Supplementary Material: Landscape analysis of an
improved power method for tensor decomposition

In these appendices, we supply proofs for the statements made in the main body of the paper. We
indicate references to sections or statements in the main body of the paper by adding M to the
reference. Results solely within this supplementary material are labeled with a leading S.

Organization.

Section [Al Overview of main proofs

Section [B} Setup and notation

Section [Ct Proofs of lemmas in Sections [M.3]and [M.4]

Section [D} Derivation of Riemannian derivatives and optimality conditions for pSPM-P|
Section [E} Preparatory results on random ensembles over the sphere and Conjecture [M.13]
Section [F} Technical tools for the proofs of Theorems and [M.16]

Section [Gl Proof of Theorem [M.7]

Section [Ht Proof of Theorem [M.16]

Section [[} Deflation bounds and proof of Theorem [M.T§|

A Overview of main proofs

Before commencing with the exact details, let us first give a high-level overview of the main steps
in the proofs of Theorems and We recall the definition A := [a4]...|ax] € RP*K,
The proofs consist of three steps. We begin by plugging in y = a;, where ¢ is the index such that
{a;, x)] = | AT || oo, in (M.7). Then using either incoherence constants p, and p;, for Theorem|M.7}
or using Assumptions for Theorem[M.16] a suitable rearrangement of immediately

gives

1—2py — 2785~ 713%’ for Theorem [M7]

1220 - C(5255)" ~3424;, for Theorem NLTG,

AT 2|2, > (S.1)

where the constant C' in the second case depends on n, ¢; and co. For Theorem this immediately
suggests the largest correlation coefficient satisfies || A" zoc > 1 — O(ps + p,, + A4), provided
F4(x) > A4 as assumed in the statement. In the case of Theorem|[M.16] and within the level set
F i(z) > Ceg + 5A 4, (S first implies that || A" || is bounded from below by a constant that is
independent of D, K. However, by F.4(x) > ||ATz|??, we can update the lower bound on F 4(z)
and re-use it again in (M.7). The resulting bootstrap argument implies || A" 2|, > 1— (’)(5}(/" +A4),
i.e., there must be at least one large correlation coefficient.

The second step is to show that the Riemannian Hessian VéD,l F'; is negative definite on spherical
caps around the tensor components +a;. We prove, uniformly for all unit norm z | z, the bound

-1+ nfi—ﬁ:n + z;"_L;fpn +4A 4, for TheoremM.7]

(S.2)

1 ~
%vagD,lf(x)z < {

—1+C'\/ﬁ+6~'5;%% +4A 4, for Theorem [M.16]
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where 7 := 1 —max;¢ (k] (a, x)?", and C, C depend only on n, ¢1, ¢z and cs. Hence, the Riemannian
Hessian is negative definite and F is strictly concave in spherical caps around +a;.

In a third step, we consider a spherical cap Bs,, (s € {—1,1}) around sa;. By compactness, a
local maximizer x* of F'; must exist within the cap B,,, and by strict concavity it must be unique.
Moreover, its objective is bounded from below via F ;(z*) > F;(a;) > 1 — A 4. Using a Taylor
expansion of the function g(t) = F ;(v(t)) where 7 is the geodesic path from z* to a;, and combining

this with the upper bound in (S:2)), we obtain ||z* — sa; ||2%)§ 2A 4 /n. Since we can start the argument
with a spherical cap which is strictly larger than {y € SP~!: (y, sa;) > 1 — A 4/n}, it follows that
x* is not on the boundary of By, and thus z* is a local maximizer of

We complete the proof by noting that all local maximizers of contained in the superlevel set,
which is specified in the respective theorem, satisfy || AT 2|/ > 1 — ¢, where € depends on A 4 and
P2, Pn, OF €. In particular, they are contained in spherical caps By, constructed in the third step.

B Setup and notation

Additional notation. Besides the notation in Section[M.2] we will use the following in the rest of the
supplementary materials.

* For tensors S, T, we abbreviate their tensor product via concatenation, ST := .S ® T, and
the tensor power by S™ := S®™, (It will be clear from context when concatenation denotes
matrix multiplication instead.)

