-
tions—arising from only knowing the causal order—by
setting pa(i) = {j | j ≤ i, j ∈ I}. Similarly, when indi-
rectly modeling the solution map Γθ using an autoregressive
generative model as in (Javaloy et al., 2023), we align the
autoregressive order with the causal order.

To satisfy G3, the modeled exogenous distribution is re-
quired to satisfy PUθ

=
∏

i∈I PUi,θ
. To enhance the expres-

siveness of the exogenous distribution and to indirectly indi-
cate that identifiability is independent of the specific imple-
mentation of the exogenous distribution, we employ uncon-
strained normalizing flows. Specifically, the log-likelihood
of each PUi,θ

is given by the change of variables formula:

log pUi,θ
(ui) = log pZi,θ

(T −1
i,θ (ui)) + log

∣∣∣detJT −1
i,θ

(ui)
∣∣∣ ,

(6)
where Ti,θ : Zi → Ui is MAF (Papamakarios et al., 2017),

and
∣∣∣detJT −1

i,θ
(ui)

∣∣∣ is the Jacobian determinant at ui.

To satisfy G4, in generative model learning, the observa-
tional dataset DV is commonly used to optimize a learning
objective, ensuring that the proxy SCM Mθ induces an
observational distribution PV,θ that closely approximates
the true observational distribution PV. To achieve this, we
adopt the traditional maximum likelihood (MLE) approach,
corresponding to the negative log-likelihood (NLL) loss:

argmin
θ
−

N∑
i=1

log pVθ
(v(i)), (7)

7



Exogenous Isomorphism for Counterfactual Identifiability

where log pVθ
is the log-likelihood of the modeled observa-

tional distribution. Since TM-SCM ensures a bijective Γθ,
the log-likelihood log pVθ

(v(i)) at v(i) can be computed
using the change of variables formula.

7. Related Works
Isomorphism and counterfactual identifiability Several
prior works have introduced notions similar to exogenous
isomorphism and shown that SCMs satisfying these equiva-
lence relations enjoy counterfactual consistency, mirroring
the result of Theorem 3.2. This body of work includes coun-
terfactual equivalence as defined in (Peters et al., 2017),
which requires identical exogenous distributions; BGM
equivalence, introduced for BGM within BSCM in (Nasr-
Esfahany et al., 2023); LCM isomorphism, proposed by
(Brehmer et al., 2022) for causal representation learning
and proven, under additional conditions, to coincide with
LCM counterfactual consistency; and domain counterfac-
tual equivalence between ILDs, together with necessary and
sufficient conditions, as defined in (Zhou et al., 2024). The
latter three lines of work additionally assume that the solu-
tion mapping Γ is bijective, whereas Theorem 3.2 applies
to arbitrary recursive SCMs.

TM-SCMs and their identifiability Previously, we clas-
sified four construction prototypes of TM-SCMs from a
construction perspective; a complementary perspective con-
siders the tasks these models address and the corresponding
identifiability guarantees. For cause-effect identification,
special TM-SCMs—including LiNGAM (Shimizu et al.,
2006), ANM (Hoyer et al., 2008), PNL (Zhang & Hyvärinen,
2009), LSNM (Immer et al., 2023), and CAREFL (Khe-
makhem et al., 2021)—have been proven identifiable with
respect to causal direction. For causal effect estimation,
CausalNF (Javaloy et al., 2023) establishes representation
identifiability of TMI, and similar TM-SCM constructions
are adopted by StrAF (Chen et al., 2023), CCNF (Zhou et al.,
2025), and CFM (Khoa Le et al., 2025), which therefore
inherit the same theoretical guarantees. In counterfactual
identification, (Lu et al., 2020, Theorem 1), (Nasr-Esfahany
et al., 2023, Theorem 5.1), and (Scetbon et al., 2024, The-
orem 2.14) each demonstrate that TM-SCM entails coun-
terfactual identifiability under different settings, and these
theorems are all special cases of Corollary 5.4.

Counterfactual inference with neural SCMs Proxy
SCMs built with neural network components are widely
employed for counterfactual reasoning by directly learning
from observational or interventional data. Several methods
focus on the tractability of inference rather than identifiabil-
ity by adopting different neural modules, including DSCM
(Pawlowski et al., 2020), Diff-SCM (Sanchez & Tsaftaris,
2022), and VACA (Sánchez-Martin et al., 2022). Other

approaches obtain identifiability for a subset of counter-
factual queries; for example, CVAE-SCM (Karimi et al.,
2020) is identifiable for specific counterfactual queries from
causal sufficiency and observational distribution, and NCM
(Xia et al., 2023) shows a duality between the identifiability
of structure-constrained proxy SCMs and non-parametric
identification results. Once parametric assumptions are in-
troduced, complete counterfactual identifiability becomes
attainable, exemplified by any subclass of neural TM-SCMs.
Additional examples are provided in Appendix B.4.

8. Experiments
To demonstrate that neural TM-SCM can effectively ad-
dress the counterfactual consistency problem in practice,
we conducted experiments on synthetic adatasets. These
experiments were designed to showcase the model’s ability
to generate counterfactual results that are consistent with
the test set, using only the endogenous samples drawn from
the observational distribution as the training set. 3

Datasets The experiments involve the following synthetic
datasets, with details described in Appendix D.1.

• TM-SCM-SYM: A collection of four small datasets
(BARBELL, STAIR, FORK, BACKDOOR) with up to 4
causal variables, using exogenous distributions that are
standard or Markovian multivariate normals and manually
defined TM causal mechanisms.

• ER-DIAG-50 and ER-TRIL-50: Each contains 50
datasets with 3–8 causal variables, Markovian multivariate
normal exogenous distributions, and Erdős-Rényi causal
graphs (edge probability 0.5). ER-DIAG-50 ensures diag-
onal Jacobians, while ER-TRIL-50 ensures lower trian-
gular Jacobians for TM mappings.

Metrics To evaluate trained Mθ, we compute OBSWD
(Wasserstein distance) for the fit to the observational dis-
tribution and CTFRMSE (root mean square error) for L3-
consistency with ground truth counterfactual outcomes.

Ablation on TM-SCM-SYM To provide empirical ev-
idence for Corollary 5.4 and Theorem 3.2, and show that
neural TM-SCM addresses counterfactual consistency, we
performed a small-scale ablation study on TM-SCM-SYM,
including: (i) w/o O: Reverses causal order ≤, ablatingA≤;
(ii) w/o M: Uses non-Markovian exogenous distributions,
ablating AM; (iii) w/o T: Constructs non-triangular SCM,
ablating ATM-SCM (supported only by CMSM and TVSM).

Figure 1 shows scatter plots of OBSWD and CTFRMSE on
the validation set. Configurations w/o O and w/o T fail to
converge, highlighting the necessity of A≤ and ATM-SCM.

3Code is available at: https://github.com/cyisk/tmscm
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Figure 1. Ablation results of neural TM-SCMs on TM-SCM-SYM.
Colored curves depict sliding-window regressions, with shaded
areas showing 95% CI. (a) DNME for BARBELL; (b) TNME for
STAIR; (c) CMSM for FORK; (d) TVSM for BACKDOOR.

Most w/o M settings result in higher CTFRMSE, emphasizing
the role of AM. CMSM shows slightly lower stability than
other methods. Additional results are in Appendix D.4.

Ablation on ER-DIAG-50 and ER-TRIL-50 We further
conducted a more comprehensive evaluation on ER-DIAG-
50 and ER-TRIL-50, reinforcing the generality of the theory
through experiments on a wide variety of synthetic SCMs.
The ablations in these experiments also targeted A≤, AM,
and ATM-SCM.

Table 1 presents the final CTFRMSE on the ER-DIAG-50
and ER-TRIL-50 test sets for each method and its ablations.
The results demonstrate that violatingA≤,AM, orATM-SCM
significantly degrades L3-consistency, emphasizing the im-
portance of these assumptions and the validity of the theory
to ensure consistent counterfactual inference. Additional
results on these datasets can be found in Appendix D.4.

9. Conclusion
In this work, we explored ∼L3

-identifiability, the strongest
form of causal model indistinguishability within the PCH.
By simplifying the problem through the introduction of
exogenous isomorphism and ∼EI-identifiability, we devel-
oped concrete methods to achieve identifiability in BSCMs
and TM-SCMs. These findings unify and extend existing

Table 1. Ablation results of neural TM-SCM on ER-DIAG-50 and
ER-TRIL-50. The values shown are the means of 50 experiments,
with the subscript representing the 95% CI. The best-performing
results are highlighted in bold.

METHOD ER-DIAG-50 ER-TRIL-50

DNME
- 0.53±0.05 0.51±0.12

W/O O 0.78±0.05 0.89±0.10

W/O M 0.62±0.04 0.58±0.10

TNME
- 0.47±0.05 0.55±0.12

W/O O 11.24±20.98 6.41±9.84

W/O M 0.62±0.04 0.73±0.21

CMSM

- 0.37±0.05 0.42±0.12

W/O O 2.64±3.72 2.12±2.49

W/O M 1.69±2.60 0.75±0.49

W/O T 0.64±0.05 1.25±1.29

TVSM

- 0.46±0.05 0.50±0.12

W/O O 0.79±0.04 0.88±0.10

W/O M 0.53±0.05 0.53±0.11

W/O T 0.67±0.05 0.78±0.12

theories, providing reliability guarantees for counterfactual
reasoning. Our empirical evaluations further validate the
practicality of the proposed approach, paving the way for
reliable applications in counterfactual modeling.
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Lara, L. D., González-Sanz, A., Asher, N., Risser, L., and
Loubes, J.-M. Transport-based counterfactual models.
Journal of Machine Learning Research, 25(136):1–59,
2024.

Lu, C., Huang, B., Wang, K., Hernández-Lobato, J. M.,
Zhang, K., and Schölkopf, B. Sample-efficient reinforce-
ment learning via counterfactual-based data augmenta-
tion. CoRR, abs/2012.09092, 2020.

Nasr-Esfahany, A. and Kiciman, E. Counterfactual (non-
)identifiability of learned structural causal models, 2023.

Nasr-Esfahany, A., Alizadeh, M., and Shah, D. Counterfac-
tual identifiability of bijective causal models. In Krause,
A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S.,
and Scarlett, J. (eds.), Proceedings of the 40th Interna-
tional Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 25733–
25754. PMLR, 23–29 Jul 2023.

Papamakarios, G., Pavlakou, T., and Murray, I. Masked
autoregressive flow for density estimation. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017.

Pawlowski, N., Coelho de Castro, D., and Glocker, B. Deep
structural causal models for tractable counterfactual infer-
ence. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M., and Lin, H. (eds.), Advances in Neural Information
Processing Systems, volume 33, pp. 857–869. Curran
Associates, Inc., 2020.

Pearl, J. Causality: Models, Reasoning and Inference. Cam-
bridge University Press, USA, 2nd edition, 2009. ISBN
052189560X.

Pearl, J. and Mackenzie, D. The Book of Why: The New
Science of Cause and Effect. Basic Books, Inc., USA, 1st
edition, 2018. ISBN 046509760X.

Peters, J., Janzing, D., and Schlkopf, B. Elements of Causal
Inference: Foundations and Learning Algorithms. The
MIT Press, 2017. ISBN 0262037319.

Peters, J., Bauer, S., and Pfister, N. Causal Models for
Dynamical Systems, pp. 671–690. Association for Com-
puting Machinery, New York, NY, USA, 1 edition, 2022.
ISBN 9781450395861.

Richens, J., Beard, R., and Thompson, D. H. Counterfac-
tual harm. In Koyejo, S., Mohamed, S., Agarwal, A.,
Belgrave, D., Cho, K., and Oh, A. (eds.), Advances in
Neural Information Processing Systems, volume 35, pp.
36350–36365. Curran Associates, Inc., 2022.

Rozet, F., Divo, F., and Schnake, S. Zuko: Normalizing
Flows in PyTorch, 2024.

Sanchez, P. and Tsaftaris, S. A. Diffusion causal models
for counterfactual estimation. In Schölkopf, B., Uhler,
C., and Zhang, K. (eds.), Proceedings of the First Confer-
ence on Causal Learning and Reasoning, volume 177 of
Proceedings of Machine Learning Research, pp. 647–668.
PMLR, 11–13 Apr 2022.

Sánchez-Martin, P., Rateike, M., and Valera, I. Vaca: De-
signing variational graph autoencoders for causal queries.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 36, pp. 8159–8168, 2022.

11

https://proceedings.mlr.press/v130/khemakhem21a.html
https://proceedings.mlr.press/v130/khemakhem21a.html


Exogenous Isomorphism for Counterfactual Identifiability

Santambrogio, F. One-dimensional issues, pp. 59–85.
Springer International Publishing, Cham, 2015. ISBN
978-3-319-20828-2. doi: 10.1007/978-3-319-20828-2 2.

Scetbon, M., Jennings, J., Hilmkil, A., Zhang, C., and Ma,
C. A fixed-point approach for causal generative model-
ing. In Salakhutdinov, R., Kolter, Z., Heller, K., Weller,
A., Oliver, N., Scarlett, J., and Berkenkamp, F. (eds.),
Proceedings of the 41st International Conference on Ma-
chine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 43504–43541. PMLR, 21–27 Jul
2024.

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalch-
brenner, N., Goyal, A., and Bengio, Y. Toward causal
representation learning. Proceedings of the IEEE, 109(5):
612–634, 2021.

Shimizu, S., Hoyer, P. O., Hyvärinen, A., and Kerminen, A.
A linear non-gaussian acyclic model for causal discovery.
Journal of Machine Learning Research, 7(72):2003–2030,
2006.

Shpitser, I. and Pearl, J. Complete identification methods
for the causal hierarchy. Journal of Machine Learning
Research, 9(64):1941–1979, 2008.

Spirtes, P. and Zhang, K. Causal discovery and inference:
concepts and recent methodological advances. Applied
Informatics, 3(1):3, Feb 2016. ISSN 2196-0089. doi:
10.1186/s40535-016-0018-x.

Tian, J. and Pearl, J. Probabilities of causation: Bounds
and identification. Annals of Mathematics and Artificial
Intelligence, 28(1):287–313, 2000.

Tsirtsis, S. and Rodriguez, M. Finding counterfactually
optimal action sequences in continuous state spaces. In
Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt,
M., and Levine, S. (eds.), Advances in Neural Information
Processing Systems, volume 36, pp. 3220–3247. Curran
Associates, Inc., 2023.
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(KR-Transport Uniqueness)
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(EI-ID from KR-Transport)
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(TM-SCM)
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(TM Compose)
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(TM Component)
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(TMI-SCM Decomposition)
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(EI-ID from Triangular Monotonicity)

Lemma A.21
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Figure 2. Overview of all theorems discussed in the main text and appendix, along with their dependency graph. Nodes represent theorems,
and edges indicate dependencie, directed from top to bottom. Different colors denote different topics: theorems related to recursive SCMs
are marked in blue; theorems related to exogenous isomorphism are marked in green; theorems related to BSCMs are marked in yellow;
and theorems related to TM-SCMs are marked in red.

A.1. Background and Preliminaries

Definition 2.1 draws characteristics from both (Bongers et al., 2016) and (Bareinboim et al., 2022), but differs in the
following aspects: (i) we use a shared index set I for exogenous and endogenous variables, rather than using an additional
index set J for endogenous variables, because this paper does not focus on the relationships between exogenous variables;
(ii) to partially compensate for the limitation introduced in (i), we allow PU =

∏
i∈I PUi

to not necessarily be a product
measure. This relaxation permits endogenous variables to be dependent unless the SCM is Markovian.

Following Definition 2.1, an SCM describes the functional relationships between endogenous and exogenous variables
through a set of deterministic equations of the form vi = fi(vpa(i), ui), known as structural equations. (Bongers et al., 2016)
discuss the solvability of this system of equations. Specifically, if there exists a pair (V,U) such that V = f(V,U) holds
almost surely and the distribution of U is exactly PU, then the SCM is said to have a solution. If there exists a function
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Γ such that for almost all u ∈ ΩU and all v ∈ ΩV, v = Γ(u) implies v = f(v,u), then the SCM is said to be solvable.
According to (Bongers et al., 2016, Theorem 3.2), the SCM has a solution if and only if it is solvable.

A recursive SCM is a special type of SCM with certain desirable properties. In this subsection, we will prove a fundamental
lemma on recursive SCMs to facilitate subsequent proofs and introduce some notations. For an index i ∈ I in a recursive
SCM, the lower set an(i) = {j | j ≺ i} of the partial order ⪯ is called the causal ancestors of i, while the lower set
pr(i) = {j | j < i} of its linear extension ≤ is called the causal prefix of i. Additionally, an∗(i) = an(i) ∪ {i} and
pr∗(i) = pr(i) ∪ {i}. Consider a recursive SCMM = ⟨I,ΩV,ΩU,f , PU⟩, we can recursively expand the endogenous
part of fi to obtain a new function:

Definition A.1 (Unrolled Causal Mechanism (UCM)). For each causal mechanism fi : ΩVpa(i) × ΩUi
→ ΩVi

inM, let
f̃i : ΩUan∗(i)

→ ΩVi be the result of recursively unrolling the endogenous part ΩVpa(i) of the causal mechanism fi, such that
for any u ∈ ΩU,

f̃i(uan∗(i)) = fi

((
f̃k(uan∗(k))

)
k∈pa(i)

, ui

)
.

This is referred to as the Unrolled Causal Mechanism (UCM).

The following lemma demonstrates that the tuple of UCMs constitutes the solution mapping Γ of a recursive SCM, thereby
indirectly proving the existence and uniqueness of solutions for recursive SCMs.

Lemma A.2. For all u ∈ ΩU, v = f(v,u) if and only if v = Γ(u), where Γ(u) = (f̃i(uan∗(i)))i∈I .

