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Abstract

We study online control of time-varying linear systems with unknown dynamics in
the nonstochastic control model. At a high level, we demonstrate that this setting
is qualitatively harder than that of either unknown time-invariant or known time-
varying dynamics, and complement our negative results with algorithmic upper
bounds in regimes where sublinear regret is possible. More specifically, we study
regret bounds with respect to common classes of policies: Disturbance Action
(SLS), Disturbance Response (Youla), and linear feedback policies. While these
three classes are essentially equivalent for LTI systems, we demonstrate that these
equivalences break down for time-varying systems.
We prove a lower bound that no algorithm can obtain sublinear regret with respect
to the first two classes unless a certain measure of system variability also scales
sublinearly in the horizon. Furthermore, we show that offline planning over the
state linear feedback policies is NP-hard, suggesting hardness of the online learning
problem.
On the positive side, we give an efficient algorithm that attains a sublinear regret
bound against the class of Disturbance Response policies up to the aforementioned
system variability term. In fact, our algorithm enjoys sublinear adaptive regret
bounds, which is a strictly stronger metric than standard regret and is more ap-
propriate for time-varying systems. We sketch extensions to Disturbance Action
policies and partial observation, and propose an inefficient algorithm for regret
against linear state feedback policies.

1 Introduction

The control of linear time-invariant (LTI) dynamical systems is well-studied and understood. This
includes classical methods from optimal control such as LQR and LQG, as well as robust H∞
control. Recent advances study regret minimization and statistical complexity for online linear
control, in both stochastic and adversarial perturbation models. Despite this progress, rigorous
mathematical guarantees for nonlinear control remain elusive: nonlinear control is both statistically
and computationally intractable in general.

In the face of these limitations, recent research has begun to study the rich continuum of settings
which lie between LTI systems and generic nonlinear ones. The hope is to provide efficient and
robust algorithms to solve the most general control problems that are tractable, and at the same time,
to characterize precisely at which degree of nonlinearity no further progress can be made.
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This paper studies the control of linear, time-varying (LTV) dynamical systems as one such point
along this continuum. This is because the first-order Taylor approximation to the dynamics of any
smooth nonlinear system about a given trajectory is an LTV system. These approximations are widely
popular because they allow for efficient planning, as demonstrated by the success of iLQR and
iLQG methods for nonlinear receding horizon control. We study online control of discrete-time LTV
systems, with dynamics and time-varying costs

xt+1 = Atxt +Btut + wt, ct(xt, ut) : (x, u)→ R. (1.1)

Above, xt is the state of the system, ut the control input, wt the disturbances, and At, Bt the system
matrices. Our results extend naturally to partial-state observation, where the controller observes linear
projections of the state yt = Ctxt. We focus on the challenges introduced when the system matrices
At, Bt and perturbations wt are not known to the learner in advance, and can only be determined by
live interaction with the changing systems.

In this setting, we find that the overall change in system dynamics across time characterizes the
difficulty of controlling the unknown LTV system. We define a measure, called system variability,
which quantifies this. We show both statistical and computational lower bounds as well as algorithmic
upper bounds in terms of the system variabilility. Surprisingly, system variability does not impede
the complexity of control when the dynamics are known [16].

1.1 Contributions

We consider the recently popularized nonstochastic model of online control, and study regret bounds
with respect to common classes of policies: Disturbance Action (DAC/SLS [44]), Disturbance
Response (DRC/Youla [46]), and linear feedback policies. Planning over the third class of feedback
policies in LTI systems admits efficient convex relaxations via the the first two parametrizations, DAC
and DRC. This insight has been the cornerstone of both robust [49, 44] and online [3, 39] control.

Separation of parametrizations. For linear time-varying systems, however, we find that equiva-
lences between linear feedback, DAC and DRC fail to hold: we show that there are cases where any
one of the three parametrizations exhibits strictly better control performance than the other two.

Regret against convex parametrizations. Our first set of results pertain to DAC and DRC
parametrizations, which are convex and admit efficient optimization. We demonstrate that no
algorithm can obtain sublinear regret with respect to these classes when faced with unknown, LTV
dynamics unless a certain measure of system variability also scales sublinearly in the horizon. This
is true even under full observation, controllable dynamics, and fixed control cost. This finding is in
direct contrast to recent work which shows sublinear regret is attainable over LTV system dynamics
if they are known [16].

We give an efficient algorithm that attains sublinear regret against these policy classes up to an
additive penalty for the aforementioned system variability term found in our lower bound. When the
system variability is sufficiently small, our algorithm recovers state-of-the-art results for unknown
LTI system dynamics up to logarithmic factors.

In fact, our algorithm enjoys sublinear adaptive regret [21], a strictly stronger metric than standard
regret which is more appropriate for time-varying systems. We also show that the stronger notion of
adaptivity called strongly adaptive regret [11] is out of reach in the partial information setting.

Regret against state feedback. Finally, we consider the class of state feedback policies, which are
linear feedback with memory length one. We show that full-information optimization over state
feedback policies is computationally hard. This suggests that obtaining sublinear regret relative to
these policies may be computationally prohibitive, though does not entirely rule out the possibility of
improper learning. However, improper learning cannot be done via the DRC or DAC relaxations in
light of our policy class separation results. Finally, we include an inefficient algorithm which attains
sublinear (albeit nonparametric-rate) regret against state feedback control policies.

Paper Structure

Discussion of relevant literature and relation to our work can be found in Section 1.2. In Section 2,
we formally introduce the setting of LTV nonstochastic control, the policy classes we study and
our key result regarding their non-equivalence in the LTV setting (Theorem 2.1). Motivated by this
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non-equivalence, the remainder of the paper is split into the study of convex policies (Section 3) and
of state feedback policies (Section 4). In Section 3, we show that regret against the DAC and DRC
classes cannot be sublinear unless the metric system variability (Definition 3.1) itself is sublinear
(Theorem 3.1), and also propose Algorithm 2 whose adaptive regret scales at the rate of our lower
bound plus a T 2/3 term (Theorem 3.4). On the other hand, in Section 4 we show sublinear regret
against state feedback policies is technically possible (Theorem 4.1) with a computationally inefficient
algorithm, but also provide a computational lower bound (Theorem 4.2) for planning which reveals
significant difficulties imposed by the LTV dynamics in this scenario as well. Finally, in Section 5 we
pose several future directions, concerning both questions in LTV control, as well as the extension to
nonlinear control.

1.2 Related Work

Our study of LTV systems is motivated by the widespread practical popularity of iterative linearization
for nonlinear receding horizon control; e.g., the iLQR [40], iLC [29], and iLQG [41] algorithms.
Recent research has further demonstrated that near-optimal solutions to LTV approximations of
dynamics confer stability guarantees onto the original nonlinear system of interest [45].

Low-Regret Control: We study algorithms which enjoy sublinear regret for online control of LTV
systems; that is, whose performance tracks a given benchmark of policies up to a term which is
vanishing relative to the problem horizon. [1] initiated the study of online control under the regret
benchmark by introducing the online LQR problem: where a learner is faced with an unknown LTI
system, fixed costs and i.i.d. Gaussian disturbances, and must attain performance relative to the
LQR-optimal policy. Bounds for this setting were later improved and refined in [12, 26, 10, 38],
and extended to partial-state observation in [25, 24]. Our work instead adopts the nonstochastic
control setting [3], where the adversarially chosen (i.e. non-Gaussian) noise is considered to model
the drift terms that arise in linearizations of nonlinear terms, and where costs may vary with time. [3]
consider known system dynamics, later extended to unknown systems under both full-state [20] and
partial-state observation [39, 37]. The study of nonstochastic control of known LTV dynamics was
taken up in [16], with parallel work by [32] considering known LTV dynamics under stochastic noise.

Unknown LTV dynamics: Our work is the first to consider online (low-regret) control of unknown
LTV systems in any model. There is, however, a rich body of classical work on adaptive control of
LTV systems [28, 42]. These guarantees focus more heavily on error sensitivity and stability; they
only permit dynamical recovery up to error that scales linearly in system noise, and thus guarantee
only (vacuous) linear-in-horizon regret. More recent work has studied identification (but not online
control) of an important LTV class called switching systems [31, 35].

Online Convex Optimization: We make extensive use of techniques from the field of online convex
optimization [9, 18]. Most relevant to our work is the literature on adapting to changing environments
in online learning, which starts from the works of [22, 6]. The notion of adaptive regret was introduced
in [21] and significantly studied since as a metric for adaptive learning in OCO [2, 47]. [11] proposed
to strengthen adaptive regret and the stronger metric has been shown to imply results over dynamic
regret [48].

Recent nonlinear control literature: Recent research has also studied provably guarantees in
various complementary (but incomparable) models: planning regret in nonlinear control [4], adaptive
nonlinear control under linearly-parameterized uncertainty [5], online model-based control with
access to non-convex planning oracles [23], and control with nonlinear observation models [27, 13].

2 Problem Setting

We study control of a linear time-varying (LTV) system Eq. (1.1) with state xt ∈ Rdx , control input
ut ∈ Rdu chosen by the learner, and the external disturbance wt ∈ Rdx chosen by Nature. The
system is characterized by time-varying matrices At ∈ Rdx×dx , Bt ∈ Rdx×du . For simplicity, the
initial state is x1 = 0. At each time t, oblivious1 adversary picks the system matrices (At, Bt),
disturbances wt and cost functions ct : Rdx × Rdu → R. The dynamics (At, Bt) are unknown to the
learner: one observes only the next state xt+1 and current cost ct(·, ·) after playing control ut.

1An oblivious adversary chooses the matrices, costs and perturbations prior to the control trajectory.
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Adaptive Regret. The goal of the learner is to minimize regret w.r.t. a policy class Π, i.e. the
difference between the cumulative cost of the learner and the best policy π? ∈ Π in hindsight.
Formally, the regret of an algorithm A with control inputs u1:T and corresponding states x1:T , over
an interval I = [r, s] ⊆ [T ], is defined as

RegretI(A; Π) =
∑
t∈I

ct(xt, ut)− inf
π∈Π

∑
t∈I

ct(x
π
t , u

π
t ) . (2.1)

Here uπt , x
π
t indicate the control input and the corresponding state when following policy π. For a

randomized algorithmA, we consider the expected regret. In this work, we focus on designing control
algorithms that minimize adaptive regret, i.e. guarantee a low regret relative to the best-in-hindsight
policy π?I ∈ Π on any interval I ⊆ [T ]. This performance metric of adaptive regret is more suitable
for control over LTV dynamics given its agility to compete against different local optimal policies
π?I ∈ Π at different times [16].

Key objects. A central object in our study is the sequence of Nature’s x’s xnat
1:T that arises from

playing zero control input ut = 0 at each t ∈ [T ], i.e. xnat
t+1 = Atx

nat
t +wt [39]. define the following

operators for all t,

Φ
[0]
t = I, ∀h ∈ [1, t), Φ

[h]
t =

t−h+1∏
k=t

Ak, ∀i ∈ [0, t), G
[i]
t = Φ

[i]
t Bt−i,

where the matrix product
∏r
s with s ≥ r is taken in the indicated order k = s, . . . , r. the following

identities give an alternative representation for the Nature’s x’s xnat
t and state xt with control input

ut in terms of the Markov operator at time t, Gt = [G
[i]
t ]i≥0:

xnat
t+1 =

t−1∑
i=0

Φ
[i]
t wt−i, xt+1 = xnat

t+1 +

t−1∑
i=0

G
[i]
t ut−i .

These operators and the alternative representation capture the dynamics by decoupling the disturbance
and the control action effects.

Assumptions. We make the three basic assumptions: we require from (i) the disturbances to not
blow up the system with no control input, (ii) the system to have decaying effect over time, and (iii)
the costs to be well-behaved and admit efficient optimization. Formally, these assumptions are:
Assumption 1. For all t ∈ [T ], assume ‖xnat

t ‖ ≤ Rnat.
Assumption 2. Assume there exist RG ≥ 1 and ρ ∈ (0, 1) s.t. for any h ≥ 0 and for all t ∈ [T ]∑

i≥h

‖G[i]
t ‖op ≤ RG · ρh := ψ(h) .

Assumption 3. Assume the costs ct : Rdx × Rdu → R are general convex functions that satisfy the
conditions 0 ≤ ct(x, u) ≤ Lmax{1, ‖x‖2 + ‖u‖2}, and ‖∇ct(x, u)‖ ≤ Lmax{1, ‖x‖+ ‖u‖} for
some constant L > 0, where ∇ denotes any subgradient [7].

The conditions in Assumption 3 allow for functions whose values and gradient grow as quickly as
quadratics (e.g. the costs in LQR) , and the max{1, ·} term ensures the inclusion of standard bounded
and Lipschitz functions as well. Assumptions 1 and 2 arise from the assumption our LTV system is
open-loop stable; Appendix A.2 extends to the case where a nominal stabilizing controller is known,
as in prior work [3, 39]. While these two assumptions may seem unnatural at first, they can be derived
from the basic conditions of disturbance norm bound and sequential stability.

Lemma 2.1. Suppose that there exist C1 ≥ 1, ρ1 ∈ (0, 1) such that ‖Φ[h]
t ‖op ≤ C1ρ

h
1 for any h ≥ 0

and all t ∈ [T ], and suppose that maxt ‖wt‖ ≤ Rw. Then, Assumption 1 holds withRnat = C1

1−ρ1Rw,
and Assumption 2 holds with ρ = ρ1 and RG = max{1,maxt ‖Bt‖op · C1

1−ρ1 }.

Note that Assumption 2 implies that ‖Gt‖`1,op =
∑
i≥0 ‖G

[i]
t ‖op ≤ RG. It also suggests that for

a sufficiently large h the effect of iterations before t − h are negligible at round t. This prompts
introducing a truncated Markov operator: denote Ḡht = [G

[i]
t ]i<h to be the h-truncation of the true

Markov operator Gt. It follows that their difference is ‖Ḡht − Gt‖`1,op =
∑
i≥h ‖G

[i]
t ‖op ≤ ψ(h)

negligible in operator norm for a sufficiently large h. Define the bounded set of h-truncated Markov
operators to be G(h,RG) = {G = [G[i]]0≤i<h : ‖G‖`1,op ≤ RG} with Ḡht ∈ G(h,RG) for all t.
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2.1 Benchmarks and Policy Classes

The performance of an algorithm, measured by Eq. (2.1), directly depends on the policy class Π that
is chosen as a benchmark to compete against. In this work, we consider the following three policy
classes: DRC, DAC, and linear feedback. DRC parameterizes control inputs in terms of Nature’s x’s
xnat
t , DAC does so in terms of the disturbances wt and linear feedback in terms of the states xt. We

express all three in terms of a length-m parameter M = [M [i]]i<m in a bounded ballM(m,RM ):

M(m,RM ) = {(M [0], . . . ,M [m−1]) :
∑m−1
i=0 ‖M [i]‖op ≤ RM} .

Definition 2.1 (DRC policy class). A DRC control policy πMdrc of length m is given by uMt =∑m−1
i=0 M [i]xnat

t−i where M = [M [i]]i<m is the parameter of the policy. Define the bounded DRC

policy class as Πdrc(m,RM ) = {πMdrc : M ∈M(m,RM )}.
Definition 2.2 (DAC policy class). A DAC control policy πMdac of length m is given by uMt =∑m−1
i=0 M [i]wt−i where M = [M [i]]i<m is the parameter of the policy. Define the bounded DAC

policy class as Πdac(m,RM ) = {πMdac : M ∈M(m,RM )}.
Definition 2.3 (Feedback policy class). A feedback control policy πMfeed of length m is given by
uMt =

∑m−1
i=0 M [i]xt−i where M = [M [i]]i<m is the parameter of the policy. Define the bounded

feedback policy class as Πfeed(m,RM ) = {πMfeed : M ∈ M(m,RM )}. In the special case of
memory m = 1, denote the state feedback policy class as Πstate = Πfeed(m = 1).

Convexity. Both the DRC and DAC policy classes are convex parametrizations: a policy π ∈
Πdrc ∪Πdac outputs controls ut that are linear in the policy-independent sequences xnat

1:T and w1:T ,
and thus the mapping from parameter M to resulting states and inputs (resp. costs) is affine (resp.
convex). Hence, we refer to these as the convex classes. In contrast, feedback policies select inputs
based on policy-dependent states, and are therefore non-convex [15].

We drop the arguments m,RM when they are clear from the context. The state feedback policies
Πstate encompass the H2 and H∞ optimal control laws under full observation. For LTI systems,
DRC and DAC are equivalent [46, 44] and approximate all linear feedback policies to arbitrarily high
precision [3, 39]. However, we show that these relationships between the classes break down for LTV
systems: there exist scenarios where any one of the three classes strictly outperforms the other two.
Theorem 2.1 (Informal). For each class Π in {Πdrc,Πdac,Πfeed} there exists a sequence of well-
behaved (At, Bt, wt, ct) such that a policy π? ∈ Π suffers 0 cumulative cost, but each of the other
two classes Π′ ∈ {Πdrc,Πdac,Πfeed} \Π suffers Ω(T ) cost on all their constituent policies π ∈ Π′.

The formal theorem that includes the definition of a well-behaved instance sequence and the final
statement dependence on m,RM along with its proof can be found in Appendix F.1.

Notation. The norm ‖ · ‖ refers to Euclidean norm unless otherwise stated, [n] is used as a shorthand
for [1, n], T is used as a subscript shorthand for [T ]. The asymptotic notation O(·),Ω(·) suppress all
terms independent of T , Õ(·) additionally suppresses terms logarithmic in T . We define Õ?(·) to
suppress absolute constants, polynomials in Rnat, RG, RM and logarithms in T .

3 Online Control over Convex Policies

This section considers online control of unknown LTV systems so as to compete with the convex
DRC and DAC policy classes. The fundamental quantity which appears throughout our results is
the system variability, which measures the variation of the time-varying Markov operators Gt over
intervals I .
Definition 3.1. Define the system variability of an LTV dynamical system with Markov operators
G = G1:T over a contiguous interval I ⊆ [T ] to be

VarI(G) = min
G

1

|I|
∑
t∈I
‖G−Gt‖2`2,F =

1

|I|
∑
t∈I
‖GI −Gt‖2`2,F ,

where ‖ · ‖`2,F indicates the `2 norm of the fully vectorized operator and GI = |I|−1
∑
t∈I Gt is the

empirical average of the operators that correspond to I . Recall that VarT (G) corresponds to I = [T ].
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Our results in this section for both upper and lower bounds focus on expected regret: high probability
results are possible as well with more technical effort using standard techniques.

3.1 A Linear Regret Lower Bound

Our first contribution is a negative one: that the regret against the class of either DAC or DRC policies
cannot scale sublinearly in the time horizon. Informally, our result shows that the regret against these
classes scales as Tσ, where σ2 is the system variability.

