
Under review as a conference paper at ICLR 2024

A OLS AND THE PSEUDOINVERSE

Classical statistics (Murphy, 2022) tells us that when X is full rank, the ŵ minimizing this expression—
known as the OLS regressor—has the following form:

ŵOLS = (X>X)�1X>YX (16)

Of course, if X is not full rank, the product X>X cannot be inverted. In this case, the minimum
norm solution can be constructed using the singular value decomposition of X. Specifically, X can be
decomposed as X = UXDXV >

X
. We can then construct the pseudoinverse of X by using UX , VX ,

and the matrix D† which is given by taking the transpose of D, and replacing the diagonal singular
value elements with their reciprocal. In the case that the singular value is zero, the value of zero is
used instead. The pseudoinverse is then constructed as X† = VXD†

X
U>
X

. Using these components,
the minimum norm solution in the case of a degenerate X matrix is given by the following expression:

ŵ = X†YX = VXD†
X
U>
X
YX (17)

B DERIVATION OF LOSS OF OLS UNDER COVARIATE SHIFT

We are interested in the following expression for the OOD risk of the OLS regressor:

RiskOOD(ŵ) = E[kYZ �Zŵk2
2
] = E[kZw⇤ �ZX†Y k2

2
] = E[kZw⇤ �ZX†(Xw⇤ + ✏)k2

2
] (18)

If we assume that w⇤ exists within the span of the rows of X, then X†X acts as an identity on w⇤,
giving us:

= E[kZX†✏k2
2
] (19)

The euclidean norm is kxk2 =
p
x>x, so we can rephrase this expression as a scalar dot product.

Scalars can be seen as 1⇥ 1 matrices, and are therefore equal to their trace. Therefore we can express
this dot product as a trace in order to later use the cyclic property of the trace operator:

= E[✏>X†>Z>ZX†✏] = E[tr(✏>X†>Z>ZX†✏)] (20)

We can cycle the trace and apply the properties of the trace of the product of two N ⇥N matrices:

= E[tr(✏✏>X+TZ>ZX†)] = E[
NX

i=1

NX

j=1

(✏✏>)i,j(X
+TZ>ZX†)i,j] (21)

Since each entry of ✏ is independent from the other entries, and these entries follow the normal
distribution N (0,�2), by applying the linearity of expectation we know that every term in this sum
such that i 6= j will be equal to zero, giving us:

=
NX

i=1

NX

j=1

E[(✏✏>)i,j](X
+TZ>ZX†)i,j =

NX

i=1

�2(X+TZ>ZX†)i,i = �2tr(X+TZ>ZX†) (22)

We will use the singular value decompositions of these two matrices to simplify the expression further
after cycling the trace:

13

Under review as a conference paper at ICLR 2024

= �2tr(Z>ZX†X+T) = �2tr(VZD
>
Z
U>
Z
UZDZV

>
Z
VXD†

X
U>
X
UXD†>

X
V >
X
) (23)

= �2tr(VZD
2

Z
V >
Z
VXD†2

X
V >
X
) = �2tr(D†2

X
V >
X
VZD

2

Z
V >
Z
VX) (24)

where D2

Z
, D†2

X
are D ⇥D diagonal matrices with diagonal values equal to the diagonal values of

DZ and D†
X

squared, respectively. The ith diagonal entry of the matrix V >
X
VZD2

Z
V >
Z
VX is:

⇥
diag(V >

X
VZD

2

Z
V >
Z
VX)

⇤
i
=

DX

j=1

�2

z,j
hex,i, ez,ji2 (25)

Meaning that the entire expression will be equal to the value described:

RiskOOD(ŵ) = �2

DX

i=1

DX

j=1

�2

z,j

�2

x,i

hex,i, ez,ji2 [�x,i > 0]. (26)

C DERIVATION OF BIAS-VARIANCE DECOMPOSITION

SpAR produces a regressor of the following form:

wproj = ŵ �
X

e2S

hŵ, eie (27)

Where we are projecting out a set of eignevectors S from the pseudoinverse solution ŵ. We can
substitute this into our expression for the OOD risk of a regressor to arrive at a bias-variance
decomposition.

