
A Brain regions

Regions of Interest (ROIs). We investigate the representations of code in well-studied systems of
brain regions–the MD system, Language system, Visual system, and the Auditory system (details
below). A region (also referred to as parcel) here denotes a contiguous chunk of brain mass involved
in a cognitive task. A system of regions (also referred to as a network) can comprise multiple
disjoint regions that exhibit shared activity patterns across a range of tasks. For many cognitive
tasks, a region marks only the approximate location of voxel populations involved in a cognitive task.
Functional ROIs (fROIs) are voxels within these broad regions that respond most strongly to a given
task (language, working memory, etc.). The use of fROIs enables accounting for the exact anatomical
locations of these task-sensitive voxels, which vary across individuals.

Multiple Demand (MD) system. Located in the prefrontal and parietal areas of the brain, this system
of regions is active in a host of tasks requiring working memory and general problem solving skills,
including math and logic [Duncan, 2010, Fedorenko et al., 2013, Amalric and Dehaene, 2019].

Language system. These regions have been identified to respond to both comprehension and
production of language across modalities (written, speech, sign language), respond to typologically
diverse languages (45 languages, from across 11 language families), form a functionally integrated
system, reliably and robustly track linguistic stimuli, and have been shown to be causally important for
language [Clark and Cummings, 2003, Fedorenko et al., 2010, Hu et al., 2021, Blank and Fedorenko,
2017, Newman et al., 2015, Ayyash et al., 2021].

Visual system. These regions in the occipital lobe of the brain respond to visual input, ranging
from low-level features like lines and edges, through intermediate categories like shapes, letters, and
numbers, through higher order structures like faces and scenes. [Hubel and Wiesel, 1959, Polk et al.,
2002, Epstein and Kanwisher, 1998, Kanwisher et al., 1997].

Auditory system. The auditory system is located in the superior temporal region of the brain.
This region uniquely encodes pitch, speech, and music, but is not involved in high-level language
comprehension and production [Norman-Haignere et al., 2015, 2019]. In our experiments pertaining
to programming language comprehension, we use the activity seen in the auditory system as a
negative control.
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B Method - Details

Selecting brain representations. For each trial in the fMRI experiment, stimulus responses in each
voxel were extracted from the parameters of a General Linear Model (GLM) fit to the time-varying
BOLD signal in which each experimental condition was modeled with a boxcar function convolved
with the canonical hemodynamic response function (HRF). For the localizer experiments, conditions
were modeled as the entire block. For the Python program comprehension experiment, individual
programs were modeled using the period from the onset of the code/sentence problem until the
button press. The predictors for the GLM included trial ID (equivalent to problem ID), run number,
and motion regressors. The voxels were then filtered using gray-matter masking and (for MD and
the Language systems) network localization. Although fMRI measurements return whole brain
responses, only a thin layer of cortex dubbed gray matter contains BOLD signal of interest to these
analyses. Gray matter voxels were selected using a Bayesian segmentation of the anatomical brain
image into standard tissue types, and then returning the set of indices where the posterior gray matter
probability exceeds 0.70 [Ashburner et al., 1999]. Next, these sets of voxels were filtered separately
for each of the brain regions outlined in Appendix A. For the visual and auditory networks, primary
sensory areas were identified using an anatomical atlas [Rolls et al., 2020]. For the MD and the
Language systems, voxels were functionally localized as those containing the top 10% of responses
to their respective functional localizer tasks, as described in Ivanova et al. [2020]. See Fedorenko
et al. [2010] for a discussion of the functional localization approach as it pertains to the language
network. GLM modeling and gray matter segmentation was performed using SPM12; functional
localization was performed using the toolbox released by Ivanova et al. [2020]. Once voxel responses
within each brain region were extracted for each trial of each run, some additional preprocessing was
required before finalizing the brain representations, and passing them to downstream models. Due
to differences in MRI sensitivity across runs, each of the 12 runs of 6 programs for a given subject
appeared with nonuniform mean and variance. In order to normalize these signals, so as to leverage
data across a participant’s entire scanning session, brain representations were z-transformed within
each run to achieve a common scale. In order to avoid data-leakage from this preprocessing step, all
downstream analyses were cross-validated via a leave-one-run-out approach, such that no intra-run
rescaling could be used for prediction.

MVPA cross-validation and hyperparameters. For each brain system and each code property
or code model, we run a separate MVPA analysis. For each subject, we train a separate ridge
regression model on each cross-validated leave-one-run-out fold, and then predict the remaining
targets using the brain representations from the left-out run. We use L2 regularization to control for
model complexity, and employ a leave-one-out cross validation scheme to select λ. We score resulting
predictions using a series of different metrics to maximize interpretability. For the categorical code
properties, we report classification accuracy of model estimates. For the continuously scaled code
properties, we report Pearson correlation between the model estimates and true targets. For the
model representations, we report rank accuracy between model representation predictions and the
true model representations of left-out samples. We calculate rank accuracy as the percentile of
a predicted and true target pairing within the full set of possible pairings sorted by a Euclidean
distance metric. Rank accuracy was chosen for this experiment as it returns a more interpretable 50%
baseline through which to evaluate the brain to model mappings. Following metric calculation on
each cross-validation fold, we take the mean of those estimates to report an out-of-sample score over
the entire dataset for each subject. We then take the mean of those scores across subjects to derive
an overall performance measure. As a baseline, we repeat the above process in its entirety 1000
times for each MVPA analysis, to provide a null permutation distribution against which to compare
scores. These null distributions are fit with a univariate Gaussian and used to calculate z-statistics
for MVPA scores. For each statistical comparison, a single-tail one-sample z-test is performed
between the MVPA score and the distribution fit to the null permutations. Each of these p-values
is then FDR-corrected for the set of comparisons in a given experiment, e.g., 4 brain networks
∗ 9 code models = 36 comparisons for experiment 2 (Figure 3). Following FDR-correction, the
significance threshold for the resulting p-value is set at alpha = 0.001, so decoding is deemed
significant at p < 0.001. The code to run our MVPA analysis, and all resulting statistics, is available
in https://github.com/ALFA-group/code-representations-ml-brain.

Code properties. The code properties we consider are the following –
• Token count. The total number of tokens that appear in the program. This is a sanity check to

measure brain activity against, since it is natural to expect the activity in the brain to be correlated
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to the length of a program, and in general, the amount of content being comprehended. By their
design, the dataset had program lengths with a small standard deviation.

• Node count. The total number of AST nodes that appear in a program. Similar to the number of
tokens, we verify if brain activity correlates to a proxy for the amount of syntactic content in it.

• Runtime steps. We execute the programs and measure the number of instructions the program
steps through. While two programs can have the same program length, the number of instructions
executed can differ (e.g.for 1:10 vs. for 1:50). We measure if any brain regions capture the
number of mental operations needed to compute the output of a program.

• Bytecode ops. We execute the programs and count the number of bytecode operations performed.
This metric should mimic the number of mental operations performed needed to compute the
output of a program.

• Cyclomatic complexity. This metric [McCabe, 1976] is used to measure the general complexity
of software systems. It is defined as a function of the number of nodes, edges, and the connected
components in a program’s control flow graph. While its efficacy as a metric to measure software
complexity has been contested [Shepperd, 1988], we include it to see if brain activity is correlated
to any explicit syntactic constructs of a program.