Proof. Let u ∈ ΩU be arbitrary.

=⇒ : Suppose the structural equations v = f(v,u), meaning each component satisfies vi = fi(vpa∗(i), ui). We proceed
by induction based on the partial order ⪯. When pa(i) = ∅, we have vi = fi(ui), and by the definition of UCM,
f̃i(ui) = fi(ui) = vi. When pa(i) ̸= ∅, assume that for each k ∈ pa(i), vk = f̃k(uan∗(k)) holds. Then,

f̃i(uan∗(i)) = fi((f̃k(uan∗(k)))k∈pa(i), ui) Definition A.1
= fi(vpa(i), ui). Induction
= vi.

Thus, for each i ∈ I, we have vi = f̃i(uan∗(i)), implying that (vi)i∈I = (f̃i(uan∗(i)))i∈I , i.e., v = Γ(u).

⇐= : Suppose v = Γ(u), meaning each component satisfies vi = f̃i(uan∗(i)). Then, for each i ∈ I,

vi = f̃i(uan∗(i))

= fi((f̃k(uan∗(k)))k∈pa(i), ui) Definition A.1

= fi(vpa(k), ui). vk = f̃k(uan∗(k))

where the last equality follows from vk = f̃k(uan∗(k)) for each k ∈ pa(i). Therefore, the structural equation vi =
fi(vpa(i), ui) holds for every i ∈ I, and thus the system of structural equations v = f(v,u) holds.

We decompose the problem and, based on the causal mechanisms, define the following compound structure as an extension
of the causal mechanisms at the counterfactual level, establishing a connection with the potential responses in the PCH.
Suppose there are n submodels of recursive SCMs,M[x1],M[x2], . . . ,M[xn], and let the UCM corresponding to fi[xj ] in
each submodelM[xj ] be denoted by f̃i[xj ].

Definition A.3 (Compound Causal Mechanism (CCM)). Let fi[x∗] :
∏n

j=1 ΩVpa(i) × ΩUi
→
∏n

j=1 ΩVi
be the tuple of

causal mechanisms indexed by i ∈ I across the submodels, denoted as (fi[xj ])j∈1:n, where x∗ = (xj)j∈1:n. This satisfies,
for each j ∈ 1 : n, all vj ∈ ΩV, and all ui ∈ ΩUi

,

fi[x∗]((vpa(i),j)j∈1:n, ui) = (fi[xj ](vpa(i),j , ui))j∈1:n.

This is referred to as the Compound Causal Mechanism (CCM).
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Definition A.4 (Unrolled Compound Causal Mechanism (UCCM)). Let f̃i[x∗] : ΩUan∗(i)
→
∏n

j=1 ΩVi
be the result of

recursively unrolling the
∏n

j=1 ΩVpa(i) part of the CCM fi[x∗], such that for all u ∈ ΩU,

f̃i[x∗](uan∗(i)) = fi[x∗]

((
f̃k[x∗](uan∗(k))

)
k∈pa(i)

, ui

)
.

This is referred to as the Unrolled Compound Causal Mechanism (UCCM).

Lemma A.5. For each i ∈ I and all u ∈ ΩU, the UCCM f̃i[x∗](uan∗(i)) is equal to the tuple of UCMs (f̃i[xj ](uan∗(i)))j∈1:n.

Proof. Given any u ∈ ΩU, we proceed by induction based on the partial order ⪯.

When pa(i) = ∅, according to the definition of UCCM, we have f̃i[x∗](uan∗(i)) = f̃i[x∗](ui) = fi[x∗](ui). Additionally,
according to the definition of UCM, we also have f̃i[xj ](uan∗(i)) = f̃i[xj ](ui). Furthermore, based on the definition of CCM,
fi[x∗](ui) = (fi[xj ](ui))j∈1:n. Therefore, f̃i[x∗](uan∗(i)) = (f̃i[xj ](uan∗(i)))j∈1:n.

When pa(i) ̸= ∅, assume that for each k ∈ pa(i), the following holds: f̃k[x∗](uan∗(k)) = (f̃k[xj ](uan∗(k)))j∈1:n. Then,

f̃i[x∗](uan∗(i)) = fi[x∗]((f̃k[x∗](uan∗(k)))k∈pa(i), ui) Definition A.4

= fi[x∗](((f̃k[xj ](uan∗(k)))j∈1:n)k∈pa(i), ui) Induction

=
(
fi[xj ]((f̃k[xj ](uan∗(k)))k∈pa(i), ui)

)
j∈1:n

Definition A.3

= (f̃i[xj ](uan∗(k)))j∈1:n. Definition A.1

Therefore, for each i ∈ I and all u ∈ ΩU, we have f̃k[x∗](uan∗(k)) = (f̃k[xj ](uan∗(k)))j∈1:n.

Definition A.6 (Augmented Unrolled Compound Causal Mechanism (AUCCM)). Augmenting the domain of f̃i[x∗] from
ΩUan∗(i)

to ΩUpr∗(i)
, resulting in g̃i[x∗] : ΩUpr∗(i)

→
∏n

j=1 ΩVi
. This ensures that f̃i[x∗](uan∗(i)) = g̃i[x∗](upr∗(i)) for all

u ∈ ΩU, which is referred to as the Augmented Unrolled Compound Causal Mechanism (AUCCM).

Definition A.7 (Prefix Compound Causal Mechanism (PCCM)). Define g̃pr∗(i)[x∗] : ΩUpr∗(i)
→
∏n

j=1 ΩVpr∗(i)
as a tuple of

multiple AUCCMs, (g̃k[x∗])k∈pr∗(i). This is referred to as the Prefix Compound Causal Mechanism (PCCM).

Lemma A.8. For all u ∈ ΩU, the potential response VM∗(u) equals the PCCM g̃I[x∗](u).

Proof. Given any u ∈ ΩU, consider the component indexed by i in the j-th submodel, namely (VM∗(u))i,j and
(g̃I[x∗](u))i,j . According to the definition of potential response, (VM∗(u))i,j = (VM[xj ]

(u))i = (Γ[xj ](u))i, where the

i-th component of the solution mapping Γ[xj ](u) is f̃i[xj ](uan∗(i)) according to Lemma A.2. On the other hand, by the
definition of PCCM, (g̃I[x∗](u))i,j = (g̃i[x∗](u))j , and by the definition of AUCCM, (g̃i[x∗](u))j = (f̃i[x∗](uan∗(i)))j ,
where, according to Lemma A.5, (f̃i[x∗](uan∗(i)))j is the UCM f̃i[xj ](uan∗(i)) in the submodelM[xj ]. Therefore,

(VM∗(u))i,j = (Γ[xj ](u))i
Lemma A.2
======== f̃i[xj ](uan∗(i))

Lemma A.5
======== (f̃i[x∗](uan∗(i)))j = (g̃I[x∗](u))i,j .

Since this equality holds for every component i, j, the potential response VM∗(u) equals the PCCM g̃I[x∗](u).

A.2. Exogenous Isomorphism

The Definitions A.3, A.4, A.6 and A.7 enable us to progressively derive the isomorphism of causal mechanisms in
exogenous isomorphism to the potential responses. Specifically, consider two recursive SCMsM(1) andM(2) such that
M(1) ∼EI M(2). The following lemmas then hold in succession. To prevent ambiguity during the proof process, we use the
full notation f

(k)
i (vpa(k)(i), ·) instead of the abbreviated f

(k)
i (v, ·).

Lemma A.9. For each i ∈ I, for almost all u(1) ∈ Ω
(1)
U and for all v ∈ ΩV, the CCM satisfies

f
(2)
i[x∗]

(vpa(2)(i), hi(u
(1)
i )) = f

(1)
i[x∗]

(vpa(1)(i), u
(1)
i ).
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Proof. For each i ∈ I and any v ∈ ΩV, consider u(1)
i ∈ Ω

(1)
Ui

such that f (2)
i (vpa(2)(i), hi(u

(1)
i )) = f

(1)
i (vpa(1)(i), u

(1)
i ).

Then,

f
(2)
i[x∗]

(vpa(2)(i), hi(u
(1)
i )) = (fi[xj ](vpa(2)(i),j , hi(u

(1)
i )))j∈1:n Definition A.3

=

({
(xj)i i ∈ IXj

f
(2)
i (vpa(2)(i),j , hi(u

(1)
i )) i ∈ I \ IXj

)
j∈1:n

Definition of submodel

=

({
(xj)i i ∈ IXj

f
(1)
i (vpa(1)(i),j , u

(1)
i ) i ∈ I \ IXj

)
j∈1:n

M(1) ∼EI M(2)

= (f
(1)
i[xj ]

(vpa(1)(i),j , u
(1)
i ))j∈1:n Definition of submodel

= f
(1)
i[x∗]

(vpa(1)(i), u
(1)
i ). Definition A.3

Since f
(2)
i (vpa(2)(i), hi(u

(1)
i )) = f

(1)
i (vpa(1)(i), u

(1)
i ) holds for almost all u(1)

i ∈ Ω
(1)
Ui

, the proposition is thus established.

Lemma A.10. For each i ∈ I and for almost all u(1) ∈ Ω
(1)
U , the AUCCM satisfies

(g̃
(2)
i[x∗]
◦ hpr∗(i))(u

(1)
pr∗(i)) = g̃

(1)
i[x∗]

(u
(1)
pr∗(i)).

Proof. Consider u(1) ∈ Ω
(1)
U for which Lemma A.9 holds. We proceed by induction based on the common causal order ≤

(hence the necessity of the causal order).

When | pr(i)| = 0, we have pr∗(i) = {i}. By Lemma A.9:

(g̃
(2)
i[x∗]
◦ hpr∗(i))(u

(1)
pr∗(i)) = g̃

(2)
i[x∗]

(hi(u
(1)
i )) pr∗(i) = {i}

= f̃
(2)
i[x∗]

(hi(u
(1)
i )) Definition A.6

= f
(2)
i[x∗]

(hi(u
(1)
i )) Definition A.4

= f
(1)
i[x∗]

(u
(1)
i ) Lemma A.9

= f̃
(1)
i[x∗]

(u
(1)
i ) Definition A.4

= g̃
(1)
i[x∗]

(u
(1)
i ) Definition A.6

= g̃
(1)
i[x∗]

(u
(1)
pr∗(i)). pr∗(i) = {i}

When | pr(i)| > 0, assume that for each k ∈ pr(i), (g̃(2)k[x∗]
◦ hpr∗(k))(u

(1)
pr∗(k)) = g̃

(1)
k[x∗]

(u
(1)
pr∗(k)) holds. Then,

g̃
(2)
i[x∗]

(hpr∗(i)(u
(1)
pr∗(i))) = f̃

(2)
i[x∗]

(han∗(2)(i)(u
(1)

an∗(2)(i))) Definition A.6

= f
(2)
i[x∗]

((f̃
(2)
k[x∗]

(han∗(2)(k)(u
(1)

an∗(2)(k))))k∈pa(2)(i), hi(u
(1)
i )) Definition A.4

= f
(2)
i[x∗]

((g̃
(2)
k[x∗]

(hpr∗(k)(u
(1)
pr∗(k))))k∈pa(2)(i), hi(u

(1)
i )) Definition A.6

= f
(2)
i[x∗]

((g̃
(1)
k[x∗]

(u
(1)
pr∗(k)))k∈pa(2)(i), hi(u

(1)
i )) Induction

= f
(1)
i[x∗]

((g̃
(1)
k[x∗]

(u
(1)
pr∗(k)))k∈pa(1)(i), u

(1)
i ) Lemma A.9

= f
(1)
i[x∗]

((f̃
(1)
k[x∗]

(u
(1)

an∗(1)(k)))k∈pa(1)(i), u
(1)
i ) Definition A.6

= f̃
(1)
i[x∗]

(u
(1)

an∗(1)(i)) Definition A.4

= g̃
(1)
i[x∗]

(u
(1)
pr∗(i)). Definition A.6

Since Lemma A.9 holds for almost all u(1) ∈ Ω
(1)
U , the proposition is thus established.

16



Exogenous Isomorphism for Counterfactual Identifiability

Lemma A.11. For each i ∈ I and for almost all u(1) ∈ Ω
(1)
U , the PCCM satisfies

(g̃
(2)
pr∗(i)[x∗]

◦ hpr∗(i))(u
(1)
pr∗(i)) = g̃

(1)
pr∗(i)[x∗]

(u
(1)
pr∗(i)).

Proof. Consider u(1) ∈ Ω
(1)
U for which Lemma A.10 holds. Then,

g̃
(2)
pr∗(i)[x∗]

(hpr∗(i)(u
(1)
pr∗(i))) = (g̃

(2)
k[x∗]

(hpr∗(i)(u
(1)
pr∗(i))))k∈pr∗(i) Definition A.7

= (g̃
(1)
k[x∗]

(u
(1)
pr∗(i)))k∈pr∗(i) Lemma A.10

= g̃
(1)
pr∗(i)[x∗]

(u
(1)
pr∗(i)). Definition A.7

Since Lemma A.10 holds for almost all u(1) ∈ Ω
(1)
U , the proposition is thus established.

Theorem 3.2 (∼EI Implies ∼L3
). For recursive SCMsM(1) andM(2), ifM(1) ∼EIM(2), thenM(1) ∼L3

M(2).

Proof. Consider u(1) ∈ Ω
(1)
U for which Lemma A.8 and Lemma A.11 hold simultaneously. Then, when pr∗(i) = I, we

have

V
(1)
M∗

(u(1))
Lemma A.8
======== g̃

(1)
I[x∗]

(u(1))
Lemma A.11
======== (g̃

(2)
I[x∗]

◦ h)(u(1))
Lemma A.8
======== (V

(2)
M∗
◦ h)(u(1)).

Since Lemmas Lemma A.8 and Lemma A.11 hold for almost all u(1) ∈ Ω
(1)
U , it follows that V(1)

M∗
almost surely equals

V
(2)
M∗
◦ h. Moreover, since P

(2)
U = h♯P

(1)
U , it follows that

PM(1)

V∗
= (V

(1)
M∗

)♯P
(1)
U = (V

(2)
M∗
◦ h)♯P (1)

U = (V
(2)
M∗

)♯(h♯P
(1)
U ) = (V

(2)
M∗

)♯P
(2)
U = PM(2)

V∗
.

Therefore, for any counterfactual random variables Y∗ ⊆ V∗ and any event Y∗, we have PM(1)

Y∗
(Y∗) = PM(2)

Y∗
(Y∗), as

they are obtained by marginalizing PM(1)

V∗
= PM(2)

V∗
. According to the L3-valuation, any term of the form P(Y∗ ∈ Y∗) has

equal assignments inM(1) andM(2). Since for any φ ∈ L3, φ consists of terms of the form P(Y∗ ∈ Y∗), it follows that
φ(M(1)) = φ(M(2)). Therefore, according to the definition of L3-theory, we have

L3(M(1)) = {φ(M(1)) | φ ∈ L3} = {φ(M(2)) | φ ∈ L3} = L3(M(2)),

i.e.,M(1) ∼L3 M(2), according to Definition 2.2.

A.3. Bijective SCM

From the perspective of measure theory, a (regular) conditional distribution is defined as a probability kernel PY|X :
FY × ΩX → [0, 1], where it is required that the index sets satisfy IX ∩ IY = ∅. If for any X ∈ FX and Y ∈ FY there
exists a joint distribution PX,Y(X × Y) =

∫
X PY|X(Y ,x)PX(dx), where PX is the marginal distribution, then such a

probability kernel PY|X is referred to as a regular conditional distribution given X. The Decomposition Theorem establishes
its existence and uniqueness:
Theorem A.12 (Decomposition Theorem). If the space ΩX is a Polish space, then the regular conditional distribution
PY|X : FY × ΩX → [0, 1] exists and is almost surely unique.
Lemma A.13. If Y = f(X), then for all Y ∈ FY and for almost every x ∈ ΩX, the conditional distribution PY|X(Y ,x) =
δf(x)(Y) = 1Y(f(x)), where δf(x)(Y) is the Dirac measure and 1Y(f(x)) is the indicator function.

Proof. For any X ∈ FX and Y ∈ FY, according to the definition of the joint distribution,

PX,Y(X ×Y) = ((X,Y)♯P )(X ×Y)

= P ({ω | ω ∈ Y−1[Y ] ∩X−1[X ]})
= P ({ω | ω ∈ (f(X))−1[Y ] ∩X−1[X ]})
= P ({ω | ω ∈ X−1[f−1[Y ]] ∩X−1[X ]})
= P ({ω | ω ∈ X−1[f−1[Y ] ∩X ]}) f−1[S] ∩ f−1[T ] = f−1[S ∩ T ]

= PX(f−1[Y ] ∩X ).

17
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Then, for the Lebesgue integral of the indicator function (or Dirac measure),∫
X
1Y(f(x))PX(dx) =

∫
X
1f−1[Y](x)PX(dx)

=

∫
f−1[Y]∩X

PX(dx)

= PX(f−1[Y ] ∩X )

= PY,X(Y ×X ).

According to Theorem A.12, since PY|X that satisfies PY,X(Y ×X ) =
∫
X PY|X(Y ,x)PX(dx) is almost surely unique,

it follows that for all Y ∈ FY and for almost every x ∈ ΩX, PY|X = δf(x)(Y) = 1Y(f(x)).

Lemma A.14. If Y = f(X,Z), then for all Y ∈ FY and for almost every z ∈ ΩZ, the conditional distribution
PY|Z(Y , z) =

(
(f(·, z))♯PX|Z(·, z)

)
(Y).