RiskOOD(wproj) = E[kZw⇤ � Z(ŵ �
X

ez,j2S

hŵ, ez,jiez,j)k22] (28)

= E[k � ZVXD†
X
U>
X
✏+ Z

X

ez,j2S

(✏>X†>ez,j + w⇤>ez,j)ez,jk22] (29)

= E[k � ZVXD†
X
U>
X
✏+ Z

X

ez,j2S

hw⇤, ez,jiez,j + Z
X

ez,j2S

hVXD†
X
U>
X
✏, ez,jiez,jk22] (30)

We can further simplify this expression by using the fact that the eigenvectors in Rows(V >
Z
) form

an orthonormal basis, and so the sum of their outer products forms an identity matrix. Formally,P
D

j=1
ez,je>z,j = I . Using this on the leftmost term in the sum, we have:

= E[k � Z
DX

j=1

ez,je
>
z,j

VXD†
X
U>
X
✏+ Z

X

ez,j2S

hw⇤, ez,jiez,j + Z
X

ez,j2S

hVXD†
X
U>
X
✏, ez,jiez,jk22]

(31)

14

Under review as a conference paper at ICLR 2024

= E[k�Z
DX

j=1

hVXD†
X
U>
X
✏, ez,jiez,j +Z

X

ez,j2S

hw⇤, ez,jiez,j +Z
X

ez,j2S

hVXD†
X
U>
X
✏, ez,jiez,jk22]

(32)
We can use the fact that S [Sc form an orthogonal basis, where Sc is the complement set of
eigenvectors. We are also assuming that we are only projecting out vectors from the Z right singular
vector basis. This gives us:

E[k � Z
X

ez,j2Sc

hVXD†
X
U>
X
✏, ez,jiez,j + Z

X

ez,j2S

hw⇤, ez,jiez,jk22] = E[kV �Bk2
2
] (33)

The euclidean norm kxk2 =
p
x>x, and so we can consider the sum of products V >V � 2V >B +

B>B. If we take the expectation over the error term ✏, which has mean 0, we are left with only
V >V +B>B.

V >V is the error term we are already familiar with (Theorem 1), restricted to the eigenvectors that
weren’t projected out:

V >V = (Z
X

ez,j2Sc

hVXD†
X
U>
X
✏, ez,jiez,j)>Z

X

ez,j2Sc

hVXD†
X
U>
X
✏, ez,jiez,j (34)

= (
X

ez,j2Sc

hVXD†
X
U>
X
✏, ez,jiez,j)>Z>Z

X

ez,j2Sc

hVXD†
X
U>
X
✏, ez,jiez,j (35)

We note that each vector ez,j 2 Sc is an eigenvector of Z>Z with eigenvalue �2

z,j
.

=
X

ez,j2Sc

hVXD†
X
U>
X
✏, ez,jie>z,j

X

ez,j2Sc

hVXD†
X
U>
X
✏, ez,ji�2

z,j
ez,j (36)

=
X

e0z,j2Sc

X

ez,j2Sc

hVXD†
X
U>
X
✏, e0

z,j
ihVXD†

X
U>
X
✏, ez,ji�2

z,j
e0>
z,j

ez,j (37)

Since Sc is a subset of an orthonormal basis, we know that e0>
z,j

ez,j = 1 iff e0
z,j

= ez,j . Otherwise,
e0>
z,j

ez,j = 0.

=
X

ez,j2Sc

hVXD†
X
U>
X
✏, ez,ji2�2

z,j
=

X

ez,j2Sc

✏>X†>ez,je
T

z,j
X†✏�2

z,j
(38)

In the expected loss, the expectation operator is applied to this expression, giving:

E[V >V] = E[
X

ez,j2Sc

✏>X†>ez,je
T

z,j
X†✏�2

z,j
] (39)

We can use the properties of the trace to isolate the label noise, as in Appendix B:

=
X

ez,j2Sc

�2tr(e>
z,j

X†X†>ez,j)�
2

z,j
(40)

15

Under review as a conference paper at ICLR 2024

We can analyze the inner product of the vector X†>ez,j = UXD†>
X

V >
X
ez,j with itself:

e>
z,j

X†X†>ez,j =
dX

i=1

dX

k=1

1

�x,i

hez,j , ex,ii
1

�x,k

hez,j , ex,kiu>
x,i

ux,k [�x,i > 0] [�x,k > 0] (41)