• Halstead difficulty. This metric [Halstead, 1977] was defined to measure how difficult any piece
of software would be for a programmer to comprehend or write. It is defined as a function of the
number of tokens, operations, vocabulary that appears in a program.

Figure 4: An example of a code problem and its sentence equivalent from Ivanova et al. [2020]

The inter-correlations between these metrics have been tabulated in Table 19, Appendix H.

Code models - Model details. We evaluate the following models in this work–
• bag-of-words , TF-IDF . These are count-based language models. They predict the likelihood of a

token appearing in a program based on vocabulary statistics and frequencies.
• seq2seq [Sutskever et al., 2014], CodeTransformer [Zügner et al., 2021], CodeBERT [Feng

et al., 2020], CodeBERTa [HuggingFace, 2020]. We evaluate these three autoencoder (AE) models
with increasing model complexity. AE based pretraining reconstructs the original program from
corrupted input.

• XLNet [Yang et al., 2019], CodeGPT [Microsoft, 2021]. We evaluate auto-regressive (AR) models
with a model complexity similar to that of the other transformers. AR language modeling estimates
the probability distribution of a text corpus in one direction–either forward or backward, while AE
models capture dependencies in both directions. We use AR models to mimic a top-down, single
pass comprehension style by humans.

• Token Projection . We compare the results of the above models against an aggressive baseline
provided by using unique Gaussian-distributed random vectors for the token embeddings in a
vocabulary, and returning the sum of these token embeddings across a program. The resultant
embedding is not transformed by any model or any weights–it instead serves as a proxy for the
tokens that appear in the program. This sets a higher bar than the null-distribution labeling baseline
(Section 5.2).

Code models - Configuration details. In setting up our code model bench, we aimed to select a
collection of models ranging in their complexity, namely bag-of-words , TF-IDF (Term frequency-
Inverse document frequency), seq2seq, XLNet , CodeTransformer, CodeGPT , CodeBERT , and
CodeBERTa , as well as a Token Projection model.
• The bag-of-words , TF-IDF , seq2seq, and Token Projection models all use the same custom tok-

enizer defined by the current authors, whereas XLNet , CodeTransformer , CodeGPT , CodeBERT ,
and CodeBERTa use tokenizers defined by the original training authors [Zügner et al., 2021,
Microsoft, 2021, Feng et al., 2020, HuggingFace, 2020].
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• The tokenizer set up for the models trained by the current authors establishes a unique token in the
vocabulary for each Python keyword, each Python builtin function, one token for all numeric types,
one token for all string types, and N tokens for each of the N variables in a given program.

• In the case of the Token Projection baseline, this tokenizer was used to map each token in a piece
of source code to an index in the vocabulary, which in turn was used to index a Gaussian distributed
random matrix (D = 128). The sum of these random token projections was calculated to return a
unique embedding for each program.

• For bag-of-words and TF-IDF , the validation split of the code-search-net Python dataset [Husain
et al., 2019] was used to enumerate vocabulary and token occurrence statistics. These data were
then used to transform each program to a vector where each dimension represented the raw
(bag-of-words) or document-weighted (TF-IDF ) count of the unique items in the vocabulary.

• If a given set of programs viewed by a subject never included a specific token, leading that column
to equal the zero vector, then those dimensions would be filtered out.

• We used the dataset released by Project Codenet [Puri et al., 2021] to pretrain a seq2seq model
[Sutskever et al., 2014]. The dataset contains Python programs that are solutions to olympiad-style
programming problems in data structures and algorithms. We trained a seq2seq model with a
GRU unit for 15 epochs, with a dropout probability of 0.2, dot product attention, and a maximum
sentence length of 500.

• For XLNet , CodeTransformer , CodeGPT , CodeBERT , and CodeBERTa , each program was passed
through that model’s tokenizer and model pipeline as defined by the original authors. The represen-
tations of each program were extracted from the pretrained encoders. XLNet , CodeTransformer ,
and CodeGPT were originally trained on the Python subset of the code-search-net dataset, whereas
CodeBERT and CodeBERTa were originally trained on the full code-search-net dataset, which
also incorporates go, java, javascript, php, and ruby.
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C Additional Results

C.1 Experiment 1

Using representations from localized brain regions, we attempt to decode static and dynamic properties
of comprehended code, and learn maps to code model representations of that same code. We report
decoding performance of each brain region to the original Ivanova et al. [2020] code properties in
Table 1, the complexity-related code properties in Table 2, and the code model mappings in Table 3.
We find that the MD system and the Language system decode all code properties and code models
except variable language significantly above baseline, as established through a null permutation
test. The Visual system decodes 4 of the 6 code properties and 8 of the 9 code models, whereas the
Auditory system only decodes the code vs sentences property.

Brain Representation MD Language Visual Auditory
Code Properties Empirical Baseline

Code vs. Sentence 0.55 0.88 (+0.33) 0.87 (+0.32) 0.88 (+0.33) 0.64 (+0.09)
Control Flow 0.33 0.49 (+0.16) 0.45 (+0.12) 0.39 (+0.06) 0.36 (+0.03)
Data Type 0.49 0.63 (+0.14) 0.58 (+0.09) 0.61 (+0.12) 0.53 (+0.04)
Variable Language 0.50 0.53 (+0.03) 0.51 (+0.01) 0.53 (+0.03) 0.50 (-0.00)

Table 1: Brain region decoding performance on original Ivanova et al. [2020] code properties.
Scores represent classification accuracy and are contrasted with an empirical baseline from the null
permutation analysis. Values in parentheses are units above baseline.

Brain Representation MD Language Visual Auditory
Code Properties

Static Analysis 0.17 0.24 0.09 0.00
Dynamic Analysis 0.33 0.20 0.17 0.12

Table 2: Brain region decoding performance on static analysis and dynamic analysis code properties.
Scores represent Pearson correlation between predicted and true code properties.

21



C.2 Experiment 2

Brain Representation MD Language Visual Auditory
Code Models Empirical Baseline

Token Projection 0.50 0.56 (+0.06) 0.55 (+0.05) 0.54 (+0.04) 0.53 (+0.03)
CodeBERTa 0.50 0.60 (+0.10) 0.57 (+0.07) 0.58 (+0.08) 0.53 (+0.03)
CodeTransformer 0.50 0.59 (+0.09) 0.56 (+0.06) 0.55 (+0.05) 0.52 (+0.02)
CodeBERT 0.50 0.57 (+0.07) 0.56 (+0.06) 0.57 (+0.07) 0.52 (+0.02)
CodeGPT 0.50 0.57 (+0.07) 0.57 (+0.07) 0.57 (+0.07) 0.52 (+0.02)
XLNet 0.50 0.57 (+0.07) 0.55 (+0.05) 0.54 (+0.04) 0.52 (+0.02)
Seq2Seq 0.50 0.57 (+0.07) 0.54 (+0.04) 0.51 (+0.01) 0.51 (+0.01)
TF-IDF 0.50 0.57 (+0.07) 0.54 (+0.04) 0.53 (+0.03) 0.52 (+0.02)
Bag Of Words 0.50 0.58 (+0.08) 0.56 (+0.06) 0.54 (+0.04) 0.52 (+0.02)

Table 3: Brain region decoding performance on code model mappings. Scores represent rank
accuracy and are contrasted with an empirical baseline from the null permutation analysis. Values in
parentheses are units above baseline.