Proof. For any Y ∈ ΣY , consider the condition that Lemma A.13 holds for z ∈ ΩZ. Then,

PY|Z(Y , z) = PY,X|Z(Y × ΩX, z)

=

∫
ΩX

PY|X,Z(Y ,x, z)PX|Z(dx, z) Factorization

=

∫
ΩX

1Y(f(x, z))PX|Z(dx, z) Lemma A.13

=

∫
ΩX

1(f(·,z))−1[Y](x)PX|Z(dx, z)

=

∫
(f(·,z))−1[Y]

PX|Z(dx, z)

= PX|Z

(
(f(·, z))−1

[Y ], z
)

=
(
(f(·, z))♯ PX|Z(·, z)

)
(Y).

Since Lemma A.13 holds for almost every z ∈ ΩZ, the original proposition follows.

Proposition 4.2. A recursive SCMM is a BSCM if and only if fi(v, ·) is a bijection for every i ∈ I and all v ∈ ΩV.

Proof. =⇒ : Suppose that the SCM is a BSCM. Consider each i ∈ I. According to Definition 4.1, this is equivalent to
proving that fi(vpa(i), ·) is both injective and surjective for all v ∈ ΩV, under the assumption that Γ is a bijection.

First, we show that fi(vpa(i), ·) is injective for all v ∈ ΩV. Given any v ∈ ΩV and any ui, u
′
i ∈ ΩU such that fi(vpa(i), ui) =

fi(vpa(i), u
′
i), let v∗i = fi(vpa(i), ui) (note that v∗i may not equal vi). Construct v∗ = (vpa(i), v

∗
i ,v

∗
I\{i}\pa(i)), where

v∗
I\{i}\pa(i) is arbitrary. By the definition of a BSCM and since Γ is a bijection, there exists a unique u∗ such that v∗ = Γ(u∗).

Replace the i-th component of u∗ with ui and u′
i to obtain u and u′, respectively. Since fi(vpa(i), ui) = fi(vpa(i), u

′
i) = v∗i ,

it follows that v∗ = Γ(u) = Γ(u′). Given the uniqueness of u∗ such that v∗ = Γ(u∗), we have u = u′ = u∗, implying
that ui = u′

i. Therefore, for any ui, u
′
i ∈ ΩU, if fi(vpa(i), ui) = fi(vpa(i), u

′
i), then ui = u′

i, proving that fi(vpa(i), ·) is
injective.

Next, we show that fi(vpa(i), ·) is surjective for all v ∈ ΩV. Assume, for contradiction, that there exists v ∈ ΩV

such that fi(vpa(i), ·) is not surjective. Then, there exists v′i such that for all ui ∈ ΩUi
, fi(vpa(i), ui) ̸= v′i. Construct

v∗ = (vpa(i), v
′
i,v

∗
I\{i}\pa(i)), where v∗

I\{i}\pa(i) is arbitrary. By the definition of a BSCM and since Γ is a bijection, there
exists u∗ such that v∗ = Γ(u∗), where the i-th component satisfies fi(vpa(i), u

∗
i ) = v′i. This contradicts the assumption that

for all ui ∈ ΩUi
, fi(vpa(i), ui) ̸= v′i. Therefore, our assumption is false, and fi(vpa(i), ·) must be surjective for all v ∈ ΩV.

In summary, for all v ∈ ΩV, fi(vpa(i), ·) is a bijection.

⇐= : Suppose that fi(vpa(i), ·) is a bijection for each i ∈ I and for all v ∈ ΩV. This is equivalent to proving that Γ is both
injective and surjective.
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First, we show that Γ is injective. Let u,u′ ∈ ΩU such that v = Γ(u) = Γ(u′). According to Lemma Lemma A.2, for
each i ∈ I, we have vi = fi(vpa(i), ui) = fi(vpa(i), u

′
i). Since fi(vpa(i), ·) is a bijection, it follows that ui = u′

i. Therefore,
u = u′, proving that Γ is injective.

Next, we show that Γ is surjective. For each v ∈ ΩV and each i ∈ I, consider the i-th component vi. Since
fi(vpa(i), ·) is a bijection for any v ∈ ΩV, there exists ui = (fi(vpa(i), ·))−1(vi) such that vi = fi(vpa(i), ui). Let
u = ((fi(vpa(i), ·))−1(vi))i∈I . According to the definition of the solution function Γ, substituting u into Γ yields
Γ(u) = v. Thus, for any v ∈ ΩV, there exists u such that Γ(u) = v, proving that Γ is surjective.

Therefore, Γ is a bijection. By Definition 4.1,M is a BSCM.

Theorem 4.3 (BSCM-EI). If two BSCMsM(1) andM(2) share a common causal order ≤ and the same observational
distribution PV, thenM(1) ∼EIM(2) if and only if for every i ∈ I, there exists a bijection hi : Ω

(1)
Ui
→ Ω

(2)
Ui

such that for
all v ∈ ΩV,

(f
(2)
i (v, ·))−1 ◦ (f (1)

i (v, ·)) = hi

almost surely.

Proof. =⇒ : Suppose thatM(1) ∼EIM(2). According to the definition of exogenous isomorphism, there exists a bijection
h = (hi)i∈I such that each hi is a bijection and the causal mechanisms are preserved. For each i ∈ I and given any
v ∈ ΩV, consider the causal mechanism f

(2)
i (v, hi(u

(1)
i )) = f

(1)
i (v, u

(1)
i ) for some u

(1)
i ∈ Ω

(1)
Ui

. Since f
(2)
i (v, ·) is a

bijection, composing both sides with (f
(2)
i (v, ·))−1 yields

hi(u
(1)
i ) = (f

(2)
i (v, u

(1)
i ))−1 ◦ (f (1)

i (v, ·)).

Since f
(2)
i (v, hi(u

(1)
i )) = f

(1)
i (v, u

(1)
i ) holds for almost every u

(1)
i ∈ Ω

(1)
Ui

, it follows that

(f
(2)
i (v, ·))−1 ◦ f (1)

i (v, ·) = hi

almost surely.

⇐= : For each i ∈ I, suppose there exists a bijection hi : Ω
(1)
Ui
→ Ω

(2)
Ui

such that

(f
(2)
i (v, ·))−1 ◦ f (1)

i (v, ·) = hi

almost surely. By the associativity of function composition, for any v ∈ ΩV, we have

f
(2)
i (v, ·) ◦ hi = f

(2)
i (v, ·) ◦

(
(f

(2)
i (v, ·))−1 ◦ f (1)

i (v, ·)
)
= f

(1)
i (v, ·)

almost surely. This equality holds for each i ∈ I and all v ∈ ΩV, thereby preserving the causal mechanisms.

Moreover, since the observational distribution satisfies

PV = (Γ(1))♯P
(1)
U = (Γ(2))♯P

(2)
U ,

and both Γ(1) and Γ(2) are bijections, it follows by pullback that

((Γ(2))−1 ◦ Γ(1))♯P
(1)
U = P

(2)
U .

By Lemma A.8 and Lemma A.11, we have Γ(1) = Γ(2) ◦ h, that is, (Γ(2))−1 ◦ Γ(1) = h. Therefore, h♯P
(1)
U = P

(2)
U ,

which preserves the exogenous distributions. Lastly, the component-wise bijections are satisfied by the assumption of
hi : Ω

(1)
Ui
→ Ω

(2)
Ui

. Hence, h = (hi)i∈I constitutes an exogenous isomorphism. Given the existence of such an exogenous
isomorphism and the common causal order, it follows thatM(1) ∼EIM(2).

Before proceeding with the proof below, we visually depict the objects of study in Theorem 4.3 and Definition 4.4 in
Figure 3, allowing readers to intuitively grasp the strong connection between these two concepts. Intuitively, these objects
are related through a ”flipping” operation; formally, this relationship is characterized algebraically by the computation of
associativity and inverses. Subsequently, we focus on Definition 4.4, which enables the problem to be confined within the
same BSCM.
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Ω
(1)
Ui

Ω
(2)
Ui

ΩVi

u
(1)
i u

(2)
i

vi v′
i

f
(1)
i (v, ·)

f
(1)
i (v′, ·)

f
(2)
i (v′, ·)

f
(2)
i (v, ·)

(f
(2)
i (v, ·))−1 ◦ (f

(1)
i (v, ·)) (f

(2)
i (v′, ·))−1 ◦ (f

(1)
i (v′, ·))

(a)

Ω
(1)
Ui

Ω
(2)
Ui

ΩVi

u
(1)
i u

(2)
i

vi v′
i

f
(1)
i (v, ·)

f
(1)
i (v′, ·)

f
(2)
i (v′, ·)

f
(2)
i (v, ·)

(f
(1)
i (v′, ·)) ◦ (f

(1)
i (v, ·))−1 (f

(2)
i (v′, ·)) ◦ (f

(2)
i (v, ·))−1

(b)

Figure 3. (a) The objects of study in Theorem 4.3, (f (2)
i (v, ·))−1◦(f (1)

i (v, ·)) (green) and (f
(2)
i (v′, ·))−1◦(f (1)

i (v′, ·)) (red), constructed
across different BSCMs; (b) The objects of study in Definition 4.4, (f (1)

i (v′, ·)) ◦ (f (1)
i (v, ·))−1 (blue) and (f

(2)
i (v′, ·)) ◦ (f (2)

i (v, ·))−1

(yellow), constructed within the same BSCM.

Proposition 4.5. If the BSCM M is Markovian, then for almost all v,v′ ∈ ΩV, the conditional distributions satisfy
PVi|Vpa(i)

(·,v′) = (KM,i(·,v,v′))♯PVi|Vpa(i)
(·,v).

Proof. According to the recursive SCM, there exists a unique solution such that Vi = fi(Vpa(i), Ui). Based on Proposi-
tion 4.2, the causal mechanism fi(vpa(i), ·) in the BSCM is a bijection for each i ∈ I and for all v ∈ ΩV. Therefore, we
have Ui = (fi(Vpa(i), ·))−1(Vi).

According to Lemma A.14, for any v ∈ ΩV, it holds that

PVi|Vpa(i)
(·,vpa(i)) = (fi(vpa(i), ·))♯PUi|Vpa(i)

(·,vpa(i)),

PUi|Vpa(i)
(·,vpa(i)) =

(
(fi(vpa(i), ·))−1

)
♯
PVi|Vpa(i)

(·,vpa(i)).

By the Markovianity assumption, PUi|Vpa(i)
= PUi

. Therefore, for any v,v′ ∈ ΩV, the counterfactual transport satisfies

(KM,i(·,v,v′))♯PVi|Vpa(i)
(·,vpa(i)) =

(
(fi(v

′
pa(i), ·)) ◦ (fi(vpa(i), ·))−1

)
♯
PVi|Vpa(i)

(·,vpa(i))

=
(
fi(v

′
pa(i), ·)

)
♯

((
(fi(vpa(i), ·))−1

)
♯
PVi|Vpa(i)

(·,vpa(i))
)

=
(
fi(v

′
pa(i), ·)

)
♯
PUi|Vpa(i)

(·,vpa(i)) Lemma A.14

=
(
fi(v

′
pa(i), ·)

)
♯
PUi

Markovianity

=
(
fi(v

′
pa(i), ·)

)
♯
PUi|Vpa(i)

(·,v′
pa(i)) Markovianity

= PVi|Vpa(i)
(·,v′

pa(i)). Lemma A.14

This shows that the conditional distribution satisfies PVi|Vpa(i)
(·,v′) = (KM,i(·,v,v′))♯PVi|Vpa(i)

(·,v).

Theorem 4.6 (EI-ID from Counterfactual Transport). An SCM is ∼EI-identifiable from A{BSCM,≤,PV,K}.

Proof. Consider any pair of modelsM(1),M(2) |= A{BSCM,≤,PV,K} and each i ∈ I. For any pair v,v′ ∈ ΩV, let the
components of the counterfactual transport be KM(1),i(·,v,v′) and KM(2),i(·,v,v′), respectively. According to the validity
of AK(M), it holds that

KM(1),i(·,v,v′) = KM(2),i(·,v,v′) = Ki(·,v,v′)

almost surely. By the definition of counterfactual transport, this implies

(f
(1)
i (v′

pa(i), ·)) ◦ (f
(1)
i (vpa(i), ·))−1 = (f

(2)
i (v′

pa(i), ·)) ◦ (f
(2)
i (vpa(i), ·))−1
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almost surely. Since the causal mechanisms f (1)
i (vpa(i), ·) and f

(2)
i (v′

pa(i), ·) are bijections, we can compose them on the

right with f
(1)
i (vpa(i), ·) and on the left with (f

(2)
i (v′

pa(i), ·))
−1, respectively. By the associativity of function composition,

we obtain
(f

(2)
i (v′

pa(i), ·))
−1 ◦ f (1)

i (v′
pa(i), ·) = (f

(2)
i (vpa(i), ·))−1 ◦ f (1)

i (vpa(i), ·)

almost surely, and both sides of the equation remain bijections. Since this equality holds for any pair v,v′ ∈ ΩV, they are
all equivalent to some bijection hi : Ω

(1)
Ui
→ Ω

(2)
Ui

. That is, for each i ∈ I, there exists a bijection hi : Ω
(1)
Ui
→ Ω

(2)
Ui

such
that for all v ∈ ΩV,

(f
(2)
i (v, ·))−1 ◦ f (1)

i (v, ·) = hi

almost surely. Furthermore, a common causal order exists by assumption. Therefore, by Theorem 4.3, it follows that
M(1) ∼IE M(2).

Theorem 4.8 (EI-ID from KR Transport). An SCM is ∼EI-identifiable from A{BSCM,≤,M,PV,KR}.

Proof. We need to prove that ifM |= A{BSCM,≤,M,PV,KR}, thenM |= A{BSCM,≤,PV,K}, and subsequently apply Theo-
rem 4.6. Specifically, we only need to demonstrate that ifM |= A{BSCM,≤,M,PV,KR}, then AK(M) holds.

Assume thatM |= A{BSCM,≤,M,PV,KR}. Then,M is a Markov BSCM with causal order ≤ and observational distribution
PV. For each i ∈ I, consider any pair v,v′ ∈ ΩV. Given the observational distribution PV, the conditional distribution
PVi|Vpa(i)

(·,vpa(i)) is almost surely uniquely determined by Theorem A.12. Then, according to Lemma 4.7, the KR transport
between PVi|Vpa(i)

(·,vpa(i)) and PVi|Vpa(i)
(·,v′

pa(i)) is almost surely unique. Let the partial function Ki(·,v,v′) be any
version of these KR transports. Therefore, Ki(·,v,v′) is almost uniquely determined, and hence K = (Ki)i∈I is also
almost uniquely determined.

SinceAKR(M) holds, the components of the counterfactual transport KM,i are almost surely equivalent to the KR transports.
Moreover, because KM,i is a transport between conditional distributions by Proposition 4.5, and by Lemma 4.7, the KR
transport between two distributions is almost surely unique given the distributions. Therefore, the component KM,i(·,v,v′)
of the counterfactual transport is almost surely equivalent to Ki(·,v,v′). Since the counterfactual transport KM = (Ki)i∈I ,
it follows that the counterfactual transport KM = K holds almost surely. Thus, AK(M) is satisfied.

Consequently, we have proven that if M |= A{BSCM,≤,M,PV,KR}, then M |= A{BSCM,≤,PV,K}. By Theo-
rem 4.6, for any pair M(1),M(2) |= A{BSCM,≤,PV,K}, it holds that M(1) ∼EI M(2). Therefore, for any pair
M(1),M(2) |= A{BSCM,≤,M,PV,KR}, we also have M(1) ∼EI M(2). This implies that the SCM is ∼EI-identifiable
from A{BSCM,≤,M,PV,KR}.

A.4. Triangular Monotonic SCM

There are some properties of TM mappings:

Lemma A.15. For a TM mapping T : Rd → Rd, its inverse T−1 is also a TM mapping, and the monotonicity signature
satisfies ξ(T) = ξ(T−1).

Proof. To clarify the proof, we denote the domain or codomain by the symbols ΩX and ΩZ, both of which actually refer to Rd.
For a TM mapping T : ΩX → ΩZ, assume it is of the form T(x) = (Tj(x1:j−1, xj))j∈1:d, where Tj : ΩX1:j−1

× ΩXj
→

ΩZj . According to the definition of a TM mapping, for any x1:j−1 ∈ ΩX1:j−1 , the function Tj(x1:j−1, ·) : ΩXj → ΩZj is
consistently strictly monotonic. That is, for each j ∈ 1:d, there exists ξj ∈ {−1, 1} such that ξ(Tj) = ξj .

We construct T̃1:j : ΩZ1:j
→ ΩX1:j

such that it is of the form T̃1:j = (T̃k)k∈1:j and

T̃j(z1:j , zj) =
(
Tj(T̃1:j(z1:j), ·)

)−1

(zj).

for any j ∈ 1:d and any z1:j ∈ ΩZ1:j
. Since T̃j depends only on z1:j , T̃ is a triangular mapping.

Let T̃ = T̃1:j . Next, we prove that T̃ = T−1, meaning that T̃ is the explicit form of the inverse function of T. According
to the definition of an invertible function, we need to show that z = T(T̃(z)) for any z ∈ ΩZ. Consider each component,
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i.e., prove that zj = (T(T̃(z)))j for any j ∈ 1:d. First, by the form of T, we can expand its j-th component as

(T(T̃(z)))j = Tj((T̃(z))1:j−1, (T̃(z))j).

According to the previous construction, (T̃(z))1:j−1 = T̃1:j−1(z1:j−1) and (T̃(z))j = T̃j(z1:j , zj). Substituting these into
the above equation, we obtain

(T(T̃(z)))j = Tj

(
T̃1:j−1(z1:j−1),

(
Tj(T̃1:j(z1:j), ·)

)−1

(zj)

)
.

