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ABSTRACT

Clustering has long been prized for its simplicity and efficiency. However, with the
rapid progress of large-scale self-supervised models, this landscape has shifted.
While stronger representations substantially benefit clustering, jointly learning
representations and clusters on neural networks has become increasingly resource-
intensive. This creates a gap: traditional clustering algorithms remain lightweight
but struggle with deep representations, whereas deep clustering methods are effec-
tive but computationally expensive. To bridge this gap, we propose Graph-based
Fuzzy Clustering (GFC), a novel algorithm to collaborate with foundation models
for direct representation clustering. GFC unifies a global fuzzy clustering objec-
tive with a local consistency constraint, enabling it to capture both global struc-
tural dependencies and local intrinsic connectivity. Furthermore, we develop a fast
optimization program to efficiently solve the proposed multi-constrained prob-
lem. Extensive experiments across multiple benchmarks demonstrate that GFC
not only surpasses state-of-the-art deep clustering methods in accuracy but also
achieves superior efficiency, offering a simple and scalable solution for modern
deep representations, with a notable 73.4% clustering accuracy on ImageNet-1k.
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Figure 1: Clustering performance of various methods on ImageNet-1k. We categorize these image
clustering approaches into three families: (1) self-supervised deep clustering, which trains a clus-
tering network from scratch using self-supervised learning; (2) two-stage deep clustering, which
clusters features from a pre-trained model with additional clustering fine-tuning; (3) representation
clustering, which directly clusters the representations produced by a foundation model without using
any neural networks. Our proposed GFC achieves a strong balance between efficiency and accuracy,
reaching 73.3% clustering accuracy on ImageNet based on DINO v3 representations, which outper-
forms supervised linear probing result of MAE (He et al., 2022).

1 INTRODUCTION

Clustering is expected to be lightweight, efficient, and broadly applicable. Recent advances in self-
supervised representation learning have shifted this landscape. Stronger representations benefit clus-
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tering (Li et al., 2020; Adal. et al., 2023), but obtaining them typically requires scaling up neural
networks (Zhai et al., 2022), which makes the joint optimization of representation learning and clus-
tering demanding substantial computational resources. Many deep clustering methods (Li et al.,
2022b) further rely on large batch size to stabilize training, which amplifies computational costs.
This trend conflicts with the long-standing principle of simplicity in clustering, raising the ques-
tion: can we design a clustering method that remains efficient and low-cost, buy scales effectively
to modern deep representations?

Conventional clustering methods (Liu et al., 2022; Tang et al., 2023; Nie et al., 2023) can be directly
applied to the output representations of large models, directly reducing computational complexity.
However, most of these algorithms are designed for relatively simple datasets, such as discrete points
or low-dimensional manifolds. In contrast, representations extracted from foundation models are
typically dense and approximately Gaussian (Wang & Isola, 2020), which causes conventional clus-
tering approaches to encounter severe performance bottlenecks. From a data processing perspective,
these conventional clustering methods can be broadly categorized into two families: local cluster-
ing, which emphasizes neighborhood consistency, and global clustering, which optimizes a holistic
optimization objective. Local clustering methods generally rely on heuristic procedures rather than
explicit objective functions, emphasizing fine-grained interactions between instances to yield de-
tailed data partitions. For instance, First Integer Neighbor Clustering Hierarchy (FINCH) (Sarfraz
et al., 2019) merges the nearest neighbors in an agglomerative manner. However, local clustering
present practical challenges when processing deep representations. The dense and high-dimensional
nature of deep features makes these methods often fail to produce meaningful clusters. Moreover,
their theoretical simplicity comes at the cost of requiring additional hyperparameter tuning (Schu-
bert et al., 2017) and incurring high computational overhead (Murtagh & Contreras, 2012; Frey
& Dueck, 2007). Global clustering methods aim to group data by optimizing a specific objective
function. K-means and its variants (Yang et al., 2017; Nie et al., 2021b; 2022) are among the most
widely adopted algorithms. Nevertheless, when applied to deep representations, these methods face
significant limitations. They often fail to preserve fine-grained neighborhood relationships, which
reduces their effectiveness for detailed representation hyperplane partitioning (Xie et al., 2016). By
contrasting local and global approaches, it is evident that each paradigm captures only part of the
data characteristics, making it difficult to fully exploit the rich and multi-scale structure of deep
representations.

In this paper, we propose a novel Graph-based Fuzzy Clustering (GFC) algorithm, which integrates
global and local clustering to overcome the limitations in representation clustering of deep neural
networks. GFC integrates a global objective for coarse-grained distribution clustering with a lo-
cal neighborhood constraint for fine-grained structural learning, enabling it to effectively adapt to
the dense and Gaussian-like distribution characteristics of deep representations. GFC aggregates
graph-based knowledge in a fuzzy manner, effectively capturing both local intrinsic connectivity
and global structural dependencies. This formulation results in a multi-constrained quadratic op-
timization problem. To solve it efficiently, we incorporate a fuzzy weighting exponent and a hard
assignment matrix into the objective function. The fuzzy weighting exponent controls the degree of
fuzziness in the probability outputs, while the hard assignment matrix serves as an auxiliary variable
to accelerate convergence. And a concise optimization program is proposed to solve the problem
iteratively. Experimental results across multiple benchmarks demonstrate that GFC achieves state-
of-the-art performance in clustering deep visual representations. Notably, as shown in Fig. 1, GFC
attains 73% clustering accuracy on ImageNet using the DINO v3 foundation model.

• We propose a clustering model with a well-defined objective function based on the sum of
cluster co-occurrence probabilities and a local clustering constraint to address the difficulty
of clustering deep representations.

• We propose a Lagrangian optimization algorithm and an acceleration scheme to efficiently
solve the proposed model. The proposed algorithm ensures faster convergence and en-
hances the scalability of the clustering model, making it well-suited for large-scale data.

• Extensive experiments have been conducted on widely used image benchmarks, validating
that our method yiels satisfactory performance on both accuracy and efficiency.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Fuzzy and Graph Clustering. Fuzzy C-Means (FCM) (Bezdek et al., 1984) is a classical fuzzy
clustering algorithm. Many variants have been developed (Krishnapuram & Keller, 1993; Nie et al.,
2021a) to improve its adaptability and performance. For instance, Probability Aggregation Cluster-
ing (PAC) (Yan et al., 2024) eliminates explicit cluster centers to achieve a more robust optimiza-
tion. For graph-based clustering, spectral clustering (SC) (Von Luxburg, 2007) and its variants are
most widely used algorithms. Self-Constrained Spectral Clustering (Self-CSC) (Bai et al., 2022)
enhances SC by incorporating pairwise and label self-constrained terms, enabling high-quality clus-
tering without prior information. Despite these advances, traditional fuzzy and graph-based methods
are primarily designed for toy datasets and struggle with deep neural network outputs, facing chal-
lenges in fine-grained partitioning, parameter tuning, and algorithmic efficiency.