More precisely, for any σ2 ∈ (0, 1/8], we construct a distributionDσ over sequences (At, Bt, ct, wt),
formally specified in Appendix F.2. Here, we list the essential properties of Dσ: (i) At ≡ 0, (ii)
ct ≡ c is a fixed cost satisfying Assumption 3 with L ≤ 4, (iii) the matrices (Bt) are i.i.d., with
‖Bt‖op ≤ 2 almost surely, and E[‖Bt−E[Bt]‖2F] = σ2, and (iv) ‖wt‖ ≤ 4 for all t. These conditions
imply that Assumptions 1 and 2 hold for RG = 2, ρ = 0, Rnat = 4. The condition At ≡ 0 implies
that xnat

t = wt for all t, so the classes DRC and DAC are equivalent and the lower bound holds over
both. Moreover, by Jensen’s inequality, this construction ensures that

E[VarI(G)] = |I|−1E[min
G

∑
t∈I ‖G−Gt‖2`2,F ]

= |I|−1E[min
B

∑
t∈I ‖B −Bt‖2F] ≤ E[‖Bt − E[Bt]‖2F] = σ2.

In particular, E[VarT (G)] ≤ σ2. For the described construction, we show the following lower bound:

Theorem 3.1. Let C be a universal, positive constant. For any σ ∈ (0, 1/8] and any online control
algorithm A, there exists a DRC policy π? ∈ Πdrc(1, 1) s.t. expected regret incurred by A under the
distribution Dσ and cost c(x, u) is at least

EDσ,A[RegretT (A; {π?})] ≥ C · Tσ ≥ C · T ·
√
E[VarT (G)],

A full construction and proof of Theorem 3.1 is given in Appendix F.2. In particular, for σ = 1/8,
we find that no algorithm can attain less than Ω(T ) expected regret; a stark distinction from either
unknown LTI [39, 20] or known LTV [16] systems.

3.2 Estimation of Time-Varying Vector Sequences

To devise an algorithmic upper bound that complements the result in Theorem 3.1, we first consider
the setting of online prediction under a partial information model. This setting captures the system
identification phase of LTV system control and is used to derive the final control guarantees. Formally,
consider the following repeated game between a learner and an oblivious adversary: at each round
t ∈ [T ], the adversary picks a target vector z?t ∈ K from a convex decision set K contained in a
0-centered ball of radius Rz; simultaneously, the learner selects an estimate ẑt ∈ K and suffers
quadratic loss `t(ẑt) = ‖ẑt − z?t ‖2. The only feedback the learner has access to is via the following
noisy and costly oracle.
Oracle 1 (Noisy Costly Oracle). At each time t ∈ [T ], the learner selects a decision bt ∈ {0, 1}
indicating whether a query is sent to the oracle. If bt = 1, the learner receives an unbiased estimate
z̃t as response such that ‖z̃t‖ ≤ R̃z and E[z̃t | Ft, bt = 1] = z?t . The filtration Ft is the sigma
algebra generated by z̃1:t−1, b1:t−1 and the choices of the oblivious adversary z?1:T . A completed
query results in a unit cost λ > 0 for the learner.

The performance metric of an online prediction algorithm Apred is expected quadratic loss regret
along with the extra cumulative oracle query cost. It is defined over each interval I = [r, s] ⊆ [T ] as

RegretI(Apred;λ) = EF1:T

[∑
t∈I

`t(ẑt)−min
z∈K

∑
t∈I

`t(z) + λ
∑
t∈I

bt

]
. (3.1)

To attain adaptive regret, i.e. bound Eq. (3.1) for each interval I , we propose Algorithm 1 constructed
as follows. First, suppose we wanted non-adaptive (i.e. just I = [T ]) guarantees. In this special case,
we propose to sample bt ∼ Bernoulli(p) for an appropriate parameter p ∈ (0, 1), and perform a
gradient descent update on the importance-weighted square loss ˜̀

t(z) = 1
2p I{bt = 1}‖z− z̃t‖2. To
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Algorithm 1 Adaptive Estimation Algorithm (ADA-PRED)
1: Input: parameter p, decision set K
2: Initialize: ẑ(1)

1 ∈ K, working dictionary S1 = {(1 : ẑ
(1)
1 )}, q(1)

1 = 1, parameter α = p

(Rz+R̃z)2

3: for t = 1, . . . , T do
4: Play iterate ẑt =

∑
(i,ẑ

(i)
t )∈St

q
(i)
t ẑ

(i)
t

5: Draw/Receive bt ∼ Bernoulli(p)
6: if bt = 1 then
7: Request estimate z̃t from Oracle 1
8: Let ˜̀

t(z) = 1
2p ||z− z̃t||2 and ∇̃t = 1

p (zt − z̃)

9: else
10: Let z̃t ← ∅ and ˜̀

t(z) = 0 and ∇̃t = 0

11: Update predictions ẑ(i)
t+1 ← ProjK(ẑ

(i)
t − η

(i)
t ∇̃t) for all (i, ẑ

(i)
t ) ∈ St

12: Form new dictionary S̃t+1 = (i, ẑ
(i)
t+1)i∈keys(St)

13: Construct proxy new weights q̄(i)
t+1 = t

t+1 ·
q
(i)
t e−α

˜̀
t(ẑ

(i)
t )∑

j∈keys(St)
q
(j)
t e−α

˜̀
t(ẑ

(j)
t )

for all i ∈ keys(St)

14: Add new instance S̃t+1 ← S̃t+1∪ (t+ 1, ẑ
(t+1)
t+1 ) for arbitrary ẑ

(t+1)
t+1 ∈ K with q̄(t+1)

t+1 = 1
t+1

15: Prune S̃t+1 to form St+1 (see Appendix C.1)

16: Normalize q(i)
t+1 =

q̄
(i)
t+1∑

j∈keys(St+1) q̄
(j)
t+1

extend this method to enjoy adaptive regret guarantees, we adopt the approach of [21]: the core idea in
this approach is to initiate an instance of the base method at each round t and use a weighted average
of the instance predictions as the final prediction (Line 4). The instance weights are multiplicatively
updated according to their performance (Line 13). To ensure computational efficiency, the algorithm
only updates instances from a working dictionary St (Line 11). These dictionaries are pruned each
round (Line 15) such that |St| = O(log T ) (see Appendix C.1 for details).

Theorem 3.2. Given access to queries from Oracle 1 and with stepsizes η(i)
t = 1

t−i+1 , Algorithm 1
enjoys the following adaptive regret guarantee: for all I = [r, s] ⊆ [T ],

RegretI(ADA-PRED;λ) ≤ 2(Rz + R̃z)
2(1 + log s · log |I|)

p
+ λp|I| . (3.2)

When I = [T ], the optimal choice of parameter p = log T/
√
λT yields regret scaling roughly

as
√
λT log2 T . Unfortunatelly, this gives regret scaling as

√
T for all interval sizes: to attain√

|I| regret on interval I , the optimal choice of p would yield ∼ T/
√
|I| regret on [T ], which is

considerably worse for small |I|. One may ask if there exists a strongly adaptive algorithm which
adapts p as well, so as to enjoy regret polynomial in |I| for all intervals I simultaneously [11]. The
following result shows this is not possible:

Theorem 3.3 (Informal). For all γ > 0 and λ > 0, there exists no online algorithm A with feedback
access to Oracle 1 that enjoys strongly adaptive regret of RegretI(A;λ) = Õ(|I|1−γ).

Hence, in a sense, Algorithm 1 is as adaptive as one could hope for: it ensures a regret bound for all
intervals I , but not a strongly adaptive one. The lower bound construction, formal statement, and
proof of Theorem 3.3 are given in Appendix C.2.

3.3 Adaptive Regret for Control of Unknown Time-Varying Dynamics

We now apply our adaptive estimation algorithm (Algorithm 1) to the online control problem. Our
proposed algorithm, Algorithm 2, takes in two sub-routines: a prediction algorithm Apred which
enjoys low prediction regret in the sense of the previous section, and a control algorithm Actrl which
has low regret for control of known systems. Our master algorithm trades off between the two in
epochs τ = 1, 2, . . . of length h: each epoch corresponds to one step of Apred indexed by [τ ].
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At each epoch, the algorithm receives Markov operator estimates from Apred (Line 3) and makes
a binary decision b[τ ] ∼ Bernoulli(p). If b[τ ] = 1, then it explores using i.i.d. Rademacher inputs
(Line 7), and sends the resulting estimator to Apred (Line 14). This corresponds to one query from
Oracle 1. Otherwise, it selects inputs in line with Actrl (Line 9), and does not give a query to Apred

(Line 16). Regardless of exploration decision, the algorithm feeds costs, current estimates of the
Markov operator and Nature’s x’s based on the Markov operator estimates to Actrl (Lines 10-12),
which it uses to select inputs and update its parameter.

The prediction algorithm Apred is taken to be ADA-PRED with the decision set K = G(h,RG): the
projection operation onto it and the ball BRnat is done by clipping when the norm of the argument
exceeds the indicated bound. The control algorithm Actrl is taken to be DRC-OGD [39] for known
systems.

Theorem 3.4. For h =
log T

log ρ−1
, p = T−1/3 and m ≤

√
T , on any contiguous interval I ⊆ [T ],

Algorithm 2 enjoys the following adaptive regret guarantee:

E [RegretI(ADA-CTRL); Πdrc(m,RM )] ≤ Õ?
(
Lm

(
|I|
√

E[VarI(G)] + duT
2/3
))

(3.3)

Proof Sketch. The analysis proceeds by reducing the regret incurred to that over a known system,
accounting for: 1) the additional exploration penalty (O(p|I|)), 2) the system misspecification
induced error (∼

∑
t∈I ‖Ĝt − Ḡht ‖`1,op), and 3) truncation errors (∼ ψ(h)|I|). Via straightforward

computations, the system misspecification error can be expressed in terms of the result in Theorem 3.2,
ultimately leading to an error contribution∼ |I|

√
E[VarI(G)]+p−1/2|I|1/2. The analysis is finalized

by noting that the chosen p ideally balances p|I| and p−1/2|I|1/2, and that the chosen h ensures that
the truncation error is negligible. The full proof can be found in Appendix D.

The adaptive regret bound in Eq. (3.3) has two notable terms. Note that the first term |I|
√

E[VarI(G)]
for I = [T ] matches the regret lower bound in Theorem 3.1. Furthermore, our algorithm is adaptive
in this term for all intervals I . On the other hand, for unknown LTI systems with VarI(G) = 0, the
algorithm recovers the state-of-the-art bound of T 2/3 [20]. However, the T 2/3 term is not adaptive to
the intervals I consistent with the lower bound against strongly adaptive algorithms in Theorem 3.3.

Algorithm 2 DRC-OGD with Adaptive Exploration (ADA-CTRL)

1: Input: p, h,Apred ← ADA-PRED(p, Ĝ0,G(h,RG)), Actrl ← DRC-OGD(m,RM)
2: for τ = 1, . . . , T/h do . let tτ = (τ − 1)h+ 1

3: Set Ĝtτ , Ĝtτ+1, . . . , Ĝtτ+h−1 equal to τ -th iterate Ĝ[τ ] from Apred

4: Draw b[τ ] ∼ Bernoulli(p)
5: for t = tτ , . . . , tτ + h− 1 do
6: if b[τ ] = 1 then
7: Play control ut ∼ {±1}du
8: else
9: Play control ut according to the t-th input chosen by Actrl

10: Suffer cost ct(xt, ut) , observe new state xt+1

11: Extract x̂nat
t+1 = ProjBRnat

(
xt+1 −

∑h−1
i=0 Ĝ

[i]
t ut−i

)
12: Feed cost, Markov operator and Nature’s x estimates (ct, Ĝt, x̂

nat
t+1) to Actrl.

13: if b[τ ] = 1 then
14: Feed (b[τ ], G̃[τ ]) to Apred, where G̃[i]

[τ ] = xtτ+hu
>
tτ+h−i, i = 0, 1, . . . , h− 1.

15: else
16: Feed (b[τ ], G̃[τ ]) to Apred, where G̃[τ ] ← ∅.

4 Online Control over State Feedback

Given the impossibility of sublinear regret against DRC/DAC without further restrictions on system
variability, this section studies whether sublinear regret is possible against the class of linear feedback
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policies. For simplicity, we focus on the state feedback policies ut = Kxt, that is, linear feedback
policies with memory m = 1 (Definition 2.3). We note that state feedback policies were the class
which motivated the relaxation to DAC policies in the first study of nonstochastic control [3].

We present two results, rather qualitative in nature. First, we show that obtaining sublinear regret is,
in the most literal sense, possible. The following result considers regret relative to a class K of static
feedback controllers which satisfy the restrictive assumption that each K ∈ K stabilizes the time
varying dynamics (At, Bt); see Appendix E for the formal algorithm, assumptions, and guarantees.
We measure the regret against this class K:

RegretT (K) :=

T∑
t=1

ct(xt, ut)− inf
K∈K

T∑
t=1

ct(x
K
t , u

K
t ),

where (xKt , u
K
t ) are the iterates arising under the control law ut = Kxt.

Theorem 4.1 (Sublinear regret against state-feedback). Under a suitable stabilization assumption,
there exists a computationally inefficient control algorithm which attains sublinear expected regret:

E[RegretT (K)] ≤ eΩ(dxdu/2) · T 1− 1
2(dxdu+3) .

Above, Ω(·) suppresses a universal constant and exponent base, both of which are made explicit in a
formal theorem statement in Appendix E. The bound follows by running the EXP3 bandit algorithm
on a discretization of the set K (high probability regret can be obtained by instead using EXP3.P
[8]). The guarantee in Theorem 4.1 is neither practical nor sharp; its sole purpose is to confirm
the possibility of sublinear regret. Due to the bandit reduction and exponential size of the cover of
K ⊂ Rdu×dx , the algorithm is computationally inefficient and suffers a nonparametric rate of regret
[33]: ε-regret requires T = ε−Ω(dimension).

One may wonder if one can do much better than this naive bandit reduction. For example, is there
structure that can be leveraged? For LTV systems, we show that there is strong evidence to suggest
that, at least from a computational standpoint, attaining polynomial regret (e.g. T 1−α for α > 0
independent of dimension) is computationally prohibitive.
Theorem 4.2. There exists a reduction from MAX-3SAT on m-clauses and n-literals to the problem
of finding a state-feedback controler K which is within a small constant factor of optimal for the cost∑T
t=1 ct(x

K
t , x

K
t ) on a sequence of sequentially stable LTV systems and convex costs (At, Bt, ct)

with no disturbance (wt ≡ 0), with state dimension n+1, input dimension 2, and horizon T = Θ(mn).
Therefore, unless P = NP, the latter cannot be solved in time polynomial in n [17].

A more precise statement, construction, and proof are given in Appendix F.4. Theorem 4.2 demon-
strates that solving the offline optimization problem over state feedback controllers K to within
constant precision is NP-Hard. In particular, this means that any sublinear regret algorithm which is
proper and convergent, in the sense that ut = Ktxt for some sequence Kt converges to a limit as
T →∞, must be computationally inefficient. This is true even if the costs and dynamics are known
in advance. Our result suggests it is computationally hard to obtain sublinear regret, but it does not
rigorously imply it. For example, there may be more clever convex relaxations (other than DRC and
DAC, which provably cannot work) that yield efficient and sublinear regret. Secondly, this lower
bound does not rule out the possibility of an computationally inefficient algorithm which nevertheless
attains polynomial regret.

5 Discussion and Future Work

This paper provided guarantees for and studied the limitations of sublinear additive regret in online
control of an unknown, linear time-varying (LTV) dynamical system.

Our setting was motivated by the fact that the first-order Taylor approximation (Jacobian linearization)
of smooth, nonlinear systems about any smooth trajectory is LTV. One would therefore hope that
low-regret guarantees against LTV systems may imply convergence to first-order stationary points of
general nonlinear control objectives [34], which in turn may enjoy stability properties [45]. Making
this connection rigorous poses several challenges. Among them, one would need to extend our
low-regret guarantees against oblivious adversaries to hold against adaptive adversaries, the latter
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modeling how nonlinear system dynamics evolve in response to the learner’s control inputs. This may
require parting from our current analysis, which leverages the independence between exploratory
inputs and changes in system dynamics.

Because we show that linear-in-T regret is unavoidable for changing systems with large system
variability, at least for the main convex policy parametrizations, it would be interesting to study
our online setting under other measures of performance. In particular, the competive ratio, or the
ratio of total algorithm cost to optimal cost in hindsight (as opposed to the difference between the
two measured by regret) may yield a complementary set of tradeoffs, or lead to new and exciting
principles for adaptive controller design. Does system variability play the same deciding roles in
competive analysis as it does in regret? And, in either competitive or regret analyses, what is the
correct measure of system variability (e.g. variability in which norm/geometry, or of which system
parameters) which best captures sensitivity of online cost to system changes?
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A Extensions

A.1 Affine Offsets

For many systems, performance improves dramatically for controllers with constant affine terms, that
is

uMt = ūM +

h−1∑
t=0

M [i]xnat
t−i,

where ūM is a constant affine term encoded by M = (M [0], . . . ,M [h−1], ūM ). All our arguments ap-
ply more generally to control policies of this form. Moreover, we can even allow linear combinations
of time varying terms:

uMt =

h−1∑
t=0

M [i]xnat
t−i +

h′−1∑
t=0

M [i]′ψi(t)

M = (M [0], . . . ,M [h−1],M [0]′ , . . . ,M [h′−1]′),

where now ψi(t) are fixed, possibly time varying basis functions (which do not depend on M ). The
case of constant affine terms corresponds to h′ = 1, and ψi(t) = 1 for all t.

A.2 Changing Stabilizing Controllers

Our results extend naturally to the following setting: for each time t = 1, 2, . . . , T , the algorithm has
access to a static feedback control policy Kstb

t such that the closed loop matrices (At +BtK
stb
t ) are

sequentially stable, that is

Φstb
s+h,s :=

s+h∏
i=s

(At +BtK
stb
t )

has geometric decay. We let xnat
t denote the iterates produced by the updates

xnat
t+1 = (At +BtK

stb
t )xnat

t , unat
t = Kxnat

t , xnat
1 = 0.

We compute the stabilized policies of the form

uMt = Kstb
t xt +

h−1∑
i=0

M [i]xnat
t−i.

To facillicate the extension, we define the stabilized Markov operator

G
[0]
?,t =

[
0
Idu

]
, G

[i]
?,t :=

[
Idx
Kt

]
Φstb
t,t−i+1Bt−i,

This Markov operator satisfies[
xt
ut

]
=

[
xnat
t
unat

]
+

t−1∑
i=0

G
[i]
?,tũt, s.t. ut = Ktxt + ũt.

With similar techniques, we obtain estimates Ĝt, back out estimates of the Nature’s sequence
(xnat, unat) via [

x̂nat
t
ûnat

]
= clipr

([
xt
ut

]
−

h∑
i=0

Ĝ
[i]
t (ut−i −Kstb

t−ixt−i)

)
,

for a truncation radius r > 0 suitably chosen. Recall that we apply this clipr(·) operator to ensure
the estimates of the Nature’s sequenc does not grow unbounded and exert feedback. We then select
inputs

ût(M) = Kstb
t xt +

h−1∑
i=0

M [i]x̂nat
t−i,

Markov operator with low adaptive regret, and apply our OCO-with-memory algorithm to losses

f̂t(M) = ct

([
x̂nat
t
ûnat
t

]
−

h∑
i=0

Ĝ
[i]
t ût−i(M)

)
.