Now, we need to show that the above expression equals zj for each j ∈ 1 :d. Let T1:j−1(z1:j−1) = x′
1:j−1. Since T is a

TM mapping, the function Tj(x
′
1:j−1, ·) : ΩXj

→ ΩZj
is always strictly monotonic and hence invertible. Therefore, the

expression simplifies to
Tj(x

′
1:j−1, ·) ◦ Tj(x

′
1:j−1, ·)−1(zj) = zj .

Thus, (T(T̃(z)))j = zj holds for each j ∈ 1:d, implying that T̃ = T−1. Since T̃ is a triangular mapping, T−1 is also a
triangular mapping.

Next, we consider the monotonicity signature. For each j ∈ 1:d, recalling that

T̃j(z1:j , zj) =
(
Tj(T̃1:j(z1:j), ·)

)−1

(zj).

If for any x1:j−1 ∈ ΩX1:j−1 , the function Tj(x1:j−1, ·) : ΩXj → ΩZj is s.m.i., then its inverse T−1
j (x1:j−1, ·) : ΩZj →

ΩXj
is also s.m.i. For any z1:j−1 ∈ ΩZ1:j−1

, let T1:j−1(z1:j−1) = x′
1:j−1. Since x′

1:j−1 ∈ ΩX1:j−1
, the function

(Tj(x
′
1:j−1, ·))−1 is always s.m.i. Therefore, T̃j is s.m.i. with respect to zj given any z1:j−1 ∈ ΩZ1:j−1

. Similarly, when
Tj(x1:j−1, ·) is s.m.d., a similar conclusion holds. Therefore, according to the definition of the monotonicity signature, for
each j ∈ 1:d, there exists ξj ∈ {−1, 1} such that ξ(Tj) = ξ(T̃j) = ξj . Consequently,

ξ(T−1) = ξ(T̃) = (ξ(T̃j))j∈1:d = (ξj)j∈1:d = (ξ(Tj))j∈1:d = ξ(T),

i.e., the monotonicity signature satisfies ξ(T−1) = ξ(T).

Moreover, since
∑d

j=1 |ξj | = d and T−1 is a triangular mapping, according to the definition of a TM mapping, T−1 is
indeed a TM mapping.

Lemma A.16. For two TM mappings T(1) : Rd → Rd and T(2) : Rd → Rd, their composition T(1) ◦T(2) is also a TM
mapping, and the monotonicity signature satisfies ξ(T(1)◦T(2)) = ξ(T(1))⊙ξ(T(2)), where⊙ denotes the component-wise
multiplication.

Proof. To clarify the proof, we denote the domains or codomains by the symbols ΩX, ΩY, and ΩZ, all of which actually
refer to Rd. For the TM mapping T(1) : ΩY → ΩZ, assume it is of the form T(1)(y) = (T

(1)
j (y1:j−1, yj))j∈1:d, where

T
(1)
j : ΩY1:j−1

× ΩYj
→ ΩZj

. According to the definition of a TM mapping, for any y1:j−1 ∈ ΩY1:j−1
, the function

T
(1)
j (y1:j−1, ·) : ΩYj → ΩZj is consistently strictly monotonic. Therefore, for each j ∈ 1 :d, there exists ξ(1)j ∈ {−1, 1}

such that ξ(T (1)
j ) = ξ

(1)
j . The same holds for the TM mapping T(2).

We construct T̃1:j : ΩX1:j
→ ΩZ1:j

such that it is of the form T̃1:j = (T̃k)k∈1:j and

T̃j(x1:j , xj) = T
(1)
j

(
T

(2)
1:j (x1:j), T

(2)
j (x1:j , xj)

)
,

where T
(2)
1:j = (T

(2)
k )k∈1:j . Since T̃j depends only on x1:j , T̃ is a triangular mapping.

According to the form of T(1), for any j ∈ 1:d and any x ∈ ΩX, let y = T(2)(x). Then,

((T(1) ◦T(2))(x))j = (T(1)(y))j = T
(1)
j (y1:j , yj).
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According to the form of T(2), we have

y1:j = (T(2)(x))1:j = (T
(2)
k (x1:k−1, xk))k∈1:j = T

(2)
1:j (x1:j),

and yj = T (2)(x1:j , xj). Therefore,

((T(1) ◦T(2))(x))j = T
(1)
j (y1:j , yj)

= T
(1)
j

(
T

(2)
1:j (x1:j), T

(2)(x1:j , xj)
)
= T̃j(x1:j , xj)

for any j ∈ 1:d. Let T̃ = T̃1:j . That is, T̃ = T(1) ◦T(2). Since T̃ is a triangular mapping, T(1) ◦T(2) is also a triangular
mapping.

Next, we consider the monotonicity signature. For each j ∈ 1:d, recalling that

T̃j(x1:j , xj) = T
(1)
j

(
T

(2)
1:j (x1:j), T

(2)(x1:j , xj)
)
.

If for any x1:j−1 ∈ ΩX1:j−1
, the function T

(2)
j (x1:j−1, ·) : ΩXj

→ ΩYj
is s.m.i., and for any y1:j−1 ∈ ΩY1:j−1

, the function

T
(1)
j (y1:j−1, ·) : ΩYj → ΩZj is also s.m.i., then the composition T

(1)
j (y1:j−1, ·) ◦ T (2)

j (x1:j−1, ·) is s.m.i. According to
the definition of monotonic functions, if both functions have the same monotonicity, the composition is s.m.i.; if they have
opposite monotonicities, the composition is s.m.d. Therefore, according to the definition of the monotonicity signature, for
each j ∈ 1:d, we have ξ(T̃j) = ξ

(1)
j ∗ ξ(2)j . Consequently,

ξ(T(1) ◦T(2)) = ξ(T̃) = (ξ(T̃j))j∈1:d = (ξ
(1)
j ∗ ξ(2)j )j∈1:d = (ξ(T

(1)
j ) ∗ ξ(T (2)

j ))j∈1:d = ξ(T(1))⊙ ξ(T(2)),

i.e., the monotonicity signature satisfies ξ(T(1) ◦T(2)) = ξ(T(1))⊙ ξ(T(2)).

Moreover, since ξ
(1)
j , ξ

(2)
j ∈ {−1, 1}, it follows that |ξ(1)j ∗ ξ(2)j | = 1 for any j ∈ J . Therefore,

∑d
j=1 |ξ

(1)
j ∗ ξ(2)j | = d.

Additionally, since T(1) ◦T(2) is a triangular mapping, according to the definition of a TM mapping, T(1) ◦T(2) is indeed
a TM mapping.

Remark A.17. For two TM mappings T(1) : Rd → Rd and T(2) : Rd → Rd, if ξ(T(1)) = ξ(T(2)), then ξ(T(1) ◦T(2)) =
(1)1:d, meaning that T(1) ◦T(2) is a TMI mapping.

Proof. This result trivially follows from the component-wise multiplication and Lemma A.16.

Lemma A.18. For a TM mapping T : Rd → Rd, its subcomponent Ti:j restricted to any x1:i−1 ∈ Ri−1, i.e., Ti:j(x1:i−1, ·),
is also a TM mapping for any i, j ∈ 1:d with i < j, and its monotonicity signature satisfies ξ(Ti:j(x1:i−1, ·))i:j = (ξ(T))i:j .

Proof. To clarify the proof, we denote the domain or codomain by the symbols ΩX and ΩZ, both of which actually refer to Rd.
For a TM mapping T : ΩX → ΩZ, assume it is of the form T(x) = (Tj(x1:j−1, xj))j∈J , where Tj : ΩX1:j−1

×ΩXj
→ ΩZj

.
According to the definition of a TM mapping, for any x1:j−1 ∈ ΩX1:j−1

, the function Tj(x1:j−1, ·) : ΩXj
→ ΩZj

is
consistently strictly monotonic. Therefore, for each j ∈ 1:d, there exists ξj ∈ {−1, 1} such that ξ(Tj) = ξj .

The subcomponent Ti:j is of the form (Tk(x1:i−1,xi:j−1, xj))k∈i:j . For any x1:i−1 ∈ Ri−1, the restriction Ti:j(x1:i−1, ·) is
of the form (Tk(x1:i−1,xi:j−1, xj))k∈i:j . Since Tk(x1:i−1, ·) depends only on xi:j , Ti:j(x1:i−1, ·) is a triangular mapping.

Now consider the monotonicity signature. Assume that for each k ∈ i : j, according to the definition of ξ(Tk), Tk is s.m.i.
with respect to xk given any x1:k−1 ∈ ΩX1:k−1

. Since (x′
1:i−1,xi:k−1) ∈ ΩX1:k−1

, Tk(x
′
1:i−1, ·) is also s.m.i. with respect

to xk given any xi:k−1 ∈ ΩXi:k−1
. The same conclusion holds when Tk is s.m.d.

Thus, according to the definition of the monotonicity signature, for any x1:i−1 ∈ Ri−1 and each k ∈ i : j, we have
ξ(Tk(x1:i−1, ·)) = ξk. Consequently,

ξ(Ti:j(x1:i−1, ·)) = (ξ(Tk(x1:i−1, ·)))k∈i:j = (ξk)k∈i:j = (ξ(T))i:j .

Moreover, since
∑j

k=i |ξk| = j − i+ 1, and because Ti:j(x1:i−1, ·) is a triangular mapping, it follows from the definition
of TM mappings that Ti:j(x1:i−1, ·) is a TM mapping.
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Lemma A.19. For the vectorization ι under ≤, for each i ∈ I, there exists li = 1 +
∑

i∈pr(i) di, such that the image set
ι[{(i, j)}j∈1:di

] = li : li + di − 1, where pr(i) denotes the prefix of index i under ≤.

Proof. Recall that the vectorization ι is a flattening mapping such that for any (i, j), (i, j′) ∈ I , ι(i, j)− ι(i, j′) = j − j′,
and for any (i, j), (i′, j′) ∈ I , i < i′ implies ι(i, j) < ι(i′, j′). We prove the result using induction over the partial order ≤.

When | pr(i)| = 0, we have li = 1. Since there does not exist any i′ ∈ I such that i′ < i, there are no pairs (i′, j′) such that
(i′, j′) < (i, 1). Thus, by the definition of vectorization, ι(i, 1) = 1. For any {(i, j)}j∈1:di

, we have ι(i, j)− ι(i, 1) = j− 1,
so ι(i, j) = j − 1 + 1 = j. Therefore, the image set is ι[{(i, j)}j∈1:di ] = 1 : di = li : li + di − 1.

Suppose for any k ∈ I with | pr(k)| < | pr(i)|, there exists lk = 1+
∑

i∈pr(k) di such that the image set ι[{(k, j)}j∈1:dk
] =

lk : lk + dk − 1. Let li = 1 +
∑

i∈pr(i) di.

Since ι is a bijection, the preimage ι−1[1 : li − 1] = ι−1[
⋃

pr(k)<pr(i)(lk : lk + dk − 1)] =
⋃

pr(k)<pr(i){(k, j)}j∈1:dk
by the

inductive hypothesis. Therefore, ι(i, 1) = 1 +
∑

i∈pr(i) di.

For any {(i, j)}j∈1:di
, we have ι(i, j)− ι(i, 1) = j−1, so ι(i, j) = j−1+(1+

∑
i∈pr(i) di) = j+

∑
i∈pr(i) di. Therefore,

the image set is ι[{(i, j)}j∈1:di
] = 1 +

∑
i∈pr(i) di : di +

∑
i∈pr(i) = li : li + di − 1.

Lemma A.20. For the vectorization ι under ≤, if ≤ is a causal order, let an(i) = {(j, k) | j ∈ an(i), k ∈ 1:dj}. Then, for
each i ∈ I, the image set satisfies ι[an(i)] ⊆ 1: li − 1.

Proof. We prove this by contradiction. Assume there exists j ∈ an(i) such that lj + dj − 1 ≥ li. Since j ̸= i (as i /∈ an(i)
due to acyclicity), and using the properties of vectorization, it follows that lj ≥ li + di.

Thus, lj > li holds if and only if j > i (by the properties of vectorization). However, since j ∈ an(i), we know j < i (by
the definition of causal order). This contradicts the assumption that j > i. Therefore, the assumption lj + dj − 1 ≥ li does
not hold. Hence, for any i ∈ I, we have ι[an(i)] ⊆ 1: li − 1.

Proposition 5.3. A recursive SCMM is a TM-SCM if and only if fi(v, ·) is a TM mapping and there exists ξi such that
ξ(fi(v, ·)) = ξi for every i ∈ I and all v ∈ ΩV.

Proof. Consider a causal order ≤ with its vectorization ι. Define the reindexing mapping Pι,i = (Pι,i,j)j∈di
. By

Lemma A.19, the vectorization satisfies Pι,i((xi,j)j∈1:di) = (xj)j∈li:li+di−1 and its inverse P−1
ι,i ((xj)j∈li:li+di−1) =

(xi,j)j∈1:di . For simplicity, when we refer to vi or ui indexed by I, we actually mean the entire vector (xi,j)j∈1:di .

=⇒ : Assume that the SCMM is a TM-SCM. By Definition 5.2, there exists a causal order ≤ with its vectorization ι such
that the reindexed solution mapping Pι ◦ Γ is a TM mapping. Let Pι ◦ Γ = T = (Tj)j∈1:D, where each Tj is of the form
Tj(u1:j−1, uj), and D =

∑
i∈I di. Then, for each i ∈ I, we have (Γ)i = P−1

ι,i ◦ ((Tj)j∈li:li+di−1) = P−1
ι,i ◦Tli:li+di−1.

By Lemma A.2, Γ(u) = (f̃i(uan∗(i)))i∈I , so f̃i = P−1
ι,i ◦Tli:li+di−1. The function Tli:li+di−1(u1:li−1, ·) is of the form

Tli:li+di−1(u1:li−1,uli:li+di−1). Thus, (P−1
ι,i ◦Tli:li+di−1)(uι−1[1:li−1], ·) is of the form

(P−1
ι,i ◦Tli:li+di−1)(uι−1[1:li−1], (ui,j)j∈1:di

).

By Lemma A.20 and the fact that uan(i) = (ui,j)an(i), f̃i is independent of u1:li−1\ι[an(i)]. Hence,

f̃i(uan(i), ui) = (P−1
ι,i ◦Tli:li+di−1)(uan(i), (ui,j)j∈1:di),

implying that f̃i(uan(i), ·) is a triangular mapping.

By Lemma A.18, the monotonicity signature satisfies ξ(Tli:li+di−1(x1:li−1, ·))li:li+di−1 = (ξ(T))li:li+di−1. Thus,
ξ(f̃i(uan(i), ·)) = (ξ(T))li:li+di−1. Since

∑
j∈li:li+di−1 |(ξ(T))j | = di, it follows that f̃i(uan(i), ·) is a TM mapping.

Finally, since TM mappings are bijections, for any given v ∈ ΩV, there exists u′ ∈ ΩU such that u′ = Γ−1(v). By
Definition A.1, fi((f̃k(u′

an∗(k)))k∈pa(i), ·) = f̃i(u
′
an(i), ·). Therefore, for all v ∈ ΩV, fi(v, ·) is a TM mapping, and there

exists ξi = (ξ(T))li:li+di−1 such that ξ(fi(v, ·)) = ξi.
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⇐= : Let ≤ be any causal order and ι its vectorization. Assume fi(v, ·) is a TM mapping and there exists ξi such that
ξ(fi(v, ·)) = ξi for each i ∈ I and all v ∈ ΩV. For any given v ∈ ΩV, there exists u′ ∈ ΩU such that u′ = Γ−1(v). By
Definition A.1,

fi((f̃k(u
′
an∗(k)))k∈pa(i), ·) = f̃i(u

′
an(i), ·).

By assumption, f̃i(uan(i), ·) is a TM mapping with ξ(f̃i(v, ·)) = ξi. Using Lemma A.20, we construct Tli:li+di−1 = Pι,i◦f̃i,
where ξ(Tj) = (ξi)j−li+1 for each j ∈ li : li + di − 1.

By Lemma A.2, Γ = (f̃i)i∈I . Thus,

Pι ◦ Γ = (Pι,i ◦ f̃i)i∈I = (Tli:li+di−1)i∈I = (Tj)1:D.

Each Tj depends only on u1:li−1, and since
∑

j∈1:D |ξ(Tj)| =
∑

i∈I di = D, Pι ◦ Γ is a TM mapping. By Definition 5.2,
M is a TM-SCM.

Corollary 5.4 (EI-ID from Triangular Monotonicity). An SCM is ∼EI-identifiable from A{TM-SCM,≤,M,PV}.

Proof. We aim to prove that ifM |= A{TM-SCM,≤,M,PV}, thenM |= A{BSCM,≤,M,PV,KR}, allowing us to utilize Theo-
rem 4.8. Specifically, it suffices to show that ifM |= A{TM-SCM,≤,M,PV}, then AKR(M) holds.

Assume M |= A{TM-SCM,≤,M,PV}. Then M is a Markovian BSCM, inducing the causal order ≤, with the observed
distribution PV. SinceM is a TM-SCM, by Proposition 5.3, for each i ∈ I and all v ∈ ΩV, the causal mechanism fi(v, ·)
is a TM mapping, and there exists ξi such that ξ(fi(v, ·)) = ξi. Furthermore, by the definition of counterfactual transport
and Remark A.17, KM,i = (fi(v

′, ·)) ◦ (fi(v, ·))−1 is a TMI mapping for any pair v,v′ ∈ ΩV.

Now, for each i ∈ I , consider an arbitrary pair v,v′ ∈ ΩV. Given the observed distribution PV, the conditional distribution
PVi|Vpa(i)

(·,vpa(i)) is almost surely uniquely determined by Theorem A.12. Consequently, the conditional distributions
PVi|Vpr(i)

(·,vpr(i)) and PVi|Vpr(i)
(·,v′

pr(i)) are also almost surely determined.