Deep Clustering. Learning representations while performing clustering has achieved notable suc-
cess in natural image clustering. Contrastive Clustering (Li et al., 2021) jointly optimizes feature
and clustering heads to perform semantic clustering. In addition, vision-language pre-training (VLP)
methods (Radford et al., 2021; Li et al., 2022a) enhance deep image clustering by leveraging text
representations as guidance (Cai et al., 2023; Li et al., 2024). However, deep clustering still faces
challenges. For example, joint representation learning and clustering is computationally expensive
(Yan et al., 2024), and scaling to high-capacity models increases memory and time costs (Zhai et al.,
2022). These issues motivate the need for efficient representation clustering methods.

3 PRELIMINARIES

X = {xi}ni=1 denotes an n-point set, where xi ∈ Rd is the ith d-dimensional sample. W denotes
the similarity graph of X . Our work aims to study a cluster probability matrix P = [pi,j ]n×c, which
satisfies P ∈ P = {[pi,l]n×c|pi,l ∈ [0, 1];

∑c
l=1 pi,l = 1; 0 <

∑n
i=1 pi,l < n, i = 1, · · · , n, l =

1, · · · , c}. First, we introduce a cluster co-occurrence probability ρi,j that can be represented as

ρi,j = pT
i pj =

c∑
l=1

pi,lpj,l, (1)

where ρi,j ∈ [0, 1]. In Eq. (1), the inner product of two probability vectors measures the probability
that the two samples belong to the same cluster. Therefore, an intuitive clustering approach is to
maximize ρ.,. between neighbors. And the optimization problem is formulated as

min
P∈P

n∑
i=1

∑
j ̸=i

ρi,j − α

n∑
i=1

∑
j∈Ai

ρi,jwi,j , (2)

where α > 0 is a penalty hyperparameter. And Eq. (2) can be expressed in matrix form

min
P∈P

Tr(P T (H − αW )P ), (3)

where H = 1T
n1n−I , 1n is the 1 vector of length n. The first term of Eq. (2) is the self-constrained

term, acting as a regularization term to penalize trivial solutions. The second term of Eq. (2) is the
clustering term that promotes the coherence of the clustering predictions across the overall data
distribution. It encourages the algoritm to assign similar samples to the same cluster.

4 CLUSTERING BY GLOBAL AND LOCAL PERSPECTIVE

4.1 GLOBAL CLUSTERING OBJECTIVE FUNCTION

Based on the conception of Eq. (3), the objective function of GFC is defined as

Tr(V THV + P THPm − αV TŴPm), (4)

where V is the hard assignment matrix that satisfies V ∈ V = {[vi,l]n×c|vi,l ∈ {0, 1};
∑c

l=1 vi,l =
1; 0 <

∑n
i=1 vi,l < n, i = 1, · · · , n, l = 1, · · · , c}. m ∈ (1,+∞) and Pm = [pmi,k] ∈ R+n×c

3
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denotes that every element of the matrix is raised to a power. L is the Laplacian matrix of graph W .
In Eq. (4), the first two terms are self-constraint terms, while the third term corresponds to the clus-
tering term. We introduce V as an auxiliary variable consisting of 0 and 1 to facilitate optimization.
V accelerates convergence in the early stages of optimization, making P more confident. In later
stages, V is updated less frequently than P , which improves the stability of the model.

4.2 LOCAL CLUSTERING CONSTRAINT

We incorporate a local consistency constraint into the model to make the model better able to handle
complex and dense representation data. The constraint is defined as

LP = (∆−W )P = 0, (5)

where L = ∆−W is the Laplacian matrix, ∆ is the degree matrix of W , ∆i,i =
∑n

j=1 wi,j . Right
multiply both sides of the equation by matrix ∆−1, we will get P = ∆−1WP , which establishes
the relation of predictions between the instance and its k-NN.

4.3 CLUSTERING PROBLEM

By unifying the global and local clustering definition, the entire GFC optimization problem can be
formulated as

min
P∈P,V ∈V

Tr(V THV + P THPm − αV TŴPm),

s.t. LP = 0,
(6)

The objective function aims to identify a reasonable grouping pattern from the global-view. And the
constraint ensures the prediction of sample i is consistent with its local structure from the point-view.

The clustering model involves two graphs: the k-NN graph W and the adjacency indicator graph
Ŵ . W = [wi,j ]n×n is constructed by

wi,j =

{
exp (−∥xi−xj∥2

2

2σ ), j ∈ N k(i) or i ∈ N k(j)

0, otherwise
(7)

where σ is the kernel parameter, N k(i) denotes the set of k-nearest neighbors of sample i. And the
adjacency indicator Ŵ is calculated by

Ŵ = I((W + I)θ > 0)− I, (8)

where θ is a positive integer, I(·) is the element-wise indictor function, I(W > 0) = [I(wi,j >

0)]n×n, which equals one when wi,j > 0. Ŵ is introduced to find enough neighborhood to support
clustering due to k being too small. And the hyperparameter θ controls the size of neighborhood,
for which we adopt an empirically setting

θ = ⌈logk
n

c
⌉, (9)

where ⌈·⌉ is the integer up function, so that the neighborhood number of each sample are close to
n/c.

4.4 ALTERNATE OPTIMIZATION FOR GFC

Eq. (6) is a multiconstrained optimization problem. It is noted that P and V can be computed sep-
arately with each other fixed, so the objective function of GFC is optimized by alternately updating
V and P .

Fix V and Update P . Since the modeling of Eq. (6) is not conducive to direct solution, we
treat local clustering constraint as a slack constraint and use the alternating projection optimization
algorithm (Escalante & Raydan, 2011) to solve P . Specifically, the objective function without local
clustering constraint is simplified to

min
P∈P

Tr((P T (1n1
T
n − I)− αV TŴ )Pm). (10)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

By using the Lagrangian multiplier method, the problem can be decomposed into n unconstrained
sub-problems. By solving the sub-problems, we can finally obtain following equivalence relation

p∗i,l =
spi,l

−1/(m−1)∑c
r=1 s

p
i,r

−1/(m−1)
,∀i, l, (11)

where spi,l is the fuzzy clustering score,

spi,l =
∑
j ̸=i

(pj,l − αvj,lŵi,j) ∈ (0,+∞), (12)

and has vector form spi = [spi,1, · · · , s
p
i,c]

T = (P T1n − pi)− αV T ŵi, where ŵi is the i-th row of
matrix Ŵ . The fuzzy clustering score indicates the score that xi belongs to the cluster k.

Then, we project the obtained P ∗ into the feasible region according to the local clustering constraint.
The projected optimization problem is formulated as

min
P∈P

∥P − P ∗∥2F ,

s.t.(I −W∆−1)P = 0.
(13)

our local clustering constraint is a slack constraint, which doesn’t need to be strictly followed. There-
fore, we relax the constraint to the objective function and transform Eq. (13) into following problem

min
P∈P

∥P − P ∗∥2F + β∥P −W∆−1P ∥2F , (14)

where β > 0 is the penalty hyperparameter. Eq. (14) is a label propagation problem (Zhou et al.,
2003) that limits the feasible domain to the probability space. Afterwards, similar as above solving
process, we can get following solution

pi,l =
1

1 + β

spi,l
−1/(m−1)∑c

r=1 s
p
i,r

−1/(m−1)
+

β

1 + β

∑n
j=1 wi,jpj,l∑n
j=1 wi,j

. (15)

The first term is the extreme point of the objective function without local clustering constraint, and
the second term is the weighted average of the predictions of k-NN.