Where ux,i is the ith column of UX , i.e. the ith left singular vector of X . These left singular vectors
also create an orthonormal basis, and so u>

x,i
ux,k = 1 iff ux,i = ux,k. Otherwise, u>

x,i
ux,k = 0. This

ultimately gives us:

E[V >V] = �2

DX

i=1

X

j,ez,j2Sc

�z,j

�x,i

hex,i, ez,ji2 [�x,i > 0] (42)

We can use similar reasoning to show that bias term B>B is a simple expression relying on the true
weight vector:

E[BTB] = BTB =
X

ez,j2S

hw⇤, ez,jie>z,jZ>Z
X

ez,j2S

hw⇤, ez,jiez,j (43)

(44)

=
X

j,ez,j2S

hw⇤, ez,ji2�2

z,i
(45)

Therefore, we have the following expression for the expected loss:

E[kZw⇤ � Z(ŵ �
X

ez,j2S

hŵ, ez,jiez,j)k22] = E[V >V] + E[B>B] (46)

= �2

DX

i=1

X

j,ez,j2Sc

�z,j

�x,i

hex,i, ez,ji2 [�x,i > 0] +
X

j,ez,j2S

hw⇤, ez,ji2�2

z,j
(47)

D PROOF OF THEOREM 3

In this section, we provide the proof of Theorem 3.

To start, we note that if S� = {}, then the projected regressor created with this set is the pseudoinverse
solution ŵ:

wprojS� = ŵ �
X

e2S�

hŵ, eie = ŵ. (48)

Therefore, by Theorem 2, we know that the loss of this regressor will consist entirely of the variance
terms associated with the eigenvectors. This is essentially a recovery of Theorem 1:

16

Under review as a conference paper at ICLR 2024

E[kYZ � Zŵk2
2
] =

DX

j=1

�2

DX

i=1

�2

z,j

�2

x,i

hex,i, ez,ji2 [�x,i > 0] =
DX

j=1

Varz,j . (49)

We now compare this with the loss of the regressor created using the set S⇤, which is:

w⇤
proj

= ŵ �
X

e2S⇤

hŵ, eie (50)

Again invoking Theorem 2, the expected loss of this estimator is:

E[kYZ � Zw⇤
proj

k2
2
] =

X

ez,j2S⇤c

�2

DX

i=1

�2

z,j

�2

x,i

hex,i, ez,ji2 [�x,i > 0] +
X

ez,j2S⇤

hw⇤, ez,ji2�2

z,i
(51)

=
X

ez,j2S⇤c

Varz,j +
X

ez,j2S⇤

Biasz,j (52)

We can now compare the two expected losses:

E[kYZ � Zŵk2
2
]� E[kYZ � Zw⇤

proj
k2
2
] =

X

ez,j2S⇤

Varz,j � Biasz,j (53)

From the definition of S⇤, we know that for all ez,j 2 S⇤,Varz,j � Biasz,j . Therefore, for all
ez,j 2 S⇤,Varz,j � Biasz,j � 0, and the sum of these terms will be greater than zero as well. This
gives us:

E[kYZ � Zŵk2
2
]� E[kYZ � Zw⇤

proj
k2
2
] � 0 =) E[kYZ � Zŵk2

2
] � E[kYZ � Zw⇤

proj
k2
2
] (54)

E DISTRIBUTION OF ‘Bias

In Section 3.4 we make statements about the distribution of ‘Bias. In this section, we further explain
our reasoning for these claims.

‘Biasz,j = hŵ, ez,ji2�2

z,j
= (w⇤T ez,j + ✏>X†>ez,j)

2�2

z,j
. (55)

We know that ✏ is a Gaussian vector with zero mean and spherical covariance. Therefore,
✏>X†>ez,j�z,j would also have zero mean. For its covariance, we need only to multiply this
expression by itself to recognize the expression from previous derivations:

E[e>
z,j

X†✏✏>X†>ez,j�
2

z,j
] (56)

This expression is seen in the derivation of Theorem 2, where we show it is equal to Varz,j . Therefore,
the variance of ✏>X†>ez,j�z,j is Varz,j . With this in mind, we can rewrite this expression as a
scaling of a standard normal random variable:

17

Under review as a conference paper at ICLR 2024

✏>X†>ez,j�z,j =
p
Varz,j�, � ⇠ N (0, 1) (57)

With this in mind, we can also easily describe the distribution of hŵ, ez,ji�z,j :

hŵ, ez,ji�z,j = w⇤T ez,j�z,j + ✏>X†>ez,j�z,j (58)

Which is a Gaussian random variable plus a constant, which shifts the mean of the Gaussian. This
gives us the two distributions we list in Section 3.4:

✏>X†>ez,j�z,j ⇠ N (0,Varz,j), hŵ, ez,ji�z,j ⇠ N (
p
Biasz,j ,Varz,j). (59)

We would next like to explain the claims made in Case 2 of Section 3.4. Specifically, we make claims
about the distribution of ‘Biasz,j when ‘Biasz,j ⇡ (✏>X†>ez,j)2�2

z,j
:

‘Biasz,j ⇡ (✏>X†>ez,j)
2�2

z,j
= (

p
Varz,j�)

2 = Varz,j�
2 (60)

� ⇠ N (0, 1), �2 ⇠ �2(df = 1) (61)

We therefore know in this case that ‘Biasz,j is the scaling of a chi-squared random variable. By
properties of CDFs, we know that Pr(Varz,j�2  ↵) = Pr(�2  ↵

Varz,j
), and therefore we know

that the inverse CDF of Varz,j�2 will be CDF�1

�2
df=1

(↵)⇥Varz,j .

F PROOF OF PROPOSITION 1

First, we will restructure ‘Biasz,j as the scaling of a non-central chi-squared random variable. From

Equation 59, we know the distribution of
»
‘Biasz,j , which we can write in terms of a Gaussian

random variable with non-zero mean:

»
‘Biasz,j = hŵ, ez,ji�z,j ⇠ N (

p
Biasz,j ,Varz,j) (62)

=)
»
‘Biasz,j =

p
Varz,j�, � ⇠ N (

p
Biasp
Varz,j

, 1) (63)

We therefore know that �2 is distributed according to a non-central chi-squared distribution:

‘Biasz,j = (
p
Varz,j�)

2 = Varz,j�
2, �2 ⇠ �2

�
(df = 1,� =

Biasz,j
Varz,j

) (64)

Furthermore, we know the CDF of this variable as Pr(Varz,j�2  ↵) = Pr(�2  ↵

Varz,j
).

We include an eigenvector ez,j in our set S if ‘Biasz,j  CDF�1

�2
df=1

(↵)⇥Varz,j . The probability of

this event occurring is given by the CDF of ‘Biasz,j , which is the following:

18

Under review as a conference paper at ICLR 2024

Pr(‘Biasz,j  CDF�1

�2
df=1

(↵)⇥Varz,j) = 1�Q 1
2
(

Biasz,j
Varz,j

,

p
Varz,j

q
CDF�1

�2
df=1

(↵)
p

Varz,j
) (65)

= 1�Q 1
2
(

Biasz,j
Varz,j

,
q
CDF�1

�2
df=1

(↵)) (66)

G PROOF OF LEMMA 1

Proposition 1 gives us an expression for the probability that a given eigenvector is included in the set
S. Lemma 1 will use this proposition to demonstrate the tail behaviour of this expression. We will
first note that since the expression in Proposition 1 is a CDF, it is continuous. Therefore, in order to
find its limits at 0 and 1, we need only be able to evaluate the expression at these values.

We will first show that:

Pr(ez,j 2 S)

Biasz,j
Varz,j

!1
�������! 0 (67)

This is a special value of the Marcum Q function (Sun & Baricz, 2008). Specifically, Q 1
2
(1, b) = 1

for any b. Therefore:

Pr(ez,j 2 S) = 1�Q 1
2
(1,

q
CDF�1

�2
df=1

(↵)) = 1� 1 = 0 (68)

We will next show that:

Pr(ez,j 2 S)

Biasz,j
Varz,j

!0

������! ↵ (69)

This is another special value of the Marcum Q function (Sun & Baricz, 2008). Specifically:

Q 1
2
(0, b) =

�(1
2
, b

2

2
)

�(1
2
)

(70)