Given these distributions, by Lemma 5.1 and Proposition 4.5, the TMI mapping KM,i = (fi(v
′, ·)) ◦ (fi(v, ·))−1 is almost

surely equivalent to KR transport. Thus, AKR(M) holds. Hence, we have proven that ifM |= A{TM-SCM,≤,M,PV}, then
M |= A{BSCM,≤,M,PV,KR}.

By Theorem 4.8, for any pair M(1),M(2) |= A{BSCM,≤,M,PV,KR}, we have M(1) ∼EI M(2). Therefore, for any pair
M(1),M(2) |= A{TM-SCM,≤,M,PV}, we also have M(1) ∼EI M(2). Thus, SCMs from A{TM-SCM,≤,M,PV} are ∼EI-
identifiable.

Lemma A.21 (restated from Khoa Le et al. 2025, Theorem 1). If the velocity field v : Rd × [0, 1] → Rd is a Lipschitz
continuous triangular mapping for any t ∈ [0, 1], then for the ODE{

dx(t) = v(x(t), t) dt,

x(0) = x0,

the flow T (·, t) is a TMI mapping for any t ∈ [0, 1].

Proof. We first show that T (·, t) is a triangular mapping. Writing T (·, t) as (Tj(·, t))j=1:d and x(t) as (xj(t))j=1:d,
consider dimension j = 1. Since v1(·, t) is a triangular mapping depending only on x1(t), the corresponding ODE can be
written as {

dx1(t) = v1(x1(t), t) dt,

x1(0) = x1,0.

This is a one-dimensional ODE. By Lipschitz continuity and the Picard–Lindelöf theorem, the solution exists and is unique,
implying that x1(t) depends only on x1,0. Therefore, by the definition of the flow, T1(x0, t) = x1(t) depends only on x1,0.

Now, assume by induction that Tj−1(x0, t) = xj−1(t) depends only on x1:j−1,0. For dimension j, since vj(·, t) is a
triangular mapping depending only on x1:j(t), the corresponding ODE can be written as{

dxj(t) = vj(x1:j(t), t) dt,

x1:j(0) = x1:j,0,
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or equivalently, 
dxj(t) = vj(x1:j−1(t),xj(t), t) dt,

xj(0) = xj,0,

x1:j−1(0) = x1:j−1,0.

Here, x1:j−1(t) depends only on x1:j−1,0 and can be treated as a constant. Thus, the ODE for xj(t) becomes a one-
dimensional ODE. By Lipschitz continuity and the Picard–Lindelöf theorem, the solution exists and is unique, implying that
xj(t) depends only on xj,0. Consequently, xj(t) depends only on x1:j,0 when x1:j−1,0 is unspecified. By the definition of
the flow, Tj(x0, t) = xj(t) depends only on x1:j,0.

By induction, T (·, t) is a triangular mapping.

Next, we show that T (·, t) is a TMI mapping. For each dimension j, consider two different initial values xj,0, x
′
j,0 ∈ R

such that xj,0 < x′
j,0. From the previous proof, given x1:j−1,0, the ODE is one-dimensional. Using a proof by contradiction,

suppose that at time t = t′, we have xj(t) ≥ x′
j(t), where xj(t) and x′

j(t) are the solutions starting at xj,0 and x′
j,0,

respectively. By continuity, there exists t∗ ≤ t′ such that xj(t
∗) = x′

j(t
∗). However, by Lipschitz continuity and the

Picard–Lindelöf theorem, the solution to the ODE is unique for any t. Thus, if xj(t
∗) = x′

j(t
∗) at some t, then xj(t) = x′

j(t)
for all t, including t = 0. This contradicts the assumption xj,0 < x′

j,0, so the hypothesis is false.

Therefore, given x1:j−1,0, if xj,0 < x′
j,0, then xj(t) < x′

j(t). In other words, ξ(Tj(·, t)) = ξ(xj) = 1.

In summary, T (·, t) is a triangular mapping and
∑d

j=1 ξ(Tj(·, t)) = d. By the definition of a TMI mapping, T (·, t) is a
TMI mapping.

B. Related Works
B.1. Identifiability

Counterfactual Identification Previous work on counterfactual identification has typically focused on identifying specific
classes of counterfactual statements φφφ ⊆ L3, which can be categorized as follows: (i) Constraining causal structures to
identify specific counterfactual effects. This involves representing counterfactual statements using symbols, graphs, and
available observational and interventional distributions. Examples include the identification of counterfactual probabilities
(Shpitser & Pearl, 2008), nested counterfactual probabilities (Correa et al., 2021), sufficient or necessary probabilities
(Tian & Pearl, 2000), path-specific effects (Avin et al., 2005), discrimination effects (Zhang & Bareinboim, 2018), and
identification via neural networks (Xia et al., 2023). (ii) Constraining causal mechanisms to identify counterfactual outcomes.
This focuses on deterministic counterfactuals inferred through abduction-action-prediction (Pearl, 2009), a special class of
counterfactual statements of the form y[x] |x′,y′. Identifiability is achieved primarily by imposing parametric constraints
such as monotonicity, as in (Lu et al., 2020), (Nasr-Esfahany et al., 2023), and (Scetbon et al., 2024).

Identifiability The identifiability exhibited by generative models has been a continuously discussed topic in the literature,
spanning tasks such as representation learning (Bengio et al., 2013), causal discovery (Glymour et al., 2019), causal
representation learning (Schölkopf et al., 2021), and causal quantity reasoning (Pearl, 2009). Identifiability in representation
learning refers to uniquely determining latent factors under certain ambiguities, such as permutation and scaling (Hyvärinen
et al., 2023), affine transformations (Kivva et al., 2022), or component-wise invertible transformations (Gresele et al., 2021).
In causal discovery, identifiability pertains to structural identifiability, which requires determining equivalence classes of
causal graphs (Spirtes & Zhang, 2016; Vowels et al., 2022) or identifying the direction of cause and effect (Shimizu et al.,
2006; Hoyer et al., 2008). In causal representation learning, identifiability involves determining latent causal variables and
causal structures, where causal variables must satisfy component-wise diffeomorphic mappings, and causal structures require
graph isomorphism (Brehmer et al., 2022; von Kügelgen et al., 2023). Finally, in causal quantity reasoning, identifiability
refers to the consistency of causal statements (Pearl, 2009), which was previously termed causal identification.

B.2. Triangular Monotonic SCMs

To demonstrate the broad applicability of Corollary 5.4, we summarize several representative works from the past and
establish their connection to our theory by proving that they are special cases of the TM-SCM. This highlights the significance
of our theoretical contributions. Overall, these works can be categorized based on the criteria outlined in Table 2, which
further inspires us to derive four prototypical models of neural TM-SCMs.
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Table 2. Representative works that are special cases of the TM-SCM.

Model Research Domain TM Object TM Type TM Principle

LINGAM Cause-effect Identification fi ANM b⊺
i vpa(i) + ui

ANM Cause-effect Identification fi ANM gi(vpa(i)) + ui

LSNM Cause-effect Identification fi ANM li(vpa(i)) + si(vpa(i)) · ui

BGM Counterfactual Identification fi UMM Prior
PNL Cause-effect Identification fi UMM h(gi(vpa(i)) + ui)
FIP Counterfactual Identification fi UMM C1 smoothness

CAREFL Cause-effect Identification Pι ◦ Γ DCF Affine Transform
STRAF Causal Quantity Estimation Pι ◦ Γ DCF UMNN Transform

CAUSALNF Causal Quantity Estimation Pι ◦ Γ DCF Monotonic RQS Transform
CCNF Causal Quantity Estimation Pι ◦ Γ DCF Partial Causal Transform
CKM Generalization Pι ◦ Γ CCF Picard–Lindelöf
CFM Causal Quantity Estimation Pι ◦ Γ CCF Picard–Lindelöf

Original Research Domain The related works summarized here originate from various research domains, each with
distinct objectives. For instance, many studies on specialized SCMs aim to address the task of cause-effect identification in
causal discovery. Others, as previously mentioned, focus on identifying counterfactual outcomes by imposing constraints
on causal mechanisms. Some works explore how to generalize SCMs to other scenarios. Another line of research, more
aligned with deep generative models, seeks to address efficient causal effect estimation. Interestingly, despite their differing
objectives, the SCM formulations of these works uniformly fall under the TM-SCM framework.

Triangular Monotonicity Object The TM-SCM framework admits two equivalent definitions. One, as described in
Definition 5.2, requires the solution mapping Pι ◦ Γ, obtained by reindexing under the causal ordering vectorization ι, to
be a TM mapping. The other, given in Proposition 5.3, ensures that the causal mechanism fi(v, ·) for each i ∈ I and any
v ∈ ΩV is a TM mapping with consistent monotonicity signatures. Therefore, these works can be categorized based on
whether they focus on constraining the global solution mapping Pι ◦ Γ or individual causal mechanisms fi.

Triangular Monotonicity Type Existing works can be further categorized based on the types of triangular monotonicity
they achieve:

• Additive Noise Mechanism (ANM): Additive noise mechanisms restrict each causal mechanism fi in the SCM to the
form α(vpa(i)) + β(vpa(i)) · ui, where β is required to be a strictly positive function. Consequently, even for vector-valued
cases, the causal mechanism fi(v, ·) for each i ∈ I and any v ∈ ΩV is always a TMI mapping. This follows from the
Jacobian matrix being diagonal, with each diagonal element (β(vpa(i)))j > 0 due to the constraints on β. Relevant works
include LiNGAM (Shimizu et al., 2006), ANM (Hoyer et al., 2008), and LSNM (Immer et al., 2023). These studies have
inspired the construction of DNME-type neural TM-SCMs.

• Univariate Monotonic Mechanism (UMM): In the univariate case, functions are necessarily strictly Monotonicity if
they are invertible. Thus, it suffices to further constrain the monotonicity signature of each causal mechanism fi(v, ·) to
be consistent for every i ∈ I and any v ∈ ΩV. This consistency can be ensured by various approaches: (1) enforcing the
function to be s.m.i or s.m.d through prior construction, (2) indirectly composing an additive noise mechanism with an
invertible function, or (3) deriving monotonicity consistency from C1 smoothness. These approaches correspond to BGM
(Nasr-Esfahany et al., 2023), PNL (Zhang & Hyvärinen, 2009), and FiP (Scetbon et al., 2024), respectively. These works
have inspired the construction of TNME-type neural TM-SCMs, extending from the univariate to the multivariate case.

• Discrete Causal Flow (DCF): Certain discrete-time transformations in normalizing flows, such as affine transformations
(Dinh et al., 2017), unconstrained monotonic neural networks (Wehenkel & Louppe, 2019), and monotonic rational
quadratic splines (Durkan et al., 2019), can be shown to be TMI mappings. When these transformation blocks are
composed, the entire normalizing flow also remains a TMI mapping. Several works establish a connection between Γ
and normalizing flows, such as CAREFL (Khemakhem et al., 2021), StrAF (Chen et al., 2023), CausalNF (Javaloy et al.,
2023), and CCNF (Zhou et al., 2025), each employing different transformation blocks. These works can be classified as
the CMSM-type neural TM-SCMs.

• Continuous Causal Flow (CCF): In continuous-time settings where ODEs are used to construct SCMs, structural
constraints are introduced into the velocity field, providing a novel pathway to induce TM mappings. Specifically, when
the velocity field is triangular, the solution to the ODE is always a TMI mapping, as guaranteed by the Picard–Lindelöf
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condition (see Lemma A.21). Some works establish equivalence between the ODE solution and the solution mapping
Γ of an SCM, such as CKM (Peters et al., 2022) and CFM (Khoa Le et al., 2025). These studies lay the foundation for
constructing TVSM-type neural TM-SCMs.

Corollary 5.4 establishes that, under the additional assumptions of Markov property and identical causal ordering, and
provided they induce the same observational distribution, the constructed models are identifiable up to the ∼EI-equivalence
class. Furthermore, by Theorem 3.2, these models are mutually L3-consistent, implying that they are indistinguishable at
the counterfactual level. Therefore, when these models are claimed to be counterfactually consistent or counterfactually
identifiable, Corollary 5.4 and Theorem 3.2 theoretically justify such assertions.

B.3. Theories

We now elaborate on how other related theorems mentioned in the main text can be interpreted as special cases of Theorem 3.2
and Corollary 5.4, starting with a restatement of these theorems using the notation of this paper.

Special cases of Theorem 3.2 Several prior works have introduced notions similar to exogenous isomorphism and shown
that SCMs satisfying these equivalence relations enjoy counterfactual consistency, mirroring the result of Theorem 3.2.

For instance, (Peters et al., 2017) formalizes the concept of counterfactual equivalence and proves that, when two SCMs
share the same exogenous distribution, counterfactual equivalence is guaranteed by the following theorem:

Theorem B.1 (restated from Peters et al. 2017, Proposition 6.49). For two recursive SCMs M(1) and M(2), if their
exogenous distributions satisfy P

(1)
U = P

(2)
U = PU, and for each i ∈ I, for almost every ui ∈ ΩUi

and all v ∈ ΩV,

f
(2)
i (vpa(2)(i), ui) = f

(1)
i (vpa(1)(i), ui),

thenM(1) andM(2) are counterfactually equivalent.

The original purpose of this theorem was to establish the minimality property of SCMs: namely, if a mechanism in an SCM
does not depend on one of its parent endogenous variables, one can always select an SCM with a sparser structure. However,
as elaborated in the main text, the counterfactual equivalence defined in this way mandates a fixed latent representation.

(Nasr-Esfahany et al., 2023) relaxes counterfactual equivalence to non-fixed latent encodings: rather than requiring the
exogenous distributions to coincide exactly, it only demands a component-wise bijection.

Theorem B.2 (restated from Nasr-Esfahany et al. 2023, Proposition 6.2). Suppose f(Vpa(i), Ui) is a BGM, meaning that

for each realization vpa(i) of Vpa(i), f(vpa(i), ·) is invertible. For two BGMs f1 and f2, if for almost every u
(1)
i ∈ Ω

(1)
Ui

and
all v ∈ ΩV,

f (2)(vpa(2)(i), g(u
(1)
i )) = f (1)(vpa(1)(i), u

(1)
i ),

where g : Ω
(1)
Ui
→ Ω

(2)
Ui

is a bijection, then we say that f1 and f2 are equivalent. Two BGMs are equivalent if and only if
they produce the same counterfactual outcomes.

Although this result is weaker than that of (Peters et al., 2017), it is confined to BSCMs. Moreover, the original paper
considers only a single causal mechanism within a BSCM, referred to as a BGM. In addition, the theorem addresses
counterfactual outcomes rather than counterfactual distributions, a gap filled later by Theorem B.6. In contrast, although
conceptually similar, Theorem 3.2 is not limited to BSCMs; it applies to any recursive SCM.

Recent advances in causal representation learning yield analogous results. Specifically, (Brehmer et al., 2022) investigates
a class of models termed Latent Causal Models (LCMs). Because the causal mechanisms in an LCM are assumed to
be point-wise diffeomorphic, an LCM can be viewed as a BSCM augmented with latent endogenous variables. Using
an isomorphism-based criterion to characterize equivalence between LCMs, the authors show that a component-wise
diffeomorphic latent representation aligns the counterfactual distributions of two LCMs (counterfactual distributions are
referred to in their paper as weakly supervised distributions).

Theorem B.3 (restated from Brehmer et al. 2022, Theorem 1). For LCMsM andM′. If they can be reparameterized
through the graph isomorphism and elementwise diffeomorphisms, we say there is an LCM isomorphism between them, or
LCM equivalence, and we writeM∼LCM M′. Assume that (i) the two models share the same observation space; (ii) the
domains of every endogenous variable and its corresponding exogenous noise are R; (iii) the intervention set contains all
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atomic, perfect interventions; and (iv) the intervention distributions have full support. Under these conditions,M∼LCM M′

if and only ifM andM′ entail equal weakly supervised distributions.

(Zhou et al., 2024) also investigates domain counterfactual equivalence between Invertible Latent Domain Causal Models
(ILDs). An ILD incorporates latent endogenous variables together with a mixing function g. Under a fully connected DAG
with a known causal ordering, the causal mechanism fd in domain d is autoregressive. Because ILD assumes invertibility, the
latent portion of its SCM can be regarded as a BSCM, and the domain counterfactual can be interpreted as a special instance
of the generalized counterfactual in which the domain itself serves as the intervention. Accordingly, a domain-specific
mechanism fd corresponds to the mechanism f[d] in the submodelM[d].

Theorem B.4 (restated from Zhou et al. 2024, Theorem 1). For two ILDsM andM′ whose mixing functions are g and g′

and whose causal mechanisms are f and f ′, if for any domains d, d′ it holds that

g ◦ fd′ ◦ f−1
d ◦ g−1 = g′ ◦ f ′

d′ ◦ (f ′
d)

−1 ◦ (g′)−1,

thenM andM′ are said to be domain counterfactual equivalent, denotedM∼DC M′. The relationM∼DC M′ holds if
and only if there exist invertible maps h1, h2 such that g′ = g ◦ h−1

1 is invertible and f ′
d = h1 ◦ fd ◦ h2 is autoregressive.

In summary, Theorem B.3 and Theorem B.4 achieve results comparable to Theorem B.2. Their main contribution is to extend
counterfactual equivalence to the setting of invertible latent causal models, where, in addition to the standard counterfactual
reasoning, an unknown mixing function maps latent causal variables to the observable space, thereby advancing the
development of causal representation learning.

Spectial cases of Corollary 5.4 Several existing results on counterfactual identifiability for SCMs under triangular
monotonicity can be regarded as special cases of Corollary 5.4.