We additionally evaluate whether code models contain linearly decodable information about the code
properties we explore in this work (Section 4.2). The models decode with near perfect accuracy on
most classification tasks (avg. accuracy= 0.97± 0.03), and with high correlations on the regression
tasks (avg. r = 0.89± 0.05). This is expected for the classification tasks, since the dataset contains
tokens which help with perfectly separable decision boundaries. For example, for the control flow
code property, the dataset contains programs with if, for, or neither, but never both. These results
suggest that the code models we evaluate faithfully encode the set of properties we evaluate them on.

Code Properties Control Flow Data Type Dynamic Analysis Static Analysis
Empirical Baseline 0.31 0.48 0.00 0.00
Model Representation

Token Projection 1.00 0.94 0.88 1.00
CodeBERTa 0.98 1.00 0.87 0.86
CodeTransformer 1.00 0.95 0.90 0.91
CodeBERT 1.00 0.99 0.89 0.92
CodeGPT 0.98 1.00 0.84 0.82
XLNet 0.92 0.92 0.76 0.88
Seq2Seq 0.95 0.97 0.87 0.91
TF-IDF 1.00 0.94 0.94 0.89
Bag Of Words 1.00 0.92 0.93 0.98

Table 4: Decoding performance of all models on all tasks. Scores represent classification accuracy
for control flow and data type , and Pearson correlation for the remaining benchmarks. These can be
contrasted with an empirical baseline from the null permutation analysis.
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D Analysis of Variance

We run a series of one-way ANOVA statistical tests to assess whether decoding performance varies
across brain regions for each code property and code model, and whether decoding performance
varies across code models for each brain region. We report these results in Tables 5, 6, and 7. We find
that decoding performance varies across brain region for all code properties and code models, except
the variable language property and the Token Projection model, and decoding performance varies
across code models for the MD system and the Visual system.

F p p (corrected) Is Significant?
Code Property

Code vs. Sentence 53.57 4.03e-20 2.42e-19 1
Control Flow 12.52 6.13e-07 1.84e-06 1
Static Analysis 6.71 3.82e-04 7.65e-04 1
Data Type 4.46 5.66e-03 8.50e-03 1
Dynamic Analysis 4.15 8.38e-03 1.01e-02 1
Variable Language 0.82 4.84e-01 4.84e-01 0

Table 5: Results from statistical testing of variance across brain regions for each code property.

F p p (corrected) Is Significant?
Code Model

Bag Of Words 5.66 1.33e-03 1.71e-03 1
CodeBERT 8.73 3.72e-05 9.75e-05 1
CodeBERTa 12.48 6.40e-07 5.60e-06 1
CodeGPT 7.00 2.73e-04 4.09e-04 1
CodeTransformer 11.85 1.25e-06 5.60e-06 1
Seq2Seq 8.40 5.42e-05 9.75e-05 1
TF-IDF 8.46 5.08e-05 9.75e-05 1
XLNet 3.48 1.90e-02 2.14e-02 1
Token Projection 2.32 8.04e-02 8.04e-02 0

Table 6: Results from statistical testing of variance across brain regions for each code model.

F p p (corrected) Is Significant?
Brain Region

Language 2.49 1.35e-02 2.70e-02 1
Visual 5.13 7.61e-06 3.05e-05 1
Auditory 0.30 9.66e-01 9.66e-01 0
MD 1.79 7.97e-02 1.06e-01 0

Table 7: Results from statistical testing of variance across code models for each brain region.
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E Pairwise Analysis

To extend the findings from the ANOVA analyses towards specific pairwise comparisons between
brain regions and code models, we compare scores between brain regions for each code property
or code model, and compare scores between code models and a subset of code properties for each
brain region, using paired two-tailed t-tests. We report all pairwise brain region comparisons in
Tables 8 and 10, and report all pairwise code property and model comparisons in Tables 9 and 11.
To highlight a few key results from code properties, we find that the MD system decodes dynamic
analysis significantly better than the LS (Table 8). Moving onto code models, we find that the MD
system decodes CodeBERTa , CodeTransformer , seq2seq and TF-IDF significantly more accurately
than the Language system (Table 10). Finally, an investigation into model complexity reveals that
CodeBERTa , CodeTransformer , and bag-of-words are significantly more accurately decoded from
the MD system than the Token Projection model.

Brain Region A Brain Region B t p p (corrected) Is Significant?
Code Property

Code vs. Sentence Language Auditory 8.21 2.74e-08 3.29e-07 1
Code vs. Sentence MD Auditory 10.42 3.52e-10 6.33e-09 1
Code vs. Sentence Visual Auditory 10.52 2.92e-10 6.33e-09 1
Control Flow Language Auditory 3.90 7.20e-04 3.24e-03 1
Control Flow MD Auditory 4.86 6.63e-05 5.50e-04 1
Control Flow MD Visual 4.22 3.26e-04 1.96e-03 1
Data Type Language Auditory 2.50 1.98e-02 4.75e-02 1
Data Type MD Auditory 2.99 6.61e-03 2.16e-02 1
Data Type Visual Auditory 3.59 1.56e-03 6.23e-03 1
Dynamic Analysis MD Auditory 2.93 7.59e-03 2.28e-02 1
Dynamic Analysis MD Language 2.65 1.44e-02 3.98e-02 1
Dynamic Analysis MD Visual 2.53 1.86e-02 4.75e-02 1
Static Analysis Language Auditory 4.80 7.64e-05 5.50e-04 1
Static Analysis Language Visual 4.06 4.89e-04 2.52e-03 1
Static Analysis MD Auditory 3.35 2.80e-03 1.01e-02 1
Code vs. Sentence Language Visual -0.39 6.99e-01 7.40e-01 0
Code vs. Sentence MD Language 0.59 5.64e-01 6.34e-01 0
Code vs. Sentence MD Visual 0.27 7.92e-01 7.92e-01 0
Control Flow Language Visual 2.43 2.34e-02 5.26e-02 0
Control Flow MD Language 1.75 9.36e-02 1.87e-01 0
Control Flow Visual Auditory 1.44 1.62e-01 2.57e-01 0
Data Type Language Visual -1.03 3.15e-01 4.36e-01 0
Data Type MD Language 1.56 1.33e-01 2.53e-01 0
Data Type MD Visual 0.71 4.88e-01 5.93e-01 0
Dynamic Analysis Language Auditory 1.26 2.22e-01 3.19e-01 0
Dynamic Analysis Language Visual 0.52 6.06e-01 6.61e-01 0
Dynamic Analysis Visual Auditory 0.67 5.11e-01 5.93e-01 0
Static Analysis MD Language -1.45 1.61e-01 2.57e-01 0
Static Analysis MD Visual 1.76 9.10e-02 1.87e-01 0
Static Analysis Visual Auditory 1.44 1.64e-01 2.57e-01 0
Variable Language Language Auditory 0.67 5.11e-01 5.93e-01 0
Variable Language Language Visual -0.94 3.55e-01 4.56e-01 0
Variable Language MD Auditory 1.46 1.59e-01 2.57e-01 0
Variable Language MD Language 0.98 3.36e-01 4.48e-01 0
Variable Language MD Visual 0.32 7.49e-01 7.70e-01 0
Variable Language Visual Auditory 1.35 1.89e-01 2.84e-01 0