Fix P and Upadte V Taking vi as a variable and the others as constant, the problem in Eq. (6)
degenerates to

min
vi

(V T1n − vi − αPmT ŵi)
T
vi, (16)

Similar to P , there is also a hard clustering score svi,l ∈ R+ (i = 1 · · · , n; l = 1 · · · , c)

svi = [svi,1, · · · , svi,c]T = V T1n − vi − αPmT ŵi. (17)

Based on the properties of the hard assignment matrix, the minimum point of Eq. (16) corresponds
to the minimum point of the hard clustering score svi is{

vi,l = 1, l = l∗,

vi,l = 0, l ̸= l∗,

with l∗ = argmin
l
(svi )l,∀i.

(18)

Finally, according to the deduction, P and V can be solved by iteratively updating Eq. (15) and Eq.
(18) for each pi and vi until converging.

4.5 AGGREGATION ACCELERATION

Based on the theoretical solution of P and V , we can alternately solve the GFC optimization prob-
lem. However, in practical implementation, the floating-point calculations of the clustering score in
Eq. (12) and Eq. (17) consume significant computational resources. For each clustering score, the

5
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calculation requires about 2nc times additions and multiplications, resulting in quadratic time com-
plexity for the entire iteration process. Therefore, it is essential to reduce computational complexity
to linear to better handle large-scale problems. Let P (t) denote the iterative sequence of P in the
optimization program, where t is the iteration index. Eq.(12) and Eq.(17) can be rewritten as

spi (t+ 1) = P̃ (t)− pi(t)− α
∑
j∈Ai

vj(t), (19)

svi (t+ 1) = Ṽ (t)− vi(t)− α
∑
j∈Ai

pj(t)
m, (20)

where P̃ (t) =
∑n

i=1 pi(t) and Ṽ (t) =
∑n

i=1 vi(t), A = {A1, · · · ,An} is the adjacent sample set
Ai = {j|wi,j = 1}. By Eq. (19) and Eq. (20), most vector multiplication operations are eliminated.
Furthermore, P̃ (t+ 1) and Ṽ (t+ 1) can be updated by

P̃ (t+ 1) = P̃ (t)− pi(t) + pi(t+ 1), (21)

Ṽ (t+ 1) = Ṽ (t)− vi(t) + vi(t+ 1), (22)

which denotes that P̃ and Ṽ can be reused. Therefore, GFC only needs to add the vector in Ai in
each iteration. Besides, most calculations of clustering scores are redundant, as the numerical rela-
tion within svi and spi does not change significantly when computed over subsets of the data. There-
fore, it is natural to consider using a mini-batch clustering algorithm to speed up the optimization
process. We randomly divide the dataset into nb mutually disjoint subsets, X = {X1, . . . ,Xn/nb

},
where nb is the batch size. Vectors svi and spi are computed in subsets Xj , with xi ∈ Xj to reduce
the number of computational elements in Ai. Notably, the proposed local constraint mitigates the
potential degradation of mini-batch operations by ensuring that samples remain consistent with their
respective neighborhoods.

4.6 ALGORITHM DETAILS

4.6.1 HYPERPARAMETERS SELECTION

The main hyperparameters of GFC are the number of neighbors k, the fuzzy weighting exponent m,
the regularization parameter α, and the penalty parameter β. The exponent m controls the sharpness
of probability outputs, and values closer to 1 yield more confident assignments. The parameter
α controls the strength of the regularization term. The parameter β controls the local consistency
constraint. We schedule it to increase along with the iterative steps. In this paper, results without
explicitly stated were obtained under the same settings of k = 20,m = 1.05, α = 0.5. Additional
details, including Pseudocode and parameter Sensibility Analysis, are provided in the Appendix 8.

4.6.2 TIME COMPLEXITY

By introducing aggregation acceleration strategy, GFC requires approximately nb addition opera-
tions to compute spi and svi . Hence, the time complexity of the core GFC optimization program is
O(nbn), which is much lower than that of SGD in the deep clustering methods.

5 EXPERIMENT

We compare GFC with several baselines across multiple benchmarks to demonstrate its superiority.
Beyond quantitative comparisons, we further conduct qualitative studies to validate the effectiveness
of individual components and to provide deeper insights into the behavior of GFC.

5.1 DEEP REPRESENTATION ACQUISITION

With the rise of large-scale pre-training, high-quality image representations can be obtained from
various pre-trained models. We adopt three representative visual representation extractors to evalu-
ate GFC: SimCLR (Chen et al., 2020b), CLIP (Radford et al., 2021), and DINO v3 (Siméoni et al.,
2025). Specifically, we use ResNet-34, ViT-B/16, and ViT-7B/16 pre-trained by SimCLR, CLIP,
and DINO v3, respectively, as feature extractors. The resulting representations serve as inputs for

6
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Table 1: Dataset settings for our experiments. On CIFAR-10, CIFAR-20, and STL-10, features
extracted from SimCLR and CLIP are 512-d, whereas features from DINO v3 are 4096-d.

Dataset Sample Cluster Dimension Data Type
Pendigits (Alimoglu & Alpaydin, 1997) 10,992 10 16 atifical feature
Mnist (Deng, 2012) 70,000 10 784 raw image data
USPS (Hull, 1994) 9,298 10 256 raw image data
CIFAR-10 (Krizhevsky et al., 2009) 60,000 10 512/4096 deep feature
CIFAR-20 (Krizhevsky et al., 2009) 60,000 20 512/4096 deep feature
STL-10 (Coates et al., 2011) 13,000 10 512/4096 deep feature
ImageNet (Deng et al., 2009) 1,281,167 1,000 4096 deep feature

Table 2: Performance of different algorithms on deep representations. The results are organized into
three categories according to the self-supervised backbone: SimCLR, CLIP, and DINO v3. Results
for traditional clustering methods are reported as the Avg ± Std over 50 independent runs, while for
deep learning methods we present the best-performing result.