(Lu et al., 2020) applied counterfactual reasoning in reinforcement learning, where Theorem 1 states that counterfactual
outcomes are identifiable when noise is independent of states and actions, and the state transition function is strictly
monotonically increasing:

Theorem B.5 (restated from Lu et al. 2020, Theorem 1). Assume St+1 = f(St, At, Ut+1), where Ut+1 ⊥⊥ (St, At), and
St, At, Ut denote the state, action, and noise at time step t in reinforcement learning, respectively. Suppose f is smooth and
strictly monotonically increasing for fixed St and At. Given the observed values St = st, At = a, and St+1 = st+1, the
counterfactual outcome St+1,At=a′ |St = st, At = a, St+1 = st+1 is identifiable for a counterfactual action At = a′.

Here, the independence of noise from states and actions corresponds to the Markovianity assumption. The function f , being
smooth and strictly monotonically increasing, represents a univariate TM mapping. The causal ordering assumption is
implicitly given by time step t, and the observational distribution assumption is implicitly encoded in the observed values
St = st, At = a, and St+1 = st+1. Thus, all four assumptions in Corollary 5.4 are satisfied, making the SCM described in
Theorem B.5 ∼EI-identifiable. By Theorem 3.2, this SCM is also ∼L3-identifiable, thereby ensuring the identifiability of
counterfactual outcomes.

(Nasr-Esfahany et al., 2023) further distilled the properties described in Theorem B.5 to uncover results more aligned with
general SCM formalism. Specifically, they examined a special causal mechanism known as BGM:

Theorem B.6 (restated from Nasr-Esfahany et al. 2023, Theorem 5.1). Suppose f(Vpa(i), Ui) is a BGM, meaning that
for each realization vpa(i) of Vpa(i), f(vpa(i), ·) is invertible. Then f is counterfactually identifiable given PVpa(i),Vi

if: (i)
the Markovianity assumption holds, i.e., Ui ⊥⊥ Vpa(i); and (ii) for all vpa(i), f(vpa(i), ·) is either strictly monotonically
increasing or strictly monotonically decreasing.

Compared to Theorem B.5, Theorem B.6 extends the analysis to strictly monotonically decreasing functions, which still
conform to the definition of TM mappings. The assumption of causal ordering is implicitly provided by the known pa(i).
Lastly, while the original theorem is restricted to the univariate case, Corollary 5.4 does not impose such a restriction. Thus,
Corollary 5.4 accompanied by Theorem 3.2 fully subsumes Theorem B.6.

(Scetbon et al., 2024) adopted an alternative fixed-point-based representation of SCMs, referring to the identifiability of
counterfactual outcomes as weakly partial recovery of fixed-point SCMs, and proposed the following theorem:

Theorem B.7 (restated from Scetbon et al. 2024, Theorem 2.14). Assume that ΩVi and ΩUi are subsets of R for each i ∈ I ,
PU is absolutely continuous with a continuous density, and each Ui is mutually independent. Let [M]INV denote the set of
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SCMs satisfying the observational distribution PV, causal ordering ≤, and causal mechanisms f that are C1 and such that
f(vpa(i), ·) is bijective for all i ∈ I . Then [M]INV ̸= ∅, and all models in this set are consistent on (f[x] ◦ f−1)♯PV for any
intervention x ∈ ΩX, where X ⊆ V.

Here, (f[x] ◦ f−1)♯PV represents the pushforward form of counterfactual outcomes defined via the abduction-action-
prediction framework, indicating that the theorem essentially discusses counterfactual identifiability. The mutual indepen-
dence of Ui corresponds to the Markovianity assumption. The causal ordering is represented by a permutation matrix P in
the original paper, and the observational distribution is described as a pushforward of the exogenous distribution.

Compared to Theorem B.6, the key difference lies in the lack of an explicit assumption that f(vpa(i), ·) is strictly monotonic.
Instead, this property is implicitly ensured through C1 smoothness. Specifically, leveraging C1 smoothness and (Scetbon
et al., 2024, Lemma G.8), they indirectly proved that the partial derivative of f(vpa(i), ·) with respect to ui is always strictly
positive or strictly negative, which implies consistency of the strict monotonicity of f(vpa(i), ·).

There are other generalizations of the monotonicity assumption for counterfactual identifiability. (Wu et al., 2025) employs
the rank preservation assumption to identify the counterfactual outcome, which relaxes the strict monotonicity assumption.
As discussed in the main text, strict monotonicity essentially corresponds to a lexicographical order; rank preservation can
therefore be viewed as a redefinition of this lexicographical order, thereby generalizing the monotonicity assumption.

B.4. Neural SCMs

As for the related work on neural TM-SCM, we focus here on methods designed for counterfactual inference tasks that
leverage proxy models constructed by mimicking the structure of SCMs and parameterizing them with neural networks,
which we refer to as neural SCMs.

Neural SCMs without proven identifiability A series of works connect SCMs with various deep generative models,
utilizing the inverse processes of these models to address the tractability issues in counterfactual inference. DSCM
(Pawlowski et al., 2020) employs normalizing flows and variational inference to propose a general standardized framework
for constructing SCMs using neural networks, enabling tractable inference of exogenous variables for counterfactual
reasoning. Diff-SCM (Sanchez & Tsaftaris, 2022) introduces diffusion models tailored for counterfactual inference on
high-dimensional data, where latent variables are inferred through the diffusion process, and gradients are intervened upon
during the reverse diffusion process, ultimately applied to counterfactual image generation. VACA (Sánchez-Martin et al.,
2022) parameterizes SCMs using a variational graph autoencoder (VGAE), distinguishing itself by directly modeling the
global causal mechanism rather than individual conditional mechanisms and encoding variable dependencies within the
SCM using graph neural networks. While these models introduce the concept of mimicking SCMs to construct proxy
models and enable counterfactual reasoning, they do not explicitly demonstrate the reliability of their inference results, i.e.,
whether the counterfactual outcomes are identifiable.

Neural SCMs proven to be identifiable for counterfactual effects A series of studies address the identifiability of
counterfactual effects in proxy SCMs by leveraging deep generative models. CVAE-SCM (Karimi et al., 2020) employs
conditional variational autoencoders (CVAE) to model conditional mechanisms and proves that under the Markov assumption,
certain types of counterfactual queries are identifiable solely from the observational distribution. Consequently, the
constructed model ensures consistency for these counterfactual queries. MLE-NCM (Xia et al., 2021) systematically
explores the identifiability of connecting neural networks to SCMs and demonstrates that, in discrete cases and with
sufficiently expressive neural networks, proxy models constructed from causal graphs and observational distributions exhibit
duality in L2 causal queries. That is, a causal query is identifiable on the proxy model if and only if it is identifiable on the
causal graph. iVGAE (Zečević et al., 2021) extends MLE-NCM by showing that such duality also holds when using VGAE.
GAN-NCM (Xia et al., 2023) further generalizes MLE-NCM to L3 causal queries, proving that proxy models constructed
from causal graphs and interventional distributions exhibit duality in the identifiability of counterfactual queries. The model
is trained using generative adversarial networks (GANs).

Neural SCMs with empirically identifiable counterfactual outcomes A series of studies primarily focus on proving
model identifiability and empirically demonstrate the identifiability of counterfactual outcomes through experiments.
CAREFL (Khemakhem et al., 2021) connects causal inference with autoregressive normalizing flows (ANF), utilizing affine
transformations primarily for cause-effect identification tasks in causal discovery and proposing methods for counterfactual
reasoning. CausalNF (Javaloy et al., 2023) extends this approach to other types of ANF transformations and proves model
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identifiability in latent encodings. CCNF (Zhou et al., 2025) further introduces partial causal transformations to enhance
inference performance. CFM (Khoa Le et al., 2025) generalizes this line of work from discrete normalizing flows to
continuous normalizing flows, employing flow matching for modeling. While these studies demonstrate the identifiability
of counterfactual outcomes on synthetic datasets, the connection between latent encoding identifiability (a problem in
representation learning) and counterfactual identifiability (a problem in causal quantities) remains unclear. Proving under
which conditions the former implies the latter is one of the key contributions of this work.

Neural SCMs proven to be identifiable for counterfactual outcomes A series of studies have established the identifiabil-
ity of counterfactual outcomes under specified assumptions. BGM (Nasr-Esfahany et al., 2023) investigates the identifiability
of causal mechanisms for counterfactual outcomes under the bijection assumption and proposes three identification methods,
ultimately using conditional normalizing flows to construct a proxy SCM to empirically support their findings. FiP (Scetbon
et al., 2024) formalizes SCMs and counterfactual distributions using fixed points, framing the identifiability problem for
counterfactual outcomes as the weak partial recovery problem. They identify a condition for recovering counterfactual
distributions, though their experiments return to additive noise models based on attention mechanisms while employing
optimal transport to model noise distributions. DCM (Chao et al., 2024) assumes that the exogenous distribution of the
true latent SCM is uniform, focusing on encoder-decoder models, and proposes two identification methods as extensions
of (Nasr-Esfahany et al., 2023, Proposition 6.2). These methods rely on diffusion models to construct proxy SCMs. As
shown in Appendix B.3, the first two studies are special cases of TM-SCM, while the last study leverages (Nasr-Esfahany
et al., 2023, Proposition 6.2), which corresponds to a special instance of Theorem 3.2 in this work that considers only one
single causal mechanism. Although these studies demonstrate the identifiability of counterfactual outcomes, these results
represent only a specific subset of counterfactual statements. In contrast, a key contribution of this work is proving that the
theoretical foundations extend beyond the identifiability of counterfactual outcomes to encompass the more general and
stronger ∼L3

-identifiability.

C. Neural TM-SCM
In this section, we present the implementation details of various neural TM-SCMs used in the experiments.

C.1. Vectorization

In this subsection, we will specifically address the implementation issues related to vectorization and de-vectorization,
particularly how to switch between the symbolic form of endogenous or exogenous values (primarily used for reasoning on
M) and the vectorized form (primarily used for reasoning on the solution mapping Γ) when a TM-SCM is given.

Vectorization Suppose we aim to vectorize an endogenous or exogenous value x, resulting in its vectorized form Pι(x).
Since these values originate from TM-SCM, their indices are fully aligned, and thus we do not distinguish between them
here. Vectorization requires a predefined re-indexing map ι. According to the definition provided in the main text, this
only additionally requires a causal order ≤ in the TM-SCM. The causal order can be assumed to be directly provided, as in
the neural TM-SCM problem setting described in the main text. For the ground truth TM-SCM, any causal order can be
obtained through topological sorting. Subsequently, we can construct such a map ι based on Lemma A.19, defined as

ι(i, j) = j +
∑

k∈pr(i)

dk.

From an implementation perspective, the collection of values (xi)i∈I , representing the symbolic form of x, can be expressed
as a dictionary where keys are I and values are vectors xi. Vectorization in this context involves concatenating the vectors
xi corresponding to different causal variables in the causal order ≤, resulting in

Pι(x) =

k=n⊕
|pr(i)|=k

xi,

where pr(i) denotes the causal prefix of i ∈ I under ≤, and ⊕ represents vector concatenation.

De-vectorization Suppose we aim to de-vectorize an endogenous or exogenous value Pι(x) to obtain the symbolic form
of x. This operation requires knowledge of the vectorization mapping ι, which is provided during the vectorization process.
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According to Lemma A.19 and (Pι)
−1, each causal variable is given by

xi = (Pι(x))j∈li:li+di
,

where li =
∑

k∈pr(i) dk. From an implementation perspective, this is equivalent to selecting the slice corresponding to
li : li + di from the vector Pι(x).

C.2. Exogenous Distribution

In the main text, we design the use of normalizing flows to model the exogenous distribution. However, in practical
experiments, to demonstrate the insensitivity of our theory to the type of exogenous distribution, we additionally consider
other types of exogenous distributions. Recall that, according to the Markovianity assumption, it is required that PUθ

=∏
i∈I PUi,θ

, so the following discussion focuses on each PUi,θ
.

Standard normal distribution A simple modeling approach is to use a standard normal distribution, such that

log pUi,θ
(ui) = logN (ui |0, I),

where N denotes the density of a Gaussian distribution. However, this modeling approach may not provide sufficient
expressive power. For example, in the causal mechanisms of DNME, the diagonal structure results in non-interacting
dimensions, and using a standard normal distribution in such cases would enforce independence between these dimensions.
This limitation is reflected in the experiments presented in the Appendix D.

Normalizing flow As introduced in the main text, the log-likelihood for each PUi,θ
is given by

log pUi,θ
(ui) = log pZi,θ

(T −1
i,θ (ui)) + log

∣∣∣detJT −1
i,θ

(ui)
∣∣∣ ,

where Ti,θ : Zi → Ui is a masked autoregressive flow (MAF), and
∣∣∣detJT −1

i,θ
(ui)

∣∣∣ denotes the Jacobian determinant at u.

Gaussian mixture model The log-likelihood for each PUi,θ
is given by

log pUi,θ
(ui) = log

(
K∑

k=1

wk,i,θ · N (ui |µk,i,θ,Σk,i,θ)

)
,

whereN the density of a Gaussian distribution with mean µk,i,θ and covariance matrix Σk,i,θ, both parameterized by neural
networks. Additionally,

∑K
k=1 wk,i,θ = 1 for any i ∈ I.

In the implementation, these parameterized distribution models are provided by the normalizing flow library Zuko (Rozet
et al., 2024).

C.3. DNME

We begin with the simplest DNME prototype to demonstrate how to construct the model while enabling the derivation
of inverses and log absolute Jacobian determinants. Specifically, we leverage the normalizing flow library Zuko, which
provides a unified framework and standard for building normalizing flow models. Thus, the constructed neural TM-SCM is
effectively transformed into a normalizing flow.

Recall that the symbolic form of DNME is given by

fi,θ(vpa(i),ui) = bi,θ(vpa(i)) + ai,θ(vpa(i))⊙ ui.

To transform a DNME-type neural TM-SCM into a normalizing flow, we interpret the causal mechanism fi,θ as a discrete
transformation within a normalizing flow. This can be represented using a coupling transformation c combined with an
affine transformation a:

fi,θ(vI\{i},ui) = c(vI\{i},ui;a(·;mθ(vpa(i)))),

c(x,y; f) = (x, f(y)),

a(x;a,b) = b+ exp(a)⊙ x,
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where the affine transformation satisfies the strict positivity requirement of ai,θ(vpa(i)), and the coupling transformation
ensures that fi,θ depends only on vpa(i) and ui, thereby constraining the causal structure. The function mθ is a multi-layer
perceptron (MLP) that provides the parameters required for the affine transformation.

Correspondingly, the inverse of the causal mechanism, (fi,θ(vI\{i}))
−1(vi), can be expressed as:

fi,θ(vI\{i},vi) = c−1(vI\{i},vi;a(·;mθ(vpa(i)))),

c−1(x,y; f) = (x, f−1(y)),

a−1(x;a,b) = (x− b)⊘ exp(a),

where ⊘ denotes component-wise division. The log absolute Jacobian determinants for the coupling and affine transforma-
tions are, respectively:

log |detJc(x,y; f)| = log |detJf (y)| ,

log |detJa(x;a,b)| =
∑

j∈1:di

aj ,

where aj is the j-th component of a.

The solution mapping Γθ is then composed according to the causal order ≤ as fs,θ ◦ · · · ◦ fr,θ, where pr(s) = 0 and
pr∗(r) = |I|. This forms a discrete normalizing flow, and since each transformation supports forward, inverse derivations,
and log absolute Jacobian determinant calculations, Γθ inherits these properties. Consequently, the log-likelihood of
endogenous value v(i) is computed as:

pVθ
(v(i)) = log pUθ

(Γ−1
θ (v(i))) + log

∣∣∣detJΓ−1
θ
(v(i))

∣∣∣ ,
supporting a maximum likelihood optimization process. Here, log pUθ

is the log-likelihood function of the exogenous
distribution, discussed in Appendix C.2.

C.4. TNME

The TNME improves upon the DNME, with its formal representation defined as

fi,θ(vpa(i),ui) = bi,θ(vpa(i)) +
(
Ai,θ(vpa(i))

)
u⊺
i .

Specifically, the component-wise affine transformation a is replaced by a more sophisticated lower triangular affine
transformation A, such that

fi,θ(vI\{i},ui) = c(vI\{i},ui;A(·;mθ(vpa(i)))),

A(x;A,b) = b+ tril(exp(A+ ϵ))x⊺,

where the lower triangular affine transformation takes a matrix A and a vector b as parameters. The exp function constrains
the matrix to be positive, ensuring monotonicity, while the tril function and a small positive scalar ϵ enforce the matrix to be
a full-rank lower triangular matrix, guaranteeing invertibility. The MLP mθ provides the parameters required for the lower
triangular affine transformation.

Similar to DNME, the inverse of the lower triangular affine transformation is given by

A−1(x;a,b) = (tril(exp(A+ ϵ)))−1(x− b)⊺,

where (tril(exp(A+ ϵ)))−1 is the inverse of tril(exp(A+ ϵ)). During implementation, instead of explicitly computing the
matrix inverse, the inverse operation is treated as solving the linear system

tril(exp(A+ ϵ))A−1(x;a,b) = (x− b)⊺,

where A−1(x;a,b) is treated as the unknown.
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Due to the properties of lower triangular matrices, the log-determinant of the Jacobian of the lower triangular affine
transformation is straightforward to compute:

log |detJa(x;a,b)| =
∑

j∈1:di

(aj,j + ϵ),

where aj,j is the (j, j)-th element of the matrix A. Subsequently, the construction of the mapping Γθ follows the same
principles as in DNME.