For any b. Here, � with one argument is the gamma function and � with two arguments is the upper
incomplete gamma function. By properties of gamma functions, we know that if � is the lower
incomplete gamma function, then �(1

2
, b

2

2
) + �(1

2
, b

2

2
) = �(1

2
). Using this property, and by letting

b =
q

CDF�1

�2
df=1

(↵), we have the following:

Pr(ez,j 2 S) = 1�Q 1
2
(0, b) =

�(1
2
, b

2

2
) + �(1

2
, b

2

2
)

�(1
2
)

�
�(1

2
, b

2

2
)

�(1
2
)

(71)

=
�(1

2
, b

2

2
)

�(1
2
)

= CDF�2
df=1

(CDF�1

�2
df=1

(↵)) = ↵ (72)

19

Under review as a conference paper at ICLR 2024

Where we have used the observation that the leftmost expression in Equation 72 is the CDF for a
chi-squared distribution with one degree of freedom.

H ADDITIONAL TRAINING DETAILS

For our experiments in Section 4, we adapt the code provided by Yao et al. (2022) in this Github repo:
https://github.com/huaxiuyao/C-Mixup. While training, we perform early stopping
on a validation set evaluation metric. For PovertyMap, this procedure is seen in the original work of
Koh et al. (2021). We also use the hyperparameters provided in the appendix of Yao et al. (2022)’s
work, including the following learning rates and bandwidth parameters for C-Mixup:

Table 4: Hyperparameters used for training models responsible for the results in Section 4.
Hyperparameter CommunitiesAndCrime SkillCraft PovertyMap
Learning Rate 1e-3 1e-2 1e-3
Bandwidth 1.0 5e-4 0.5

We additionally make the modification to train models without a bias term in the final linear layer.
This is due to the fact that SpAR assumes a regressor that does not use a bias.

Models are trained using Tesla T4 GPUs from NVIDIA. Tabular and synthetic experiments take less
than 10 minutes to run for a single seed and hyperparameter setting. PovertyMap experiments take
roughly 3 hours to run when training ERM and roughly 15 hours to run when training C-Mixup.

I TABULAR DATA RESULTS WITH BASE HYPERPARAMETERS

In this section, we provide the table of results that Figure 3 is based upon. This is the performance of
the models using the hyperparameters described in Table 4. The results are included in Table 5.

J HYPERPARAMETER SEARCH

For hyperparameter tuning, we perform random search over the learning rate and the bandwidth used
in C-Mixup. Specifically, we search over learning rates using the following formula for the learning
rate lr and bandwidth bw:

lr = baselr ⇤ 10u, u ⇠ Unif(�1, 1) (73)

bw = basebw ⇤ 10u, u ⇠ Unif(�1, 1) (74)

where baselr and basebw are the values described in Table 4 for each dataset. We test out 10 randomly
selected hyperparameter settings for both ERM and C-Mixup, and select the settings that yield the
best validation performance. Those hyperparameter settings selected for C-Mixup are presented in
Table 6 and hyperparameter settings selected for ERM are presented in Table 7.

K TUNED BASELINES

Using the hyperparameters presented in Tables 6 and 7 which were selected hyperparameter search
process described in Section J, we benchmark the performance of ERM and C-Mixup models across
10 seeds for the tabular datasets and the 5 data folds for PovertyMap. We report results for PovertyMap
and the tabular datasets in Tables 9 and 8, respectively.

We find that SpAR can achieve superior worst group performance than any other method presented
in either Tables 9 or 8, or in Section 4. For C-Mixup on CommunitiesAndCrime, we see that
tuning hyperparameters on the validation set yields poorer performance (Table 8) than using the
hyperparameters presented in Yao et al. (2022)’s work (Table 5). However, we can see that a SpAR
model is able to achieve the best worst-group RMSE of any model on this dataset, 0.161.

20

https://github.com/huaxiuyao/C-Mixup

Under review as a conference paper at ICLR 2024

Table 5: Tabular data. OOD RMSE averaged across 10 seeds for models using the hyperparameters
described in Table 4.

