
Figure 6: Environments from the EARL benchmark [5] used for simulated experiments. From left to right,
the environments are: Peg insertion, Door closing and Tabletop organization.

Figure 7: (left) Randomized position of the cube in the grasping task. The position marked by violet boundary
are within the distribution of expert demonstrations, and the rest are outside the distribution. (right) Architecture
overview for MEDAL++.

A Appendix542

A.1 Algorithm Overview543

The pseudocode for training is given in Algorithm 1. First, the parameters and data buffers in F and544

B are initialized and the forward and backward demonstrations are loaded into D⇤
f and D⇤

b respec-545

tively. Next, we update the forward and backward goal sets, as described above. After initializing546

the environment, the forward policy ⇡f interacts with the environment and collects data, updating547

the networks and buffers in F . The control switches over to the backward policy ⇡b after a fixed548

number of steps, and the networks and buffers in B are updated. The backward policy interacts for549

a fixed number of steps, after which the control is switched over to the forward policy and this cycle550

is repeated thereon. When executing in the real world, humans are allowed to intervene and reset551

the environment intermittently, switching the control over to ⇡f after the intervention to restart the552

forward-backward cycle.553

We now expand on how the networks are updated for ⇡f during training (also visualized in Figure 9);554

the updates for ⇡b are analogous. First, the new transition in the environment is added to Df . Next,555

we sample a batch of states from Df and label them 0, and sample a batch of equal size from D⇤
f and556

label them 1. The classifier Cf is updated using gradient descent on the combined batch to minimize557

the cross-entropy loss. Note, the classifier is not updated for every step collected in the environment.558

As stated earlier, the classification problem is easier than learning the policy, and therefore, it helps559

to train the classifier slower than the policy. Finally, the policy ⇡f , Q-value networks {Qf
n, Q̄

f
n}Nn=1560

and the encoder E are updated on a batch of transitions constructed by sampling (1 � ⇢)B tran-561

sitions from Df and ⇢B transitions from D⇤
f . The Q-value networks and the encoder are updated562

by minimizing 1
N

PN
n=1 `(Qn, E) (Eq 1), and the target Q-networks are updated as an exponential563

moving average of Q-value networks. The policy ⇡f is updated by maximizing L(⇡). We update564

13

Algorithm 1: MEDAL++
initialize F ,B; // forward, backward parameters
F .D⇤

f ,B.D⇤
b load demonstrations()

F .Gf get states(F .D⇤
f ,�K:) // last K states

// exclude last K states from D⇤
f , use only the last K states from D⇤

b
B.Gb get states(F .D⇤

f , :�K) [get states(B.D⇤
b ,�K:)

s ⇠ ⇢0; A F ; // initialize environment
while not done do

a ⇠ A.act(s); s0 ⇠ T (· | s, a);
A.update buffer({s, a, s0});
A.update classifier();
A.update parameters();
// switch policy after a fixed interval
if switch then

switch(A, (F ,B));
// allow intermittent human interventions
if interrupt then

s ⇠ ⇢0;
A F ;

else

s s0;

Figure 8: Visualizing the positive target states for forward clas-
sifier Cf and backward classifier Cb from the expert demonstra-
tions. For forward demonstrations, last K states are used for
Cf (orange) and the rest are used for Cb (pink). For backward
demonstrations, last K states are used for Cb.

Figure 9: An overview of MEDAL++
training. The classifier is trained to dis-
criminate states visited by an expert from
the states visited online. The robot rein-
forcement learns on a combination of self-
collected and expert transitions, and the
policy learning is regularized using the be-
havior cloning loss.

the Q-value networks multiple times for every step collected in the environment, whereas the policy565

network is updated once for every step collected in the environment [15].566

A.2 Implementation Details and Practical Tips567

An overview of the architecture used by the forward and backward networks is shown in Figure 7.568

Visual Encoder: For the encoder, we use the same architecture as DrQ-v2 [12]: 4 convolutional569

layers with 32 filters of size (3, 3), stride 1, followed by ReLU non-linearities. The high-dimensional570

output from the CNN is embedded into a 50 dimensional feature using a fully-connected layer,571

followed by LayerNorm and tanh non-linearity (to output the features normalized to [�1, 1]). For572

real-robot experiments, the first person and third person views are concatenated channel wise before573

being passed into the encoder. The output of the encoder is fused with proprioceptive information,574

in this case, the end-effector position, before being passed to actor and critic networks.575