C.5. CMSM

The CMSM models the re-indexed solution mapping Pι ◦ Γθ as a sequence of discrete transformations,

Pι ◦ Γθ = T1,θ ◦ · · · ◦Tn,θ,

where n is required to be no less than the diameter of the causal graph, as stated in (Javaloy et al., 2023). Each Tj,θ is
modeled as an autoregressive transformation t, with an affine transformation a as the univariate transformation, such that

xj = t(xj−1;a),

where x0 = Pι(u) represents the vectorized exogenous values, and xn = Pι(v) represents the vectorized endogenous
values. The autoregressive transformation t ensures that each component xj,i of xj is expressed as

xj,i = a(xj−1,i;mj,θ(xj−1,1:i−1)),

where the MLP mj,θ provides the parameters required for the affine transformation. The autoregressive transformation t is
a triangular transformation, and its inverse is computed in the same manner as triangular transformations, as detailed in
Lemma A.15. Furthermore, its log absolute Jacobian determinant is given by

log |detJt(x; f)| =
∑

i∈1:
∑

j∈I di

log |detJf (xi)| ,

as the Jacobian matrix of a triangular transformation is lower triangular. Consequently, the construction of the re-indexed
solution mapping Pι ◦ Γθ follows the same principles as DNME.

C.6. TVSM

For the ODE {
dx(t) = v(x(t), t) dt,

x(0) = x0,

we denote the flow as T (x0, t) = x(t), where v : Rd × [0, 1]→ Rd is a time-dependent velocity field, and x : [0, 1]→ Rd

is the solution to the ODE. A flow T (·, t) pushes forward the distribution at t = 0 to that at time t, such that Pt,x =
(T (·, t))♯P0,x. According to Lemma A.21, if the velocity field v is a Lipschitz continuous triangular mapping for any t,
then the flow T (·, t) is always a TMI mapping.

In implementation, we adopt a method similar to (Chen et al., 2018) for modeling velocity fields, introducing a mask to
ensure that v is a triangular mapping:

v(x, t) = tanh((W ⊙M)x⊺ + b)(U⊙ sigmoid(G)⊙M)⊺,

where
(W,b,U,G) = mθ(t),

W,U,G are matrices, and b is a vector, all parameterized by an MLP with t as input. M is a lower triangular mask.

Unlike previous approaches that model the re-indexed solution mapping using composite discrete transforms, we model
Pι ◦ Γθ = odeint(v, 0, 1), and its inverse Γ−1

θ ◦ (Pι)
−1 = odeint(v, 1, 0), where odeint represents an IVP solver from the
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Algorithm 1 Pseudo Potential Response for TM-SCM
Input: a TM-SCMM, exogenous value u, intervened value x, vectorization ι under a causal order ≤ ofM.
Output: potential response VM[x]

(u)
u∗ ← u,v∗ ← Γ(u), D ←

∑
i∈I di {Initialize potential response}

for k = 1 to D do
(i, j)← ι−1(k),v′ ← v∗

if i ∈ Ix then
(v′)i,j ← (x)i,j {Do-intervention}

end if
(u∗)ι−1[1:k] ← (Γ−1(v′))ι−1[1:k] {Find exogenous value for fully explaining the prefix part}
(v∗)ι−1[k:D] ← (Γ(u∗))ι−1[k:D] {Assume the suffix part is not intervened, and update the potential response}

end for
return v∗

torchdiffeq library (Chen, 2018). For log-likelihood computation, we employ the unbiased log-likelihood estimation method
in (Grathwohl et al., 2019):

log pVθ
(v(i)) = log pUθ

((Γ−1
θ ◦ (Pι)

−1)(v(i)))− Eϵ∼Pϵ

[∫ 1

0

ϵ⊺
(
∂vs,θ/∂(Γ

−1
s,θ ◦ (Pι)

−1)
)
ϵ ds

]
,

where Γ−1
s,θ ◦ (Pι)

−1 corresponds to odeint(v, 1, s), and Pϵ is the standard normal distribution.

C.7. Inference

In the experiments, the trained neural TM-SCM infers counterfactual outcomes through a process referred to as pseudo
potential response (Algorithm 1). Direct intervention on causal mechanisms is challenging for TM-SCMs constructed from
solution mappings (e.g., CMSM and TVSM), as they lack explicit causal mechanisms and thus cannot directly fix the values
of causal parent variables.

The term pseudo potential response arises from the characteristic of Algorithm 1 performing indirect interventions. TM-
SCM, as a BSCM, possesses a fully supported exogenous variable space. Combined with TM-SCM’s well-defined iteration
order, the algorithm aims to inversely identify an exogenous value that perfectly explains the intervention and the ancestors
already determined, rather than directly intervening on endogenous variables. This extends the intervention algorithm for
single intervened variables in (Javaloy et al., 2023) to support arbitrary intervened variables and random vectors.

To ensure correctness, we prove that the output of the algorithm is consistent with the potential response VM[x]
(u):

Theorem C.1 (Correctness of Pseudo Potential Response). The result returned by the pseudo potential response algorithm,
v∗, equals VM[x]

(u).

Proof. For any t ∈ 1:D, where D =
∑

i∈I di, suppose t ∈ li : li + di. By the definition of the potential response, we have

(VM[x]
(u))ι−1(t) = (Γ[x](u))ι−1(t)

Lemma A.2
======== (f̃i[x](uan∗(i)))ι−1(t)

Definition A.1
=========

{
(fi((f̃k[x](uan∗(k)))k∈pa(i), ui))t−li i /∈ Ix,

(x)ι−1(t) i ∈ Ix.

Suppose (v∗)ι−1[1:t−1] = (f̃i[x](uan∗(i)))ι−1[1:t−1]. Consider the t-th iteration. Let v′ = v∗ initially. If i ∈ Ix, then
(v′)ι−1(t) = xι−1(t). By the property of Γ as a TM mapping, the component at index d remains unchanged:

(v∗)ι−1(t) = (v′)ι−1(t) = xι−1(t) = (f̃i[x](uan∗(i)))ι−1(t).

If i /∈ Ix, then by the (t− 1)-th iteration:
(v∗)ι−1(t) = (Γ(u∗))ι−1(t),

where for each k ∈ 1: t− 1:
(f̃j(u

∗
an∗(j)))ι−1(k) = (f̃j[x](uan∗(j)))ι−1(k),
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assuming k ∈ lj : lj + dj . Thus,

(v∗)ι−1[t] = (fi((f̃k(u
∗
an∗(k)))k∈pa(i), ui))t−li = (fi((f̃k[x](uan∗(k)))k∈pa(i), ui))t−li = (f̃i[x](uan∗(i)))ι−1(t).

Hence, after the t-th iteration, (v∗)ι−1[t] = (f̃i[x](uan∗(i)))ι−1[t] holds universally. Since v∗
ι[1:t−1] remains unchanged,

(v∗)ι−1[1:t] = (f̃i[x](uan∗(i)))ι−1[1:t].

This holds for any t ∈ 1:D. Thus, at t = D,
v∗ = f̃i[x](uan∗(i))

where an∗(i) = I, implying v∗ = VM[x]
(u).

D. Experiments
D.1. Datasets

TM-SCM-SYM The dataset collection includes four small synthetic datasets: BARBELL, STAIR, FORK, and BACKDOOR.
Each causal variable is represented as a random vector with dimensionality ranging from 1 to 8, with up to four causal
variables in total. The exogenous distributions are either mutually independent standard normal distributions or multivariate
normal distributions with a Markov structure. The causal mechanisms between variables are defined as manually designed
symbolic TM mappings. The specific generation mechanisms for these four synthetic datasets are detailed as follows.

• BARBELL: Includes 2 causal variables, x and y, each with 8 dimensions. Their causal relationship follows the simplest
binary cause-effect structure, x→y, with the causal mechanisms represented as:

xi = (fx(ux))i =



s(1.8ux,i)− 1 i = 1,

l
(∑i−1

j=1 xj , ux,i

)
1 < i ≤ 5,

0.3ux,i + s
(∑i−1

j=1 xj + 1
)
− 1 5 < i ≤ 7,

CDF−1
(
−s
((

1.3
(∑i−2

j=1 xj

)
+
∑i−1

j=1 xj

)
/ 3 + 1

)
+ 2, 0.6, ux,i

)
i = 8.

yi = (fy(x,uy))i =



l (s(1.8uy,i)− 1, xi) i = 1,

l
(
l
(∑i−1

j=1 yj , ux,i

)
, xi

)
1 < i ≤ 5,

CDF−1
(
−s
((

1.3
(∑i−1

j=1 yj

)
+ l
(∑i−1

j=1 yj , xi

))
/ 3 + 1

)
+ 2, 0.6, uy,i

)
5 < i ≤ 7,

0.3uy,i − 0.5
(∑i−1

j=1 yj

)
+ s

(∑i−2
j=1 yj + 1

)
− 1 i = 8.

The function s represents the softplus function defined as s(x) = log(1 + exp(x)). The binary function l is defined as
l(x, y) = s(x+1)+s(0.5+y)−3. The function CDF−1(µ, b, x) denotes the quantile function of the Laplace distribution
at x, with location µ and scale b. The exogenous distribution follows a standard normal distribution.

• STAIR Consider 3 causal variables x, y, and z with dimensions 1, 2, and 3, respectively. Their causal structure follows a
chain: x→ y→ z. All causal mechanisms are linear and are represented as:

xi = (fx(ux))i = 0.75ux,i.

yi = (fy(x,uy))i =

{
10xi + uy,i i = 1,

0.25xi−1 − 0.5uy,i + 2 i = 2.

zi = (fz(x,uz))i =


−0.5 yi + uz,i − 4 i = 1,

5 yi − 1.5uz,i i = 2,

yi−1 + 2uz,i − 0.5 i = 3.

and the exogenous distribution follows a standard normal distribution.
• FORK Consider 4 causal variables x, y, z, and w, each of dimension 2. The causal structure among them includes a

collider structure x→ z← y as well as a direct causal relationship z→ w. All causal mechanisms are additive and can
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be expressed as:

xi = (fx(ux))i =

{
ux,i i = 1,

ux,i−1 + 0.25ux,i i = 2.

yi = (fy(x,uy))i =

{
uy,i i = 1,

−0.5uy,i−1 + uy,i i = 2.

zi = (fz(x,y,uz))i =


1

1 + exp(−x1 − y2)
− y21 + 0.5uz,i i = 1,

1

1 + exp(−y1 − x2)
− x2

1 + 0.5(uz,i−1 + uz,i) i = 2.

wi = (fw(z,uw))i =


20

1 + exp(0.5 z21 − z2)
+ uw,i i = 1,

20

1 + exp(0.5 z22 − z1)
+ 0.25uw,i−1 − uw,i i = 2.

and the exogenous distribution also follows a standard normal distribution.
• BACKDOOR The causal graph involves 4 causal variables, x, y, z, and w, each of dimension 4. The causal structure

includes a direct causal link y→ w, an indirect causal path y→ z→ w, and a backdoor path y← x→ w. The causal
mechanisms are represented as:

xi = (fx(ux))i =


tanh(ux,i) i = 1,

sigmoid(−ux,i) i = 2,

xi−1 − tanh(ux,i) i = 3,

1 + sigmoid(ux,i) i = 4.

yi = (fy(x,uy))i =


tanh(x1 + uy,i) i = 1,

sigmoid(x2 − uy,i) i = 2,

yi−1 − tanh(uy,i) i = 3,

x1:i−1 · (softmax(y1:i−1))
⊺ + sigmoid(uy,i) i = 4.

zi = (fz(y,uz))i =


elu(y1 − uz,i) i = 1,

leaky relu(y2 + uz,i) i = 2,

zi−1 + elu(uz,i) i = 3,

y1:i−1 · (softmin(z1:i−1))
⊺ + leaky relu(uz,i) i = 4.

wi = (fw(x,y, z,uw))i =


(xi ⊕ yi ⊕ zi) · (softmax(xi ⊕ yi ⊕ zi))

⊺ + elu(zi − uw,i) i = 1,

(wi−1 ⊕ uw,i−1) · (softmin(wi−1 ⊕ uw,i−1))
⊺ + leaky relu(yi + uw,i) i = 2,

(x1:i ⊕ y1:i ⊕ z1:i) · (softmin(x1:i ⊕ y1:i ⊕ z1:i))
⊺ + xi−1 + elu(uw,i) i = 3,

(w1:i−1 ⊕ uw,1:i−1) · (softmax(w1:i−1 ⊕ uw,1:i−1))
⊺ + leaky relu(uw,i) i = 4.

where tanh, sigmoid, elu, and leaky relu are widely used activation functions, ensuring monotonicity and continuity. The
exogenous distribution follows a multivariate normal distribution, with location 0 and covariance matrix:

1 0.8 0.3 0.2
0.8 1 0.4 0.1
0.3 0.4 1 0.6
0.2 0.1 0.6 1

 .

ER-DIAG-50 and ER-TRIL-50 Each dataset collection consists of 50 randomly synthesized datasets, where each dataset
contains 3–8 causal variables, and the dimensionality of each causal variable is randomly chosen between 1 and 8. The
causal structure among the variables is modeled as an Erdős-Rényi graph, the exogenous distribution is randomly generated
as a multivariate normal distribution, and the causal mechanisms are constructed using randomly generated TM mappings.
The details for generating these components are described as follows.
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• Variables The number of causal variables, n, is sampled from a discrete uniform distribution Unif{3, 8}, and these
variables are denoted as x1, . . . ,xn.

• Dimensions The dimension di of a causal variable xi is sampled from a discrete uniform distribution Unif{1, 8}, with the
j-th component denoted as xi,j .

• Graphs An Erdős-Rényi graph is generated over the n causal variables with a probability of 0.5 for each edge, ensuring
the graph is directed and acyclic. Specifically, we construct an n× n adjacency matrix A, where each element ai,j is
sampled from a continuous uniform distribution Unif(0, 1). If ai,j > 0.5 and i < j, the edge xi → xj is included.

• Exogenous distributions For each causal variable, a multivariate normal distribution of dimension m is randomly
generated to represent its corresponding exogenous distribution. By Markovianity, exogenous samples are formed by
independently sampling from these distributions. Specifically, the parameters of the multivariate normal distribution are
generated by sampling a mean vector µ and a matrix C from the standard normal distribution. The covariance matrix is
computed as Σ = C⊺C+ I, ensuring positive definiteness, where I is the identity matrix.

• Causal mechanisms The randomly generated causal mechanisms are ensured to be TM mappings. For ER-DIAG-50, the
causal mechanism is represented as

(fi(xpa(i),ui))j = hi,j(gi(xpa(i)), ui,j),

for j ∈ 1:di. For ER-TRIL-50, it is expressed as

(fi(xpa(i),ui))j = hi,j((fi(xpa(i),ui))j−1, ui,j),

where for j = 1, (fi(xpa(i),ui))j−1 = gi(xpa(i)).
The function gi is a randomly generated continuous function R

∑
k∈pa(i) dk → R. To enhance its complexity, it is expressed

as a combination of sinusoidal and segmented terms:

g(x) =

m∑
i=1

ci · sin(⟨wi,x⟩+ ϕi)︸ ︷︷ ︸
sinusoidal term

+ sj∗(x) · ∥x− µj∗(x)∥︸ ︷︷ ︸
segmented term

,

where j∗(x) = argmin1≤j≤n ∥x − µj∥, and ci,wi, ϕi, sj ,µj are random parameters. The number of sinusoidal and
segmented terms is n = m = 3.
The function hi,j is a randomly generated monotonic function R2 → R, ensuring monotonicity with respect to the second
dimension. It is represented in a linear form:

hi,j(x1, x2) = s1 · x1 + s2 · x2 + b,

where the bias term b and scaling coefficients s1, s2 are random parameters. The signs of s1, s2 are not constrained to be
positive, indicating that the resulting mapping is not necessarily a TMI mapping but rather a more general TM mapping.

D.2. Metrics

We employed three metrics to evaluate the performance of the trained models.

OBSWD This metric measures the Wasserstein distance between the observational distribution derived from the model
and the ground truth, evaluating how well the trained model fits the observational distribution. The Wasserstein distance is
computed using the geomloss library (Feydy et al., 2019), which calculates the un-biased Sinkhorn divergence with a blur
parameter of 0.05 and a cost function of C(x, y) = 1

2∥x− y∥22.

CTFRMSE This metric measures the error between the counterfactual results inferred by the model and the ground truth,
assessing the accuracy of the trained model in counterfactual reasoning and reflecting the model’s consistency in answering
counterfactual queries. We use the root mean square error (RMSE), which retains the same unit as the original values,
making it more interpretable for evaluating the accuracy of counterfactual reasoning.

CTFWD This is a metric unreported in the main text but included as a supplementary evaluation in the appendix. It
measures the Wasserstein distance between the interventional distribution and the ground truth in an average sense. Since
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the observed values in the ground truth of counterfactual datasets are sampled from the observational distribution, these
samples, when considering only the counterfactual outcomes, correspond to the distribution expressed as

Ex∼PX

[∫
ΩV

PV[x]|V(·,v)PV(dv)

]
= Ex∼PX

[
PV[x]

]
,

where PX denotes the prior distribution of intervention values provided by the counterfactual dataset, and PV[x]
represents

the interventional distribution under intervention x.

D.3. Execution

This subsection details the preprocessing, training, and testing procedures of the experiments to ensure reproducibility.

Preprocessing During the initial execution, following the settings described in Appendix D.1, each synthetic dataset
is divided into three splits: training, validation, and test datasets. The training dataset comprises observational data with
a sample size of 20,000, directly sampled from the exogenous distribution, with exogenous samples propagated through
the synthesized TM-SCM to derive endogenous observational values. The validation and test datasets, each containing
2,000 samples, consist of counterfactual data, providing observations, interventions, and counterfactual outcomes. These
counterfactual datasets are synthesized in three steps: (i) Similar to the observational dataset, exogenous values and their
corresponding endogenous observations are sampled. (ii) Intervened values are sampled anew, where the intervened variables
X satisfy certain conditions termed interventionally meaningful, and the intervened values adhere to the observational
distribution. (iii) The counterfactual outcomes are derived using the exogenous values from (i) and the intervened values
from (ii) to compute the potential responses.