Table 8: Results from paired two-tailed t-tests of brain regions for each code property. +t reflects
A > B, whereas −t reflects A < B.
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Code Property A Code Property B t p p (corrected) Is Significant?
Brain Region

MD Static Analysis Dynamic Analysis -2.72 1.21e-02 4.83e-02 1
Auditory Static Analysis Dynamic Analysis -1.96 6.27e-02 1.25e-01 0
Language Static Analysis Dynamic Analysis 0.79 4.39e-01 4.39e-01 0
Visual Static Analysis Dynamic Analysis -1.33 1.97e-01 2.63e-01 0

Table 9: Results from paired two-tailed t-tests of continuous code metrics across brain regions. Only
this subset of properties was selected so as to evaluate scores with a consistent metric and baseline.
+t reflects A > B, whereas −t reflects A < B.
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Brain Region A Brain Region B t p p (corrected) Is Significant?
Code Model

Bag Of Words Language Auditory 2.84 9.22e-03 2.36e-02 1
Bag Of Words MD Auditory 4.19 3.54e-04 2.73e-03 1
Bag Of Words MD Visual 2.50 1.98e-02 4.28e-02 1
CodeBERT Language Auditory 3.64 1.36e-03 4.77e-03 1
CodeBERT MD Auditory 3.77 9.97e-04 4.14e-03 1
CodeBERT Visual Auditory 5.59 1.09e-05 2.95e-04 1
CodeBERTa Language Auditory 3.63 1.41e-03 4.77e-03 1
CodeBERTa MD Auditory 4.82 7.26e-05 9.80e-04 1
CodeBERTa MD Language 2.69 1.30e-02 3.05e-02 1
CodeBERTa Visual Auditory 3.66 1.30e-03 4.77e-03 1
CodeGPT Language Auditory 3.89 7.41e-04 4.00e-03 1
CodeGPT MD Auditory 4.07 4.73e-04 2.84e-03 1
CodeGPT Visual Auditory 3.81 9.10e-04 4.14e-03 1
CodeTransformer Language Auditory 4.21 3.37e-04 2.73e-03 1
CodeTransformer MD Auditory 5.31 2.17e-05 3.91e-04 1
CodeTransformer MD Language 2.44 2.29e-02 4.59e-02 1
CodeTransformer MD Visual 3.10 5.05e-03 1.44e-02 1
CodeTransformer Visual Auditory 2.89 8.36e-03 2.26e-02 1
Seq2Seq MD Auditory 4.11 4.26e-04 2.84e-03 1
Seq2Seq MD Language 2.82 9.63e-03 2.36e-02 1
Seq2Seq MD Visual 4.58 1.33e-04 1.44e-03 1
TF-IDF Language Auditory 2.54 1.85e-02 4.16e-02 1
TF-IDF MD Auditory 5.77 7.03e-06 2.95e-04 1
TF-IDF MD Language 3.25 3.51e-03 1.05e-02 1
TF-IDF MD Visual 3.79 9.52e-04 4.14e-03 1
Token Projection MD Auditory 2.46 2.20e-02 4.56e-02 1
XLNet MD Auditory 3.31 3.09e-03 9.82e-03 1
XLNet MD Visual 2.41 2.45e-02 4.73e-02 1
Bag Of Words Language Visual 1.48 1.52e-01 2.32e-01 0
Bag Of Words MD Language 1.51 1.44e-01 2.29e-01 0
Bag Of Words Visual Auditory 0.95 3.54e-01 4.34e-01 0
CodeBERT Language Visual -0.73 4.74e-01 5.45e-01 0
CodeBERT MD Language 0.82 4.22e-01 4.95e-01 0
CodeBERT MD Visual 0.31 7.56e-01 7.85e-01 0
CodeBERTa Language Visual -1.28 2.13e-01 2.88e-01 0
CodeBERTa MD Visual 1.36 1.86e-01 2.64e-01 0
CodeGPT Language Visual 0.06 9.53e-01 9.53e-01 0
CodeGPT MD Language 0.54 5.92e-01 6.53e-01 0
CodeGPT MD Visual 0.63 5.38e-01 6.05e-01 0
CodeTransformer Language Visual 0.88 3.86e-01 4.64e-01 0
Seq2Seq Language Auditory 1.82 8.19e-02 1.42e-01 0
Seq2Seq Language Visual 2.23 3.57e-02 6.64e-02 0
Seq2Seq Visual Auditory 0.14 8.91e-01 9.08e-01 0
TF-IDF Language Visual 1.04 3.11e-01 3.90e-01 0
TF-IDF Visual Auditory 1.34 1.94e-01 2.69e-01 0
Token Projection Language Auditory 1.81 8.39e-02 1.42e-01 0
Token Projection Language Visual 0.37 7.15e-01 7.72e-01 0
Token Projection MD Language 1.09 2.85e-01 3.66e-01 0
Token Projection MD Visual 1.11 2.79e-01 3.66e-01 0
Token Projection Visual Auditory 1.38 1.80e-01 2.62e-01 0
XLNet Language Auditory 1.58 1.27e-01 2.09e-01 0
XLNet Language Visual 0.34 7.35e-01 7.79e-01 0
XLNet MD Language 1.98 6.03e-02 1.09e-01 0
XLNet Visual Auditory 1.47 1.55e-01 2.32e-01 0

Table 10: Results from paired two-tailed t-tests of brain regions for each code model. +t reflects
A > B, whereas −t reflects A < B.
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Brain Region Code Model A Code Model B t p p (corrected) Is Signifi-
cant?