SkillCraft
Method Average RMSE (#) Worst Group RMSE (#)
ERM 6.273 ± 0.384 8.933 ± 1.338
ERM + OLS 6.884 ± 0.860 11.156 ± 3.892
ERM + SpAR (Ours) 6.049 ± 0.379 8.317 ± 1.327
C-Mixup 6.319 ± 0.450 8.713 ± 1.106
C-Mixup + OLS 7.070 ± 0.898 11.747 ± 3.450
C-Mixup + SpAR (Ours) 6.038 ± 0.705 8.343 ± 1.563

CommunitiesAndCrime
Method Average RMSE (#) Worst Group RMSE (#)
ERM 0.134 ± 0.006 0.166 ± 0.014
ERM + OLS 0.142 ± 0.004 0.175 ± 0.012
ERM + SpAR (Ours) 0.133 ± 0.002 0.163 ± 0.009
C-Mixup 0.131 ± 0.005 0.162 ± 0.016
C-Mixup + OLS 0.140 ± 0.003 0.175 ± 0.010
C-Mixup + SpAR (Ours) 0.133 ± 0.002 0.161 ± 0.004

Table 6: Tuned hyperparameters used for training C-Mixup models. 4.
Hyperparameter CommunitiesAndCrime SkillCraft PovertyMap
Learning Rate 0.003630376073213171 0.023276939100527687 0.003630376073213171
Bandwidth 0.35090148857968506 0.0013316008334250096 0.17545074428984253

Table 7: Tuned hyperparameters used for training ERM models.
Hyperparameter CommunitiesAndCrime SkillCraft PovertyMap
Learning Rate 0.008246671732726021 0.023276939100527687 0.003630376073213171

Table 8: Tabular data. OOD RMSE averaged across 10 seeds for models using tuned hyperparame-
ters.

SkillCraft
Method Average RMSE (#) Worst Group RMSE (#)
ERM 5.917 ± 0.620 8.308 ± 1.915
ERM + OLS 6.548 ± 0.915 10.219 ± 3.123
ERM + SpAR (Ours) 6.083 ± 0.681 8.193 ± 1.212
C-Mixup 5.816 ± 0.558 8.371 ± 1.611
C-Mixup + OLS 6.535 ± 0.822 10.297 ± 2.362
C-Mixup + SpAR (Ours) 5.833 ± 0.580 7.922 ± 1.043

CommunitiesAndCrime
Method Average RMSE (#) Worst Group RMSE (#)
ERM 0.133 ± 0.004 0.161 ± 0.010
ERM + OLS 0.149 ± 0.018 0.184 ± 0.032
ERM + SpAR (Ours) 0.134 ± 0.007 0.164 ± 0.013
C-Mixup 0.133 ± 0.003 0.171 ± 0.012
C-Mixup + OLS 0.144 ± 0.011 0.177 ± 0.019
C-Mixup + SpAR (Ours) 0.132 ± 0.004 0.164 ± 0.008

Table 9: PovertyMap-WILDS. Average OOD all-group and worst-group Spearman r across 5 splits
for models using tuned hyperparameters.

Method rall(") rwg(")
ERM 0.798 ± 0.052 0.518 ± 0.076
ERM + SpAR (Ours) 0.799 ± 0.045 0.522 ± 0.080
C-Mixup 0.806 ± 0.031 0.523 ± 0.083
C-Mixup + SpAR (Ours) 0.803 ± 0.038 0.528 ± 0.087

L SENSITIVITY OF ALPHA HYPERPARAMETER

Figure 4: Hyperparameter sensitivity SpAR performance as a function of ↵ on tabular datasets.

Throughout this work, we use a single setting of ↵ for each of our experiments. Our specific setting
of ↵=0.999 was selected using a minimal amount of tuning on a single seed of a single experiment.
This value was then used on every seed of every dataset, regardless of potential improvements.
To achieve a more complete understanding of SpAR’s sensitivity to ↵, we conduct an experiment

21

Under review as a conference paper at ICLR 2024

measuring OOD performance as a function of ↵ when SpAR is applied to an ERM base model on
the SkillCraft and CommunitiesAndCrime datasets. See Figure 4 for results. We see that on the
CommunitiesAndCrime dataset, a higher ↵ than 0.999 could have resulted in superior worst case
performance. Meanwhile, on SkillCraft, we clearly see that setting ↵ too close to 1 can result in very
poor worst group performance. Expression 13 in the paper indicates that as ↵ tends towards zero, the
regressor produced by SpAR will more closely resemble the solution produced by OLS. Specifically,
fewer eigenvectors will be projected out from the OLS solution. Conversely, as ↵ tends towards one,
the regressor produced by SpAR will tend towards the zero vector. This can be seen as a tradeoff
between the cases where no Spectral Inflation is expected and where Spectral Inflation is expected to
occur along every right singular vector.