* We use Vec(T) to denote the vectorization of a tensor T € TJ, ie., Vec(T) :=
Reshape(T, D™). Also, Tensor(—) := Reshape(—, [D,..., D]) indicates the inverse
mapping, which tensorizes a vector.

» We denote the (columnwise) Khatri-Rao power by a bullet: if a € RP then a*" :=
Vec(a®™) € RP".If A = [ay]...|ax] € RP*K then A*" := [a$"]...|a%?] € RP"*K,

* We write the Tucker tensor product as follows: for 7" € 7} and MO oM™ e REXD,
the Tucker product is denoted 1" x 1 MO %y .. . x, M™ ¢ Ty and defined by

(750 MW sy ™) =SS oM

U1,eensln

The next definition serves to collect together the key quantities appearing later in our proofs.

Definition S.1. Let {a; : i € [K]} C SP~! be a given set of unit-norm vectors. Write A =

[a] ... |ax] € RP*E. Consider the corresponding set of tensors {a? : i € [K]}, and the subspace
A = Span{al : i € [K]} C Sym(7}). Let P4 : 75 — A denote orthogonal projection onto .A.
Write A*" := [Vec(a})|. . .| Vec(a% )] € RP"*K for the n-th columnwise Khatri-Rao power of A.

1. Define the n-th Grammian matrix to be G,, = (A*") T A*™ € Sym(T}2). Thus

(Gn)” = <(17-1 (17-1> = (ai7aj>” V’L7j S [K] (53)

79y

2. Letz € SP~1. Define the correlation coefficients of x with respect to {a; : i € [K]} to be
¢ =((z) = ATx € RE. Thus

G = (z,a;) Vie [K]. (S.4)

3. Letz,y € SP~tand s € {0,1,...,n}. Define the correlation coefficients of 2°y™~* with
respect to {a? : i € [K]} tobe n = n(zy" %) = (A*")T Vec(x*y"~*) € RE. Thus

n = (x%y" 0 al) = (x,a;)°(y, ;)" ° Vi e [K]. (S.5)



4. Letx € SP~1. Define the expansion coefficients of P(z™) with respect to {a? : i € [K]}
tobe 0 = o(z) € RE so that the following expansion holds

K
Pa(a™) =: ) oiaf. (S.6)

i=1
(If a?,...,a" are linearly independent, then Eq. (S.6) uniquely defines o; otherwise, we

fix once and for all a choice of o so that (S.6) holds.)

5. Letz € SP~1. Fori € [K]and s € {0,...,n}, define the remainder term for P,(z™) with
respect to " *aj tobe R; ; = R; s(z) € R so that the following equation holds
(Pa(z™), 2" %ai) =1 04(]" " + R . (8.7)

Last, define the maximal s-th remainder size to be Ry = Rs(x) := max;¢c(k) | R s| € R.

Remark S.2. Arguably all the quantities in Definition are natural to consider, with the possible
exception of R; s and R,. In fact these terms play a key role in our proofs; see inequality (S.44) in
Proposition [S.T8] We call R; ; a “remainder” because, under the assumptions of Theorems|[M.7]and
as we will see it holds that (P4 (z™), 2" ®af) ~ 0;¢]'”®, whence R; s and R, are small.

C Proofs of lemmas in Sections and M.4

In this section, we prove the various isolated results stated in Sections [M.3] and [M.4] of the main
submission.

C.1 Proof of Lemma[M.1|

Lemma S.3 (= Lemma . Letm > 3, n = [F], T € Sym(T}') and assume M =

Reshape(T, [D™, D™~ "]) has exactly K nonzero singular values o1 (M) > ... > o (M) > 0. Let

T € Sym(T}"), M := Reshape(T, [D™, D™~ "]). Assume Apy := |M — M|z < ox(M). Then
Ap

where Tm(M) C RP" denotes the image of M and Img (M) C RP" denotes the subspace
spanned by the K leading left singular vectors of M. In particular, if T = Zfil )\iafmn,
A = span{a®" : i € [K]}, dim(A) = K, and A is the subspace spanned by K leading tensorized
left singular vectors of M, the right-hand side of (S:8) upper-bounds A 4.