Language CodeBERTa Seq2Seq 3.36 2.71e-03 2.94e-02 1
Language CodeBERTa TF-IDF 4.66 1.09e-04 3.15e-03 1
Language Token Projection CodeBERTa -4.16 3.83e-04 6.89e-03 1
MD Token Projection Bag Of Words -3.79 9.39e-04 1.23e-02 1
MD Token Projection CodeBERTa -4.02 5.38e-04 8.60e-03 1
MD Token Projection CodeTransformer -3.21 3.92e-03 3.53e-02 1
Visual CodeBERT Seq2Seq 6.25 2.22e-06 2.45e-04 1
Visual CodeBERT TF-IDF 4.57 1.36e-04 3.15e-03 1
Visual CodeBERTa Bag Of Words 3.83 8.57e-04 1.23e-02 1
Visual CodeBERTa CodeTransformer 3.06 5.55e-03 4.71e-02 1
Visual CodeBERTa Seq2Seq 6.07 3.40e-06 2.45e-04 1
Visual CodeBERTa TF-IDF 4.88 6.21e-05 2.24e-03 1
Visual CodeBERTa XLNet 3.34 2.86e-03 2.94e-02 1
Visual CodeGPT Seq2Seq 4.52 1.53e-04 3.15e-03 1
Visual CodeGPT TF-IDF 3.27 3.39e-03 3.26e-02 1
Visual CodeTransformer Seq2Seq 3.68 1.24e-03 1.48e-02 1
Visual Token Projection CodeBERTa -5.20 2.82e-05 1.36e-03 1
Auditory CodeBERT Bag Of Words -0.37 7.17e-01 8.96e-01 0
Auditory CodeBERT CodeGPT 0.12 9.08e-01 9.73e-01 0
Auditory CodeBERT Seq2Seq 0.80 4.33e-01 6.93e-01 0
Auditory CodeBERT TF-IDF 0.10 9.23e-01 9.73e-01 0
Auditory CodeBERT XLNet -0.50 6.22e-01 8.54e-01 0
Auditory CodeBERTa Bag Of Words 0.14 8.94e-01 9.73e-01 0
Auditory CodeBERTa CodeBERT 0.90 3.77e-01 6.54e-01 0
Auditory CodeBERTa CodeGPT 0.97 3.43e-01 6.33e-01 0
Auditory CodeBERTa CodeTransformer 0.92 3.66e-01 6.54e-01 0
Auditory CodeBERTa Seq2Seq 1.15 2.62e-01 5.39e-01 0
Auditory CodeBERTa TF-IDF 0.60 5.56e-01 8.01e-01 0
Auditory CodeBERTa XLNet 0.20 8.41e-01 9.44e-01 0
Auditory CodeGPT Bag Of Words -0.40 6.94e-01 8.84e-01 0
Auditory CodeGPT Seq2Seq 0.71 4.83e-01 7.32e-01 0
Auditory CodeGPT TF-IDF 0.05 9.61e-01 9.83e-01 0
Auditory CodeGPT XLNet -0.54 5.95e-01 8.32e-01 0
Auditory CodeTransformer Bag Of Words -0.74 4.69e-01 7.18e-01 0
Auditory CodeTransformer CodeBERT -0.40 6.90e-01 8.84e-01 0
Auditory CodeTransformer CodeGPT -0.36 7.22e-01 8.96e-01 0
Auditory CodeTransformer Seq2Seq 0.31 7.58e-01 9.02e-01 0
Auditory CodeTransformer TF-IDF -0.32 7.51e-01 9.02e-01 0
Auditory CodeTransformer XLNet -1.07 2.98e-01 5.90e-01 0
Auditory Seq2Seq Bag Of Words -0.88 3.86e-01 6.54e-01 0
Auditory Seq2Seq TF-IDF -0.58 5.65e-01 8.06e-01 0
Auditory TF-IDF Bag Of Words -0.61 5.50e-01 8.01e-01 0
Auditory Token Projection Bag Of Words 0.16 8.77e-01 9.64e-01 0
Auditory Token Projection CodeBERT 0.47 6.39e-01 8.60e-01 0
Auditory Token Projection CodeBERTa -0.07 9.47e-01 9.83e-01 0
Auditory Token Projection CodeGPT 0.52 6.11e-01 8.46e-01 0
Auditory Token Projection CodeTransformer 0.90 3.77e-01 6.54e-01 0
Auditory Token Projection Seq2Seq 1.01 3.21e-01 6.08e-01 0
Auditory Token Projection TF-IDF 0.75 4.60e-01 7.15e-01 0
Auditory Token Projection XLNet 0.11 9.14e-01 9.73e-01 0
Auditory XLNet Bag Of Words -0.00 1.00e+00 1.00e+00 0
Auditory XLNet Seq2Seq 1.06 2.99e-01 5.90e-01 0
Auditory XLNet TF-IDF 0.69 4.98e-01 7.43e-01 0
Language CodeBERT Bag Of Words 0.33 7.44e-01 9.01e-01 0
Language CodeBERT CodeGPT -0.19 8.53e-01 9.45e-01 0
Language CodeBERT Seq2Seq 2.29 3.14e-02 1.13e-01 0
Language CodeBERT TF-IDF 2.53 1.87e-02 9.61e-02 0
Language CodeBERT XLNet 2.04 5.29e-02 1.52e-01 0
Language CodeBERTa Bag Of Words 1.37 1.83e-01 4.11e-01 0
Language CodeBERTa CodeBERT 1.54 1.37e-01 3.41e-01 0
Language CodeBERTa CodeGPT 0.89 3.84e-01 6.54e-01 0
Language CodeBERTa CodeTransformer 1.41 1.72e-01 3.99e-01 0
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Language CodeBERTa XLNet 2.81 9.99e-03 7.17e-02 0
Language CodeGPT Bag Of Words 0.45 6.60e-01 8.80e-01 0
Language CodeGPT Seq2Seq 2.73 1.19e-02 7.17e-02 0
Language CodeGPT TF-IDF 2.60 1.59e-02 8.80e-02 0
Language CodeGPT XLNet 2.24 3.47e-02 1.16e-01 0
Language CodeTransformer Bag Of Words 0.22 8.31e-01 9.44e-01 0
Language CodeTransformer CodeBERT -0.21 8.36e-01 9.44e-01 0
Language CodeTransformer CodeGPT -0.36 7.22e-01 8.96e-01 0
Language CodeTransformer Seq2Seq 2.46 2.17e-02 1.04e-01 0
Language CodeTransformer TF-IDF 2.63 1.50e-02 8.61e-02 0
Language CodeTransformer XLNet 1.95 6.36e-02 1.76e-01 0
Language Seq2Seq Bag Of Words -2.33 2.90e-02 1.10e-01 0
Language Seq2Seq TF-IDF -0.62 5.43e-01 7.98e-01 0
Language TF-IDF Bag Of Words -2.02 5.49e-02 1.55e-01 0
Language Token Projection Bag Of Words -2.30 3.12e-02 1.13e-01 0
Language Token Projection CodeBERT -2.16 4.16e-02 1.24e-01 0
Language Token Projection CodeGPT -2.19 3.85e-02 1.22e-01 0
Language Token Projection CodeTransformer -2.18 3.98e-02 1.22e-01 0
Language Token Projection Seq2Seq 0.93 3.60e-01 6.54e-01 0
Language Token Projection TF-IDF 0.42 6.80e-01 8.83e-01 0
Language Token Projection XLNet 0.00 1.00e+00 1.00e+00 0
Language XLNet Bag Of Words -1.48 1.52e-01 3.68e-01 0
Language XLNet Seq2Seq 0.84 4.10e-01 6.70e-01 0
Language XLNet TF-IDF 0.35 7.30e-01 8.97e-01 0
MD CodeBERT Bag Of Words -0.43 6.68e-01 8.83e-01 0
MD CodeBERT CodeGPT 0.11 9.10e-01 9.73e-01 0
MD CodeBERT Seq2Seq 0.49 6.32e-01 8.58e-01 0
MD CodeBERT TF-IDF 0.34 7.35e-01 8.97e-01 0
MD CodeBERT XLNet 0.29 7.76e-01 9.09e-01 0
MD CodeBERTa Bag Of Words 1.74 9.55e-02 2.50e-01 0
MD CodeBERTa CodeBERT 2.74 1.16e-02 7.17e-02 0
MD CodeBERTa CodeGPT 2.95 7.26e-03 5.50e-02 0
MD CodeBERTa CodeTransformer 0.85 4.03e-01 6.70e-01 0
MD CodeBERTa Seq2Seq 2.42 2.38e-02 1.06e-01 0
MD CodeBERTa TF-IDF 2.99 6.49e-03 5.19e-02 0
MD CodeBERTa XLNet 2.37 2.65e-02 1.06e-01 0
MD CodeGPT Bag Of Words -0.56 5.81e-01 8.20e-01 0
MD CodeGPT Seq2Seq 0.42 6.81e-01 8.83e-01 0
MD CodeGPT TF-IDF 0.29 7.77e-01 9.09e-01 0
MD CodeGPT XLNet 0.21 8.37e-01 9.44e-01 0
MD CodeTransformer Bag Of Words 1.03 3.14e-01 6.08e-01 0
MD CodeTransformer CodeBERT 1.43 1.65e-01 3.91e-01 0
MD CodeTransformer CodeGPT 2.19 3.90e-02 1.22e-01 0
MD CodeTransformer Seq2Seq 1.87 7.45e-02 1.99e-01 0
MD CodeTransformer TF-IDF 2.36 2.73e-02 1.06e-01 0
MD CodeTransformer XLNet 2.40 2.48e-02 1.06e-01 0
MD Seq2Seq Bag Of Words -0.91 3.74e-01 6.54e-01 0
MD Seq2Seq TF-IDF -0.22 8.29e-01 9.44e-01 0
MD TF-IDF Bag Of Words -1.20 2.43e-01 5.06e-01 0
MD Token Projection CodeBERT -1.28 2.14e-01 4.60e-01 0
MD Token Projection CodeGPT -1.38 1.81e-01 4.11e-01 0
MD Token Projection Seq2Seq -0.77 4.50e-01 7.12e-01 0
MD Token Projection TF-IDF -1.48 1.53e-01 3.68e-01 0
MD Token Projection XLNet -1.21 2.39e-01 5.06e-01 0
MD XLNet Bag Of Words -0.84 4.09e-01 6.70e-01 0
MD XLNet Seq2Seq 0.20 8.45e-01 9.44e-01 0
MD XLNet TF-IDF 0.06 9.49e-01 9.83e-01 0
Visual CodeBERT Bag Of Words 2.39 2.53e-02 1.06e-01 0
Visual CodeBERT CodeGPT 0.68 5.00e-01 7.43e-01 0
Visual CodeBERT XLNet 2.73 1.20e-02 7.17e-02 0
Visual CodeBERTa CodeBERT 1.36 1.87e-01 4.15e-01 0
Visual CodeBERTa CodeGPT 2.45 2.24e-02 1.04e-01 0
Visual CodeGPT Bag Of Words 2.19 3.93e-02 1.22e-01 0
Visual CodeGPT XLNet 2.26 3.37e-02 1.16e-01 0
Visual CodeTransformer Bag Of Words 1.07 2.95e-01 5.90e-01 0
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Visual CodeTransformer CodeBERT -1.63 1.16e-01 2.98e-01 0
Visual CodeTransformer CodeGPT -0.98 3.35e-01 6.27e-01 0
Visual CodeTransformer TF-IDF 2.50 2.00e-02 9.95e-02 0
Visual CodeTransformer XLNet 1.57 1.30e-01 3.28e-01 0
Visual Seq2Seq Bag Of Words -2.15 4.22e-02 1.24e-01 0
Visual Seq2Seq TF-IDF -2.39 2.57e-02 1.06e-01 0
Visual TF-IDF Bag Of Words -0.80 4.30e-01 6.93e-01 0
Visual Token Projection Bag Of Words 0.09 9.25e-01 9.73e-01 0
Visual Token Projection CodeBERT -2.73 1.18e-02 7.17e-02 0
Visual Token Projection CodeGPT -2.28 3.23e-02 1.14e-01 0
Visual Token Projection CodeTransformer -1.35 1.91e-01 4.16e-01 0
Visual Token Projection Seq2Seq 2.55 1.77e-02 9.46e-02 0
Visual Token Projection TF-IDF 1.02 3.20e-01 6.08e-01 0
Visual Token Projection XLNet 0.05 9.62e-01 9.83e-01 0
Visual XLNet Bag Of Words 0.02 9.83e-01 9.97e-01 0
Visual XLNet Seq2Seq 1.89 7.11e-02 1.93e-01 0
Visual XLNet TF-IDF 0.75 4.62e-01 7.15e-01 0