15



A.3 Partial Observation

Our results further extend to partially observed systems. We explain this extension for sequentially
stable systems; extensions to sequentialy stabilized systems by time varying linear dynamic controllers
follows from the exposition in [39], Appendix C.

For partially observed systems, we have the same state transition dynamics xt+1 = Atxt+Btut+wt,
but, for a time-varying observation matrix Ct and process noise et, we observe outputs yt ∈ Rdy

yt = Ctxt + et.

Costs ct(yt, ut) are suffered on input and outputs. As for full observation, the Nature’s sequence xnat

and ynat correspond to states xt and outputs yt which arise under identially zero input ut ≡ 0. The
DRC parametrization selects linear conmbinations of Nature’s y’s:

uMt =

m−1∑
i=0

M [i]ynat
t−i.

Recalling

Φs+h,s :=
s+h∏
i=s

(At +Bt),

the relevant Markov operators G?t are the ones mapping inputs to outputs:

G
[0]
?,t = 0, G

[i]
?,t = CtΦt,t−i+1Bt−i,

With similar techniques, we obtain estimates Ĝt, back out estimates of the Nature’s sequence ynat via

ŷnat = clipr

(
yt −

h∑
i=0

Ĝ
[i]
t ut−i

)
for trunctation radius r > 0 suitably chosen, we select inputs

ût(M) =

h−1∑
i=0

M [i]ŷnat
t−i),

update parameters with the OCO-with-memory losses

f̂t(M) = `t(ŷ
nat
t −

h∑
i=0

Ĝ
[i]
t M

[i]ût−i(M), ut).

A.4 The DAC parametrization

Here we sketch an algorithm to compete with DAC-parametrized control policies [3]. For simplicity,
we focus on sequentially stable system, though the discussion extends to systems sequentially
stabilized by sequences of controllers (Kstb

t ). Note that DAC does not apply under partial observation.

Recall that, in the DAC parametrization, the inputs are selected as linear combinations of past
disturbances:

uMt =

h−1∑
i=0

M [i]wt−i−1.

To implement DAC, we therefore need empiricals estimate ŵt of wt. As per [20], it suffices to
construct estimates (Ât, B̂t) of (At, Bt), and choose

ŵt = clipr

(
xt − Ât−1xt−1 − B̂t−1ut−1

)
,

again clipped at a suitable radius r > 0 to block compounding feedback. Given these estimates, our
algorithm extends to DAC control in the expected way.

16



How does one obtain the estimates (Ât, B̂t)? First, we observe that since

G
[0]
?,t = 0, G

[i]
?,t = Φt,t−i+1Bt−i, Φs+h,s =

s+h∏
i=s

Ai,

we have Bt = G
[1]
?,t. Hence, we can select B̂t as Ĝ[1]

t .

The estimate of At is more involved. For linear, time-invariant systems, A can be recovered from G?
via the Ho-Kalman procedure as is does in [20] (see also [30, 36]). For time-varying systems, this
become more challenging. Ommitting details in the interest of brevity, one can use the robustness
properties of Ho-Kalman to argue that if the system matrices are slow moving (an assumption required
for low regret), G?,t is close to a stationarized analogue Ḡ?,t given by

Ḡ
[i]
?,t := Ai−1

t Bt.

Hence, we can view any estimate Ĝt of G?,t as an estimate of Ḡ?,t, and apply Ho-Kalman to the
latter.

B Adapive Regret for Time-Varying DRC-OGD

We first extend the DRC-OGD algorithm from [39] to the setting of known linear time-varying
dynamics. We spell out Algorithm 3 and prove it attains Õ

(√
T
)

adaptive regret over general convex
costs under fully adversarial noise (Theorem B.1) with respect to the DRC policy class. The main
technique, using OGD over the DRC parametrization, remains unchanged from the original paper
and we show it generalizes naturally to LTV systems.

Algorithm 3 Disturbance Response Control via Online Gradient Descent (DRC-OGD)
1: Input: stepsize η, memory m, radius RM
2: Initialize M1 ∈M(m,RM) arbitrarily
3: Receive initial state x1, set xnat

1 = x1 and xnat
≤0 = 0

4: for t = 1 . . . T do
5: Play control ut =

∑m−1
i=0 M

[i]
t x

nat
t−i

6: Suffer ct(xt, ut) and observe cost function ct(·, ·)
7: Construct ft(M0, . . . ,Mh)

.
= ct(x̂t(M0:h−1), ut(Mh)) and let f̃t(M)

.
= ft(M, . . . ,M)

8: Update Mt+1 ← ΠM

(
Mt − η∇f̃t(Mt)

)
9: Receive new system Gt

10: Receive new state xt+1 and extract xnat
t+1 = xt+1 −

∑t−1
i=0 G

[i]
t ut−i or receive xnat

t+1

Theorem B.1. Running Algorithm 3 with η =
√
dminR

2
M

2LR2
sys(h+1)5/4

√
T

guarantees the following regret

bound on every interval I = [r, s]:

s∑
t=r

ct(xt, ut)− min
π∈Πdrc

s∑
t=r

ct(x
π
t , u

π
t ) ≤ 6LR2

sys

(
3
√
dminm(h+ 1)5/4

√
T + ψ(h)|I|

)
where Rsys = RGRMRnat and dmin = min{dx, du}.

B.1 Adaptive Regret of OGD for functions with memory

We first prove that OGD with a fixed stepsize attains O(
√
T ) adaptive regret for functions with

memory.
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Algorithm 4 Online Gradient Descent for OCOwMem (Mem-OGD)
1: Input: stepsize η, memory m, set K
2: Initialize x1 ∈ K arbitrarily, set x≤0 = x1 by convention
3: for t = 1 . . . T do
4: Play xt
5: Suffer ft(xt−h, . . . , xt) and observe loss function ft(·, . . . , ·)
6: Construct proxy loss function f̃t(x)

.
= ft(x, . . . , x)

7: Update xt+1 = ΠK

(
xt − η∇f̃t(xt)

)
Theorem B.2. Let {ft : Kh+1 → [0, 1]}Tt=1 be a sequence of L coordinate-wise Lipschitz loss
functions with memory such that f̃t (Line 6) is convex. Then, on any interval I = [r, s] ⊆ [T ],
Algorithm 4 enjoys the following adaptive policy regret guarantee:

s∑
t=r

ft(xt−h, . . . , xt)−min
x∈K

s∑
t=r

f̃t(x) ≤ D2

η
+ 2ηL2(h+ 1)5/2|I|

where D = diam(K).

First we state and prove the following well-known fact about vanilla projected OGD over (memory-
less) loss functions:

Fact B.1. Let {f̃t : K → [0, 1]}Tt=1 be a sequence of convex loss functions with ‖∇f̃(x)‖ ≤ G.
Then, on any interval I = [r, s] ⊆ [T ], projected OGD enjoys the following guarantee:

s∑
t=r

f̃t(xt)−min
x∈K

s∑
t=r

f̃(x) ≤ D2

η
+ η|I|G2

where D = diam(K).

Proof. Consider an arbitary interval I = [r, s] ⊆ [T ] Let x? = arg minx∈K
∑s
t=r f̃t(x) and denote

∇t
.
= ∇f̃t(xt) for simplicity. By convexity we have

f̃t(xt)− f̃t(x?) ≤ ∇>t (xt − x?) (B.1)

By the Pythagorean theorem

‖xt+1 − x?‖2 = ‖ΠK(xt − η∇t)− x?‖2

≤ ‖xt − η∇t − x?‖2

≤ ‖xt − x?‖2 + η2‖∇t‖2 − 2η∇>t (xt − x?) (B.2)

Hence we can bound the interval regret as:

⇒ 2

s∑
t=r

(ft(xt)− ft(x?)) ≤ 2

s∑
t=r

∇>t (xt − x?) Eq. (B.1)

≤
s∑
t=r

(
‖xt − x?‖2 − ‖xt+1 − x?‖2

η
+ ηG2

)
Eq. (B.2)

=
‖xr − x?‖2

η
+ |I|ηG2

≤ D2

η
+ η|I|G2

which yields the desired adaptive regret bound.

Using this simple fact and Lipschitzness we are able to easily prove the desired guarantee for
Algorithm 4.
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Proof of Theorem B.2. First note that Algorithm 4 is just doing gradient descent on the proxy convex
loss functions f̃t : K → [0, 1]. Hence, as long as we identify the gradient bound we can apply
Fact B.1 to get a bound on f̃ -regret. Observe that

|f̃t(x)− f̃t(y)| = |ft(x, . . . , x)− ft(y, . . . , y)|
≤ |ft(x, . . . , x)− ft(y, . . . , x)|+ |ft(y, x, . . . , x)− ft(y, y, . . . , x)|+
. . .+ |ft(y, . . . , y, x)− ft(y, . . . , y)|
≤ L(h+ 1)‖x− y‖

so f̃t is L(h+ 1)-Lipschitz and hence has a gradient bound of L(h+ 1). So we can apply Fact B.1
to get

s∑
t=r

f̃t(xt)−min
x∈K

s∑
t=r

f̃(x) ≤ D2

η
+ η|I|L2(h+ 1)2 (B.3)

We can use this to bound the adaptive policy regret. First note that

‖xt − xt−1‖ = ‖η∇f̃t(xt−1)‖ ≤ ηL(h+ 1)

and by the triangle inequality

‖xt − xt−i‖ ≤
i∑

j=1

‖xt−j+1 − xt−j‖ ≤ ηL(h+ 1) · i (B.4)

Using Eq. (B.4) and Lipschitzness we have:

ft(xt−h, . . . , xt)− f̃t(xt) ≤ L‖(xt−h, . . . , xt)− (xt, . . . , xt)‖

≤ L

√√√√ h∑
i=1

‖xt − xt−i‖2

≤ ηL2(h+ 1) ·

√√√√ h∑
i=1

i2

≤ ηL2(h+ 1)5/2 (B.5)

Combining everything we get
s∑
t=r

ft(xt−h, . . . , xt)−min
x∈K

s∑
t=r

f̃t(x) =

s∑
t=r

ft(xt−h, . . . , xt)− f̃t(xt)︸ ︷︷ ︸
(dist. to proxy loss [Eq. (B.5)])

+

s∑
t=r

f̃t(xt)−min
x∈K

s∑
t=r

f̃t(xt)︸ ︷︷ ︸
(f̃ -regret [Eq. (B.3)])

≤ 2ηL2(h+ 1)5/2|I|+ D2

η

B.2 Proof of Theorem B.1

We first prove that the constructed loss function satisfies key properties for efficient optimization.

Lemma B.2 (Convexity). The loss functions f̃t constructed in Appendix B of Algorithm 3 are convex
in M .
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Proof. By definition we have that:

x̂t(M) = xnat
t +

h∑
i=1

G
[i]
t ut−i

= xnat
t +

h∑
i=1

G
[i]
t

m−1∑
j=0

M [j]xnat
t−i−j

 (B.6)

which is affine in M . Even more simply, we have ut(M) =
∑m−1
i=0 M [i]xnat

t−i.

Since x̂t(M) and ut(M) are affine, and, respectively, linear functions of M and composition with
the convex cost ct preserves convexity we get the desired property.

Lemma B.3 (Lipschitzness). The loss functions ft constructed in Appendix B of Algorithm 3 are Lf
coordinate-wise Lipschitz for Lf = 3LR2

natR
2
GRM

√
m.

Proof. Observe that by Eq. (B.6) we have ‖x̂t(M0:h)‖ ≤ Rnat(1 + RGRM). Straightforwardly,
‖ut(Mh)‖ ≤ RnatRM as well.

For an arbitrary i ∈ 0, h, denoting M0:h = (M0, . . . ,Mi, . . .Mh), M̃0:h = (M0, . . . , M̃i, . . . ,Mh)
and using the sub-quadratic lipschitzness of the costs we have:

|ft(M0:h)− ft(M̃0:h)| = |ct(x̂t(M0:h), ut(M0:h))− ct(x̂t(M̃0:h), ut(M̃0:h))|

≤ 3LRnatRGRM

∣∣∣∣∣∣∣∣G[h−i]
t

m−1∑
j=0

(M
[j]
i − M̃

[j]
i )xnat

t−i−j

∣∣∣∣∣∣∣∣ (i < h)

or ≤ 3LRnatRGRM

m−1∑
j=0

(M
[j]
i − M̃

[j]
i )xnat

t−i−j

 (i = h)

≤ 3LR2
natR

2
GRM

√
m‖Mi − M̃i‖F

so the function is coordinate-wise Lipschitz with constant Lf = 3LR2
natR

2
GRM

√
m.

Lemma B.4 (Euclidean Diameter). The euclidean diameter of M(m,RM) is at most D =

2
√
m ·min{dx, du}RM.

Proof. That for an arbitrary M ∈M(m,RM), we have

‖M‖F =

√√√√m−1∑
i=0

‖M [i]‖2F

≤
√
m · max

i∈[m−1]
‖M [i]‖2F

=
√
m max
i∈[m−1]

min{dx, du}‖M [i]‖op

≤
√
m ·min{dx, du}‖M‖`1,op

≤
√
m ·min{dx, du}RM

and the euclidean diameter is at most twice the maximal euclidean norm, concluding our statement.

The three lemmas above will allow us to use the results in Appendix B.1 to obtain adaptive regret
guarantees in terms of ft which truncated the effect on the state of actions further than h in the past.
To convert guarantees in terms of ft to ones in terms of ct, we prove that the effect of the past is
minimal:
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Lemma B.5 (Truncation Error). For a changing DRC policy that acts according to M1, . . . ,Mt up
to time t we have that:

ct(xt, ut)− ct (x̂t(Mt−h:t−1), ut(Mt)) ≤ 3LR2
natR

2
MRGψ(h)

Proof. By the sub-quadratic Lipschitzness (and noting ‖ut‖2 ≤ RMRnat, ‖xt‖2 ≤ Rnat(1 +
RGRM), and ut = ut(Mt)) we have:

ct(xt, ut)− ct (x̂t(Mt−h:t−1), ut(Mt)) ≤ 3LRnatRGRM‖xt(M1:t−1 − x̂t(Mt−h:t−1)‖

= 3LRnatRGRM‖
t−1∑
i=h

G
[i]
t−1ut−1−i‖

≤ 3LR2
natR

2
MRGψ(h)

Having proven all these preliminary results the proof of the main theorem is immediate:

Proof of Theorem B.1. By the definition of the proxy loss in Line 7 of Algorithm 3, we can expand
the regret of Algorithm 3 over interval I = [r, s] as:

Regret =

s∑
t=r

ct(xt, ut)− min
M∈M

s∑
t=r

ct(x
M
t , u

M
t )

=

s∑
t=r

ct(xt, ut)−
s∑
t=r

ct(x̂t(Mt−h:t−1), ut(Mt))︸ ︷︷ ︸
(truncation error I)

+

s∑
t=r

ft(Mt−h:t)− min
M∈M

f̃t(M)︸ ︷︷ ︸
(f-regret)

+ min
M∈M

s∑
t=r

ct(x̂t(M), ut(M))− min
M∈M

s∑
t=r

ct(x
M
t , u

M
t )︸ ︷︷ ︸

(truncation error II)

The first truncation error is bounded directly by Lemma B.5. For the second truncation error, let
M? = arg minM∈M

∑s
t=r ct(x

M
t , u

M
t ). Clearly we have

min
M∈M

s∑
t=r

ct(x̂t(M), ut(M)) ≤
s∑
t=r

ct(x̂t(M
?), ut(M

?))

and hence we can apply Lemma B.5 to bound:

truncation error II = min
M∈M

s∑
t=r

ct(x̂t(M), ut(M))− min
M∈M

s∑
t=r

ct(x
M
t , u

M
t )

≤
s∑
t=r

ct(x̂t(M
?), ut(M

?))−
s∑
t=r

ct(x
M?

t , uM
?

t )

≤ 3LR2
natR

2
MRGψ(h)|I|

Finally, due to Lemma B.2, Lemma B.3 and Lemma B.4 we can apply Theorem B.2 to get

f-regret ≤ D2

η
+ 2ηL2

f (h+ 1)5/2|I|

Summing everything up and plugging in the Lipschitz and diameter constants, we have:
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Regret ≤ 6LR2
natR

2
MRGψ(h)|I|+ 4mmin{dx, du}R2

M
η

+ 18η(L2R4
natR

4
GR

2
M)m(h+ 1)5/2|I|

Setting η .
=

√
min{dx,du}

2LR2
GR

2
nat(h+1)5/4

√
T

, we get

Regret ≤ 6LR2
natR

2
MRGψ(h)|I|+ 17

√
min{dx, du}(LR2

GR
2
natR

2
M) · (h+ 1)5/4m ·

√
T

≤ 6LR2
sys

(
3
√
dminm(h+ 1)5/4

√
T + ψ(h)|I|

)
where we denote Rsys

.
= RGRMRnat and dmin

.
= min{dx, du}.

C Estimation of Time-Varying Vector Sequences

In this section we segway into the setting of online prediction under a partial information model. The
goal is to estimate a sequence of vectors under limited noisy feedback where the feedback access is
softly restricted via additional cost. As shown in the following section, this setting captures the system
identification phase of controlling an unknown time-varying dynamical system. We first extensively
study the simplified setting as below, and afterwards transfer our findings into meaningful results in
control.

Formally, consider the following repeated game between a learner and an oblivious adversary: at each
round t ∈ [T ], the adversary picks a target vector z?t ∈ K from a convex decision set K contained
in a 0-centered ball of radius Rz; simultaneously, the learner selects an estimate ẑt ∈ K and suffers
quadratic loss ft(ẑt) = ‖ẑt − z?t ‖2. The only feedback the learner has access to is via the following
noisy and costly oracle.

Oracle 2 (Noisy Costly Oracle). At each time t ∈ [T ], the learner selects a decision bt ∈ {0, 1}
indicating whether a query is sent to the oracle. If bt = 1, the learner receives an unbiased estimate z̃t
as response such that ‖z̃t‖ ≤ R̃z and E[z̃t | Ft, bt = 1] = z?t where Ft is the filtration sigma algebra
generated by the entire sequence z?1:T and the past z̃1:t−1, b1:t−1. A completed query results in a unit
cost for the learner denoted bt as well by abuse of notation.

The idea behind this setting is to model a general estimation framework for a time-varying system
which focuses only on exploration. Committing to exploration, however, cannot realistically be free
hence the additional cost for the number of calls to Oracle 2. Our goal is to design an algorithm A
that minimizes the quadratic loss regret along with the extra oracle cost, defined over each interval
I = [r, s] ⊆ [T ] as

RegretI(A;λ) = E

[∑
t∈I

ft(ẑt)

]
−min

z∈K

∑
t∈I

ft(z) + λE

[∑
t∈I

bt

]
, (C.1)

where λ ≥ 0 is a scaling constant independent of the horizon T . For the I = [T ] entire interval,
we use T as a subscript instead of [T ]. The expectation above is taken over both the (potential)
randomness of the algorithm and the stochasticity of the oracle responses; it is taken in the round
order t = 1, . . . , T at each round conditioning on the past iterations.