Proof. We note that (S-8) is valid for any matrices W, W & RP*, such that the rank of W is r. That
is, defining Ay = |[W — W2 < 0,.(W) and Im(W), Im,. (W) as in the statement, we have

Aw

HPIm(W) - Plrme2 S G (V) — A (8.9)

We first show the result if W, W are symmetric matrices. In that case, we denote the eigenvalue
decomposition of W, W as

_ Ay 0 (V] S e ey (A0 (VT
W= Vi) < \ AQ) (VQT wma W= %) (50 (3).
where A; and A, are diagonal matrices with the largest K eigenvalues, in magnitude, of W and
W on the diagonal, respectively. Letting 3; be a diagonal matrix with the singular values of W,

we have |A1| = X1, and the same holds for W. From the eigenvector decomposition, we can write
Prmwy = ViVy" and Py, iy = ViV;". Lemma 2.3 in [5] implies that

HPIm(W) - -PImT(VAV)H2 = ”VlTVQHQ‘



Then (S.9) holding for symmetric matrices follows from
Aw = [W =Wy > [V," (W = W)Vhlla = A V; Vo =V, Vahs||
> (| VT Valla = VT Vahalla = o0 (W) Vi Valla — [A2]l2]| Vi Vall2
2 (0, (W) — Aw) HPIm(W) - PImT(W)HZ'

Here we used the following facts:

o |[W =Wy > ||V, (W — W)Val||2 since Vi and V5 have orthonormal columns.

« Since V,' Vi (A2 — 0, (W)2Id,)V,T V4, is positive semi-definite, we have
1AV Valle = /1057 VARV, Valla 2 00 (W) V5T VAV3T Vallz = 00 (W)[|V; Vel

* By Weyl’s inequality [13]], it holds ||A2|| < Aw.

Now, if W, W are not symmetric, we apply the result for the symmetric matrices

(0 W S N
H—(WT 0) and H_<WT 0)
Denote the singular vector decomposition of W and 1474 by W = UV and W =USVT. We
can further split U = (Uy,Us), ¥ = Blockdiag(Xq,%5) and V' = (Uy,Us), where Uy, ¥, V3
correspond to the largest K singular values of W, and split U, >, V' analogously. The eigen-
decomposition of H is related to the singular vector decomposition of W as follows

1 1 1 T 1 T

g- (Y BN (= 0N (wY Y 5.10
Ty Ayl )| ZygT Ayt (5.10)
V2 V2 V2 V2

and an analogous relation holds between H and W. It can be checked that this is an eigen-
decomposition by using that W = UXV T to show that the RHS in (S.10) is equal to H, and
use that U and V' have orthonormal columns to show

1y 1y\ [Lu Ly
V2 V2 V2 V2 -1d
1y _ L1y 1y L1y 27
V2 V2 V2

Thus, if W has rank r, H has rank 2r, and since H is symmetric,

Ay

HPhn(H) - PImQT(ﬁ)H2 S @ s (S.11)

Regarding the right-hand side, denote §WW = W — W. Equation (S.I0) implies oo, (H) =

\Aor(H)| = 0. (W), while
oo sw\?
, \ewT o

= max{||[SWSW T ||, |6W T 6W |5} 2
2

- 0 oW :
LR (Y

N fswswT o :
= 0 SWTsW

= [[0Wll2 = Aw

2

On the left-hand side, we have

1 1 17T 11T
Py = @Ul 721U1 ﬁUl ﬁvl = UlUlT 0
m(H) ﬁvl ,ﬁvl %Uf Ly 0 wv' )



thus

Uy — 00y 0
S ! ' 7
H Im(H) = H1m,, (H) ||, H( 0 A A

= max {HPIm(W) - PImT(W)HQ ’

2

8

’le(WT) - PImT(WT)

Replacing these in (SIT)), we show (S9) when W, W are not symmetric.