Dataset CIFAR-10 CIFAR-20 STL-10
Metric NMI ACC ARI NMI ACC ARI NMI ACC ARI

Representation pre-training method: SimCLR (Chen et al., 2020a); Architecture: ResNet-34; Parameter: ∼22M
TCC(Shen et al., 2021) Best 79.0 90.6 73.3 47.9 49.1 31.2 73.2 81.4 68.9
SPICE(Niu et al., 2022) Best 86.5 92.6 85.2 56.7 53.8 38.7 87.2 93.8 87.0
TCL(Li et al., 2022b) Best 81.9 88.7 78.0 52.9 53.1 35.7 79.9 86.8 75.7
ProPos (Huang et al., 2022) Best 88.6 94.3 88.4 60.6 61.4 45.1 75.8 86.7 73.7
DPAC (Yan et al., 2024) Best 87.0 93.4 86.6 54.2 55.5 39.3 86.3 93.4 86.1
UCD (Chang et al., 2025) Best 88.1 94.3 88.7 58.4 59.7 42.9 89.5 91.9 89.1

KM + SimCLR Avg 76.4 80.9 67.4 47.7 43.7 26.5 66.9 69.0 52.0
±Std ±0.8 ±2.4 ±1.1 ±1.0 ±1.2 ±1.0 ±0.8 ±0.9 ±1.0

GFC + SimCLR Avg 83.2 90.4 81.4 51.4 48.6 33.5 77.9 87.2 74.9
±Std ±0.0 ±0.0 ±0.0 ±0.8 ±1.3 ±1.0 ±0.0 ±0.0 ±0.1

Representation pre-training method: CLIP (Radford et al., 2021); Architecture: VIT-B; Parameter: ∼86M
TEMI (Adal. et al., 2023) Best 88.6 94.5 88.5 65.4 63.2 48.9 96.5 98.5 96.8
SIC (Cai et al., 2023) Best 84.8 92.7 84.6 59.3 58.4 44.0 95.4 98.1 95.9
TAC (Li et al., 2024) Best 83.3 91.9 83.1 61.1 60.7 44.8 95.5 98.2 96.1
MCA (Qiu et al., 2024) Best 85.0 92.8 84.9 60.6 61.2 45.5 95.5 98.2 96.0
ECC (Li et al., 2025) Best 81.8 88.1 77.8 58.6 56.2 41.3 76.6 81.3 71.3

CLIP (zero shot) Avg 80.7 90.0 79.3 55.3 58.3 39.8 93.9 97.1 93.7
±Std ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

KM + CLIP Avg 76.0 78.3 69.0 51.2 48.7 32.5 94.3 96.0 92.4
±Std ±0.1 ±0.2 ±0.2 ±0.4 ±0.8 ±0.5 ±1.2 ±1.6 ±2.8

GFC + CLIP Avg 86.0 92.9 86.0 61.1 59.8 44.3 97.2 98.9 97.6
±Std ±0.0 ±0.0 ±0.0 ±0.7 ±1.6 ±1.3 ±0.0 ±0.0 ±0.0

Representation pre-training method: DINO v3 (Siméoni et al., 2025); Architecture: VIT-7B; Parameter: ∼7B

KM + DINO v3 Avg 88.1 80.1 75.7 58.7 44.3 30.6 59.4 47.6 25.1
±Std ±2.7 ±4.6 ±6.2 ±4.1 ±5.6 ±5.0 ±5.3 ±2.6 ±6.9

GFC + DINO v3 Avg 98.1 99.3 98.4 72.4 63.8 52.4 96.9 98.0 96.4
±Std ±0.0 ±0.0 ±0.0 ±2.2 ±3.5 ±3.2 ±2.3 ±2.4 ±3.8

GFC. The representation dimensions are 512 for SimCLR and CLIP, and 4096 for DINO v3. All
processes rely on the official models and only involve forward propagation. Therefore, the required
GPU memory is very little, ensuring the efficiency of the image clustering model.

5.2 DATASET

We evaluate GFC on seven challenging datasets from diverse domains, including image data
(MNIST, USPS), artificial feature data (Pendigits), and deep visual representation data (CIFAR-
10, CIFAR-20, STL-10, ImageNet). The dataset statistics are summarized in Table 1. Notably,
CIFAR-20 is derived from CIFAR-100 by grouping 100 fine-grained classes into 20 superclasses,
which is widely used for deep image clustering.
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Table 3: Performance of different algorithms on raw data.
Dataset Pendigits USPS Mnist
Metric NMI ACC ARI NMI ACC ARI NMI ACC ARI

KM (Wang et al., 2014) Avg 68.0 69.9 55.3 60.7 64.3 52.4 49.7 54.6 37.6
±Std ±1.1 ±5.1 ±3.4 ±0.4 ±2.1 ±0.9 ±1.4 ±2.9 ±2.0

FCM (Bezdek et al., 1984) Avg 68.4 68.3 56.1 62.3 63.9 53.2 48.9 54.6 37.0
±Std ±1.3 ±1.3 ±3.8 ±1.3 ±2.2 ±2.2 ±1.1 ±1.7 ±1.3

SC (Von Luxburg, 2007) Avg 72.9 71.4 55.9 48.9 56.1 29.5 47.0 55.5 36.5
±Std ±1.0 ±1.4 ±1.3 ±0.2 ±0.2 ±0.4 ±0.6 ±1.6 ±1.4

FINCH (Sarfraz et al., 2019) Avg 72.5 62.7 50.1 77.7 67.3 61.7 72.6 62.3 54.8
±Std ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

K-sums (Pei et al., 2022) Avg 65.7 72.6 57.1 63.8 71.8 57.7 50.9 58.5 42.0
±Std ±0.0 ±0.0 ±0.0 ±0.5 ±0.8 ±0.6 ±1.0 ±1.3 ±1.4

Self-CSC (Bai et al., 2022) Avg 82.3 83.7 72.3 72.6 75.4 61.4 80.7 85.1 75.5
±Std ±2.6 ±3.7 ±4.6 ±2.1 ±3.4 ±4.3 ±1.6 ±3.6 ±4.0

PAC (Yan et al., 2024) Avg 70.2 77.3 61.6 73.4 61.7 53.0 49.5 60.7 40.9
±Std ±0.4 ±1.2 ±0.4 ±0.4 ±0.1 ±0.2 ±0.5 ±0.4 ±0.5

GFC Avg 83.7 86.9 77.0 83.2 81.5 77.0 85.3 87.6 82.3
±Std) ±1.6 ±1.7 ±2.3 ±0.2 ±0.2 ±0.3 ±0.1 ±0.0 ±0.1

Table 4: Comparison of GFC with baselines on large-scale image datasets. SCAN and ProPos adopt
ResNet-50 with contrastive learning, and TAC and TEMI adopt ViT-Base with CLIP.