In terms of estimation itself, the metric to consider over interval I is given by RegretI(A; 0) that
ignores the oracle call costs. Furthermore, we observe that the best-in-hindsight term in (C.1) is in
fact a fundamental quantity of the vector sequence as defined below. This formulation will be used,
and is more appropriate, when transferring our findings to the setting of control.

Definition C.1. Define the variability of a time-varying vector sequence z1:T over an interval I ⊆ [T ]
to be

VarI(z1:T ) =
1

|I|
min
z∈K

∑
t∈I
‖z− zt‖2 =

1

|I|
∑
t∈I
||z̄I − zt||2,

where z̄I = |I|−1
∑
t∈I zt ∈ K is the empirical average of the members of the sequence that

correspond to I .
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This definition concludes the setup of our abstraction to general estimation of vector sequences.
Regarding algorithmic results, we first present a base method that achieves logarithmic regret over
the entire trajectory [1, T ]. The idea is for the learner to uniformly query Oracle 2 with probability
p: once an estimate z̃t is received, construct a stochastic gradient with expectation equal to the true
gradient, and perform a gradient update. The algorithm is described in detail in Algorithm 5, and its
guarantee given in the theorem below.

Algorithm 5 Base Estimation Algorithm
1: Input: p, ẑ1 ∈ K
2: for t = 1, . . . , T do
3: Play iterate ẑt
4: Draw/Receive bt ∼ Bernoulli(p)
5: if bt = 1 then
6: Receive estimate z̃t from Oracle 2
7: Construct importance weighted gradient ∇̃t := 1

p (ẑt − z̃t)

8: else
9: Set ∇̃t = 0.

10: Update ẑt+1 = ProjK(ẑt − ηt∇̃t), ηt = 1
t .

Theorem C.1. Given access to queries from Oracle 2, with stepsizes ηt = 1
t , Algorithm 5 enjoys the

following regret guarantee:

RegretT (Algorithm 5;λ) ≤ (Rz + R̃z)
2(1 + log T )

p
+ λpT . (C.2)

Proof of Theorem C.1. To prove the bound in the theorem, we construct the following proxy loss
functions: if bt = 1 denote f̃t(z) = 1

2p‖z − z̃t‖2, otherwise for bt = 0 denote f̃t(z) = 0. The

stochastic gradients of these functions at the current iterate can be written as ∇zf̃t(ẑt) = ∇̃t =
I{bt=1}

p (ẑt − z̃t) and are used by the algorithm in the update rule. The idealized gradients are
∇t = (ẑt − z?t ) which we would use given access to the true targets z?t . Recall that Ft denotes the
sigma-algebra generated by the true target sequence z?1:T , as well as randomness of the past rounds
b1:t−1 and z̃1:t−1. Note then that ẑt is Ft measurable. We characterize two essential properties of the
stochastic gradients:

Lemma C.1. Let z̄? ∈ K be the minimizer of
∑T
t=1 ‖z− z?t ‖2, i.e. empirical average of z?1:T . Then,

E[〈∇̃t, ẑt − z̄?〉] = E[〈∇t, ẑt − z̄?〉] .

Moreover, E[‖∇̃t‖2] ≤ (Rz + R̃z)
2/p.

Proof. Using the Oracle 2 assumption on z̃t, we get

E[∇̃t | Ft] =
1

p
E[I{bt = 1}(ẑt − z̃t) | Ft]

=
1

p
E[I{bt = 1} · ẑt | Ft]−

1

p
E[I{bt = 1} · z̃t | Ft]

= ẑt − E[z̃t | Ft, bt = 1]
(i)
= ẑt − z?t = ∇t,

where (i) uses the unbiasedness property of Oracle 2. Next, since z̄? is determined by z?1:T it is
therefore Ft measurable for all t. Thus, ẑt − z̄? is Ft measurable, so

E[〈∇̃t, ẑt − z̄?〉] = E
[
〈E[∇̃t | Ft], ẑt − z̄?〉

]
= E[〈∇t, ẑt − z̄?〉] .

Finally, using the norm bound ‖ẑt‖ ≤ Rz since ẑt ∈ K and the assumption that ‖z̃t‖ ≤ R̃z from
Oracle 2, we conclude

E[‖∇̃t‖2] =
1

p2
E[I{bt = p}‖z̃t − ẑt‖2] ≤ 1

p2
E[I{bt = p}(Rz + R̃z)

2] =
(Rz + R̃z)

2

p
.
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The rest of the theorem proof mirrors that of Theorem 3.3 in [19] but accounting for the stochastic
gradient. We can view Algorithm 5 as running online stochastic gradient descent over strongly convex
functions on losses 1

2ft(z) = 1
2‖z − z?t ‖2 with true gradient ∇t and stochastic gradient ∇̃t at the

iterate ẑt. Since the losses 1
2ft are 1-strongly convex, E[bt] = p and using the claim from Lemma C.1

we get,

1

2
RegretT =

1

2
E

[
T∑
t=1

(ft(ẑt)− ft(z̄?) + λ · bt)

]
≤ E

[
T∑
t=1

(〈∇t, ẑt − z̄?〉 − 1

2
‖ẑt − z̄?‖2)

]
+

1

2
λpT

=
1

2
E

[
T∑
t=1

(2〈∇̃t, ẑt − z̄?〉 − ‖ẑt − z̄?‖2)

]
+

1

2
λpT.

The update rule is given as ẑt+1 = ProjK(ẑt − ηt∇̃t), so from the Pythagorean theorem for the
projection

‖ẑt+1 − z̄?‖2 ≤ ‖ẑt − ηt∇̃t − z̄?‖2 = ‖ẑt − z̄?‖2 + η2
t ‖∇̃t‖2 − 2ηt〈∇̃t, ẑt − z̄?〉.

2〈∇̃t, ẑt − z̄?〉 ≤ ‖ẑt − z̄?‖2 − ‖ẑt+1 − z̄?‖2

ηt
+ ηt‖∇̃t‖2.

Combining the above bounds results in

1

2
RegretT ≤

1

2
E

[
T∑
t=1

(
‖ẑt − z̄?‖2 − ‖ẑt+1 − z̄?‖2

ηt
− ‖ẑt − z̄?‖2

)
+

T∑
t=1

ηt‖∇̃t‖2
]

+
1

2
λpT.

The telescoping sum inside the parentheses is equal to 0, the gradient term is bounded E[‖∇̃t‖2] ≤
(Rz+R̃z)2

p according to Lemma C.1 and the stepsize sum is bounded by
∑T
t=1 ηt ≤ 1 + log T ,

yielding the final result

RegretT (Algorithm 5;λ) ≤ (Rz + R̃z)
2(1 + log T )

p
+ λpT.

C.1 Adaptive Regret Bound

The guarantee in Theorem C.1 ensures that the predicted sequence ẑ1:T performs comparably to the
empirical mean z̄? of the entire target sequence z?1:T . However, that doesn’t imply much about the
performance of Algorithm 5 on a given local interval I ⊆ [T ] since z̄?I can be very different from z̄?.
Hence, we would like to extend our results to hold for any interval I , i.e. derive adaptive regret results
as introduced in [21]. To do so we will use the approach of [21] using Algorithm 5 as a subroutine.
The resulting algorithm, presented in Algorithm 6, suffers only a logarithmic computational overhead
over Algorithm 5 with its performance guarantee stated in the theorem below.
Theorem C.2. Taking the base estimation algorithmA to be Algorithm 5 and given access to queries
from Oracle 2, Algorithm 6 enjoys the following guarantee:

∀I = [r, s] ⊆ [T ], RegretI(Algorithm 6;λ) ≤ 2(Rz + R̃z)
2(1 + log s · log |I|)

p
+ λp|I| .

(C.3)
Corollary C.1. The estimation error over each interval I = [r, s] ⊆ [T ] is bounded as follows,

E

[∑
t∈I
‖ẑt − z?t ‖2

]
≤ VarI(z

?
1:T ) +

2(Rz + R̃z)
2(1 + log s · log |I|)

p
.

Proof of Theorem C.2. First observe that ˜̀
t is α-exp concave with α = p

(Rz+R̃2
z)

. This is evident

given its construction: ˜̀
t(z) = 1

2p‖z− z̃t‖2 with ‖z‖ ≤ Rz since z ∈ K and ‖z̃t‖ ≤ R̃z according
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Algorithm 6 Adaptive Estimation Algorithm
1: Input: parameter p, decision set K, base estimation algorithm A, ẑ1 ∈ K
2: Initialize: A1 ← A(p, ẑ1), working set S1 = {1}, q(1)

1 = 1, parameter α = p

(Rz+R̃z)2

3: for t = 1, . . . , T do
4: Compute predictions ẑ(i)

t ← Ai for i ∈ St
5: Play iterate ẑt =

∑
i∈St q

(i)
t ẑ

(i)
t

6: Draw/Receive bt ∼ Bernoulli(p)
7: if bt = 1 then
8: Request estimate z̃t from Oracle 2
9: Let ˜̀

t(z) = 1
2p ||z− z̃t||2

10: else
11: Let z̃t ← ∅ and ˜̀

t(z) = 0

12: Update expert algorithms Ai(bt, z̃t) for all i ∈ St
13: Form new set S̃t+1 = (i)i∈St

14: Construct proxy new weights q̄(i)
t+1 = t

t+1 ·
q
(i)
t e−α

˜̀
t(ẑ

(i)
t )∑

j∈St
q
(j)
t e−α

˜̀
t(ẑ

(j)
t )

for all i ∈ St

15: Add new instance S̃t+1 ← S̃t+1 ∪ t+ 1 for arbitrary At+1 ← A(p, ẑ
(t+1)
1 = ẑ1) with

q̄
(t+1)
t+1 = 1

t+1

16: Prune S̃t+1 to form St+1

17: Normalize q(i)
t+1 =

q̄
(i)
t+1∑

j∈St+1
q̄
(j)
t+1

to Oracle 2. The rest of the algorithm uses the approach of [21], in particular Algorithm 1, over exp
concave functions to derive the guarantee in the theorem statement.

We note that Claim 3.1 in [21] holds identically in our case, i.e. for any I = [r, s] the regret
of Algorithm 6 with respect to Ar is bounded by 2

α (ln r + ln |I|) if Ar stays in the working set.
We combine this fact with the bound given in Theorem C.1 to get that Algorithm 6 enjoys regret
3
α (log r+ log |I|) over I = [r, s] ifAr stays in the working set St throughout I . Finally, an induction
argument along with the working set properties detailed in Appendix C.1.1 identical to that of Lemma
3.2 in [21] yields the desired result for ˜̀

t. Notice that this is our desired result in expectation,

Observation C.2. We have the following identity for any t and r ≤ t:

E
[
˜̀
t(ẑt)− ˜̀

t(ẑ
(r)
t )
]

= E
[
`t(ẑt)− `t(ẑ(r)

t )
]

Proof of Observation C.2. We can expand:

2E
[
˜̀
t(ẑt)− ˜̀

t(ẑ
(r)
t )
]

= 2p · E
[
˜̀
t(ẑt)− ˜̀

t(ẑ
(r)
t )|bt = 1

]
+ 2(1− p) · E

[
˜̀
t(ẑt)− ˜̀

t(ẑ
(r)
t )|bt = 0

]
= p · E

[
1

p
·
(
‖ẑt‖2 + 〈ẑt, z̃t〉+ ‖z̃t‖2 − ‖ẑ(r)

t ‖2 − 〈ẑ
(r)
t , z̃t〉 − ‖z̃t‖2

)]
+ 0

= E
[
‖ẑt‖2 − ‖ẑ(r)

t ‖2
]

+ E
[
〈ẑt − ẑ

(r)
t , z̃t〉

]
By the linearity of expectation, the fact that ẑt, ẑ

(r)
t are completely determined given Ft−1, and the

law of total expectation we have that

E
[
〈ẑt − ẑ

(r)
t , z̃t〉

]
= E

[
E
[
〈ẑt − ẑ

(r)
t , z̃t〉|Ft−1

]]
= E

[
〈ẑt − ẑ

(r)
t , z?t 〉

]
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Plugging this in above we, adding and subtracting ‖z?t ‖2, and rearranging we have:

2E
[
˜̀
t(ẑt)− ˜̀

t(ẑ
(r)
t )
]

= E
[
‖ẑt‖2 − ‖ẑ(r)

t ‖2 + 〈ẑt − ẑ
(r)
t , z?t 〉+ ‖z‖2 − ‖z‖2

]
= E

[
‖ẑt‖2 + 〈ẑt, z?t 〉+ ‖z‖2 − ‖ẑ(r)

t ‖2 − 〈ẑ
(r)
t , z?t 〉 − ‖z‖2

]
= 2E

[
`t(ẑt)− `t(ẑ(r)

t )
]

as desired.

Combining Observation C.2 with the fact that ˜̀
t are α-exp concave for α = p

(Rz+R̃z)2
we conclude

the final statement of Theorem C.2.

C.1.1 Working Set Construction

Our Algorithm 6 makes use of the working sets {St}t∈[T ] along with its properties in Claim C.3. In
this section, we show the explicit construction of these working sets as in [21] and prove the claim.
Claim C.3. The following properties hold for the working sets St for all t ∈ [T ]: (i) |St| = O(log T );
(ii) [s, (s+ t)/2] ∩ St 6= ∅ for any s ∈ [t]; (iii) St+1\St = {t+ 1}; (iv) |St\St+1| ≤ 1.

For any i ∈ [T ], let it be given as i = r2k with r odd and k nonnegative. Denote m = 2k+2 + 1,
then i ∈ St if and only if t ∈ [i, i + m]. This fully describes the construction of the working sets
{St}t∈[T ], and we proceed to prove its properties.

Proof of Claim C.3. For all t ∈ [T ] we show the following properties of the working sets St.

(i) |St| = O(log T ): if i ∈ St then 1 ≤ i = r2k ≤ t which implies that 0 ≤ k ≤ log2 t. For each
fixed k in this range, if r2k = i ∈ St then i ∈ [t−2k+2−1, t] by construction. Since [t−2k+2−1, t]
is an interval of length 2k+2 + 2 = 4 · 2k + 2, it can include at most 3 numbers of the form r2k with
r odd. Thus, there is at most 3 numbers i = r2k ∈ St for each 0 ≤ k ≤ log2 t which means that
|St| = O(log t) = O(log T ).

(ii) [s, (s+ t)/2] ∩ St 6= ∅ for all s ∈ [t]: this trivially holds for s = t− 1, t. Let 2l ≤ (t− s)/2 be
the largest such exponent of 2. Since the size of the interval [s, (s+ t)/2] is b(t− s)/2c, then there
exists u ∈ [s, (s+ t)/2] that divides 2l. This means that the corresponding m ≥ 2l+2 + 1 > t− s
for u ≥ s is large enough so that t ∈ [u, u+m], and consequently, u ∈ St.
(iii) St+1\St = {t + 1}: let i ∈ St+1 and i 6∈ St, which is equivalent to t + 1 ∈ [i, i + m] and
t 6∈ [i, i+m]. Clearly, i = t+ 1 satisfies these conditions and is the only such number.

(iv) |St\St+1| ≤ 1: suppose there exist two i1, i2 ∈ St\St+1. This implies that i1 + m1 = t =
i2 + m2 which in turn means 2k1(r1 + 4) = 2k2(r2 + 4). Since both r1 + 4, r2 + 4 are odd, then
k1 = k2, and consequently, r1 = r2 resulting in i1 = i2. Thus, there can not exist two different
members of St\St+1 which concludes that |St\St+1| ≤ 1.

C.2 No Strong Adaptivity

Notice that even though the guarantee of Theorem C.2 applies to all intervals I , it does not entail
meaningful guarantees for all. The reason is the choice of parameter p: if one wishes to optimize
RegretT then p = O(T−1/2) implies O(

√
T ) regret, but this choice is meaningless for intervals

with length |I| <<
√
T ; on the other hand, optimizing the bound for small intervals leads to large

bounds for the entire horizon. One might then ask whether there exist methods with strongly adaptive
guarantees, and we answer this question with a negative.
Theorem C.3. For any γ > 0 and oracle cost λ > 0, there exists no online algorithmA with feedback
access to Oracle 2 that enjoys the following strongly adaptive regret guarantee: RegretI(A;λ) =

Õ(|I|1−γ).

Proof. The proof of this impossibility results follows a simple construction: the idea behind it is
that strongly adaptive guarantees imply both large and small amount of exploration. Let us suppose
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there exists such an algorithm A and arrive at a contradiction: ∀I = [r, s] ⊆ [T ] algorithm A has a
regret bound RegretI(A;λ) ≤ C · |I|1−γ = Õ(|I|1−γ) over any oblivious sequence z?1:T where C
depends on problem parameters, λ and log T .

Construct the following oblivious sequence: let k = T 1−γ/2 and I1, . . . , Ik be consecutive disjoint
intervals such that ∪j∈[k]Ij = [T ], Ij ∩ Il = ∅ for all j 6= l, and |Ij | = T/k = T γ/2 for all
j ∈ [k] (w.l.o.g. we assume T divides k). Now for each interval Ij , j ∈ [k], sample a fresh
qj ∈ {±1} ∼ Rad(1/2) and let z?t = qj for all t ∈ Ij .

According to the assumed guarantee, the overall regret is bounded as RegretT (A;λ)leqC · T 1−γ

which by definition implies that
∑T
t=1 bt ≤

C
λ T

1−γ < k where the last inequality is true for
sufficiently large horizon T . Since there are k consecutive disjoint intervals I1, . . . , Ik and less than
k overall calls to Oracle 2, there exists an interval I ∈ {I1, . . . , Ik} such that

∑
t∈I bt = 0.

On the other hand, the assumed guarantee for A implies that the interval I of size |I| = T γ/2

enjoys sublinear regret, i.e. RegretI(A;λ) = o(|I|). We show that this is a contradiction given that∑
t∈I bt = 0. As there were no oracle calls for the interval I , the predictions of A, ẑt over t ∈ I , are

independent from the Rademacher sample of the interval qI : this is true since the samples for each
interval in I1, . . . , Ik are independent. Therefore, ẑt ⊥ qI for all t ∈ I which means that since the
best loss in hindsight over I is equal to 0 as z?t = qI for all t ∈ I ,

RegretI(A;λ) ≥ EqI

[∑
t∈I

`t(ẑt)

]
=
∑
t∈I

EqI [‖ẑt − qI‖2] = Ω(|I|) .

Hence, for the interval I , the regret of A cannot be sublinear, which contradict the assumption that
A exhibits strongly adaptive guarantees. This concludes that no strongly adaptive online algorithm
exists in the described partial information model.