Ay Aw
Ponowy — P H <HPm _P H < - .
H ImW) = S, (W) [l = [P T e (Dl = 5y (H) — Ay 0, (W) — Aw

The bound for A 4 follows from

Ba= s [PAM) =PiDlp= s || () = Py ()]
TeTy, |IT|| =1 u€RP™, ||ul|,=1 2
= [[Pmcan = Punsn - -

C.2 Proof of Lemma[M.4]
Lemma S.4 (= Lemma . Let A := [a1]...|ax] € RP*K and {a$™ : i € [K]} be linearly
independent. We have

T

Fa(z) = ||[Pa@®)|% = (AT2)°") " G (AT2)°m). (S.12)

Proof. This is the case n = s in (S.13)) in Lemmabelow, asn(z") = ((2)®" = (ATz)®". O

Lemma S.5. Assume {a! : i € [K]} C Sym(7}) is linearly independent. Then in the setup of
Definition[S_1) we have the following formulas in terms of the inverse Grammian:

[Palery™ )| = n@y" =) TG n(aty" ™) foralla,y €SP (S13)
and o(x) =G 'n(z") = G, (¢(x)®") forallz € SPT (S.14)
Proof. Let A*" := [Vec(a$™)| ... | Vec(a$)] € RP" K Up to reshapings, Py is projection onto

the column space of A*™. Since A®" has full column rank by assumption, projection onto the column
space of A®™ is represented by the matrix

A ((A.n)TA.n)*l (AT = A*nGoL (AT
It follows that for T' € T2, we have
PA(T) = Tensor (A*"G, (A*") T Vec(T)), (S.15)
IPA(T)|[3 = (Pa(T), T) = Vec(T) T A*" G (A*") T Vec(T). (S.16)

Substituting 7 = 2°y"~* in (S.13) and using (4°") " Vec(T) = n(z*y"~*) yields (S.13), while
substituting 7' = 2" into (S.16) gives (S.14). This completes the calculation. O

C.3 Proof of Lemma[M.3]|

Lemma S.6 (= Lemma . Assume there exist p € (—1,1) \ {4} and M € R such that
(aj, a;)" = pforalli# jand Y c i1z, a;)" = M forallx € SP~L. Denote A = [a1]...|ak] €
RP*E  Then

Fa(z) = (1—p) A 2l3r — (1 - p)? + Kp(1 - p))~ pM>,



Proof. Write ¢ := ((z) = A" z. From (a?,a?) = (a;,a;)™ = p whenever i # j and (a?,al) =

i Wy 79 Wy
(a;,a;)™ =1 for each i, we can write the Grammian of a7, ..., a’ as
Gn=01-p)ldg + plg @ 1k, (S8.17)

where 1 € RP denotes the all-ones vector. By the Sherman-Morrison inversion formula,

_ 1 -1
Gl =((1—p)ldg + plg @ 1g) " = - (IdK+ %M ® 11K>

1 S 1 p
=[x — —L 1x®1g | = ——Idg — Ig ® 1.
1—p< BT K =% " K) L—p & (A—p2+Kpl—p) " 7K

Using that 3, ¢ (%, a;)" = M uniformly on SP~1, we have {1k, ((x)®") = M. By writing F 4
as in Lemma we can complete the proof:

K 2
_ ny—1 n __ 4 ) n
1 2n pM2
- - . m
L—p I€ln (1—p)2+ Kp(l—p)

C.4 Proof of Lemma VL6l

Lemma S.7 (= Lemma. Let {a; :i € [K]} €SP~ and (Gy)i; := (ai, a;)® for s € N. Then

we have

1—ps < pur(Gs) < pr1(Gs) <1+ ps < pa(Gsya))-

Proof. By Gershgorin’s circle theorem and the fact ||a;||, = 1, the eigenvalue 1,(G) for each
¢=1,..., K adheres to

|ne(Gs) — 1] < Z {ag,a;)]® < ps, hence pi(Gs) <1+ ps and px(Gs)>1— ps.
:iF£L

First, we suppose that s is even. By a classic result in frame theory [6, Prop. 3.6.7], the extremal
eigenvalues of the Grammian G 5 satisfy

Gy)2) < Z 5/2 p1(Gsj2), forall unit-norm 7' € spaua{az"f”/2 (i€ [K]E (S.18)

The right-most inequality of (S.18) implies

K K
Z(T, af/2>2 = Z <Pspan{a5/2:i€[K]}(T)’ f/ > < p1(Gyy2)  for all unit-norm T' € 7—8/2.