Actor and Critic Networks: Both actor and critic networks are parameterized as 4 layer fully-576

connected networks with 1024 ReLU hidden units for every layer. The actor parameterizes a Gaus-577

14

sian distribution over the actions, where a tanh non-linearity on the output restricts the actions to578

[�1, 1]. We use an ensemble size of 10 critics.579

Discriminators: The discriminator for the forward and backward policies use a similar visual en-580

coder but with 2 layers instead of 4. The visual embedding is passed to a fully connected network581

with 2 hidden layers with 256 ReLU units. When training the network, we use mixup and spectral582

norm regularization [53, 52] for the entire network.583

Training Hyperparameters: For all our experiments, K = 20, i.e. the number of frames used as goal584

frames. The forward policy interacts with the environment for 200 steps, then the backward policy585

interacts for 200 steps. In real world experiments, we also reset the arm every 1000 steps to avoid586

hitting singular positions. Note, this reset does not require any human intervention as the controller587

just resets the arm to a fixed joint position. We use a batch size of 256 to train the policy and critic588

networks, out of which 64 transitions are sampled from the demonstrations (oversampling). We use589

a batch size of 512 to train the discriminators, 256 of the states come from expert data and the other590

256 comes from the online data. Further, the discriminators are updated every 1000 steps collected591

in the environment. The update-to-data ratio, that is the number of gradient updates per transition592

collected in the environment is 3 for simulated environments and 1 for the real-robot experiments.593

We use a linearly decaying schedule for behavior cloning regularization from 1 to 0.1 over the first594

50000 steps which remains fixed at 0.1 onwards throughout training.595

For real world experiments, we use a wrist camera to improve the overall performance [58], and596

provide only the wrist-camera view to both discriminators. We find that this further regularizes597

the discriminator. Finally, we provide no proprioceptive information for the VICE discriminator,598

but we give MEDAL discriminator the proprioceptive information, as it needs a stronger notion599

of the robot’s localization to adequately reset to a varied number of initial positions for improved600

robustness.601

Teleoperation: To collect our demonstrations on the real robot, we use an Xbox controller that602

manipulates the end-effector position, orientation and the gripper state. Two salient notes: (1) The603

forward and backward demonstrations are collected together, one after the other and (2) the initial604

position for demonstrations is randomized to cover as large a state-space as feasible. The increased605

coverage helps with exploration during autonomous training.606

A.3 EARL Environments, Training and Evaluation607

Environments. We consider three sparse-reward continuous-control environments from EARL608

benchmark [5], shown in Appendix, Fig 6). Tabletop organization is a simplified manipulation609

environment where a gripper is tasked to move the mug to one of the four coasters from a wide set610

of initial states, sawyer door closing task requires a sawyer robot arm to learn how to close a door611

starting from various positions, and finally the sawyer peg insertion task requires the sawyer robot612

arm to grasp the peg and insert it into a goal. Not only does the robot have to learn how to do the task613

(i.e. close the door or insert the peg), but it has to learn how to undo the task (i.e. open the door or614

remove the peg) to try task repeatedly in the non-episodic training environment. The sparse reward615

function is given by r(s, a) = (ks � gk  ✏), where g denotes the goal, and ✏ is the tolerance for616

the task to be considered completed.617

Training and Evaluation. The environments are setup to return 84 ⇥ 84 RGB images as obser-618

vations with a 3-dimensional action space for the tabletop organization (2D end-effector deltas in619

the XY plane and 1D for gripper) and a 4-dimensional action space for sawyer environments (3D620

end-effector delta control + 1D gripper). The training environment is reset to s0 ⇠ ⇢0 every 25,000621

steps of interaction with the environment. This is extremely infrequent compared to episodic set-622

tings where the environment is reset to the initial state distribution every 200-1000 steps. EARL623

comes with 5-15 forward and backward demonstrations for every environment to help with explo-624

ration in these sparse reward environments. We evaluate the forward policy every 10, 000 training625

steps, where the evaluation approximates Es0⇠⇢0 [
P1

t=0 �
tr(st, at)] by averaging the return of the626

15

Figure 10: An overview of MEDAL++ on the task of inserting the peg into the goal location. (top) Starting
with a set of expert trajectories, MEDAL++ learns a forward policy to insert the peg by matching the goal states
and a backward policy to remove and randomize the peg position by matching the rest of the states visited by
an expert. (bottom) Chaining the rollouts of forward and backward policies allows the robot to practice the task
autonomously. The rewards indicate the similarity to their respective target states, output by a discriminator
trained to classify online states from expert states.