Table 11: Results from paired two-tailed t-tests of code models for each brain region. +t reflects
A > B, whereas −t reflects A < B.
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F Multi-system partial regression analysis: Scores and significance

In order to investigate whether each of the brain systems included contribute unique information towards the
decoding tasks, we combine brain representations from different systems in paired combinations and evaluate
effects on downstream decoding performance across all experiments. We find that the addition of MD or LS to
VS, relative to VS alone, improves downstream decoding of code vs sentences. The same effect is observed
for the combination of MD and LS compared to either alone. These data suggest that the MD system and the
Language system encode unique variance relevant to the decoding of code vs sentences , and this is above and
beyond the information encoded in the Visual system or each other individually. Additionally, we observe that
the addition of MD to VS, relative to VS alone, improves downstream decoding of control flow, data type,
dynamic analysis , and static analysis . This same effect is observed for the addition of LS to Visual system for
control flow and static analysis . These data suggest that the MD system and the Language system encode unique
information above and beyond information encoded in the Visual system for these decoding tasks (Table 15).
We repeat this process for Experiment 2, where we find that the addition of MD to VS improves decoding for 7
models, the addition of MD to LS improves decoding for 7 models, and the addition of LS to Visual system
improves decoding for all 9 models (Table 16).

Brain Representation L+V MD+L MD+V
Code Properties Empirical Baseline

Code vs. Sentence 0.56 0.94 (+0.38) 0.94 (+0.38) 0.93 (+0.37)
Control Flow 0.33 0.45 (+0.12) 0.49 (+0.16) 0.49 (+0.16)
Data Type 0.50 0.62 (+0.12) 0.63 (+0.13) 0.68 (+0.18)
Variable Language 0.50 0.53 (+0.03) 0.53 (+0.03) 0.53 (+0.03)

Table 12: Multi-system partial regression analysis on original Ivanova et al. [2020] code properties.
Scores represent classification accuracy and are contrasted with an empirical baseline from the null
permutation analysis. Values in parentheses are units above baseline.

Brain Representation L+V MD+L MD+V
Code Properties

Dynamic Analysis 0.22 0.32 0.31
Static Analysis 0.19 0.21 0.20

Table 13: Multi-system partial regression analysis on static and dynamic code properties. Scores
represent Pearson correlation between predicted and true code properties.

Brain Representation L+V MD+L MD+V
Code Models Empirical Baseline

Token Projection 0.50 0.57 (+0.07) 0.56 (+0.06) 0.57 (+0.07)
CodeBERTa 0.50 0.60 (+0.10) 0.62 (+0.12) 0.62 (+0.12)
CodeTransformer 0.50 0.58 (+0.08) 0.60 (+0.10) 0.60 (+0.10)
CodeBERT 0.50 0.60 (+0.10) 0.59 (+0.09) 0.59 (+0.09)
CodeGPT 0.50 0.59 (+0.09) 0.58 (+0.08) 0.58 (+0.08)
XLNet 0.50 0.57 (+0.07) 0.58 (+0.08) 0.57 (+0.07)
Seq2Seq 0.50 0.55 (+0.05) 0.57 (+0.07) 0.56 (+0.06)
TF-IDF 0.50 0.56 (+0.06) 0.58 (+0.08) 0.57 (+0.07)
Bag Of Words 0.50 0.57 (+0.07) 0.59 (+0.09) 0.59 (+0.09)

Table 14: Multi-system partial regression analysis on code model mappings. Scores represent rank
accuracy and are contrasted with an empirical baseline from the null permutation analysis. Values in
parentheses are units above baseline.
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Brain Region A Brain Region B t p p (corrected) Is Significant?
Code Property