i=1 i=1
(5.19)
Substituting 7 = z°/2 into (S.19) and using that s is even, we obtain

K K
Z [z, a:)|® = Z<x5/27af/2)2 < p1(Gypp) forallz € SP1,

=1

whence p, < 111(Gy/2) — 1. If instead s is odd, we may similarly derive the upper bound p, <
p1(G|s/2)), so that we have the following relation in general

1= ps < pr(Gs) < pa(Gs) <1+ ps < pa(Glsyz))- O



C.5 Proof of Lemma

Lemma S.8 (= Lemma[M.9). Letd € (0,1), a € SP~! and A = span{a®"}. Then there exists a
subspace A C Sym(T}) with dim(A) = 1 and || Py — P il|F—F = 0 such that nSPM-P| possesses

a strict local maximizer of objective value exactly 6°.

Proof. This argument relies on Lemma [S.9] which is proven independently in the next section.
Choose b € SP~! with b L a. Define S := 1 —42a™ — 6b" € Sym(T}), and consider the
corresponding subspace A := span{S}.

For each T' € T3 with | T'|| . = 1, using ||a" || = ||b"||r = 1, (a™,b™) = 0 and ||S||Fr = 1,
|PA(T) - Py(D)||% = H(a", Tya" — (/1 —62a™ — 66", T)(/1 — 62a™ — 5b™) 2F
- H (82a™ + 6@()" TYa™ + (63/1 — 62a™ — 620", T b”

= (6%a"™ + 0\/1 — 626", T)? + (61/1 — 620" — 61", T

= 0%(a", T)* + 5%(b", )%

This quadratic is maximized over the unit sphere in 7;} at any unit-norm 7' € span{a”, b" }, where
its value is 62. It follows HPA — =4.

PA ||F—>F
Also, we have

F4(b) = (S, ™) 8|3 = (S,0™)? = &2

We now verify that b is a local maximizer of F'; by checking the optimality conditions. By (S.20),
Vsp-1F 4(b) = 2nP4(b") - 0" " — 2nF 1(b)b
=2n(S,b™)S - "' — 2né*n

= 2n(—0)(—0b) — 2nd%b

which shows that b is a stationary point of F';. Now taking any unit norm z L b and using (S.21)),
2 Vi 1 Fi(b)z =20 | Py (b" " 2)| (P4(b™),b"22%) — 2nF 4(b)
= 202 ||(S, 6" 2)S|[5. + 2n(n — 1)((S,b")S,b"222) — 2n6°

= —2n(n —1)6v/1 — 62(a,b)""*(a, 2)? — 2nd>
< —2nb?
<0,

2) 2 +2n(n—1)
1

where we used the fact n > 2 in third equality. Thus, the Riemannian Hessian of F'; is strictly
negative-definite at b. Therefore, b is a strict local maximizer of F ; as we wanted. O

D Derivation of Riemannian derivatives and optimality conditions for
nSPM-PI

In this section, we derive the Riemannian derivatives and optimality conditions for

D.1 Riemannian derivatives of /' ; on the sphere

Lemma S.9. Let x,z € SP~! with z | x. The Riemannian gradient and Hessian of F ; satisfy

Vso-1F () = 2nP(z") - 2"~ — 2nF 4 (z)z, (5.20)
2TVEp 1 Fy(x)z = 2n2|| Py (2" '2)[|F + 2n(n — 1)(P4(a™), 2" 22%) — 2nF 4(z).  (S:21)



Remark S.10. In this lemma z is a tangent vector to the unit sphere at z, since z L z. For
convenience we work with normalized tangent vectors, which is why there is the further assumption
that ||z||2 = 1. This is without loss of generality: second-order criticality forp@SPM-P|is the condition
that the quadratic form on the tangent space given by Vg p—1 F () is negative semi-definite. By
homogeneity of the quadratic form, this is verified by just checking normalized tangent vectors.