policy over 10 episodes starting from s0 ⇠ ⇢0. These roll-outs are used only for evaluation, and not627

for training.628

A.4 Real-world Experiment Analysis629

We discuss the four manipulation tasks in detail. We recommend viewing the supplemental website630

for training and evaluation videos:631

(1) Cube Grasping: The goal in this task is to grasp the cube from varying initial positions and con-632

figurations and raise it. For this task, we consider a controlled setting to isolate one potential source633

of improvement from autonomous reinforcement learning: robustness to the initial state distribution.634

Specifically, all the forward demonstrations are collected starting from a narrow set of initial states635

(ID), but, the robot is evaluated starting from both ID states and out-of-distribution (OOD) states,636

visualized in Appendix, Figure 7. BC policy is competent on ID states, but it performs poorly on637

states that are OOD. However, after autonomous self-improvement using MEDAL++, we see an638

improvement of 15% on ID performance, and a large improvement of 74% on OOD performance.639

Autonomous training allows the robot to practice the task from a diverse set of states, including640

states that were OOD relative to the demonstration data. This suggests that improvement in success641

rate results partly from being robust to the initial state distribution, as a small set of demonstrations642

is unlikely to cover all possible initial states a robot can be evaluated from.643

(2) Cloth on the Hook: In this task, the robot is tasked with grasping the cloth and putting it through644

a fixed hook. To practice the task repeatedly, the backward policy has to remove the cloth from645

the hook and drop it on platform. Here, MEDAL++ improves the success rate over BC by 36%.646

The BC policy has several failure modes: (1) it fails to grasp the cloth, (2) it follows through with647

hooking because of memorization, or (3) it hits into into the hook because it drifts from the right648

trajectory and could not recover. Autonomous self-improvement improves upon all these issues,649

but particularly, it learns to re-try grasping the cloth if it fails the first time, rather than following a650

memorized trajectory observed in the forward demonstrations.651

(3) Bowl Covering with Cloth: The goal of this task is to cover a bowl entirely using the cloth.652

The cloth can be a wide variety of initial states, ranging from ‘laid out flat’ to ‘scrunched up’ in653

varying locations. The task is challenging as the robot has to grasp the cloth at the correct location654

to successfully cover the entire bowl (partial coverage is counted as a failure). Here, MEDAL++655

improves the performance over BC by 34%. The failure modes of BC are similar to previous task,656

including failure to grasp, memorization and failure to re-try, and incomplete coverage due to wrong657

initial grasp. Autonomous self-improvement substantially helps with the grasping (including re-658

trying) and issues related to memorization. While it plans the grasps better than BC, there is room659

for improvement to reduce failures resulting from partially covering the bowl.660

(4) Peg Insertion: Finally, we consider the task of inserting a peg into a goal location. The location661

and orientation of the peg is randomized, in service of which we use 5DoF control for this task. A662

successful insertion requires the toy to be perpendicular to the goal before insertion, and the error663

16

margin for a successful insertion is small given the size of the peg and the goal. Additionally, the664

peg here is a soft toy, it can be grasped while being in the wrong orientation. Here, MEDAL++665

improves the performance by 48% over BC. In addition to failures described in the previous tasks,666

a common cause of failure is the insertion itself where the agent takes an imprecise trajectory and667

is unable to insert the peg. After autonomous self-improvement, the robot employs an interesting668

strategy where it keeps retries the insertion till it succeeds. The policy is also better at grasping,669

though the failures of insertion often result from orienting the gripper incorrectly before the grasp670

which makes insertion infeasible.671

17

	Introduction
	Related Work
	Preliminaries
	MEDAL++: Practical and Efficient Autonomous Reinforcement Learning
	Experiments
	Benchmarking MEDAL++ on EARL
	Real Robot Evaluations
	Ablations

	Discussion
	Appendix
	Algorithm Overview
	Implementation Details and Practical Tips
	EARL Environments, Training and Evaluation
	Real-world Experiment Analysis