Code vs. Sentence L+V Language 6.61 9.71e-07 1.75e-05 1
Code vs. Sentence L+V Visual 6.94 4.48e-07 1.61e-05 1
Code vs. Sentence MD+L Language 5.98 4.22e-06 5.06e-05 1
Code vs. Sentence MD+L MD 5.85 5.88e-06 5.30e-05 1
Code vs. Sentence MD+V MD 4.17 3.69e-04 1.66e-03 1
Code vs. Sentence MD+V Visual 4.71 9.70e-05 5.82e-04 1
Control Flow L+V Visual 4.27 2.87e-04 1.48e-03 1
Control Flow MD+V Visual 4.72 9.32e-05 5.82e-04 1
Data Type MD+V MD 2.88 8.46e-03 2.32e-02 1
Data Type MD+V Visual 3.96 6.28e-04 2.51e-03 1
Dynamic Analysis MD+L Language 2.85 9.03e-03 2.32e-02 1
Dynamic Analysis MD+V Visual 2.89 8.19e-03 2.32e-02 1
Static Analysis L+V Visual 3.63 1.39e-03 5.01e-03 1
Static Analysis MD+V Visual 3.23 3.73e-03 1.22e-02 1
Control Flow L+V Language 0.18 8.56e-01 9.34e-01 0
Control Flow MD+L Language 2.22 3.65e-02 8.22e-02 0
Control Flow MD+L MD -0.25 8.07e-01 9.34e-01 0
Control Flow MD+V MD 0.06 9.55e-01 1.00e+00 0
Data Type L+V Language 1.91 6.81e-02 1.44e-01 0
Data Type L+V Visual 0.90 3.77e-01 5.78e-01 0
Data Type MD+L Language 2.32 2.97e-02 7.12e-02 0
Data Type MD+L MD 0.52 6.11e-01 7.85e-01 0
Dynamic Analysis L+V Language 0.42 6.80e-01 8.17e-01 0
Dynamic Analysis L+V Visual 1.81 8.34e-02 1.67e-01 0
Dynamic Analysis MD+L MD -0.18 8.57e-01 9.34e-01 0
Dynamic Analysis MD+V MD -0.60 5.52e-01 7.36e-01 0
Static Analysis L+V Language -1.40 1.73e-01 3.29e-01 0
Static Analysis MD+L Language -0.88 3.86e-01 5.78e-01 0
Static Analysis MD+L MD 1.34 1.95e-01 3.50e-01 0
Static Analysis MD+V MD 1.01 3.22e-01 5.29e-01 0
Variable Language L+V Language 1.01 3.24e-01 5.29e-01 0
Variable Language L+V Visual -0.00 1.00e+00 1.00e+00 0
Variable Language MD+L Language 0.77 4.52e-01 6.51e-01 0
Variable Language MD+L MD -0.68 5.02e-01 6.95e-01 0
Variable Language MD+V MD -0.44 6.64e-01 8.17e-01 0
Variable Language MD+V Visual 0.00 1.00e+00 1.00e+00 0

Table 15: Results from paired two-tailed t-tests of joint brain systems with their partial components
for each code property. +t reflects A > B, whereas −t reflects A < B.
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Brain Region A Brain Region B t p p (corrected) Is Significant?
Code Model

Bag Of Words L+V Visual 4.22 3.29e-04 1.98e-03 1
Bag Of Words MD+L Language 2.62 1.52e-02 3.15e-02 1
Bag Of Words MD+V Visual 4.02 5.29e-04 2.71e-03 1
CodeBERT L+V Language 3.94 6.49e-04 2.71e-03 1
CodeBERT L+V Visual 3.74 1.06e-03 3.58e-03 1
CodeBERT MD+L Language 2.51 1.97e-02 3.80e-02 1
CodeBERT MD+L MD 2.64 1.47e-02 3.15e-02 1
CodeBERTa L+V Language 3.94 6.53e-04 2.71e-03 1
CodeBERTa L+V Visual 2.81 9.87e-03 2.22e-02 1
CodeBERTa MD+L Language 4.26 2.98e-04 1.98e-03 1
CodeBERTa MD+L MD 2.44 2.28e-02 3.97e-02 1
CodeBERTa MD+V Visual 2.93 7.58e-03 1.79e-02 1
CodeGPT L+V Language 2.47 2.14e-02 3.86e-02 1
CodeGPT L+V Visual 3.45 2.20e-03 6.61e-03 1
CodeTransformer L+V Language 2.39 2.56e-02 4.33e-02 1
CodeTransformer L+V Visual 4.25 3.04e-04 1.98e-03 1
CodeTransformer MD+L Language 3.96 6.29e-04 2.71e-03 1
CodeTransformer MD+V Visual 4.60 1.27e-04 1.45e-03 1
Seq2Seq L+V Visual 4.35 2.33e-04 1.98e-03 1
Seq2Seq MD+L Language 2.98 6.73e-03 1.79e-02 1
Seq2Seq MD+V Visual 4.80 7.70e-05 1.39e-03 1
TF-IDF L+V Language 3.10 5.11e-03 1.45e-02 1
TF-IDF L+V Visual 5.57 1.14e-05 6.16e-04 1
TF-IDF MD+L Language 4.95 5.23e-05 1.39e-03 1
TF-IDF MD+L MD 2.54 1.82e-02 3.65e-02 1
TF-IDF MD+V Visual 3.84 8.36e-04 3.01e-03 1
Token Projection L+V Language 2.34 2.85e-02 4.67e-02 1
Token Projection L+V Visual 2.92 7.64e-03 1.79e-02 1
Token Projection MD+V Visual 2.96 7.07e-03 1.79e-02 1
XLNet L+V Language 2.48 2.11e-02 3.86e-02 1
XLNet L+V Visual 4.58 1.34e-04 1.45e-03 1
XLNet MD+L Language 3.66 1.30e-03 4.13e-03 1
XLNet MD+V Visual 3.85 8.22e-04 3.01e-03 1
Bag Of Words L+V Language 0.84 4.10e-01 4.51e-01 0
Bag Of Words MD+L MD 1.56 1.32e-01 1.70e-01 0
Bag Of Words MD+V MD 0.76 4.55e-01 4.92e-01 0
CodeBERT MD+V MD 2.23 3.55e-02 5.48e-02 0
CodeBERT MD+V Visual 2.25 3.40e-02 5.40e-02 0
CodeBERTa MD+V MD 2.18 3.95e-02 5.92e-02 0
CodeGPT MD+L Language 1.58 1.27e-01 1.67e-01 0
CodeGPT MD+L MD 1.95 6.36e-02 9.03e-02 0
CodeGPT MD+V MD 1.13 2.71e-01 3.18e-01 0
CodeGPT MD+V Visual 2.03 5.46e-02 7.97e-02 0
CodeTransformer MD+L MD 0.98 3.38e-01 3.83e-01 0
CodeTransformer MD+V MD 1.34 1.94e-01 2.33e-01 0
Seq2Seq L+V Language 1.51 1.45e-01 1.82e-01 0
Seq2Seq MD+L MD 0.46 6.49e-01 6.49e-01 0
Seq2Seq MD+V MD -0.69 4.97e-01 5.26e-01 0
TF-IDF MD+V MD 0.49 6.30e-01 6.42e-01 0
Token Projection MD+L Language 1.79 8.59e-02 1.19e-01 0
Token Projection MD+L MD 0.97 3.41e-01 3.83e-01 0
Token Projection MD+V MD 1.38 1.80e-01 2.20e-01 0
XLNet MD+L MD 1.65 1.13e-01 1.52e-01 0
XLNet MD+V MD 0.52 6.06e-01 6.29e-01 0

Table 16: Results from paired two-tailed t-tests of joint brain systems with their partial components
for each code model. +t reflects A > B, whereas −t reflects A < B.
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G Ranked correlations of brain and model decoding performance

MD Language Visual Auditory

CodeBERTa 1.0 0.4 0.4 0.2
CodeTransformer 1.0 0.4 0.4 0.2
CodeBERT 1.0 0.4 0.4 0.2
CodeGPT 0.8 0.8 0.0 -0.4
XLNet 0.8 0.8 0.0 -0.4
Seq2Seq 0.8 0.8 0.0 -0.4
TF-IDF 1.0 0.4 0.4 0.2
Bag Of Words 0.4 1.0 -0.6 -0.8
Token Projection 0.4 1.0 -0.6 -0.8

Table 17: Spearman ranked correlations between brain region and code models over the performance
of their representations in decoding core code properties. Perfect correspondence is bolded.