The notion of interventionally meaningful refers to the following three conditions of an intervention set X: (i) For any
X ∈ X, X must have at least one child. (ii) If X,Y ∈ X and X is a parent of Y , then X and Y must have at least one
common child. (iii) X is non-empty. In implementation, indices IX are sampled to satisfy these conditions, and a mask is
used to indicate whether a variable has been intervened upon.

Finally, all dimensions in the datasets are standardized. To ensure consistency, the mean and variance from the observational
dataset are used for standardization, including for the intervened values and counterfactual outcomes in the counterfactual
datasets. Since standardization merely involves component-wise scaling and shifting, the triangular monotonicity property
of TM-SCM is preserved.

Training All neural network components in the models, as reported in Appendix C, are configured as MLPs with 2 hidden
layers and a width of 128. The outputs of these MLPs include an additional dimension representing the encoding length,
and the parameters subsequently derived are averaged over this encoding. This design enhances the expressiveness of the
MLPs while maintaining fairness in model parameters. Specifically, before each run, we perform binary search to find an
appropriate encoding length such that the total number of model parameters does not exceed 1M. All models are constructed
according to this standard, ensuring that the parameter counts are comparable across models.

For experiments on TM-SCM-SYM, we train for 100 epochs with a batch size of 64. Validation is performed every k
training steps, where k grows exponentially such that the interval after the t-th validation is k = ⌊γt⌋. We set γ = 1.25.
The validation results are used to plot the scatter relationship between OBSWD and CTFRMSE. All experiments under this
configuration are conducted with 10 different random seeds.

For experiments on ER-DIAG-50 and ER-TRIL-50, we train for 50 epochs with a batch size of 64, performing validation
after every epoch. All experiments are run once on their respective 50 pre-generated random datasets.

For all the experiments mentioned above, the optimizer used is Adam with a learning rate of 0.001 and weight decay of 0.01
as a regularization term. The model weights corresponding to the epoch with the lowest CTFRMSE on the validation set are
saved for testing.

Testing The test set is used to evaluate the model performance reported in the tables. Specifically, for OBSWD, we utilize
the part of the test set labeled as observed values. According to the description in the preprocessing section, these samples
satisfy the ground truth observational distribution. For CTFRMSE and CTFWD, we use the parts of the test set labeled
as observed values, intervened values, and counterfactual outcomes. The observed and intervened values are input into
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Algorithm 1 to estimate the counterfactual outcomes, and the ground truth counterfactual outcomes are used to compute
these counterfactual metrics. During validation and testing, in cases where certain model configurations exhibit instability at
specific positions, leading to numerical overflow, the corresponding test cases are masked and ignored.

D.4. Full Results

Ablation on TM-SCM-SYM We report below the complete ablation study results on the TM-SCM-SYM dataset as
discussed in the main text. First, we present the full version of the scatter plots shown in the main text, as illustrated in
Figure 4, which are obtained from the validation results of experiments conducted under 10 different random seeds.

TM-SCM w/o O w/o M w/o T
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Figure 4. Ablation results of neural TM-SCMs on TM-SCM-SYM. Colored curves depict sliding-window regressions, with shaded areas
showing 95% CI. To improve the readability of the plot scales, outliers below the 0.01 quantile and above the 0.99 quantile were removed.
Rows represent models (DNME, TNME, CMSM, TVSM), and columns represent datasets (BARBELL, STAIR, FORK, BACKDOOR).

Across all combinations of models and datasets, the non-ablated neural TM-SCM (blue) consistently achieves lower
CTFRMSE, demonstrating superior performance in counterfactual consistency. Specifically, as training progresses, the
horizontal axis OBSWD gradually decreases, indicating an improved fit of the model to the observed distribution. It can be
observed that, except for certain settings where the model lacks sufficient expressiveness, OBSWD is reduced to a similar
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Table 3. Ablation results of neural TM-SCM on BARBELL and STAIR. The values shown are the means of 10 experiments with different
random seeds, with the subscript representing the 95% CI. The best-performing results are highlighted in bold.

BARBELL STAIR

METHOD OBSWD CTFRMSE CTFWD OBSWD CTFRMSE CTFWD

DNME
- 0.42±0.03 0.18±0.00 0.20±0.01 0.18±0.03 0.10±0.02 0.03±0.01

W/O O 4.44±2.74 0.94±0.00 3.89±0.00 31.54±52.74 0.80±0.00 0.61±0.00

W/O M 5.38±0.12 0.50±0.02 1.53±0.10 0.17±0.01 0.47±0.03 0.48±0.04

TNME
- 0.39±0.03 0.07±0.00 0.04±0.00 0.16±0.01 0.16±0.01 0.07±0.01

W/O O 18.26±1.02 0.94±0.00 3.89±0.00 32.65±52.99 0.80±0.00 0.61±0.00

W/O M 7.50±6.76 0.52±0.05 1.55±0.23 0.18±0.01 0.39±0.02 0.35±0.04

CMSM

- 0.41±0.02 0.05±0.01 0.02±0.01 0.17±0.01 0.24±0.23 0.30±0.53

W/O O 0.39±0.04 0.94±0.00 3.89±0.00 15.05±38.19 0.83±0.02 0.60±0.03

W/O M 1.01±0.46 0.07±0.01 0.04±0.01 0.17±0.01 0.13±0.04 0.05±0.03

W/O T 1.82±2.12 0.98±1.22 25.38±55.39 0.19±0.03 14.67±32.28 0.51±0.70

TVSM

- 0.37±0.02 0.10±0.00 0.03±0.01 0.17±0.02 0.16±0.01 0.08±0.01

W/O O 0.48±0.15 0.94±0.00 3.89±0.00 32.15±53.73 0.80±0.00 0.61±0.00

W/O M 1.15±0.21 0.29±0.01 0.48±0.03 0.17±0.01 0.28±0.01 0.21±0.02

W/O T 1.33±0.21 0.51±0.01 1.59±0.07 20.56±46.17 0.43±0.02 0.44±0.05

Table 4. Ablation results of neural TM-SCM on FORK and BACKDOOR. The values shown are the means of 10 experiments with different
random seeds, with the subscript representing the 95% CI. The best-performing results are highlighted in bold.

FORK BACKDOOR

METHOD OBSWD CTFRMSE CTFWD OBSWD CTFRMSE CTFWD

DNME
- 0.28±0.01 0.14±0.00 0.08±0.00 2.83±0.03 0.27±0.00 0.59±0.02

W/O O 2.15±0.10 0.74±0.00 0.57±0.00 4.79±0.26 0.46±0.00 1.45±0.00

W/O M 1.61±2.86 0.62±0.01 0.47±0.01 4.36±0.12 0.34±0.01 0.88±0.05

TNME
- 0.27±0.01 0.14±0.00 0.07±0.00 2.47±0.04 0.16±0.00 0.20±0.01

W/O O 3.88±0.24 0.74±0.00 0.57±0.00 9.20±0.24 0.46±0.00 1.45±0.00

W/O M 15.31±32.54 0.58±0.02 0.48±0.01 3.20±0.04 0.28±0.01 0.63±0.03

CMSM

- 0.30±0.02 0.08±0.01 0.02±0.00 2.53±0.09 0.15±0.00 0.19±0.01

W/O O 1.56±2.43 0.80±0.05 0.71±0.26 6.35±3.18 0.47±0.00 1.50±0.01

W/O M 0.30±0.02 0.08±0.00 0.02±0.00 2.68±0.09 0.17±0.02 0.23±0.05

W/O T 0.37±0.06 0.63±0.24 1.02±0.56 7.91±11.03 0.37±0.02 1.04±0.11

TVSM

- 0.29±0.01 0.16±0.00 0.08±0.00 2.29±0.02 0.12±0.01 0.11±0.01

W/O O 2.10±0.08 0.74±0.00 0.57±0.00 5.79±0.05 0.46±0.00 1.45±0.00

W/O M 0.32±0.03 0.48±0.01 0.31±0.01 2.53±0.07 0.21±0.01 0.36±0.03

W/O T 0.46±0.03 0.61±0.02 0.43±0.02 2.64±0.44 0.34±0.01 0.87±0.05

level across most configurations. However, the final performance on the vertical axis CTFRMSE varies across different
ablation modes, highlighting the negative impact of the ablated components on counterfactual consistency.

In these ablation modes, w/o O (yellow) represents the case where the causal order is reversed. Although OBSWD decreases
in almost all settings, CTFRMSE remains nearly unchanged. This highlights the significant role of the causal order assumption
A≤ in ensuring counterfactual consistency. w/o M (green) represents the case where the exogenous distribution is non-
Markovian. In most settings, as OBSWD decreases, CTFRMSE instead increases. This indicates that counterfactual consistency
cannot converge to a lower level as expected under non-Markovian conditions, underscoring the necessity of the Markovian
assumptionAM for counterfactual consistency. w/o T (red) represents the case where the solution mapping of the constructed
SCM is not triangular (allowed only for CMSM and TVSM). In these settings, as OBSWD decreases, CTFRMSE diverges.
This demonstrates the critical impact of the assumption that SCMs are TM-SCMs, ATM-SCM, on counterfactual consistency.
Only in the no ablation mode (blue), where all three assumptions in Corollary 5.4—ATM-SCM, AM, and A≤—are satisfied,
does counterfactual consistency improve (as evidenced by decreasing CTFRMSE) as APV

is gradually satisfied (indicated by
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Table 5. Ablation results of neural TM-SCM on TM-SCM-SYM for exogenous distributions. The values shown are the means of 10
experiments with different random seeds, with the subscript representing the 95% CI.

BARBELL STAIR FORK BACKDOOR

METHOD DIST OBSWD CTFRMSE OBSWD CTFRMSE OBSWD CTFRMSE OBSWD CTFRMSE

DNME
N 6.20±0.06 0.19±0.00 0.17±0.00 0.11±0.00 1.14±0.03 0.29±0.00 4.57±0.02 0.20±0.00

GMM 1.94±0.43 0.19±0.01 0.16±0.01 0.12±0.01 0.37±0.04 0.17±0.01 3.41±0.23 0.22±0.01

NF 0.42±0.03 0.18±0.00 0.18±0.03 0.10±0.02 0.28±0.01 0.14±0.00 2.83±0.03 0.27±0.00

TNME
N 5.88±0.07 0.10±0.00 0.17±0.00 0.10±0.00 1.12±0.04 0.26±0.00 3.12±0.02 0.15±0.00

GMM 3.65±3.46 0.09±0.01 0.17±0.02 0.14±0.01 0.34±0.03 0.16±0.01 2.82±0.22 0.15±0.00

NF 0.39±0.03 0.07±0.00 0.16±0.01 0.16±0.01 0.27±0.01 0.14±0.00 2.47±0.04 0.16±0.00

CMSM
N 2.96±2.68 0.06±0.01 0.17±0.02 0.12±0.02 0.32±0.02 0.07±0.01 2.86±0.41 0.13±0.00

GMM 1.99±2.13 0.06±0.00 0.19±0.02 0.11±0.02 0.30±0.02 0.08±0.00 15.93±27.12 0.13±0.00

NF 0.41±0.02 0.05±0.01 0.17±0.01 0.24±0.23 0.30±0.02 0.08±0.01 2.53±0.09 0.15±0.00

TVSM
N 0.34±0.01 0.09±0.00 0.16±0.00 0.14±0.00 0.31±0.01 0.17±0.00 2.29±0.01 0.10±0.00

GMM 0.53±0.10 0.09±0.00 0.16±0.01 0.15±0.01 0.29±0.01 0.15±0.00 2.27±0.01 0.10±0.01

NF 0.37±0.02 0.10±0.00 0.17±0.02 0.16±0.01 0.29±0.01 0.16±0.00 2.29±0.02 0.12±0.01

decreasing OBSWD).

Furthermore, we can analyze the neural TM-SCM methods under different constructions (without ablations) row by row.
It can be observed that DNME and TNME exhibit similar performance but perform slightly worse on the BACKDOOR
dataset. This may be attributed to their limited expressive capacity for the observed distribution, as reflected by the OBSWD,
which did not decrease as expected to the same level as other models. CMSM appears to be less stable during training, as
evidenced by the widely dispersed scatter points across all settings. This could imply that the parameters of CMSM undergo
significant changes during training, resulting in unstable performance. In contrast, TVSM demonstrates more concentrated
scatter points, indicating higher stability. Moreover, it achieves a lower OBSWD on the BACKDOOR dataset compared to
DNME and TNME, suggesting stronger expressive capacity. However, due to its reliance on IVP solvers, its inference speed
is relatively slow.

We report the final performance of the above experiments on the test set in Table 3 and Table 4.

It can be observed that, apart from certain anomalies exhibited by CMSM under the non-Markovian ablation on the STAIR
dataset (as also reflected in Figure 4), the non-ablation settings consistently achieve lower CTFRMSE. This further highlights
the critical role of the three assumptions in Corollary 5.4, namely ATM-SCM, AM, and A≤, in ensuring counterfactual
consistency.

Finally, we conducted an ablation study on exogenous distributions by constructing new models using different exogenous
distributions as described in Appendix C.2. This analysis demonstrates that Corollary 5.4 and the proposed neural TM-SCM
are insensitive to the type of exogenous distribution. The results, shown in Table 5, indicate that while different models
may exhibit some variation in the fit of the observational distribution (i.e., OBSWD), their counterfactual consistency (i.e.,
CTFRMSE) remains largely similar. Furthermore, as asserted in Appendix C.2, using a standard normal distribution as the
exogenous distribution may not provide sufficient expressive power, as evidenced by the higher OBSWD values in DNME
and TNME models in Table 5.

Ablation on ER-DIAG-50 and ER-TRIL-50 We report below the complete results of the ablation study on the
ER-DIAG-50 and ER-TRIL-50 datasets as presented in the main text. The ER-DIAG-50 and ER-TRIL-50 datasets
encompass diverse TM-SCM configurations, including various scales, structures, and parameter settings. Compared to the
four symbolically constructed datasets in TM-SCM-SYM, they provide more comprehensive validation and testing for our
framework.

The complete version of the ablation results table from the main text, as shown in Table 6, presents the final results on the
test set. The table additionally includes the metrics OBSWD and CTFWD, which measure the average fit to the observational
distribution and the prediction for the interventional distribution, respectively.

The results demonstrate that models without ablations achieve the best performance on the final counterfactual consistency
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Table 6. Ablation results of neural TM-SCM on ER-DIAG-50 and ER-TRIL-50. The values shown are the means of 50 experiments, with
the subscript representing the 95% CI. The best-performing results are highlighted in bold.

ER-DIAG-50 ER-TRIL-50

METHOD OBSWD CTFRMSE CTFWD OBSWD CTFRMSE CTFWD

DNME
- 3.47±0.53 0.53±0.05 1.50±0.28 21.28±22.09 0.51±0.12 3.37±3.05

W/O O 5.06±1.75 0.78±0.05 2.88±0.43 25.42±21.27 0.89±0.10 4.79±3.03

W/O M 4.35±0.77 0.62±0.04 1.98±0.30 18.53±24.04 0.58±0.10 3.60±3.04

TNME
- 4.65±2.93 0.47±0.05 1.32±0.29 3.34±3.17 0.55±0.12 3.49±3.05

W/O O 5.40±2.55 11.24±20.98 3.47±1.08 23.75±29.53 6.41±9.84 37.11±45.91

W/O M 3.88±0.65 0.62±0.04 2.08±0.33 5.57±3.27 0.73±0.21 13.60±19.84

CMSM

- 15.70±23.20 0.37±0.05 0.96±0.23 9.78±9.87 0.42±0.12 3.17±3.07

W/O O 41.74±45.13 2.64±3.72 2.91±0.44 36.65±30.28 2.12±2.49 4.69±3.08

W/O M 8.00±9.88 1.69±2.60 1.20±0.35 10.39±10.56 0.75±0.49 7.79±8.34

W/O T 3.74±1.09 0.64±0.05 2.47±0.51 23.36±36.32 1.25±1.29 2.89±1.33

TVSM

- 3.66±1.05 0.46±0.05 1.29±0.28 3.40±2.01 0.50±0.12 3.35±2.99

W/O O 5.25±2.31 0.79±0.04 2.89±0.43 11.79±10.36 0.88±0.10 4.68±3.03

W/O M 3.54±0.53 0.53±0.05 1.63±0.29 4.25±4.82 0.53±0.11 3.33±3.00

W/O T 22.22±36.74 0.67±0.05 2.43±0.49 14.30±15.34 0.78±0.12 6.63±3.87

metric, CTFRMSE. This highlights the universality of the three assumptions in Corollary 5.4, namely ATM-SCM, AM, and A≤,
in ensuring counterfactual consistency. Furthermore, these findings empirically reinforce the validity of Corollary 5.4.

Beyond providing empirical support for counterfactual consistency, these results also reveal several characteristics of the
four different models. For instance, DNME performs significantly better on ER-DIAG-50 compared to ER-TRIL-50, as
DNME is specifically designed based on causal mechanisms where exogenous variables interact in a diagonal manner. The
performance drop on ER-TRIL-50 indicates that DNME lacks sufficient expressive power in more general settings. TNME
addresses this limitation of DNME through its design. CMSM may exhibit instability due to its potentially poor fit to the
observed distribution. Furthermore, as only numerically stable test results are recorded in the experiments, many omitted
cases in CMSM’s results may contribute to its lower CTFWD values. In contrast, TVSM demonstrates higher accuracy in
counterfactual inference compared to DNME and TNME, while also achieving a better fit to the observational distribution
than CMSM.
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