D Adaptive Regret for Control of Changing Unknown Dynamics

In this section we give our full control algorithm which attains sublinear regret with respect to Πdrc

up to an additive system variability term. A key component is the system estimation for which we will
use Algorithm 6 and its guarantees from Appendix C. More specifically, our algorithm is based on the
canonical explore-exploit approach: it explores with some probability p by inputting random controls
into the system, and otherwise outputs a control according to DRC-OGD (Algorithm 3). Note that
due to the long-term consequences which appear in control, we need to explore for h consecutive
steps in order to get an estimate for the h-truncation of the Markov operator. Hence, our algorithm
will determine whether it explores or exploits in blocks of length h. Furthermore, we will define the
set of Markov operator of length h and `1, op-norm bounded by RG as G(h,RG):

G(h,RG)
.
= {G = (G[0], . . . , G[h−1]) ∈ Rh×dx×du s.t.

h−1∑
i=0

||G||op ≤ RG}

Remark D.1. Note that the radius of G(h,RG) is bounded by R̄G =
√
h · dminRG where dmin =

min{dx, du}.

Proof of Remark D.1. ∀G ∈ G(h,RG), we have:

||G||F =

√√√√h−1∑
i=0

||G[i]||2F

≤
√
h
√

max
i
||G[i]||2F

≤
√
hmin{dx, du}max

i
||G[i]||op

≤
√
hmin{dx, du}RG

and denoting dmin = min{dx, du} yields the result.
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Remark D.2. By abuse of notation, we will consider G[i] .= 0 for G ∈ G(h,RG).
Remark D.3. For simplicity, we assume T divisible by h (this is w.l.o.g. up to an extra O(h) cost
which for us is negligble).

We spell out the full procedure in Algorithm 7 and give its guarantee below in Theorem D.1.

Algorithm 7 DRC-OGD with Exploration

1: Input: p, h, Ĝ0,A ← Algorithm 6(p, Ĝ0,G(h,RG)), C ← Algorithm 3(η,m,RM)
2: for τ1 = 0, . . . , T/h− 1 do
3: Request Ĝτ1·h+1 ← A and set Ĝτ1·h+2, . . . , Ĝ(τ1+1)·h ← Ĝτ1·h+1

4: Draw bτ1+1 ∼ Bernoulli(p)
5: for τ2 = 1, . . . , h do . let t .= τ1 · h+ τ2
6: if bτ1 = 1 then
7: Play control ut ∼ {±1}du
8: else
9: Play control ut ← C

10: Suffer cost ct(xt, ut) , observe new state xt+1

11: Extract x̂nat
t+1 = ProjBRnat

[
xt+1 −

∑h−1
i=0 Ĝ

[i]
t ut−i

]
12: Update C ← (ct, Ĝt, x̂

nat
t+1)

13: if bτ1 = 1 then
14: Let G̃[i]

(τ1+1)·h = x(τ1+1)·h+1u
>
(τ1+1)·h−i for i = 0, h− 1

15: else
16: Let G̃(τ1+1)·h ← ∅
17: Update A ← (bτ1+1, G̃(τ1+1)·h)

Theorem D.1. For h =
log T

log ρ−1
, p = T−1/3 and m ≤

√
T , on any contiguous interval I ⊆ [T ],

Algorithm 2 enjoys the following adaptive regret guarantee2:

E [RegretI(ADA-CTRL); Πdrc(m,RM )] ≤ Õ?
(
Lm

(
|I|
√

E[VarI(G)] + duT
2/3
))

The proof of this theorem will proceed in terms of a quantity which we call total system variability
which captures the total (rather than average) deviation from the mean operator for each interval.
More precisely,
Definition D.1. Define the total system variability of an LTV dynamical system with Markov
operators G = G1:T over a contiguous interval I ⊆ [T ] to be

Vartot
I (G) = min

G

∑
t∈I
‖G−Gt‖2`2,F =

∑
t∈I
‖GI −Gt‖2`2,F ,

where ‖ · ‖`2,F indicates the `2 norm of the fully vectorized operator and GI = |I|−1
∑
t∈I Gt is the

empirical average of the operators that correspond to I .

D.1 Estimation of the Markov Operator

Note that the estimation component of Algorithm 7 directly operates in the setting of Appendix C
and effectively solves the problem of adaptively estimating the sequence Ḡ1·h, . . . , Ḡ(T/h)·h of
the h-truncations of the true Markov operators G1·h, . . . , G(T/h)·h. To formally be able to apply
Theorem C.2, we first show that the estimates sent to Algorithm 6 satisfy the properties of Oracle 2.

Claim D.1. The estimators G̃τ1·h, τ1 = 1, T/h satisfy the properties of Oracle 2 with R̃G =√
h · du(Rnat +RG max{

√
du, RnatRM}).

Proof. There are only two things to prove:
2For precise constants please see Eq. (D.2).
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1. Boundedness. Because we clip the nature’s x estimates x̂nat
t to Rnat and when the DAC

policy lies inM(m,RM), we have that if bt = 0, ||ut|| ≤ RnatRM. If ut is an exploratory
action then ||ut|| =

√
du ≤ max{

√
du, RnatRM} by design. By the equation of the

progression of the state, we have that

‖xt‖ ≤ Rnat +RG max{
√
du, RnatRM} (D.1)

and by Cauchy Scwarz we get

||G̃[i]
τ1·h||F = ||u>τ1·h−ixτ1·h+1|| ≤

√
du(Rnat +RG max{

√
du, RnatRM})

and hence
||G̃τ1·h||F ≤

√
h · du(Rnat +RG max{

√
du, RnatRM})

2. Unbiasedness. Plugging in xτ1·h = xnat
τ1·h +

∑t
i=0G

[i]
τ1·huτ1·h−i, we get exactly that

E[G̃
[i]
τ1·h] = G

[i]
τ1·h. Since this holds for the selected truncation h, we have E[G̃τ1·h] = Ḡτ1·h

for Ḡ as defined.

Hence we can simply apply the guarantees of Appendix C to obtain the following guarantee:

Corollary D.1. On any interval J = [k, l] ⊆ [T/h], we have that:

E

[
l∑

τ=k

||G̃τ ·h − Ḡτ ·h||2F

]
≤ Vartot

J·h(Ḡ1:T ) + RegretJ(A(p, R̄G, R̃G; 0))

where we use J · h to denote the set [k · h, . . . , l · h].

However, to properly analyze the additional regret introduced in the control framework by our
estimation error, we need to convert Corollary D.1 into a guarantee in terms of `1, op norm which
holds for any contiguous interval I = [r, s] ⊆ [T ]. This step is rather straightforward and only relies
on a few basic properties/observations which we collect in Observation D.2 below.

Observation D.2. We will make the following observations:

1. ||A||op ≤ ||A||F for any matrix A,

2. Vartot
J (z1:T ) ≤ Vartot

I (z1:T ) for any set of indices J ⊆ I , and any sequence z1:T ,

3. ||Ĝt − Ḡt||2F =
h∑
i=1

||Ĝ[i]
t − Ḡ

[i]
t ||2F ,

4. ||Gt − Ḡt||`1,op ≤ ψ(h),

5. For any I = [r, s],
∑s
t=r+1 ||Ḡt − Ḡt−1||2F ≤ 4Vartot

I (Ḡ1:T ) ≤ 4Vartot
I (G).

Proof. Properties 1-4 follow from the definitions of the relevant quantities, or are general well-known
facts. For 5, by the triangle inequality, we have that, for any Ḡ,

||Ḡt − Ḡt−1||F ≤ ||Ḡt − Ḡ||F + ||Ḡt−1 − Ḡ||F

⇒ ||Ḡt − Ḡt−1||2F ≤ 2(||Ḡt − Ḡ||2F + ||Ḡt−1 − Ḡ||2F )

summing the above from r+1 to s and taking Ḡ to be the sample mean over I yields the desired result.
The second inequality simply follows by the fact that truncation can only decrease variance.

As a first step, we first bound the Frobenius norm error of the truncated operators over an arbitrary
contiguous interval I = [r, s] ⊆ [T ].
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Lemma D.3. On any interval I = [r, s] ⊆ [T ] with r − 1, s divisible by h3, we can bound the
Frobenius estimation error of the truncated operators as:

E

[
s∑
t=r

||Ĝt − Ḡt||2F

]
≤ 10h2Vartot

I (G) + 2hRegretI(A(p, R̄G, R̃G; 0))

Proof. By Algorithm 7, we can write

s∑
t=r

||Ĝt − Ḡt||2F =

s/h−1∑
τ1=(r−1)/h

h∑
τ2=1

||Ĝτ1·h+τ2 − Ḡτ1·h+τ2 ||2F

=

s/h−1∑
τ1=(r−1)/h

h∑
τ2=1

||Ĝ(τ1+1)·h − Ḡτ1·h+τ2 ||2F

≤ 2

s/h−1∑
τ1=(r−1)/h

h∑
τ2=1

(
||Ĝ(τ1+1)·h − Ḡ(τ1+1)·h||2F + ||Ḡ(τ1+1)·h − Ḡτ1·h+τ2 ||2F

)

= 2h

s/h∑
τ=r/h

||Ĝτ ·h − Ḡτ ·h||2F︸ ︷︷ ︸
(Algorithm 6 estimation error)

+2

s/h−1∑
τ1=(r−1)/h

h∑
τ2=1

||Ḡ(τ1+1)·h − Ḡτ1·h+τ2 ||2F︸ ︷︷ ︸
(Ḡ movement)

For the first term, we will simply apply the above corollary after taking expectation. We will therefore
focus on bounding the Ḡ movement term.

∀τ2 : ||Ḡ(τ1+1)·h − Ḡτ1·h+τ2 ||2F ≤

(
h−1∑
i=1

||Ḡτ1·h+i+1 − Ḡτ1·h+i||F

)2

(4-ineq.)

≤ h
h−1∑
i=1

||Ḡτ1·h+i+1 − Ḡτ1·h+i||2F (C.S.)

This implies that

h∑
τ2=1

||Ḡ(τ1+1)·h − Ḡτ1·h+τ2 ||2F ≤ h2
h−1∑
i=1

||Ḡτ1·h+i+1 − Ḡτ1·h+i||2F

So finally we have that

Ḡ-movement ≤ h2
s∑

t=r+1

||Ḡt − Ḡt||2F

≤ 4h2Vartot
I (G) Observation D.2 (5)

Finally, taking expectation, plugging in Corollary D.1 and noting that for J = [r/h, s/h],
Vartot

J·h(Ḡ1:T ) ≤ Vartot
I (G) (Observation D.2 (2)) and RegretJ(A(p, R̄G, R̃G; 0)) ≤

RegretI(A(p, R̄G, R̃G; 0)), we get:

E

[
s∑
t=r

||Ĝt − Ḡt||2F

]
≤ 10h2E[Vartot

I (G)] + 2hRegretI(A(p, R̄G, R̃G; 0))

3This is w.l.o.g. and only assumed for simplicity of presentation.
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Lemma D.4. On any interval I = [r, s] ⊆ [T ] with r− 1, s divisible by h, we can bound the squared
`1, op estimation error of the truncated operators as:

E

[
s∑
t=r

||Ĝt − Ḡt||2`1,op

]
≤ 20h3E[Vartot

I (G)] + 4h2RegretI(A(p, R̄G, R̃G; 0))

Proof. We have that

s∑
t=r

||Ĝt − Ḡt||2`1,op ≤
s∑
t=r

(
h−1∑
i=0

||Ĝ[i]
t − Ḡ

[i]
t ||op

)2

4-ineq.

≤ 2

s∑
t=r

(
h−1∑
i=0

||Ĝ[i]
t − Ḡ

[i]
t ||op

)2

≤ 2h

s∑
t=r

h−1∑
i=0

||Ĝ[i]
t − Ḡ

[i]
t ||2F Observation D.2 (1) & C.S.

= 2h

s∑
t=r

||Ĝt − Ḡt||2F Observation D.2 (3)

Taking expectation and plugging in the bound in Lemma D.3 yields the promised result.

Finally we can use Lemma D.4 and Cauchy-Schwarz to get a result in terms of the linear (rather than
squared) `1, op error accumulated over an interval:

Proposition D.5. On any interval I = [r, s] ⊆ [T ] with r − 1, s divisible by h, we can bound the
squared `1, op estimation error of the truncated operators as:

E

[
s∑
t=r

||Ĝt − Ḡt||`1,op

]
≤ 5h3/2|I|1/2

√
Vartot

I (G) + 2h|I|1/2Regret
1/2
I (A(p, R̄G, R̃G; 0))

Proof. By Cauchy-Schwarz and Jensen (since
√
· is concave) we have:

E

[
s∑
t=r

||Ĝt − Ḡt||`1,op

]
≤ |I|1/2E

( s∑
t=r

||Ĝt − Ḡt||2`1,op

)1/2


≤ |I|1/2
(
E

[
s∑
t=r

||Ĝt − Ḡt||2`1,op

])1/2

≤ |I|1/2
√

20h3E[Vartot
I (G)] + 4h2RegretI(A(p, R̄G, R̃G; 0))

≤ 5h3/2|I|1/2
√
E[Vartot

I (G)] + 2h|I|1/2Regret
1/2
I (A(p, R̄G, R̃G; 0))

D.2 Error Sensitivity

We now analyze concretely how the Gt estimation errors induce additional regret over the case of
known systems. We can decompose the expected regret over an interval I = [r, s] as:
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RegretI =

s∑
t=r

ct(xt, ut)− min
π∈Πdrc

s∑
t=r

ct(x
π
t , u

π
t )

=

s∑
t=r

ct(xt, ut)− ct(x̂t(Mt−h:t−1), ût(Mt))︸ ︷︷ ︸
(realized iterate error)

+

s∑
t=r

ct(x̂t(Mt−h:t−1), ût(Mt)− inf
M∈M

s∑
t=r

ct(x̂t(M), ût(M))︸ ︷︷ ︸
(regret := R̂egretI )

+ inf
M∈M

s∑
t=r

ct(x̂t(M), ût(M))− inf
M∈M

s∑
t=r

ct(xt(M), ut(M))︸ ︷︷ ︸
(comparator error)

First let us bound the realized iterate error which bounds the difference between what actually
happened and what would have happened in the fictive (Ĝt, x̂

nat
t ) system (without exploration).

Lemma D.6. We can bound the difference between the true xnat
t and the extracted x̂nat

t as:

‖xnat
t − x̂nat

t ‖ ≤ RnatRM

(
‖Ḡt−1 − Ĝt−1‖`1,op + ψ(h)

)
Proof. Since xnat ∈ BRnat

and because (as argued earlier) ‖ut‖ ≤ RnatRM, we have:

‖xnat
t − x̂nat

t ‖ =

∣∣∣∣∣∣∣∣xnat
t − ProjBRnat

[
xt −

h−1∑
i=0

Ĝ
[i]
t−1ut−1−i

] ∣∣∣∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣xnat

t − xt +

h−1∑
i=0

Ĝ
[i]
t−1ut−1−i

∣∣∣∣∣∣∣∣ (Pythagoras)

=

∣∣∣∣∣∣∣∣ h−1∑
i=0

(G
[i]
t−1 − Ĝ

[i]
t−1)ut−1−i +

t−2∑
i=h

G
[i]
t−1ut−1−i

∣∣∣∣∣∣∣∣
≤ RnatRM

(
‖Ḡt−1 − Ĝt−1‖`1,op + ψ(h)

)

Lemma D.7 (Realized Iterate Error). For I = [r, s] with r − 1, s divisible by h, we can bound the
realized iterate error as:

s∑
t=r

ct(xt, ut)−ct(x̂t(Mt−h:t−1), ût(Mt)) ≤ 2h

s/h∑
τ1=(r−1)/h

bτ1−1+4L
√
du
R2

sys

RG

(
s∑
t=r

‖Ḡt−1 − Ĝt−1‖`1,op + ψ(h)|I|

)

where we denote Rsys
.
= RGRnatRM.

Proof. Consider the cost difference on a h-block indexed by t = τ1 · h+ 1, τ1 · h+ h. Consider the
following three cases:

1. bτ1 = 1: in this case we are exploring and cannot give a better guarantee than

ct(xt, ut)− ct(x̂t(Mt−h:t−1), ût(Mt)) ≤ 1

2. bτ1 = 0, bτ1−1 = 1: while we are not exploring during the current round, and hence
ut = ût(Mt) for t = τ1 · h+ 1, τ1 · h+ h, we have explored in the previous round and
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therefore ut and ût(Mt) may be arbitrarily far for t ≤ τ1 · h. This can induce xt and
x̂t(Mt−h:t−1) to be quite far, especially the closer we get to τ1 · h + 1. As such, in this
event, we will also simply bound

ct(xt, ut)− ct(x̂t(Mt−h:t−1), ût(Mt)) ≤ 1

3. bτ1 = 0, bτ1−1 = 0: finally, in this case we have that ut = ût(Mt) for t =
τ1 · h− h+ 1, τ1 · h+ h. We can expand:

xt = xnat
t +

h−1∑
i=0

G
[i]
t−1ut−1−i +

t−2∑
i=h

G
[i]
t−1ut−1−i

and

x̂t(Mt−h:t−1) = x̂nat
t +

h−1∑
i=0

Ĝ
[i]
t−1ût−1−i(Mt−1−i)

By the observation above, for t = τ1 · h+ 1, τ1 · h+ h, we have

‖xt − x̂t(Mt−h:t−1)‖ ≤ ‖xnat
t − x̂nat

t ‖+RnatRM

(
‖Ḡt−1 − Ĝt−1‖`1,op + ψ(h)

)
≤ 2RnatRM

(
‖Ḡt−1 − Ĝt−1‖`1,op + ψ(h)

)
Lemma D.6

Hence, by the sub-quadratic Lipschitzness of the cost and Eq. (D.1) we have

ct(xt, ut)− ct(x̂t(Mt−h:t−1), ût(Mt)) ≤ 4L
√
duRGR

2
natR

2
M

(
‖Ḡt−1 − Ĝt−1‖`1,op + ψ(h)

)
So for any τ1 = 0, T/h, we have

τ1·h+h∑
t=τ1·h+1

ct(xt, ut)− ct(x̂t(Mt−h:t−1), ût(Mt)) ≤ 1bτ1=1 · h+ 1bτ1=0,bτ1−1=1 · h

+ 1bτ1=0,bτ1−1=04L
√
duRGR

2
natR

2
M

τ1·h+h∑
t=τ1·h+1

‖Ḡt−1 − Ĝt−1‖`1,op

+ 1bτ1=0,bτ1−1=04L
√
duRGR

2
natR

2
Mh · ψ(h)

≤ (bτ1 + bτ1−1) · h

+ 4L
√
duRGR

2
natR

2
M

(τ1+1)·h−1∑
t=τ1·h

‖Ḡt − Ĝt‖`1,op + hψ(h)


summing over τ1 yields the desired result.

Lemma D.8 (Comparator Error). We can bound the comparator error as:

(comparator error) ≤ 8L
√
duR

2
natR

2
GR

3
Mh

(
m

s∑
t=r−h−m

‖Ḡt − Ĝt‖`1,op + ψ(h)

)

Proof. Let M? = arg minM∈M
∑s
t=r

∑s
t=r ct(xt(M), ut(M)). We have that:

(comparator error) ≤
s∑
t=r

ct(x̂t(M
?), ût(M

?))− ct(xt(M?), ut(M
?))