Proof. We first calculate the Euclidean gradient and Hessian of F';. Let Uy, ..., Ux € Sym(7p)
form an orthonormal basis of A. Then for all S T eTh,
K K K

PAT) = (U, T)U;, (P4(T),8) => (Ui, TWU;,S), and |[Py(T)| = (U:,T)%

i=1 i=1 =1

Also, direct calculations verify that if 7' € Sym(7}), then V(T 2™) = nT - 2"~ and V*(T,2") =
n(n —1)T - 2" 2 (see [9, Lem. 3.1, Lem. 3.3]). Therefore,

VE4(x) = V[[P4( M—Zvuw

K
=2 Z(Ui,x”>V<Ui,x"> =2n Z(Ui,x">Ui ca" Tt =2nPy(a") 2"t
K
V2F () =Y VAU, a"? =2 (V{U;,z")(V(U;,a")) +2Z U;, a™)V2(U;, 2™
K
=2n? Z(Ui "YU 2T+ 2n(n - 1) Z(Ui7w”>Ui S,

Thus,

(U;, 2™)(U;, x"_2z2>

M=

TVQ r)z = 2n? Z iy @ Y2+ 2n(n — 1)

Il
ol

= 2n2||PA(x z)HFJrQn(nf 1)<PA(x"),x"*2z2>.

We now calculate the Riemannian gradient and Hessian of /4. In general, for a twice-differentiable
function g : R™ — R, the Riemannian gradient and Hessian of the restriction of g to the unit sphere
SP~1 are related to the Euclidean counterparts of g as follows (see [[1, Ex. 3.6.1] and [2, Eq. (10),
Sec. 4.2]):

Vgo-1g(z) = (I — 22" )Vg(x),
and Vip_ig(z) = (I —2x")(VZg(x) — (z " Vg(z)ldp)(I — zz").

Applying this to F 4, and using z ' VF 4(z) = 2nP4(a™) - 2" = 2nF 4(x), (I — zx ")z = z (since
z L x)and 2"z = 1 (since z € SP~1), yields the result. O]

D.2  Proof of Proposition[M.3|

Proposition S.11 (= Proposmon . Let x € SP~1 be first and second-order critical forM
Then for each z € SP~! with z L x, we have

Pi(z") 2" ' = Fy(a)z, (S.22)
Fi(x) 2 n|Py(a" " 2)|[F + (n— 1)(Pi(a"),z"722%). (8.23)
Furthermore, for any y € SP~! we have

Fa(x) > n||Py""y)|;

T (= )P — 20— V(@) (e, y)% (S24)



Proof. The first-order (stationary point) condition is given by setting the Riemannian gradient (S.20)
to zero. The second-order condition is the requirement that the Riemannian Hessian be negative
semi-definite, i.e., that (S.21)) is non-positive for all unit norm z L z. Dividing by 2n and rearranging

yields (S:22) and (S-23) respectively.

It remains to show (S:24). Assume € SP~ is first and second-order critical for@SPM-P} For each
y €SP~ leta, B €[0,1], 2z € SP~1 be such that 8 = /1 — a2, zJ.xandy—am—kﬂz Then,

1P )|l = laPa™) + 8P4 ("2,
= o?||Py(a")[[ + 8 [ Paa™ " 2) [ + 208(P4 ("), Pa(a"2)
= azFA(x) + B2 HPA(x" 1Z)HF +2aB(P4(z "),x"flz>
= onFA(x) + 32 HPA(QL‘" 1Z)HF + 2aB(P (") S 2)
=a’Fy(x) + 2 ||P (=" 1z)|| + 2aB(F 4(2)z, 2) (8.25)
= a®Fy(x) + B2 | Py(="12)| %, (S.26)
where we used the stationary point condition (S:22)) in (S:23) and z L z in (S:26). By similar logic,
(PA(e™), 27 22) = (Py(e"), 2" (az + B2)%)
= 02| Paa|[E + 208(P(a").a"12) + BP0 )
= a?F(z) + BH(P4(a"), 2" 22%). (S.27)
Finally, we substitute (S.26) and (S.27) into (S:24), and use the second-order condition (S:23):

n || Paa" " )5 + (0= 1)(P4(a™), 2" 2y?)