In general, selecting ↵ using validation set performance can have mixed results, as SpAR is intended
to produce a regressor for a specific evaluation set (namely, the OOD test set, not the ID validation
set). Future work could investigate the interesting question of how ↵ could be selected based on the
amount of spectral inflation presented in the train/evaluation data.

M COMPUTATIONAL COST

The computational cost of SpAR comes from collecting the representations (running forward passes
for every train and test example) and performing SVD, with the former step dominating the cost.
Notably, it is much less cumbersome than other adaptation techniques. Computing the SVD of the
matrix can be done in polynomial time, and we find in practice that performing this one-time post-hoc
adaptation is quite efficient relative to other methods that must compute a regularizer or augment data
on each training iteration (see Table 10).

Table 10: Measured train time on PovertyMap. Each model is trained on a NVIDIA Tesla T4 GPU.
In-processing methods and SpAR use a large pool of unlabeled data that are distinct from the test set,
but come from the same distribution Sagawa et al. (2021).

Method Average RMSE
ERM 3h22m ± 0h22m
C-Mixup 14h58 ± 1h01m
DARE-GRAM 5h58m ± 0h26m
ERM + SpAR (Ours) 4h11m ± 0h33m
SpAR only 0h40m ± 0h18m

N LIMITATIONS AND BROADER IMPACTS

SpAR is designed for covariate shift, and its ability to handle other types of distribution shift (such
as concept shift) is not known analytically. To be more specific, we assume that the targets have a
the same linear relationship (via the ground truth weight w⇤) with inputs X and Z, and that X and
Z are covariate-shifted. A subtle issue here is that when X and Z are internal representations of
some neural net, we require that the difference P and Q is captured in terms of a covariate shift in
the representation space, which may or may not correspond to a covariate shift in the original input
space (which could be some high-dimensional vector, e.g. pixels).

Empirically, however, we successfully apply SpAR to several real-world datasets without assurance
that they exhibit only covariate shift, and find promising results. The spectral inflation property that
we observe in real data (Figure 2) may be relevant to other distribution shifts as well, although this
remains to be seen in future studies. Identifying covariate shift within a datasets is an active area of
work (Ginsberg et al., 2022) that complements our efforts in this paper.

Our research seeks to improve OOD generalization with the hopes of ensuring ML benefits are
distributed more equitably across social strata. However, it is worthwhile to be self-reflexive about the
methodology we use when working towards this goal. For example, for the purposes of comparing
against existing methods from the literature, we use the Communities and Crime dataset, where aver-
age crime rates are predicted based on statistics of neighborhoods, which could include demographic
information. This raises a potential fairness concern: even if we have an OOD-robust model, it may

22

Under review as a conference paper at ICLR 2024

not be fair if it uses demographic information in its predictions. While this is not the focus of our
paper, we note that the research community is in the process of reevaluating tabular datasets used for
benchmarking (Ding et al., 2021; Bao et al., 2021).

23

	Introduction
	Background
	Robust Regression by Spectral Adaptation
	Analyzing OLS Regression Under Covariate Shift
	Spectral Adaptation Through Projection
	Projection Reduces Out-of-Distribution Loss
	Eigenvector Selection Under Uncertainty

	Experiments
	Synthetic Data
	Tabular Datasets
	PovertyMap - WILDS

	Related Work
	Conclusion
	OLS and the Pseudoinverse
	Derivation of Loss of OLS Under Covariate Shift
	Derivation of Bias-Variance Decomposition
	Proof of Theorem 3
	 Distribution of
	Proof of Proposition 1
	Proof of Lemma 1
	Additional Training Details
	Tabular Data Results with Base Hyperparameters
	Hyperparameter Search
	Tuned Baselines
	Sensitivity of Alpha Hyperparameter
	Computational Cost
	Limitations and Broader Impacts