≤ 2L
√
duRnatRGRM

s∑
t=r

(‖x̂t(M?)− xt(M?)‖+ ‖ût(M?))− ut(M?)‖)
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We have that

‖ût(M?)− ut(M?)‖ = ‖
m−1∑
i=0

M?,[i](x̂nat
t−i − xnat

t−i)‖

≤ RnatR
2
M

(
t−1∑

τ=t−m
‖Ḡτ − Ĝτ‖`1,op + ψ(h)

)

With a bit more computation, we can also bound the difference in the states. First, let us expand the
expression of the states:

xt(M
?) = xnat

t +

h−1∑
i=0

G
[i]
t−1ut−1−i(M

?) +

t−2∑
i=h

G
[i]
t−1ut−1−i(M

?)

x̂t(M
?) = x̂nat

t +

h−1∑
i=0

Ĝ
[i]
t−1ût−1−i(M

?)

The only new thing we need to bound is:

h−1∑
i=0

G
[i]
t−1ut−1−i(M

?)−
h−1∑
i=0

Ĝ
[i]
t−1ût−1−i(M

?) =

h−1∑
i=0

G
[i]
t−1ut−1−i(M

?)−
h−1∑
i=0

Ĝ
[i]
t−1ut−1−i(M

?)

+

h−1∑
i=0

Ĝ
[i]
t−1ut−1−i(M

?)−
h−1∑
i=0

Ĝ
[i]
t−1ût−1−i(M

?)

≤ RnatRM‖Ḡt−1 − Ĝt−1‖`1,op +RG

h∑
i=1

‖ut−i(M?)− ût−i(M?)‖

≤ 2RGRnatR
2
Mh

(
m

t−1∑
τ=t−h−m

‖Ḡτ − Ĝτ‖`1,op + ψ(h)

)

Plugging this into our expressions for xt(M?), and using previous bounds we have

‖x̂t(M?)− xt(M?)‖ ≤ 3RGRnatR
2
Mh

(
m

t−1∑
τ=t−h−m

‖Ḡτ − Ĝτ‖`1,op + ψ(h)

)

Hence we can finalize that:

(comparator error) ≤ 8L
√
duR

2
natR

2
GR

3
Mh

(
m

s∑
t=r−h−m

‖Ḡt − Ĝt‖`1,op + ψ(h)

)

D.3 Proof of Theorem D.1

Proof of Theorem D.1. We have that
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RegretI ≤ 18L
√
dminR

2
GR

2
MR

2
natm(h+ 1)5/4

√
T︸ ︷︷ ︸

(Known System Regret)

+ 2h

s/h∑
τ=(r−1)/h

bτ−1︸ ︷︷ ︸
(Exploration Penalty)

+ 12LR2
natR

2
GR

3
Mhm

(
s∑
t=r

‖Ḡt − Ĝt‖`1,op + 2RG(h+m)

)
︸ ︷︷ ︸

(System Misspecification Induced Error)

+ 18L
√
duR

2
GR

3
MR

2
natψ(h)h(|I|+ h+m)︸ ︷︷ ︸

(Truncation Error)

Taking expectation and plugging in Proposition D.5 we get:

E[RegretI ] ≤ Õ
(
L
√
duR

2
sysm
√
T + p|I|

+ LR2
sysRMm

(
|I|1/2

√
E[Vartot

I (G)] + duRsys|I|1/2p−1/2 +RGm

)
+ L

√
duR

2
sysRMRGm

)
(D.2)

= Õ?
(
Lm

(
|I|
√
E[VarI(G)] + duT

2/3
))

where Rsys = RGRMRnat, using VarI(G) = |I|Vartot
I (G), and that for the chosen h we have

ψ(h) ≤ RGT−1.

E Sublinear Regret for State Feedback

We demonstrate that it is (information-theoretically) possible to achieve sublinear (though large)
regret against a benchmark of stabilizing static feedback control policies.

We suppose there is a subset K ⊂ Rdu×dx of feedback policies K, and our goal is to obtain regret
compared to the best K ∈ K:

RegT (K) :=

T∑
t=1

ct(xt, ut)− inf
K∈K

T∑
t=1

ct(x
K
t , u

K
t ),

where (xKt , u
K
t ) are the iterates arising under the control law ut = Kxt.

For this setting, we propose an algorithm the classic Exp3exponential weights algorithm (see, e.g.
Chapter 3 of [8]) on an ε-cover Kε of K in the operator norm. We maintain a constant controller K
on intervals of length H , and feed the losses on those intervals to the Exp3 algorithm. Pseudocode is
given in Algorithm 8.

We state our regret bound under the (quite restrictive) assumption that all policies K ∈ K are
sequentially stabilizing. Formally, given a sequence of controllers K ∈ K, we define

Φs:t(K) :=

t∏
i=s

(Ai +KiBi) = (At +KBt) · (At−1 +KBt−1) · · · · · (As +KBs).

We assume that Φs:t(K) exhibits geometric decay uniformly over all times for any fixed K:
Assumption 4. There exists c? ≥ 1 and ρ? ∈ (1/2, 1) such that for any indices s ≤ t and any fixed
K ∈ K, ‖Φs:t(K)‖op ≤ c?ρt−s? . We define the constant

RK := 1 + max{‖K‖ : K ∈ K}

Theorem E.1. Suppose Assumptions 3 and 4 holds, and for some Rw ≥ 1 and RB ≥ 0,
maxt ‖wt‖ ≤ Rw, and maxt ‖Bt‖ ≤ RB . In addition, suppose T is large enough that
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Algorithm 8 Exponentially Weighted Control
1: Input: window length H , step size η > 0, finite ε-cover Kε ⊂ K, initial estimate K1 ∈ Kε
2: Initialize L1(K) = 0 and p1(K) = 1/|Kε|, ∀K ∈ Kε,
3: for t = 1, . . . , T do
4: Play select ut = Ktxt.
5: Recieve ĉt = ct(xt, ut)
6: if t mod H = 0 then
7: Set n = t/H , `n =

∑t
i=t−H+1 ĉi

8: Set Ln+1(Kt) = 1
pn(Kt)

`n + Ln(Kt)

9: Set Ln+1(K) = Ln(K) for all K ∈ Kε/{Kt}
10: Set pn+1(K) = exp(ηLn+1(K))∑

K′∈Kε exp(ηLn+1(K′))

11: Sample Kt+1 ∼ pn+1(·).
12: else
13: Set Kt+1 = Kt

C?ρT/4? ≤ 1/2. Then, Algorithm 8 with horizon H = dT 1/4e, appropriate an step size η and
minimal ε-covering Kε of K enjoys the following regret bound:

E[RegT (K)] ≤ LC1(5RK)dxdu/2 · T 1− 1
2(dxdu+3) ,

where C1 = O
(

C5?
(1−ρ?)3R

3
KR

2
w(1 +RB)

√
dudx

)
.

The theorem is established by a reduction to online multi-arm bandits in Appendix E.1 below.
Remark E.1 (Extensions of Theorem E.1). The following analysis extends to policies of the form
ut = (Kstb

t +K)xt + v, where (Kstb
t ) is a fixed sequence of control policies determined a priori,

K ∈ K ⊂ Rdu×dx is a feedback parameter, and v ∈ V ⊂ Rdu is a bounded affine term. Letting
(xK,ct , uK,ct ) denote the iterates produced by such a policy, our notion of regret is

RegT (K × V) :=

T∑
t=1

ct(xt, ut)− inf
(K,c)∈K×V

T∑
t=1

ct(x
K,c
t , uK,ct ),

The only assumptions we require in general is that V is bounded, and that K, combined with (Kstb
i ),

are sequentially stabilizing in the sense that, for any s ≤ t, the fixed (Kstb
i ) sequence, and any

Kstb
s:t ∈ Kt−s+1, it holds that the products

Φstb
s:t (Ks:t) :=

t∏
i=s

(Ai + (Kstb
i +Ki)Bi)

exhibit geometric decay.

E.1 Proof of Theorem E.1

In what follows, assume that H = T 1/4 evenly divides T . For every index n ∈ N, define tn =

1 + (n− 1)H . To avoid confusion, we xalgt , ualgt denote the iterates produced by the algorithm. We
define the sequence which begins at state xalgtn at time tn, and rolls forward under controller K for
future times:

x̄n;tn(K) = xalgtn , x̄n;t+1(K) = (At +BtK)x̄n;t(K) + wt, t ≥ tn
ūn;tn(K) = Kx̄n;tn(K).

Observe that, since we select a new controller Ktn just before each time tn, we have

(x̄n;tn(Ktn), ūn;tn(Ktn)) = (xalgt , ualgt ), ∀t ∈ [tn, tn+1 − 1].

Therefore, defining the losses,

`n(K) =

tn+1−1∑
t=tn

ct(x̄n;tn(K), ūn;tn(K)),
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we have

`n(Ktn) =

tn+1−1∑
t=tn

ct(x
alg
t , ualgt ).

Therfore, we may decompose the regret as

E[RegT (K)] = E

T/H∑
n=1

`n(Ktn)

− inf
K∈Kε

E

T/H∑
n=1

`n(K)


︸ ︷︷ ︸

R1

+ inf
K∈Kε

E

T/H∑
n=1

`n(K)

− inf
K∈Kε

T∑
t=1

ct(x
K
t , u

K
t )

︸ ︷︷ ︸
R2

+ inf
K∈Kε

T∑
t=1

ct(x
K
t , u

K
t )]− inf

K∈K

T∑
t=1

ct(x
K
t , u

K
t )︸ ︷︷ ︸

R3

.

Here, R1 is the simple regret on the `n sequence, R2 is the extend to which the `n sequence
approximates regret against controller K ∈ Kε in the covering, and finally R3 bounds the regret of
the covering against the full set K. Here, expectations are over the randomness in the algorithm, and
due to the obliviousness of the adversary, we may assume that (ct, x

K
t , u

K
t ) are deterministic and

chosen in advance. We bound each of the three terms in sequence. Before proceeding, we use the
following estimates:

Lemma E.1 (Key Term Bounds). Suppose that H = T 1/4 is sufficiently large that C?ρH? ≤ 1/2.
Moreover, let R? = C?

1−ρ? . Then,

(a) For all K ∈ K and t ∈ [T ], ‖xKt ‖ ≤ R?Rw

(b) For any t ≥ tn and K ∈ K, ‖x̄n;t(K)‖ ≤ 2C?R?Rw

(c) ‖(xKt , uKt )‖ ≤ RKR?Rw and ‖(x̄n;t(K), ūn;t(K))‖ ≤ 2RKC?R?Rw.

Proof. Part a: Unfolding the dynamics, and bounding ‖wt‖ ≤ Rw and Φ via Assumption 4,

‖xKt ‖ =

∥∥∥∥∥
t−1∑
s=1

Φs+1:t(K)wt

∥∥∥∥∥ ≤ RwC?∑
s≥0

ρs? =
C?Rw
ρ?

:= R?Rw.

Next, we bound ‖xalgtn ‖ for some n,

‖xalgtn ‖ =

∥∥∥∥∥
H∑
i=1

Φtn−1+i:tn−1(Ktn−1
)wtn−i + Φtn−1:tn(Ktn−1

)xalgtn−1

∥∥∥∥∥
≤ R?Rw + C?ρH? ‖x

alg
tn−1‖.

If H is sufficiently large that C?ρH? ≤ 1/2, then the above is just

‖xalgtn ‖ ≤ R?Rw +
1

2
‖xalgtn−1‖,
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yielding the bound ‖xalgtn ‖ ≤ 2R?Rw for all n. Part b: Next, let us bound ‖x̄n;t(K)‖ for some t ≥ tn.
We have

‖x̄n;t(K)‖ =

∥∥∥∥∥
t∑

i=tn+1

Φi:t(K)wtt+ Φtn:t(K)xalgtn

∥∥∥∥∥
≤ Rw(

t−tn−1∑
0

C?ρi?) + C?ρtn? ‖x
alg
tn ‖

≤ Rw
t−tn−1∑

0

C?ρi? + 2ρtn? C?R?Rw.

Using R? = C?
ρ?

, C? ≥ 1, and
∑t−tn−1

0 +
ρtn?

1−ρ? = 1
1−ρ? , the above simplifies to 2

C2?Rw
1−ρ? = 2C?RwR?.

Part c: This follows from the fact that, for any x ∈ Rdx and K ∈ K, ‖(x,Kx)‖ ≤ (1 + ‖K‖)‖x‖ ≤
RK‖x‖.

Bounding R1 The term R1 corresponds to the simple regret on the sequence of losses `n(K) over
the discrete enumeration of controllers K ∈ Kε. Examining Algorithm 8, we simply run the Exp3
algorithm on these losses. By appealing to a standard regret bound for this algorithm with appropriate
step size η, we ensure that

R1 ≤ 2B

√
T

H
|Kε| log |Kε|,

provided that, for all n and K ∈ Kε, `n(K) ∈ [0, B]. To find the appropriate bound B, we note that
from the growth condition on the costs, Assumption 3, we have

0 ≤ `n(K) =

tn+1−1∑
t=tn

ct(x̄n;tn(K), ūn;tn(K)) ≤ H max
t≥tn

ct(x̄n;tn(K), ūn;tn(K))

≤ LH max{1, ‖(x̄n;tn(K), ūn;tn(K))‖2} ≤ 8LH(RKC?R?Rw)2,

where the last inequality uses Lemma E.1. Hence,

R1 ≤ 16L(RKC?R?Rw)2
√
TH|Kε| log |Kε|.

Bounding R2: To bound R2, it suffices to find a probability-one upper bound on

sup
K∈Kε

∣∣∣∣∣∣
T/H∑
n=1

`n(K)−
T∑
t=1

ct(x
K
t , u

K
t )

∣∣∣∣∣∣ = sup
K∈Kε

∣∣∣∣∣∣
T/H∑
n=1

tn+1−1∑
t=tn

ct(x̄n;t(K), ūn;t(K))− ct(xKt , uKt )

∣∣∣∣∣∣
≤ T

H
sup
K∈Kε

max
n

tn+1−1∑
t=tn

∣∣ct(x̄n;t(K), ūn;t(K))− ct(xKt , uKt )
∣∣ .

Using the Lipschitz conditions on ct, the bounds from Lemma E.1, and the bound 1 + ‖K‖ ≤ RK,

tn+1−1∑
t=tn

∣∣ct(x̄n;t(K), ūn;t(K))− ct(xKt , uKt )
∣∣ ≤ L(RKC?R?Rw)

tn+1−1∑
t=tn

‖(x̄n;t(K), ūn;t(K))− (xKt , u
K
t )‖

= L(RKC?R?Rw)

tn+1−1∑
t=tn

‖(x̄n;t(K),Kx̄n;t(K))− (xKt ,Kx
K
t )‖

= L(RKC?R?Rw)RK

tn+1−1∑
t=tn

‖x̄n;t(K)− xKt ‖.

Finally, we can compute that the difference x̄n;t(K)− xKt = Φttn(xalgtn − x
K
tn) depends only on the

response to the state difference at time tn. Hence, using Assumption 4 and Lemma E.1,the above is
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at most

L(RKC?R?Rw)RK ·
∑
i≥0

C?ρi?‖(x
alg
tn − x

K
tn)‖ ≤ L(RKC?R?Rw)RK ·

C?
1− ρ?︸ ︷︷ ︸= R? · C?R?Rw

≤ L(RKC?R?Rw)2R?.

Concluding, we find

R2 ≤ L(RKC?R?Rw)2 · TR?
H

.

Bounding R3. We now turn to bounding R3, which captures the approximation error of approxi-
mating K with Kε. We require the following technical lemma:
Lemma E.2. Let K,K ′ ∈ K satisfy ‖K −K ′‖op ≤ ε. Then, for all t ≥ 1,

‖xKt − xK
′

t ‖ ≤ 4εRwR
2
?RB .

Hence,

‖ct(xKt , uKt )− ct(xK
′

t , uK
′

t )‖ ≤ 4εLR2
wR

2
KR

3
?(1 +RB).

Using the fact that Kε is an ε-covering of K in the operator norm means that for any K ∈ K, we can
find a K ′ ∈ Kε for which ‖K −K ′‖op ≤ ε. Hence, from the above lemma

|
T∑
t=1

ct(x
K
t , u

K
t )− ct(xK

′

t , uK
′

t )| ≤ 4TεLR2
wR

2
KR

3
?(1 +RB).

Since R3 ≤ supK∈K infK′∈Kε |
∑T
t=1 ct(x

K
t , u

K
t )− ct(xK

′

t , uK
′

t )|, we conclude

R3 ≤ 4TεLR2
wR

2
KR

3
?(1 +RB).

Concluding the proof In sum, we found

E[RegT (K)] = R1 +R2 +R3

≤ O
(
L(RKC?R?Rw)2

)(√
TH|Kε| log |Kε|+

TR?
H

+ (1 +RB)Tε

)
,

≤ O
(
L(RKC?R?Rw)2(1 +RB)R?

)(√
TH|Kε| log |Kε|+

T

H
+ Tε

)
,

where in the last line, we use R? ≥ 1 and 1 +RB ≥ 1. Setting H = T 1/4,

E[RegT (K)] ≤ O
(
L(RKC?R?Rw)2(1 +RB)R?

)
T 3/4 ·

(√
|Kε| log |Kε|+ T 1/4ε

)
,

We bound the cardinality of Kε. It suffices to ensure Kε is an ε-covering in the larger Frobenius norm,
which is just the Euclidean norm on Rdxdu . Since K is a bounded subset of this space, with radius at
most RK, we can find a covering such that |Kε| ≤ ( 5RK

ε )dxdu (see, e.g. Chapter 4.2 in [43]). This
yields

|Kε| log |Kε| ≤ dxdu
(

5RK
ε

)dxdu
log

(
5RK
ε

)
≤ dxdu

(
5RK
ε

)dxdu+1

= 5RK · (5RK)dxduε−dxdu+1

where we use log x ≤ x. Hence, we can bound

E[RegT (K)] ≤ O
(
LRKR?(RKC?R?Rw)2(1 +RB)

√
dxdu

)
(5RK)dxdu/2 · T 3/4

((
1

ε

)(1+dxdu)/2

+ εT 1/4

)

Setting ε = T−
1

2(dxdu+3) gives

E[RegT (K)] ≤ O
(
LR?(RKC?R?Rw)2(1 +RB)

√
dxdu

)
(5RK)dxdu+1 · T 1− 1

2(dxdu+3)

= O
(
L

C5
?

(1− ρ?)3
R3
KR

2
w(1 +RB)

√
dxdu

)
(5RK)dxdu/2 · T 1− 1

2(dxdu+3) ,
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E.2 Ommited Proofs

Proof of Lemma E.1. Part a: All such iterates can be realized by dynamics of the form x1 = 0,
xt+1 = (At+BtKt)xt+wt and ut = Ktxt for any appropriate sequence (K1,K2, . . . ) of elements
of K. For such dynamics, we find

xt =

t−1∑
s=1

(
t∏

i=s+1

(Ai +BiKi)

)
ws =

t−1∑
s=1

Φs+1;t(Ks+1:t)wt.