Dataset ImageNet
Sub-classes 100 200 1000
Metric NMI ACC ARI NMI ACC ARI NMI ACC ARI
SCAN (Van. et al., 2020) 80.8 68.9 57.6 77.2 58.1 47.0 74.7 44.7 32.4
ProPos (Huang et al., 2022) 83.5 - 63.5 80.6 - 53.8 - - -
TEMI (Adal. et al., 2023) 85.7 75.1 65.5 85.2 73.1 62.1 - 58.4 45.9
TAC (Li et al., 2024) - - - - - - 79.9 58.2 43.5
GFC + DINO v3 92.8 92.9 89.9 90.9 87.0 80.8 87.3 73.3 63.0

5.3 MAIN RESULTS

To demonstrate the superiority of GFC in handling deep visual representations, we compare it with
several state-of-the-art deep clustering methods on CIFAR-10, CIFAR-20, and STL-10, with results
summarized in Table 2. First, deep embeddings are typically dense and highly entangled, which
often leads to severely degraded performance for traditional clustering methods such as K-means
(KM). Compared with KM, GFC achieves an average improvement of nearly 15% across represen-
tations extracted by SimCLR, CLIP, and DINO v3. Notably, results on DINO v3 indicate that GFC
is particularly well-suited for clustering large-scale vision models, whose outputs exhibit greater
nonlinearity. Second, when compared with deep clustering methods, we observe that as base model
capacity and representation quality increase, the performance of GFC shifts from being weaker (on
SimCLR) to surpassing these methods (on CLIP). In addition, GFC outperforms CLIP zero-shot
predictions, which perform clustering via text labels. GFC combined with DINO v3 achieves sub-
stantial improvements over deep clustering methods on CIFAR-10, CIFAR-20, and STL-10. These
findings highlight that, beyond the traditional deep clustering paradigm, GFC has the potential to
serve as an effective and general solution for large-scale vision pre-trained models. Third, in terms
of efficiency, GFC + DINO v3 achieves competitive results with only a few hours to forward pass
ViT-7B/16 for representation extraction and a few minutes for clustering. Overall, compared to deep
clustering methods, GFC provides notable advantages, including fewer hyperparameters, stronger
generality, and more cost-effective clustering.

Table 3 presents the clustering performance of GFC compared to several classical methods on three
real-world datasets. According to our definition, KM, FCM, SC, K-sums, and Self-CSC are global
clustering methods, while FINCH is a local clustering method. Across all metrics (NMI, ACC, ARI),
GFC consistently achieves the best results. On Pendigits, GFC outperforms the second-best method,
Self-CSC, by 1.4–4.7 points. But the complexity of self-CSC is cubic, which makes it impossible
to process large-scale data. IN summary, these results highlight the effectiveness and robustness of
GFC for diverse traditional clustering datasets.
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5.4 IMAGENET EVALUATION

To evaluate the scalability of GFC on large-scale datasets with more instances and clusters, we
conduct experiments on ImageNet. We adopt DINO v3 with the ViT-7B/16 backbone to extract deep
features, providing a challenge testbed for evaluating GFC. Following SCAN (Van. et al., 2020), we
select subsets of ImageNet with 100, 200, and 1000 classes. To address the memory overhead of
the 1.28 million × 4096 feature matrix on ImageNet-1k, we divide the data into five overlapping
blocks, perform clustering within each block, and then compute the final evaluations by aggregating
the results from blocks. We evaluate GFC against four deep clustering baselines, reporting the best
performance over 5 runs. As shown in Table 4, GFC consistently outperforms other methodsby a
significant margin, demonstrating its potential for effective scaling in deep learning.

5.5 EFFECT OF AUXILIARY HARD ASSIGNMENT MATRIX

We study the role of the hard assignment matrix V , which is designed to accelerate convergence
during optimization. We replace V with P and denote the variant as GFC w/o V . As shown in Fig.
2, we track accuracy across iterations. The results show that GFC with V notably speeds up con-
vergence in the early stage and stabilizes predictions in the later stage, leading to improved overall
performance. We attribute this effect to V : in the early stage, the one-shot vector of V provides a
large gradient-oriented direction; in the later stage, its slow change stabilizes convergence.
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Figure 2: Effect of Auxiliary Hard Assignment Matrix V .

5.6 EFFECT OF LOCAL CLUSTERING CONSTRAINT

We propose to combine global and local clustering in GFC. To evaluate the contribution of the local
clustering constraint, we conduct a series of experiments. Specifically, we disable the constraint by
setting the regularization parameter β = 0. For comparison, we incorporate the constraint into FCM,
which leads to an iterative solution similar to Eq. (15). Results in Table 5 show that introducing
the local constraint yields a clear improvement in NMI, ACC, and ARI. The inclusion of local
neighborhood information significantly strengthens the ability of fuzzy clustering to capture the
underlying data structure, particularly in cases with complex local manifold patterns.

Table 5: Ablation study on the Local Clustering Constraint (LCC).
Method LCC MNIST USPS CIFAR-20
Metric NMI ACC ARI NMI ACC ARI NMI ACC ARI
FCM × 48.9 54.6 37.0 63.9 62.3 53.2 47.1 42.7 25.9
FCM ✓ 70.5 69.9 60.3 77.2 78.7 69.9 50.8 46.5 31.6

GFC+SimCLR × 75.0 82.4 71.8 73.1 77.4 66.3 47.6 46.9 31.7
GFC+SimCLR ✓ 85.2 87.5 82.1 83.6 80.8 77.0 51.4 48.6 33.5

6 CONCLUSION

In summary, we present GFC, a new fuzzy clustering method for deep representation clustering.
The key idea is to use the inner product of fuzzy probability vectors to capture global similarities
and employ a local consistency constraint to model neighborhood relations. A theoretical formula-
tion and an iterative optimization scheme are developed for GFC, along with a fast algorithm that
reduces the complexity to linear time. Extensive experiments on multiple benchmarks demonstrate
the effectiveness of our proposal.
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8 REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our work. The main paper provides
detailed descriptions of the method architecture, along with the overall algorithmic framework and
optimization procedure. To further support replication, we include comprehensive theoretical deriva-
tions, implementation details, and extended experimental results in the Appendix. Specifically, Sec-
tions A.2–A.3 present additional theoretical derivations; Sections A.5–A.6 and A.7 provide hyper-
parameter settings and pseudo-code, respectively. Extended experiments are reported in Sections
A.8–A.11, covering parameter sensitivity analyses, ablation studies, additional clustering results
on raw datasets, and execution time comparisons of GFC. We also release the source code in the
supplementary submission to facilitate the replication of our results.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed large language model to refine the grammar, phrasing, and overall readability of the
abstract and introduction sections. The purpose of this usage was limited to improving language
clarity and presentation. The models did not contribute to the generation of research ideas, method-
ology design, experimental analysis, or substantive content. All suggestions provided by the LLM
were critically reviewed, verified, and, where appropriate, modified by the authors to ensure accu-
racy and alignment with the intended meaning.

Local Clustering

Global Clustering

GFC

Unlabeled Data

Objective
function

Constraint

Point-view: keep the consistency of 
predictions over -NN

Cluster-view: maximize the mutual
similarities over clusters

Neighbor

Figure 3: Overall research structure of GFC. GFC introduces an objective function for cluster-wise
clustering and incorporates a consistency constraint for point-wise clustering. By combining global
and local clustering approaches, GFC significantly enhances clustering performance.

A.2 OPTIMIZATION DERIVATION

The overall structure of GFC is shown in Fig. 3. The objective function without local clustering
constraint is simplified to

min
P∈P

Tr(V THV + P THPm − αV TŴPm)

⇔ min
P∈P

Tr((P T (1n1
T
n − I)− αV TŴ )Pm).