We investigate whether there exists any trends in the correspondence between how well each brain region and
each code model performs on each decoding task.

For each brain region and code model, we extract the z-score of how well each hand-selected property is decoded.
We then compare the performances of each brain region to each code model via a Spearman rank correlation.

Under such a framework, if two representations have similar content, and perform similarly in how well or how
poorly they decode a battery of properties, they will show strong positive rank correlations. On the other hand,
if two representations show different patterns in how well they perform on the same tasks, they will be less
strongly correlated. This bears resemblance to Schrimpf et al. [2020b], where pairwise correlations between
tasks were explored over models, but here we adopt a complementary approach where models and regions are
pairwise correlated over tasks.

Here, we find that the MD system shows perfect task performance rank correlation with 3 transformer ar-
chitectures: CodeBERTa, CodeBERT , and CodeTransformer, as well as TF-IDF (which contains broader
distributional information). On the other hand, the Language system is consistent with bag-of-words and Token
Projection , which only reflect the presence of specific tokens.

These data, in conjunction with the core analyses summarized in Section 5 and Appendix C, provide further
evidence for the role of the LS in representing the presence of specific tokens, and the MD in representing
higher-level content.
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H All code properties: Scores and Correlations

We analyzed a series of code properties as part of the static and dynamic code analysis. As several of these
properties (token count , node count , Halstead difficulty, cyclomatic complexity, and bytecode ops) were
revealed to be highly correlated in a post-hoc analysis, we report only one measure for this subset in Experiment
1, token count , but include all scores here for completeness (Table 18). We also report the correlation matrix
between all code properties that led us to select token count as the representative property for this subset (Table
19).

Brain Representation MD Language Visual Auditory
Code Properties

Token Count 0.17 0.24 0.09 0.00
Node Count 0.12 0.20 0.03 0.01
Halstead Difficulty 0.11 0.17 0.10 -0.01
Cyclomatic Complexity 0.18 0.24 0.10 0.01
Bytecode Operations 0.15 0.18 0.03 0.02
Runtime Steps 0.33 0.20 0.17 0.12

Table 18: Brain region decoding performance on all static analysis and dynamic analysis code
properties. Scores represent Pearson correlation between predicted and true code properties.

Datatype Conditional Iteration Tokens Nodes Halstead Cyclomatic Runtime Bytecode

Datatype 1.00 0.00 0.00 0.41 0.33 0.39 0.18 0.13 0.28
Conditional - 1.00 -0.50 0.44 0.46 0.50 0.61 -0.41 0.49
Iteration - - 1.00 -0.10 -0.14 -0.35 -0.09 0.90 0.01
Tokens - - - 1.00 0.97 0.89 0.80 0.08 0.95
Nodes - - - - 1.00 0.86 0.79 0.00 0.96
Halstead - - - - - 1.00 0.74 -0.17 0.80
Cyclomatic - - - - - - 1.00 0.02 0.84
Runtime - - - - - - - 1.00 0.13
Bytecode - - - - - - - - 1.00

Table 19: Correlation matrix across all code properties. The control flow property was split into
two binary properties here, conditional and iteration . Of relevance is that token count presents with
r > 0.8 for all static analysis properties in the set and as such is used as the representative static
analysis code property in Experiment 1.
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Figure 5: Sensitivity of brain representation mapping to model output dimensions. Each subplot
contains the decoding results from a given brain network, and each line reflects a unique code model
across a range of controlled embedding dimensions.

I Sensitivity of brain mapping to model output dimensions

Of potential interest to the decoding framework is not just the complexity of code models, but their intrinsic
dimensionality as well. In order to investigate to what extent brain model mappings are robust to changes in
code model dimensionality, and to assess which model representations are most sensitive to compression and
expansion, we rerun our current decoding framework while controlling for embedding size.

For each brain network to code model mapping task, prior to the MVPA analysis, we control for the dimen-
sionality of the code model embedding via projection through a Gaussian random matrix Rd1×d2 drawn from
N(0, 1/d2) where d1 is the original code model embedding dimensionality and d2 is the desired dimensionality.

We observe that, on average, models of lower complexity (e.g., bag-of-words , TF-IDF , seq2seq) appear relatively
robust to compression, whereas the most complex models (e.g., CodeTransformer, CodeGPT , CodeBERTa)
gain ample performance from higher dimensional expression, and suffer considerably when constrained.

These data suggest that higher dimensions of the encoder in complex models encode relevant neural informa-
tion. Additionally, these effects appear to be most pronounced when decoding from the brain region whose
representations yield the strongest mappings, the MD system.

We note here however that we could be observing an interaction effect between model complexity and dimen-
sionality output in these results. Since we cannot fully control for the complexity of these models (by making
them all ‘equally complex’), this experiment alone cannot drive definitive conclusions.

These results instead constitute a preliminary exploration into the effects of code model dimensionality on brain
to model representation mappings, and suggest an avenue for future investigation.
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J Robustness of Results to Regression Metric

For the decoding analysis of the continuous valued dynamic analysis and static analysis properties, it is reasonable
to ask why the Pearson correlation metric was chosen as opposed to RMSE, as is typically customary for
regression tasks. While we present the results using the Pearson correlation metric in the core results for
interpretability via the zero-baselne, here we confirm that the use of an RMSE metric leads to the same
conclusions. As we see here, the MD, LS, and Visual system decode the dynamic analysis property, and MD
and LS decode the static analysis property with significantly lower RMSE than the null permutation baseline.
These results precisely confirm and mirror the patterns observed in Figure 3.

Brain Network Code Property RMSE Null RMSE Is Significant?

MD Dynamic Analysis 3.49 4.03 ± 0.08 1
MD Static Analysis 7.68 8.27 ± 0.15 1
Language Dynamic Analysis 3.68 3.95 ± 0.08 1
Language Static Analysis 7.34 8.00 ± 0.15 1
Visual Dynamic Analysis 3.79 4.05 ± 0.08 1
Visual Static Analysis 7.99 8.28 ± 0.16 0
Auditory Dynamic Analysis 3.79 3.98 ± 0.07 0
Auditory Static Analysis 8.04 8.10 ± 0.15 0

Table 20: RMSE between observed and predicted continuous-valued code properties from the
MVPA regression task in Experiment 1, confirming the pattern of results observed in 5.1
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