Using ‖ws‖ ≤ Rw and the assumption Φs+1;t(Ks+1:t)wt ≤ c?ρt−s−1
? from Assumption 4, we find

‖xt‖ ≤ Rwc?
t−1∑
s=1

ρt−s−1
? ≤ c?Rw

1− ρ?
= R?Rw

‖ut‖+ ‖xt‖ = ‖xt‖+ ‖Ktxt‖ ≤ ‖xt‖(1 + ‖Kt‖) ≤ R?RKRw

Part b: Since the closed-loop dynamics for x̄Kk;t and xKt concincide for t ≥ tk and are given by
xt+1 = (At +BtK)xt + wt, we can compute

x̄Kk;t − xKt =

(
t∏

i=tk

(At +BtK)

)
(x̄Ktk;k − xKt ).

Bounding ‖x̄Kk;t − xKt )‖ ≤ 2RwRK from part (a) and ‖(At +BtK)t−tk‖ ≤ c?ρt−tk? from Assump-
tion 4 yields ‖x̄Kk;t − xKt )‖ ≤ 2Rxc?ρ

t−tk
? . Summing over t ≥ tk yields

∑
t≥tk ‖x̄

K
k;t − xKt ‖ ≤

2RwR
2
?. Finally, using ūKk;t = Kx̄Kk;t and uKt = KxKt gives∑
t≥tk

‖x̄Kt;k − xKt ‖+ ‖ūKt;k − uKt ‖ ≤ (1 + ‖K‖)
∑
t≥tk

‖x̄Kt;k − xKt ‖ ≤ 2RwRKR
2
?.

Proof of Lemma E.2. Introducing the short hand Xi = Ai + BiK and Yi = Ai + BiK
′, and

expanding the dynamics, and introducing the short hand

‖xKt − xK
′

t ‖ =

∥∥∥∥∥∥
t−1∑
s=1

 t∏
i=s+1

(Ai +BiK︸ ︷︷ ︸
=Xi

)−
t∏

i=s+1

(Ai +BiK
′︸ ︷︷ ︸

=Yi

)

ws

∥∥∥∥∥∥
≤ Rw

t−1∑
s=1

∥∥∥∥∥
t∏

i=s+1

Xi −
t∏

i=s+1

Yi

∥∥∥∥∥
op

Using an elementary matrix telescoping identiy,

t∏
i=s+1

Xi −
t∏

i=s+1

Yi =
t∑

j=s+1

 t∏
i=j+1

Xj

 (Xj − Yj)
j−1∏
i=s+1

Yj .

Thus, invoking stability assumption, Assumption 4, and setting RB ≥ maxt ‖Bt‖op,∥∥∥∥∥
t∏

i=s+1

Xi −
t∏

i=s+1

Yi

∥∥∥∥∥
op

≤
t∑

j=s+1

∥∥∥∥∥∥
t∏

i=j+1

Xj

∥∥∥∥∥∥
op

∥∥∥∥∥
j−1∏
i=s+1

Yj

∥∥∥∥∥
op

‖Xj − Yj‖op

=

t∑
j=s+1

c?ρ
t−j+1
? c?ρ

j−1−(s+1)
? ‖Bj(K −K ′)‖op

=
c2?
ρ2
?

t∑
j=s+1

ρ
t−(s+1)
? ‖Bj(K −K ′)‖op

≤ εRB
c2?
ρ2
?

(t− s+ 1)ρ
t−(s+1)
?
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Thus, we find

‖xKt − xK
′

t ‖ ≤ εRwRB
c2?
ρ2
?

t−1∑
s=1

(t− s+ 1)ρ
t−(s+1)
?

≤ εRwRB
c2?

ρ2
?(1− ρ?)2

≤ 4εRwRB
c2?

(1− ρ?)2
= 4εRwR

2
?RB ,

where in the last step, we use ρ? ≥ 1/2. Thus, applying Assumption 3 and ??,

‖ct(xKt , uKt )− ct(xK
′

t , uK
′

t )‖ ≤ Lmax{1, ‖(xKt , uKt )‖, ‖(xK
′

t , uK
′

t )‖} · ‖(xKt , uKt )− (xK
′

t , uK
′

t )‖

≤ LRwRKR? · ‖(xKt , uKt )− (xK
′

t , uK
′

t )‖.

Continuing, we bound

‖(xKt , uKt )− (xK
′

t , uK
′

t )‖ = ‖(xKt ,KxKt )− (xK
′

t ,K ′xK
′

t )‖

≤ ‖(xKt ,KxKt )− (xK
′

t ,KxK
′

t )‖+ ‖(K −K ′)xK
′

t ‖

≤ RK‖xK
′

t − xK
′

t ‖+ ‖(K −K ′)xK
′

t ‖.

Finally, using the bound ‖xK′t − xK
′

t ‖ ≤ 4εRwR
2
?RB derived above, and bounding ‖(K −

K ′)xK
′

t ‖ ≤ ε‖xK
′

t ‖ ≤ εRwR? in view of Lemma E.1. Hence,

‖ct(xKt , uKt )− ct(xK
′

t , uK
′

t )‖ ≤ LRwRKR?(4εRKRwR2
?RB + εRwR?)

≤ 4εLR2
wR

2
KR

3
?(RB + 1),

where above we use that RK, R? ≥ 1 by assumption.

F Lower Bounds and Separations

F.1 Separation between policy classes

Let Z = (ct, wt, At, Bt)t≥1 denote sequences over costs,disturbances, and dynamics. We let
JT (π;Z) denote the cost of policy π on the sequence Z . Our lower bounds hold even against
sequences which enjoy the following regularity condition.
Definition F.1. We say that Z is regular if, for all t, ct(·, ·) satisfies ?? with L ≤ 1, and that for all t,
‖wt‖ ≤ 1, ‖Bt‖op ≤ 1 and ‖At‖op ≤ 1/2.

We define the policy classes

Π+
drc(h) :=

{
π : uπt = u0 +

h−1∑
i=0

M [i]xnat
t−i, ∀t

}

Π+
dac(h) :=

{
π : uπt = u0 +

h−1∑
i=0

M [i]wt−i−1, ∀t

}

Π+
feed(h) :=

{
π : uπt = u0 +

h−1∑
i=0

M [i]xπt−i, ∀t

}

Πfeed(h,R) :=

{
π : uπt = u0 +

h−1∑
i=0

M [i]xπt−i, ∀t,
h−1∑
i=0

‖M [i]‖op ≤ R.

}
.

That is, Π+
drc(h) are all length h DRC policies of unbounded norm and allowing affine offsets, Π+

dac(h)

are all length h DAC policies of unbounded norm allowing affine offsets, and Π+
feed(h) are all static

feedback policies of unbounded norm allowing affine offsets, and Πfeed(h,R) are feedback policies
of bounded norm and horizon.

The following theorem demonstrates that the DAC, DRC, and feedback parametrizations are funda-
mentally incommensurate.
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Theorem F.1. Let C0 > 0 denote a universal constant. There exists three regular sequences
Z1,Z2,Z3 in du = dx = 1 which separate DAC, DRC, and feedback controllers, in the following
sense:

(a) Under Z1, the static feedback policy π selecting uπt = 1
4x

π
t satisfies JT (π;Z1) = 0, but

inf
π∈Π+

drc(h)∪Π+
dac(h)

JT (π;Z1) ≥ C0(T − h− 2)

(b) Under Z2, the DAC policy π selecting uπt = wt satisfies JT (π;Z2) = 0, but

inf
π∈Π+

drc(h)∪Π+
feed(h)

JT (π;Z2) ≥ C0(T − h− 2)

(c) Under Z3, the DRC policy π selecting uπt = xnat
t satifies JT (π;Z3) = 0, but

inf
π∈Π+

dac(h)
JT (π;Z3) ≥ C0(T − h− 3)

Moreover, for any h ∈ N , R > 0 and T ≥ 10h, we have

inf
π∈Πfeed(h,R)

JT (π;Z3) ≥ C0
T

hmax{R, 1}
.

Proof. We establish the separations for each part with different constant factors. One can choose C0
to be the minimum of all constants which arise.

Proof of part a. We set Z1 to be the sequence with At = 0 for all t, wt = 1 for all t, ct(x, u) =
1
8 (u− 1

4x)2, and

Bt =

{
1 t odd
−1 t even.

This sequence is clearly regular, and is clear that the policy uπt = 1
4x

π
t has JT (π;Z1) = 0. On the

other hand, let π ∈ Π+
drc(h)∪Π+

dac(h), JT (π;Z1). Since At ≡ 0, xnat
t = wt so Π+

drc(h) = Π+
dac(h).

Moreover, since wt = 1 for all t ≥ 1, any π ∈ Π+
dac(h) has uπt = ū for some fixed ū for all t > h.

Then, for all t > h+ 1, xt = 1 +Bt−1ū. Thus, ct(xπt , u
π
t ) = 1

8 (ū− 1+Bt−1ū
4 )2. Using the definition

of Bt,

ct(x
π
t , u

π
t ) + ct+1(xπt+1, u

π
t+1) =

1

8
(ū− 1− ū

4
)2 +

1

8
(ū− 1 + ū

4
)2 =

1

128

(
(3ū+ 1)2 + (5ū+ 1)

)2
= Ω(1).

The bound follows.

Proof of part b. Set ct(x, u) = (u − wt−1)2. Then the DAC policy uπt = wt−1 has zero cost.
Further, set Bt ≡ 0, thus, xt ≡ xnat

t , so Π+
feed(h) and Π+

drc(h) are equivalent on this system. Finally,
let n = 2m+ 1, and set w1 = 1, and for t ≥ 1, set

(At, wt) =

{
( 1

2 ,
1
2 ) t is even

( 1
4 ,

3
4 ) t is odd

.

Then, one can verify via induction that xt = xnat
t = 1 for all t ≥ 2. Hence, for all

t ≥ h + 1, any π ∈ Π+
feed(h) ∪ Π+

drc(h) has a constant input uπt = ū. However,
ct(x

π
t , u

π
t ) + ct+1(xπt , u

π
t ) = (ū − 1

2 )2 + (ū − 3
4 )2, which is greater than a universal con-

stant. Hence, the regret must spaces as Ω(T − (h+ 2)).

Proof of part c. Fix policity π? to select uπ?t = xnat
t−1. Denote the sequences that arise from this

policy as (x?t , u
?
t ). We set

ct(x, u) =
1

4

(
(u− 1

2
u?t )

2 + |x− x?t |
)
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By construction π? has zero cost on ct. Now, set wt = 1 for all t, and

At =


1
4 t mod 3 = 1
1
4 t mod 3 = 2

0 t mod 3 = 0.

, Bt =


− 1

4 t mod 3 = 1

− 1
20 t mod 3 = 1

0 t mod 3 = 0.

u?3k+1 = xnat
3k+1 = 1

u?3k+2 = xnat
3k+2 =

5

4

u?3k+3 = xnat
3k+3 =

21

16
.

Hence, a similar argument as in part (b), using the fact that that wt is constant but u?t is periodic,
shows that any π ∈ Π+

dac(h) suffers cost Ω(T − h− 3).

Let us now analyze the performance of policies π ∈ Πfeed(m,RM ). First, observe that x?t = 1 for
all t ≥ 2.

x?3k+1 = 1

x?3k+2 =
5

4
− 1

4
u?3k+1 = 1.

x?3k+2 =
21

16
− 1

4
u?3k+1 −

1

20
u?3k+2

=
21

16
− 1

4
− 1

20
· 5

4
= 1.

Next, observe that for π ∈ Πfeed(h,R), and t ≥ h+ 1,

uπt = c+

h−1∑
i=0

M [i]xπt = c+

h−1∑
i=0

M [i]x?t +

h−1∑
i=0

M [i](xπt − x?t ) = (c+

h−1∑
i=0

M [i])︸ ︷︷ ︸
:=ū

+

h−1∑
i=0

M [i](xπt − x?t )

Defining εt = uπt − ū, we have

|εt| ≤

∣∣∣∣∣
h−1∑
i=0

M [i](xπt − x?t )

∣∣∣∣∣ ≤ R h−1
max
i=0
|xπt−i − x?t−i|.

Hence, for integers k,

max
i∈[3]
|ε3k+i| ≤ R

3k+3
max

t=3k−h+2
|xπt − x?t |. (F.1)

We now argue a dichotomoty on the size of maxi∈[3] |ε3k+i|. First, we show that if the epsilons are
large, the costs incurred on a past window of h must be as well. This is Eq. (F.1) would necessitate
that xπt differs from x?t over the previous window.

Claim F.1. Suppose maxi∈[3] |ε3k+i| ≥ 1
32 . Then,

∑3k+3
t=3k−h+2 ct(x

π
t , u

π
t ) ≥ 1

27R .

Proof. By Eq. (F.1), we have that if maxi∈[3] |ε3k+i| ≥ 1
32 , then max3k+3

t=3k−h+2 |xπt − x?t | ≥
1

32R .
Since ct(xπt , u

π
t ) ≥ 1

4 |x
π
t − x?t |, the bound follows by upper bounding the maximum with the

sum.

On the other hand, we show that if the ε-terms are small, then the costs on t ∈ {3k+1, 3k+2, 3k+3}
are at least a small constant. This is because the inputs selected by π, ū+ εt, are close to constant,
and therefore can fit the periodic values of uπ?t .

Claim F.2. Suppose maxi∈[3] |ε3k+i| ≤ 1
32 . Then,

∑3
i=1 c3k+i(x

π
t , u

π
t ) ≥ 2−12.
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Proof. We expand

3∑
i=1

c3k+i(x
π
t , u

π
t ) ≥

3∑
i=1

1

4
(u?t − uπt )

2

≥
3∑
i=1

1

4

(
u?3k+i − ū− ε3k+i

)2
.

=
1

4

(
(1− ū− ε3k+1)

2
+

(
1 +

1

4
− ū− ε3k+1

)2

+

(
1 +

1

4
+

1

16
− ū− ε3k+i

)2
)
.

In particular, suppose maxi∈[3] |ε3k+i| ≤ 1
32 . Then unless |ū − 1| ≤ 1

16 , the above is at least
1
4

(
1
32

)2
= 2−12. On the other hand, if |ū− 1| ≤ 1

16 . Then, 1
4

(
1 + 1

4 − ū− ε3k+1

)2 ≥ ( 1
4 −

1
16 −

1
32 )2 ≥ 1

4 ( 1
8 )2 ≥ 2−12.

Combining both cases, we find that, for all k such that 3k − h+ 2 ≥ 1,

3k+3∑
t=3k−h+2

ct(x
π
t , u

π
t ) ≥ 2−17

max{R, 1}
.

In particular, we find that for JT (π;Z3) ≥ Ω( T
hmax{1,R} ) provided (say) T ≥ 10h.

F.2 Linear Regret Against DRC and DAC

In this section, we demonstrate linear regret against DRC and DAC. We consider a distribution over
instances of the following form

At = 0, Bt =

[
1 0 0
0 βt 0
0 0 1

]
, wt = −

[
ωt−1

ωt
1

]
, t ≥ 0. (F.2)

Define the constant α = 1/4. For a given σ ∈ (0, 1/8), let Dσ denote the distribution over
(At, Bt, wt) induced by drawing

βt
i.i.d∼ [1− σ, 1 + σ], ωt

i.i.d∼ {1− ασ, 1 + ασ}.

Note that these instances are (a) controllable, (b) stable, and (c) have variance scaling like Tσ2, and
(d) the DRC and DAC parametrizations coincide. Letting v[i] denote the i-th coordinate of vectors v,
we consider cost of the form

cf (x, u) = x[2]2 + u[2]2 + f(x[1]). (F.3)

for either f(z) = |z| or f(z) = z2. Note that both choices of f ensure that cf satisfies ??, and the
latter choice ensures that cf (x, u) is second order smooth.

Theorem F.2. Let alg be any online learning algorithm. Let cf (x, u) as in (F.3). Then, for any
σ > 0, there exist a DRC policy π? ∈ Πdrc(1, 1)4 such that expected regret incurred by alg under the
distribution Dσ and cost cf (x, u) is at least

EDσ,alg[JT (alg)− JT (π?)] ≥ ·
{
C1Tσ

2 for f(z) = z2, T ≥ C0

σ2

C1Tσ for f(z) = z, T ≥ C0

σ ,

where above, C0, C1 are universal, positive constants.

Proof. In what follows, E[·] denotes expectation under the nstance from Dσ, and any algorithmic
randomness.

4Equivalently, in Πdac(1, 1) since At ≡ 0
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We expand xt and ut into its coordinates xt = (xt;1, xt;2, xt;3) and of ut = (ut;1, ut;2, ut;3). For any
policy π, we can decompose its cost as

JT (π) =

T∑
t=1

cf (xπt , u
π
t ) = (uπT ;2)2 + f(xπT ;1) +

T−1∑
t=1

cq(xπt+1;2, u
π
t;2) + f(xπt;1)

where cq(xπt+1;2, u
π
t;2) = (xπt+1;2)2 + (uπt;2)2.

Note that x1 = 0 in the above. The following lemma characterizes the conditional expectation of the
cq

Lemma F.3. There exist a constant cq;? such that

E[cq(xt+1;2, ut;2)]− cq;? = (2 + σ2/3)E[(ut;2 − ū)2],

where ū = 1
2(1+σ2/6) .

The proof of Lemma F.3 is deferred to the end of the section.

Bounding the cost of π? We select π? to be DAC (or equivalently, DRC since At ≡ 0) policy given
by

M =

[
0 1 0
0 0 ū
0 0 0

]
, uMt = Mwt−1.

We find that

E[cq(xπ?t+1;2, u
π?
t;2)]− cq;? = (2 + σ2/3)E[(uMt;2 − ū)2] = 0, 2 ≤ t ≤ T − 1

E[f(xMt;1)] = E[f(uMt−1;1 − ωt−2)] = 0, 3 ≤ t ≤ T.
Since the noise is uniformly bounded independent for all σ, α ≤ 1, we conclude

E[JT (πM )]− (T − 1)cq;? = E[f(xπt;2)]︸ ︷︷ ︸
E[f(ωt)]

+(uπ?T ;2)2 + E[f(xπT ;1)]︸ ︷︷ ︸
=0

+E[cf (x1, u1)]︸ ︷︷ ︸
=0

=
f(1− ασ) + f(1 + ασ)

2
+ (ū · wt−1;3)2︸ ︷︷ ︸= ū2 ≤ 2., (F.4)

where we use α ≤ 1/24, σ ≤ 1/8, and ū ≤ 1
2(1+σ2/6) , and f(z) ≤ max{|z|, |z|2} to achieve the

bound Eq. (F.4).

Bounding the cost of adaptive policies Fix any online learning algorithm alg; we lower bound its
performance. Because Bt and wt are drawn from a fixed probability distribution, and are therefore
oblivious to the learner’s actions, we may assume without loss of generality that alg is deterministic.