(23)

According to coordinate descent method, pi is taken as the variable and the other elements as fixed
constants, and the problem is decomposed into n unconstrained sub-problems by Lagrangian multi-
plier method (i = 1, · · · , n) as

L1(pi, ai, bi) =

c∑
l=1

∑
j ̸=i

pmi,l(pj,l − αvj,lŵi,j)

+ ai(1−
c∑

l=1

pi,l)−
c∑

l=1

bi,lpi,l,

(24)

where ai and bi,l are the Lagrangian multipliers respectively for the sum constraint and the non-
negativity constraint on pi. The partial derivative of L1 with respect to pi,l should be equal to zero
at the minimum point, so we can obtain (i = 1 · · · , n; l = 1 · · · , c)

∂L1

∂pi,l
= mpm−1

i,l

∑
j ̸=i

(pj,l − αvj,lŵi,j)− ai − bi,l = 0. (25)

Then, we can get Karush-Kuhn-Tucker (K.K.T.) conditions Bertsekas (1997) (i = 1, · · · , n; l =
1, · · · , c) 

∂L
′

∂ai
= 1−

∑c
l=1 pi,l = 0,

bi,lpi,l = 0,

bi,l ≥ 0.

(26)
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We define the fuzzy clustering score spi,l ∈ (0,+∞) as (i = 1 · · · , n; l = 1 · · · , c):

spi,l =
∑
j ̸=i

(pj,l − αvj,lŵi,j), (27)

and it has vector form

spi = [spi,1, · · · , s
p
i,c]

T = (P T1n − pi)− αV T ŵi, (28)

where ŵi is the i row of matrix Ŵ . The fuzzy clustering score indicates the score that xi belongs
to the cluster k.

Eq. (25) can be rewritten as ∂L1

∂pi,l
= mpm−1

i,l spi − ai − bi,l = 0. Assume that bi,l > 0, according to
the conditional relation of Eq. (26), we have a solution: pi,l = 0 and ai < 0. Due to the properties
of probability, there must exist l+, pi,l+ > 0, bi,l+ = 0. Based on the above assumptions, we can get
∂L1

∂pi,l+
= spi,l+ − ai > 0, which is contradictory to ∂L1

∂pi,l+
= 0. Therefore, we can draw a conclusion

that bi,l = 0, pi,l > 0,∀l, and Eq.(25) can be reformulated as (i = 1, · · · , n; l = 1 · · · , c)

pi,l = κ
a
−1/(m−1)
i

(
∑

j ̸=i 2p
m
j,l − αvj,lŵi,j)−1/(m−1)

, (29)

where κ is a constant, κ = m−1/(m−1). Considering the sum constraint of probability,
∑c

l=1 pi,l =
1, we have (i = 1, · · · , n)

a
−1/(m−1)
i =

1

κ

c∑
k=1

spi,k
−1/(m−1)

. (30)

Substituting a
1/(m−1)
i into Eq. (29), we can finally obtain following equivalence relation (i =

1, · · · , n; k = 1 · · · , c

p∗i,l =
spi,l

−1/(m−1)∑c
r=1 s

p
i,r

−1/(m−1)
. (31)

From a mathematical perspective, Eq. (31) sharpens spi by power operation and normalizes the
clustering score to get the probabilistic output.

Then, we project the obtained P ∗ into the feasible region according to the local clustering constraint.
The projected optimization problem is formulated as

min
P∈P

∥P − P ∗∥2F ,

s.t.(I −W∆−1)P = 0.
(32)

LCC is a slack constraint, which doesn’t need to be strictly followed. We relax the constraint into
the objective function and transform Eq. (32) into following problem

min
P∈P

∥P − P ∗∥2F + β∥P −W∆−1P ∥2F , (33)

where β > 0 is the penalty hyperparameter. Eq. (33) is a label propagation problem Zhou et al.
(2003) that limits the feasible domain to the probability space. We can then obtain the following
Lagrange function (i = 1, · · · , n)

L2(pi,p
∗
i , ci,di) =∥pi − p∗

i ∥22 + β∥pi −
∑n

j=1 wi,jpj∑n
j=1 wi,j

∥22

+ ci(1−
c∑

l=1

pi,l)−
c∑

l=1

di,lpi,l.

(34)

Using p̄i to denote p̄i,l =
∑n

j=1 wi,jpi,l∑n
j=1 wi,j

, the partial derivative is equal to (i = 1, · · · , n)

∂L2

∂pi,l
= 2 ∗ (pi,l − p∗i,l) + 2β(pi,l − p̄i,l)− ci − di,l = 0. (35)
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Afterwards, same as above solving process, taking K.K.T. condition into consideration, the solution
is (i = 1, · · · , n; l = 1, · · · , c)

pi,l =
1

1 + β
p∗i,l +

β

1 + β
p̄i,l. (36)

Therefore, the final optimal solution of Eq. (32) is

pi,l =
1

1 + β

spi,l
−1/(m−1)∑c

r=1 s
p
i,r

−1/(m−1)
+

β

1 + β

∑n
j=1 wi,jpj,l∑n
j=1 wi,j

. (37)

The first term is the extreme point of the objective function without constraint. And the second term
is the weighted average of the predictions of k-NN.

A.3 THEORETICAL ANALYSIS OF SELF-CONSTRAINT TERMS

In this section, we analyze the roles of the self-constraint terms in GFC, which make the cluster
output distribute uniformly. For hard label term Tr(V THV ), it can be reformulated as

Tr(V THV ) = Tr(V T1T
n1nV )− Tr(V TV )

= ∥V T1n∥22 − ∥V ∥2F

=

c∑
l=1

(

n∑
i=1

vi,l)
2 − n.

(38)

According to Jensen inequality, we can obtain
c∑

l=1

(

n∑
i=1

vi,l)
2 − n ≥ 1

c
(

c∑
l=1

n∑
i=1

vi,l)
2 − n =

n2 − cn

c
. (39)

To make the inequality hold with equality, we have
∑n

i=1 vi,1 =
∑n

i=1 vi,2 = · · · =
∑n

i=1 vi,c =
n/c. For fuzzy label term Tr(P THPm), according to the Eq. (31) we can get following relation
(i = 1, · · · , n; l = 1, · · · , c)

pi,l =

∑
j ̸=i pj,l

−1/(m−1)∑c
r=1

∑
j ̸=i pj,r

−1/(m−1)
. (40)

Obviously, pi,l = 1/c,∀i, l is the only minimum solution. Hence, when we minimize the objective
function, the self-constrained regular terms tend to distribute the predictions evenly across each
cluster.

A.4 DETAILS OF AGGREGATION ACCELERATION ALGORITHMS

The specific algorithm in the Section 4.5 is described in Algorithm 1.

Algorithm 1: Aggregation Acceleration Function: F

1 Input: P̃ , Ṽ , Ai

2 p
′
= v

′
= 0

3 for j in Ai do
4 p

′
+ = pm

j ; v
′
+ = vj

5 end
6 spi = P̃ − αv

′
; svi = Ṽ − αp

′
;

7 Output: spi , svi

A.5 LABEL MATRIX INITIALIZATION

GFC initializes the hard assignment matrix V by K-means++ Arthur & Vassilvitskii (2006) algo-
rithm, and initializes the matrix P according to a uniform distribution (i = 1, . . . , n; k = 1, . . . , c)

pi,k =
1

c
. (41)
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A.6 AVOID NEGATIVE SCORE

The clustering score spi is greater than zero in the derivation. However, to prevent algorithm fail-
ure due to spi becoming less than zero as a result of mini-batch clustering, we introduce an ad-
ditional regularization formula for the calculation of spi . The adjusted spi is defined as follows
(i = 1, . . . , n; k = 1, . . . , c)

spi,k = spi,k −min spi + 1, (42)

where min spi is the minimum value of spi . Eq. (42) ensures that the minimum value of spi is
constrained, which facilitates the subsequent power operation.

A.7 ALGORITHM PSEUDO CODE

Based on the above introduction, the entire Graph Fuzzy Clustering algorithm is summarized in
Algorithm 2.

Algorithm 2: The Pseudo Code of GFC Algorithm
1 Input: Dataset X , the number of cluster c, parameters m, α, β, nb

2 Calculate W and Ŵ by Eq. (7) and Eq. (8);
3 Construct adjacent sample set A = {A1, · · · ,An} based on Ŵ ;
4 Initialize V randomly and set pi,l = 1/c,∀i, l;
5 while not converge do
6 Randomly Partition dataset X = {X1, · · · ,X[n/nb]};
7 for r = 1 to [n/nb] do
8 P̃ =

∑n
i=1 pi; Ṽ =

∑n
i=1 vi;

9 for xi in Xr do
10 A′

i = Ai ∩ Xr;
11 Ṽ − = αvi; P̃− = αpm

i ;
12 spi , svi =F (P̃ , Ṽ ,A′

i) by Algorithm 1;
13 spi = spi −min spi + 1
14 Update pi by Eq. (15);
15 Update vi by Eq. (18);
16 Ṽ + = vi; P̃+ = pi;
17 end
18 end
19 end
20 Output: Fuzzy partition matrix P

A.8 MORE RESULTS

For more experimental results, we evaluate our proposed GFC on six real-world datasets. To ensure
the effectiveness of comparison methods, we adopt the default hyperparameters provided in the
official implementations. For FCM, the fuzzy weighting exponent m is fixed at 1.05. For graph-
based clustering methods, including SC, and K-sums, k-NN graph is adopted. All algorithms are
initialized randomly and run 50 times. The mean and variance of the clustering performance are
reported to provide a comprehensive evaluation of each method.

The results are reported in the Table 6 where GFC consistently delivers superior performance
and stability across most datasets. For instance, on MNIST, GFC achieves 0.853/0.877/0.821
(NMI/ACC/ARI), significantly outperforming FCM, which attains only 0.489/0.546/0.370. More-
over, with carefully selected parameters (θ = 3, k = 5, and nb = 1000), GFC reaches
0.914/0.966/0.926 (NMI/ACC/ARI), highlighting the potential of GFC under parameter tuning.
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Table 6: Performance of Different Algorithms on Various Kinds of Data.
Dataset PENDIGITS ISOLET MNIST
Metric NMI ACC ARI NMI ACC ARI NMI ACC ARI

KM Avg 0.680 0.699 0.553 0.726 0.553 0.486 0.497 0.546 0.376
(±Std) (±0.011) (±0.051) (±0.034) (±0.010) (±0.027) (±0.025) (±0.014) (±0.029) (±0.020)

FCM Avg 0.684 0.683 0.561 0.725 0.535 0.479 0.489 0.546 0.370
(±Std) (±0.013) (±0.013) (±0.038) (±0.007) (±0.024) (±0.019) (±0.011) (±0.017) (±0.013)

BIRCH Avg 0.727 0.680 0.552 0.757 0.600 0.541 0.701 0.645 0.551
(±Std) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000)

SC Avg 0.729 0.714 0.559 0.697 0.527 0.445 0.470 0.555 0.365
(±Std) (±0.010) (±0.014) (±0.013) (±0.007) (±0.018) (±0.015) (±0.006) (±0.016) (±0.014)

FINCH Avg 0.725 0.627 0.501 0.723 0.445 0.418 0.726 0.623 0.548
(±Std) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000)

Self-CSC Avg 0.823 0.837 0.723 0.773 0.625 0.535 0.807 0.851 0.755
(±Std) (±0.026) (±0.037) (±0.046) (±0.007) (±0.011) (±0.012) (±0.016) (±0.036) (±0.040)

K-sums Avg 0.657 0.726 0.571 0.728 0.615 0.524 0.509 0.585 0.420
(±Std) (±0.000) (±0.000) (±0.000) (±0.008) (±0.016) (±0.014) (±0.010) (±0.013) (±0.014)

PAC Avg 0.702 0.773 0.616 0.734 0.617 0.530 0.495 0.607 0.409
(±Std) (±0.004) (±0.012) (±0.004) (±0.004) (±0.001) (±0.002) (±0.005) (±0.004) (±0.005)

GFC Avg 0.837 0.869 0.770 0.773 0.629 0.575 0.853 0.876 0.823
(±Std) (±0.016) (±0.017) (±0.023) (±0.001) (±0.001) (±0.001) (±0.001) (±0.000) (±0.001)

Dataset COIL-100 USPS EMNIST
Metric NMI ACC ARI NMI ACC ARI NMI ACC ARI

KM Avg 0.516 0.516 0.359 0.607 0.643 0.524 0.410 0.318 0.173
(±Std) (±0.013) (±0.032) (±0.018) (±0.004) (±0.021) (±0.009) (±0.003) (±0.006) (±0.003)

FCM Avg 0.510 0.513 0.356 0.623 0.639 0.532 0.410 0.319 0.174
(±Std) (±0.011) (±0.035) (±0.016) (±0.013) (±0.022) (±0.022) (±0.002) (±0.004) (±0.002)

BIRCH Avg 0.862 0.655 0.614 0.686 0.686 0.542 0.514 0.383 0.245
(±Std) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000)

SC Avg 0.791 0.517 0.373 0.489 0.561 0.295 0.274 0.269 0.050
(±Std) (±0.000) (±0.000) (±0.000) (±0.002) (±0.002) (±0.004) (±0.021) (±0.005) (±0.006)

FINCH Avg 0.849 0.563 0.523 0.777 0.673 0.617 0.574 0.378 0.268
(±Std) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000)

Self-CSC Avg 0.882 0.715 0.602 0.726 0.754 0.614 0.586 0.497 0.322
(±Std) (±0.005) (±0.018) (±0.014) (±0.021) (±0.034) (±0.043) (±0.003) (±0.008) (±0.006)

K-sums Avg 0.817 0.642 0.577 0.638 0.718 0.577 0.441 0.343 0.198
(±Std) (±0.003) (±0.007) (±0.007) (±0.005) (±0.008) (±0.006) (±0.003) (±0.007) (±0.004)