The first step is to argue that any algorithm with small cost must select inputs where are bounded
away from zero. Specifically, define the devent Et := {ualgt;2 ≥ 1/6}. Using Lemma F.3 together with
ū ≥ 1/3,

E[JT (alg)]− Tcq;? ≥ 2

T∑
t=1

E
[
f(xt;1 + (ualgt;2 − ū)2]

]
≥ 2

T∑
t=1

E
[
f(xalgt;1)

]
+ (

1

3
− 1

6
)2 P [Ect ]

=

T∑
t=1

E
[
f(xalgt;1)

]
+

1

18
P [Ect ]

≥
T∑
t=3

E
[
f(xalgt;1) | Et−1

]
P [Et−2] +

1

18

3∑
t=1

P [Ect ] . (F.5)

We now lower bound E
[
f(xalgt;1) | Et−2

]
, again deferring the proof to the end of the section.
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Lemma F.4. For any executable policy π E[f(xπt;1) | Et−2] ≥ 1
2f(ασ), provided α ≤ 1/24.

Combining Lemma F.4 with the above bound, we have

E[JT (alg)]− (T − 1)cq;? ≥
T∑
t=1

f(ασ)

2
P [Et−2] +

1

18

T∑
t=1

P [Ect ]

≥ min

{
f(ασ)

2
,

1

18

} T−2∑
t=1

P [Et] + P [Ect ]

≥ (T − 2) min

{
f(ασ)

2
,

1

18

}
.

With σ ≤ 1 and α = 1
24 , f(ασ)

2 ≤ 1
18 . Combining with Eq. (F.4), we have

E[JT (alg)]− E[JT (π?)] ≥ (T − 2)
f(ασ)

2
− 2.

The bound follows.

F.2.1 Omitted proofs

Proof of Lemma F.3. Let (F t)t≥1 denote the filtration induced by setting F t to be the sigma-algebra
generated by (β1, . . . , βt−1, ω1, . . . , ωt}. We have

E[β2
t | F t] =

1

2σ

∫ 1+σ

u=1−σ
u2du =

(1 + σ)3 − (1− σ)3

6σ

=
1 + 3σ + 3σ2 + σ3 − (1− 3σ2 + 3σ2 − σ3)

6σ

= 1 + σ3/3.

Set cq(x, u) = x2 + u2.

E[cq(xt+1;2, ut;2) | F t] = u2
t;2 + E[(βtut;2 − ωt)2 | F t]

= u2
t;2(1 + E[β2

t | F t])− 2ut;2E[βtwt | F t] + E[ω2
t | F t]

= u2
t;2(2 + σ2/3)− 2ut;2 + (1 + cσ2)

at u?;2 = 1
2(1+σ2/6) . Define cq;? := minut;2 E[`2(xt;2, ut;2) | F t], we then have

E[cq(xt+1;2, ut;2) | F t]− `2;? = (2 + σ2/3)(ut;2 − u?;2)2. (F.6)

Proof of Lemma F.4. Let us introduce a second event, Ẽ , defined as

Ẽt−1 :=
{

(1 + ασ) + ualgt;2(1− σ) ≤ xalgt−1;2 ≤ (1− ασ) + ualgt;2(1 + σ)
}
.

Then, since f is non-negative,

E[f(xπt;1) | Et−2] ≥ E[I{Ẽt−1}f(xπt;1) | Et−2]

= P[Ẽt−1 | E2]E[·E[f(xπt;1) | Ẽt−1 ∩ Et−2].

Let’s first lower bound P[Ẽt−1 | E2]. Writing xalgt−1;2 = βt−2u
alg
t;2 + ωt−2, Ẽt−1 occurs as soon as

(1 + ασ) + ualgt−2;2(1− σ) ≤ βt−2u
alg
t−2;2 + ωt−2

(1− ασ) + ualgt−2;2(1 + σ) ≥ βt−2u
alg
t−2;2 + ωt−2.

Using that 1− ασ ≤ ωt−2 ≤ 1 + ασ and rearranging the above, it is enough that

2ασ ≤ (βt − (1− σ))ualgt−2;2

−2ασ ≥ −((1 + σ)− βt)ualgt−2;2.
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Now, if Et−2 holds, that ualgt;2 ≥ 1/6. Furthermore, by construction 1− σ ≤ βt ≤ 1 + σ. Therefore,
if Et−2 holds, then Ẽt−1 holds as long as

βt − (1− σ) ≥ 12ασ and (1 + σ)− βt ≥ 12ασ.

In particular, for α = 1
24 , then

P[Ẽt−1 | E2] ≥ P[βt ∈ [1− 2
σ , 1 + 2

σ ]] =
1

2
. (F.7)

Next, we lower bound E[f(xπt;1) | Ẽt−1 ∩ Et−2]. To do so, we observe that xt;1 = ωt−2 − ualgt−1;1.
Moreover, since alg is deterministic (see discussion above), ualgt−1;1 is a deterministic function of
xalg1:t−1, and moreover, Ẽt−1, Et−2 are determinied by xalg1:t−1. Hence,

E[f(xπt;1) | Ẽt−1, Et−2] = E[E[f(xπt;1) | xalg1:t−1] | Ẽt−1 ∩ Et−2]

= E[E[f(ωt−2 − ualgt−1;1) | xalg1:t−1] | Ẽt−1 ∩ Et−2]

≥ E[min
u∈R

E[f(ωt−2 − u) | xalg1:t−1] | Ẽt−1 ∩ Et−2].

Thus, it suffices to characterize the distribution of ωt−1 | xalg1:t−1 whenever the events Ẽt−1 ∩ Et−2.
Indeed, we claim that ωt−2 | xalg1:t−1 is uniform on {1− ασ, 1 + ασ} on whenever Ẽt−1 holds.

Claim F.5. Let ω− = 1 − ασ and ω+ = 1 + ασ. then (with probability one) P[ωt−2 = ω− |
xalg1:t−1] = P[ωt−2 = ω+ | xalg1:t−1] = 1

2 if Ẽt−1 holds.

Proof. If Ẽt−1 holds, then there exists exactly two values β and β′ in [1− σ, 1 + σ] such that

ω+ + βualgt−2;2 = ω− + β′ualgt−2;2 = xalgt−1;2.

Even conditioned on xalg1:t−2, ωt−2 is uniformly distributed on {ω−, ω+}, and since β and β′ have
the same probability mass under the uniform distribution of βt−2, it follows that P[ωt−2 = ω+ |
xalg1:t−1] = [ωt−2 = ω− | xalg1:t−1] when Ẽt−1 holds.

Hence,

E[f(xπt;1) | Ẽt−1, Et−2] ≥ min
u∈R

1

2
(f(1 + ασ − u) + f(1− ασ − u)).

For f(z) = z2 or f(z) = |z|, the minimum is attained at u = 1, with values α2σ2 and ασ,
respectively, both equal to f(ασ). Thus,combining with Eq. (F.7), we conclude

E[f(xπt;1) | Et−2] ≥ 1

2
f(ασ).

F.3 Lower Bound without Stability

Theorem F.3. Consider a scalar LTV system with A = ρ ∈ [0, 1], and Bt drawn independently
and uniformly at random from {−1}. Suppose that w1 = 1, and wt = 0 for all t > 1. Finally, let
ct(x, u) = x2 be a fixed costs. Then,

(a) There then DRC policy uπt = −ρB2x
nat
t , DAC policy uπt = −ρB2wt−1, and static-feedback

policy uπt = −ρB2A (all chosen with foreknowledge of the (Bt)t≥1 sequence) all enjoy:

JT (π) = 1, with probability 1.

(b) Any online learning algorithm without foreknowledge of (Bt)t≥1 must suffer expected cost

E[JT (π)] = Ω

(
min

{
T,

1

1− ρ

})
.
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Proof. In part (a), all policies choose u2 = −B2ρw1, so that x3 = ρx2 − ρw1 = 0. Since 0 is an
equilibrium point and wt = 0 for all t ≥ 2, the system remains at zero. Hence, the only cost incurred
is at times 1 and 2, which are costs of zero and 1 respectively. In part (b), we use the unbiasedness of
Bt to recurse

E[x2] = Ax1 + E[B1]E[u1] + w1 = 1

E[xt+1] = AE[xt] + E[Bt]E[ut] + wt︸︷︷︸
=0

= ρE[xt], ∀t ≥ 2,

yielding E[xt] = ρt−2 for all t ≥ 2. Hence, the expected cost of the policy is

E[JT (π)] =

T∑
t=2

ρ(2t−2).

Considering the cases where ρ ≥ 1
T−2 and ρ ≤ 1

T−2 , we find the above is Ω
(

min
{
T, 1

1−ρ

})
.

F.4 Hardness of Computing Best State Feedback Controller

Consider a time-varying linear dynamical system with no noise:

xt+1 = Atxt +Btut + wt, ∀t, wt ≡ 0

subject to changing convex costs ct(x, u). We show that even in the no-noise setting properly learning
the optimal state feedback policy is computationally hard. This statement holds with the control agent
having full prior knowledge of the dynamics (At, Bt, ct). It relies on a reduction to the MAX-3SAT
problem which is NP-hard. Our lower bound is inspired by the analogous one for discrete MDPs by
[14].
Theorem F.4. There exists a reduction from MAX-3SAT on m-clauses and n-literals to the problem
of finding the state feedback policy K optimal for the cost

∑T
t=1 ct(x

K
t , u

K
t ), over sequentially stable

dynamics given by (At, Bt, ct): a solution to MAX-3SAT with k value implies optimal cost of at most
−k, and a solution K to the control problem with −k − ε value implies optimal value of MAX-3SAT
at least k for any known ε > 0.

Let us first describe the construction of the dynamics that reduce the optimal control problem to
the MAX-3SAT problem. Consider a 3-CNF formula φ with m clauses C1, . . . , Cm and n literals
y1, . . . , yn. The state space is of dimensionality dx = n+ 1 and the action space is of dimensionality
du = 2. The control problem is given as a sequence of m episodes corresponding to the clauses of
the formula φ.

For a single clause Cj with j ∈ [m], let the dynamics (At, Bt, ct)
n+2
t=1 be an episode of length n+ 2

constructed as follows. The initial state is x1 = [1,0n]>. The state transitions are independent of the
clause itself given by the following At ∈ Rn+1×n+1:

• for 1 ≤ t < n, At(t+ 1) = [1n, 0]>, At(n+ 1) = [0n, 1]>, At(i) = [0n+1]> for all other
i 6= t+ 1, n+ 1.

• for t = n, it becomes At(n+ 1) = [1n+1]> and At(i) = [0n+1]> for all other i 6= n+ 1.

• for t = n+ 1 take At(1) = [1n+1]> and At(i) = [0n+1]> for all other i 6= 1; for t = n+ 2
take At = 0n+1×n+1 to ensure sequential stability.

The action matrices Bt along with the costs ct, on the other hand, depend on the content of the clause
Cj itself. In particular, let Ij be the set of indices of the literals that are in clause Cj . We define the
regularity cost to be c(x, u) = Sx(x) + (1− x(n+ 1))2 · Su(u), where Sx(·) = dist(·,∆n+1) and
Su(·) = dist(·,∆2) are the distance functions to the simplex sets of corresponding dimensionality.
The action matrices and costs are given as follows:

• for 1 ≤ t ≤ n and t 6∈ Ij , Bt = 0n+1×2 and ct(x, u) = c(x, u).

• for 1 ≤ t ≤ n and t ∈ Ij , if yt ∈ Cj : then Bt(t+ 1) = [−1, 0]>, Bt(n+ 1) = [1, 0]> and
Bt(i) = [0, 0]> for all the other i 6= t + 1, n + 1; the cost is ct(x, u) = c(x, u) − u(1) ·
(1− x(n+ 1)) rewarding the action [1, 0] which corresponds to assigning the literal a value
yt = 1.
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• for 1 ≤ t ≤ n and t ∈ Ij , if ¬yt ∈ Cj : then Bt(t + 1) = [0,−1]>, Bt(n + 1) = [0, 1]>

and Bt(i) = [0, 0]> for all the other i 6= t+ 1, n+ 1; the cost is ct(x, u) = c(x, u)− u(2) ·
(1− x(n+ 1)) rewarding the action [0, 1] which corresponds to assigning the literal a value
yt = 0.

• for t = n + 1, Bt = 0n+1×2 and for t = n + 2, Bt(1) = [1, 1]> and Bt(i) = [0, 0]> for
all other i 6= 1; for both t = n+ 1, n+ 2, the costs are ct(x, u) = c(x, u).

Note that the last two rounds t = n+ 1, n+ 2 for a clause ensure sequential stability and identical
starting state x1 = [1,0n]>.
Lemma F.6. The described system (At, Bt) is sequentially stable and the costs ct are convex in x, u.

Proof. By the construction of the state matrices At, we know that for any t ≥ n + 2 the operator
Φ

[n+2]
t = 0 implying sequential stability of the system. To show convexity, note that the distance

function g(·) = dist(·,S) for any convex and compact set S is a convex function. More specifically,
for z ∈ Rdz it is given by g(z) = minw∈S ‖z − w‖. This is straightforward to show: take any
z1, z2 ∈ Rdz , and let w1, w2 ∈ S be the closest points to z1, z2 respectively, i.e. ‖w1 − z1‖ = g(z1)
and ‖w2 − z2‖ = g(z2). For any λ ∈ [0, 1], given the convexity of the set S, we know that
λw1 + (1− λ)w2 ∈ S, which concludes the convexity proof for g:

λg(z1) + (1− λ)g(z2) = λ‖z1 − w1‖+ (1− λ)‖z2 − w2‖
≥ ‖λ(z1 − w1) + (1− λ)(z2 − w2)‖
= ‖λz1 + (1− λ)z2 − (λw1 + (1− λ)w2)‖
≥ g(λz1 + (1− λ)z2) .

This means that both Sx(·) and Su(·) are convex functions since the simplex is convex in any
dimension. The construction of the costs ct is based on these two functions as well as linear
components in x, u, hence all ct costs are convex in x, u.

Lemma F.7. If there exists an assignment of literals y ← v s.t. the formula φ has k ∈ [1,m] satisfied
clauses, then there is a corresponding linear policy K ∈ R2×n+1 that suffers the exact cost of −k.

Proof. This should be evident from the construction itself. Let vi = 1 assignment correspond to
v̄i = [1, 0]> and vi = 0 to v̄i = [0, 1]>. Then consider the linear policy K = [v̄1, . . . , v̄n,0

>
2 ].

Denote e1, . . . , en+1 ∈ Rn+1 to be the basis vectors of the space. Note that according to the defined
K, if xt is a basis vector of Rn+1, then ut = Kxt is a basis vector of R2. It is straightforward to
check by our construction that ut being a basis vector of R2 implies xt+1 is a basis vector of Rn+1.
Since x1 = e1, then the state-action pairs when following policy K are both basis vectors, and satisfy
the regularity conditions of c(x, u). This means that the policy K plays v̄t if xt(t) = 1 and plays 02

if xt(n+ 1) = 1. Hence, if the clause Cj is satisfied by the assignment y ← v, then the cost of K
over the episode is exactly −1, i.e. once the clause is satisfied, −1 is accrued and the state moves
to the sink en+1. If the clause is not satisfied, then the cost is 0 since c(x, u) is 0 throughout. This
means that the constructed linear policy K over the whole control sequence suffers cost −k.i k

Lemma F.8. If there exists a state feedback policy K ∈ R2×n+1 s.t. following the actions ut = Kxt
results in cost at most −k− ε for any k ∈ [1,m] and any ε ∈ (0, 1), then there is a literal assignment
y ← v s.t. the formula φ has at least k satisfied clauses.

Proof. Let the linear policy matrix be given as K = [v̄1, . . . , v̄n, v̄n+1]. The proof consists of two
main components: (i) we argue that the policy K∗ with v̄∗i = arg minv∈∆2

‖v − v̄i‖ for 1 ≤ i ≤ n
and v̄∗n+1 = 02 is at least as good as K in terms of cost up to an approximation factor ε; (ii) we show
that for K that satisfies the constraints, the randomized policy K̂ that has K̂(i) = [1, 0]> w.p. v̄i(1)

and K̂(i) = [0, 1]> w.p. v̄i(2) (as well as K̂(n+ 1) = 02) suffers expected cost at most that of K
itself.

Suppose these two claims are true, then the described randomized linear policy K̂ has expected
cost at most −k, which means that there exists a deterministic linear policy with first n columns as
basis vectors, i.e. [1, 0]> or [0, 1]>, that suffers cost at most −k. It follows that the corresponding
assignment of literals given by the first n columns of the linear policy y ← v satisfies at least k out of
the m clauses, so φ has at least k satisfied clauses.
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To prove (i), first notice that the policy K∗ suffers non-positive cost over the entire horizon since it
satisfies the necessary constraints given by the regulatory cost c(x, u). Note also that said c(x, u)
can be scaled by any constant Mε > 0. Now suppose that under the condition mini ‖v̄i − v̄∗i ‖ ≤ `ε
the cost difference of K∗ and K is bounded by ε: the choice of `ε can depend on any problem
parameters, and since the construction is over T = Θ(mn) overall rounds (finite), such a choice is
always possible. Hence, for all such K∗ we automatically infer that it suffers cost at most −k and
satisfies the necessary constraints. On the other hand, if the condition does not hold, then the distance
of v̄i from ∆2 is bounded from below by `ε, meaning that for a sufficiently large choice of Mε > 0
(given knowledge of ε and all other parameters), the overall cost suffered by K will be positive due
to c(x, u), i.e. it will have a higher cost than K∗. Therefore, any state feedback policy K can be
approximately replaced by K∗ that satisfies the constraints ensured by c(x, u).

To show (ii), for a policy K that does satisfy these constraints, i.e. v̄i ∈ ∆2 for 1 ≤ i ≤ n and
v̄n+1 = 02, we show that its randomized version K̂ is at least just as good in terms of expected
cost. Proving this claim is a matter of unrolling the dynamics for a single clause Cj . The order, the
indices and negation or not of the literals in Cj does not affect the cost, so w.l.o.g. assume we have
C1 = y1 ∨ y2 ∨ y3. The cost of a general policy K over first 3 iterations is given by

−v̄1(1)− (1− v̄1(1))2 · v̄2(1)− (1− v̄1(1))2 · (1− v̄2(1))2 · v̄3(1)

The alternative randomized linear policy instead suffer expected cost given by

−v̄1(1)− (1− v̄1(1)) · v̄2(1)− (1− v̄1(1)) · (1− v̄2(1)) · v̄3(1)

which is straightforward to show to be not larger than the original cost.

Proof of Theorem F.4. Lemma F.6 above show that the given LTV system construction along with
the costs satisfies the theorem conditions. Lemmas F.7 and F.8 indicate that the MAX-3SAT problem
can be reduced to the LTV control, in particular proper learning of state feedback policies in this
setting. Given that MAX-3SAT is NP-Hard even in its decision form implies the computational
hardness of the offline optimization of LTV optimal state feedback policies.
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