PAC Avg 0.838 0.660 0.616 0.589 0.657 0.519 0.423 0.507 0.336
(±Std) (±0.003) (±0.008) (±0.008) (±0.000) (±0.000) (±0.000) (±0.010) (±0.012) (±0.015)

GFC Avg 0.868 0.717 0.656 0.832 0.815 0.770 0.648 0.547 0.417
(±Std) (±0.002) (±0.008) (±0.006) (±0.002) (±0.002) (±0.003) (±0.003) (±0.009) (±0.004)

Dataset CIFAR-10 (SimCLR) CIFAR-20 (SimCLR) STL-10 (SimCLR)
Metric NMI ACC ARI NMI ACC ARI NMI ACC ARI

KM Avg 0.750 0.770 0.639 0.471 0.427 0.261 0.651 0.668 0.503
(±Std) (±0.022) (±0.044) (±0.037) (±0.020) (±0.027) (±0.021) (±0.028) (±0.045) (±0.041)

FCM Avg 0.754 0.784 0.651 0.464 0.427 0.261 0.682 0.683 0.511
(±Std) (±0.014) (±0.027) (±0.026) (±0.007) (±0.013) (±0.010) (±0.029) (±0.022) (±0.032)

BIRCH Avg 0.658 0.629 0.544 0.414 0.363 0.244 0.582 0.650 0.484
(±Std) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000)

SC Avg 0.714 0.780 0.659 0.437 0.394 0.216 0.609 0.652 0.462
(±Std) (±0.018) (±0.043) (±0.037) (±0.007) (±0.006) (±0.007) (±0.008) (±0.022) (±0.024)

FINCH Avg 0.728 0.592 0.545 0.478 0.350 0.204 0.592 0.433 0.384
(±Std) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000) (±0.000)

Self-CSC Avg 0.790 0.815 0.698 0.509 0.468 0.247 0.718 0.754 0.570
(±Std) (±0.019) (±0.022) (±0.027) (±0.012) (±0.016) (±0.022) (±0.016) (±0.034) (±0.042)

K-sums Avg 0.714 0.780 0.659 0.491 0.471 0.323 0.629 0.697 0.547
(±Std) (±0.016) (±0.020) (±0.029) (±0.007) (±0.018) (±0.011) (±0.028) (±0.059) (±0.047)

PAC Avg 0.759 0.871 0.763 0.464 0.439 0.295 0.662 0.753 0.599
(±Std) (±0.002) (±0.004) (±0.004) (±0.005) (±0.006) (±0.003)) (±0.014) (±0.029) (±0.024)

GFC Avg 0.832 0.904 0.814 0.514 0.486 0.335 0.779 0.872 0.749
(±Std) (±0.000) (±0.000) (±0.000) (±0.008) (±0.013) (±0.010) (±0.000) (±0.000) (±0.001)

A.9 PARAMETER SENSIBILITY ANALYSIS

We further investigate the parameter sensitivity of GFC by analyzing two key hyperparameters: the
fuzzy weighting exponent m and the number of nearest neighbors k in the k-NN graph. These
parameters respectively control the degree of fuzziness in cluster assignments and the scope of
local neighborhood influence, both of which play critical roles in shaping the clustering behavior.
To ensure fair evaluation, we vary one parameter at a time while fixing the others to their default
settings.
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Figure 4: Accuracy comparison of GFC, PAC, and FCM with different weighting exponent m.
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Figure 5: Performance of GFC with different k in k-NN.

The fuzzy weighting exponent m determines the sharpness of membership probabilities and directly
influences the confidence of cluster assignments. We evaluate the impact of m by comparing GFC,
PAC, and FCM within the range (1, 1.5] with a step size of 0.05, and the results are reported in
Fig. 4. Overall, GFC demonstrates strong robustness to m, maintaining stable performance across a
wide range of values. This suggests that the integration of local constraints alleviates the sensitivity
commonly observed in fuzzy clustering algorithms. Nevertheless, on COIL-100, where the number
of clusters is relatively large, higher values of m lead to overly fuzzy predictions and degraded
performance. A practical guideline is thus to select smaller m values when clustering tasks involve
a large number of clusters.

We examine the sensitivity to the k-NN parameter by varying k ∈ 5, 10, 20, 40, 80, 160, 320. The
results, summarized in Fig. 5, show a clear trend: as k increases, clustering accuracy tends to
decrease. This is because enlarging the neighborhood dilutes local structural information, making
the constraint approximate a global one. Furthermore, larger k values bring higher computational
cost without significant benefit. Based on the average results across all datasets, we find that k = 10
provides the best trade-off between clustering quality and efficiency.

We test the influence of α and β and the results shown in Fig. 6, respectively. From experiments we
observe that α > 0.5 provides a good balance between clustering and self-constrained terms, and β
controls the strength of local clustering, and its effect improves as β

1+β approaches 1.

In summary, these experiments confirm that GFC is robust to the choice of m and performs best with
moderate k values, offering practical guidance for parameter selection in real-world applications.

A.10 IMPACT OF LOCAL CLUSTERING CONSTRAINTS ON MINI-BATCH CLUSTERING

The experimental results in Table 5 highlight the significant accuracy gains achieved by incorporat-
ing the Local Consistency Constraint (LCC). By leveraging local neighborhood information, LCC
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enhances the capacity of fuzzy clustering to capture fine-grained structures, especially in datasets
with complex or highly localized patterns. Moreover, as illustrated in Fig. 7, LCC effectively al-
leviates the performance degradation typically observed in mini-batch global clustering, where the
absence of local context often leads to suboptimal solutions.
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Figure 6: Performance of GFC with different α and β.
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Figure 7: Performance of GFC and GFC w/o LCC with different batch size.

A.11 EXECUTION TIME

The theoretical time complexity of GFC algorithm is linear. To evaluate its practical execution time,
we sample subsets of varying sizes from the MNIST dataset. We record the actual running time of
the GFC optimization process, scaling with increasing sub-dataset size. For comparison, we also
report the running times of several other algorithms, including PAC, Self-CSC, K-sums, and FCM.
The algorithms PAC, GFC, and FCM are implemented in Python, Self-CSC in Matlab, and K-sums
in C++. The reported running time reflects the entire execution time, including the computation
of pairwise distances, the construction of the k-NN graph, and the optimization iterations. All
experiments are conducted on a personal computer equipped with an AMD Ryzen 9 7900X 12-Core
Processor (4.70 GHz) and 64 GB RAM, using the official codes for each algorithm. The results are
shown in Fig. 8. GFC demonstrates exceptional time efficiency, closely matching the performance
of FCM and K-sums, despite Python being slower in handling loops compared to C++ and Matlab.

0k 10k 20k 30k 40k 50k 60k 70k
Number of Points

0

100

200

300

400

Ti
m

e 
(s

ec
)

FCM
CSelf-CS

K-sums

500
GFC
PAC

Figure 8: Running times for GFC and other algorithms on MNIST subsets.
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