= (20— 1)a2F(z) + B2 (n P4 2)| % + (n — 1)(P,(a"), xn*222>)
< (2n = 1)a’F4(x) + B2 F 4(x)

= (2n —1)a’F () + (1 - a®)F 4()

= (1+ (2n —2)a®)Fy(z). (S.28)
Substituting v = (x, y) into (S:28) gives (S.24) as desired. O

E Preparatory results on random ensembles over the sphere and

Conjecture M.15|

In this section, we prove the results on random ensembles over the sphere that are used in the analysis
of the overcomplete random tensor model. Namely, we prove Lemma[M.TT]and Proposition[M.13]

E.1 Proof of Lemma|[M.11|

Lemma S.12 (= Lemma|M.11). Suppose that A = [a1|...|ax] € RP*X satisfies the (p,)-RIP for
p=[csD/log(K)]. Let és := (1 + 8)/cs. Then for each x € SP~1, there exists a subset of indices
Z(z) C [K] with cardinality p such that

log(K )

1-6< Y (a5,2)* <146 and (a;,2)* <@ = Jori ¢ I(x).

i€Z(x)

Proof. Fix z € SP~1, and assume without loss of generality that the indices are ordered according to
{a1,x)? > ... > (ag,x)? We claim that the index set Z(z) = [p] satisfies the specified conditions.
Denote by A € RP*P the submatrix of A consisting of the first p columns. The (p, §)-RIP implies

p
1+0=(1+0)z3 > 24,4 2 = (ai,2)? > (1 0)|z3=1-4. (5.29)

=1



Hence, Z(z) satisfies the first condition. As for the second condition, by the ordering assumption,

P

> ai,x)? > play, z)?. (S.30)

i=1
Inequalities (S:29) and (S:30) imply (a,,, z)?> < (1 + &§)p~!. Then again by the ordering relation,

1+6  14dlog(K) log(K)
)2 < 2 < .
igﬁi{)w“@ < {ap,2)” < p T ¢ D D

=5 O

E.2 Proof of Proposition [M.13|

Now consider a random ensemble of independent copies aq,...,ax of the random vector a ~
Unif(SP~1). Before showing Proposition which states that for this ensemble the assumptions
[AT{A2] hold with high probability for all n, and [A3]holds with high probability if n = 2, we will
recall these assumptions. Write A := [ay] ... |ax] € RP*K,

A1 There exists ¢5 > 0, depending only on §, such that A is ([¢s D/ log(K)], d)-RIP.
A2 There exists ¢; > 0, independent of K, D, such that max;z;{(a;, a;)* < c1 log(K)/D.
A3 There exists ca > 0, independent of K, D, such that HG;l H2 < co.
The proof for[A3]is lengthy and more technically involved (even though we only prove it for the case
of n = 2). So, we first give the arguments for[AT{A2]
Lemma S.13 in Proposition|M.13)). Let ay,...,ax be independent copies of the random
vector a ~ Unif(SP~1), and define A :=[a1]. .. |ax] € RP*K. Assume log K = o(D).

1. Fix § € (0,1). There exists a universal constant C > 0 and constants Dy € N, ¢s > 0 depending
only on § such that, if D > Dy and we put p := [cs D /1og(K)], then A is (p, §)-RIP with probability
at least 1 — 2 exp(—C§2D).

2. There exists a universal constant ¢; > 0 such that

log(K) 1
P (‘max‘(ai,ajf < cL—p— >1- e

1,J1iFA]

Proof. 1. By [}, Thm. 5.65], A satisfies the (p, §)-RIP with probability at least 1 — 2 exp(—C§2D),
provided that D > C'6~?plog(eK /p), where C,C’ > 0 are universal constants. Thus it suffices to
check the latter inequality holds if c5, D are appropriately chosen. Because log K = o(D), for each
fixed c5 > 0, there exists Dy such that p > e whenever D > D). In this case, we have

C'5 2plog(eK/p) < C'6 2plog(K) = C'6 % [csD/log(K)]log(K)
< 0’6 2csD +C'6 2log(K) < C'6 %3¢;D, (S.31)

where the last inequality in (S:31) is because p > e implies log(K) < 3csD. We note that the
right-most quantity in (S:3T)) is bounded above by D, as desired, if we choose c5 < 262 /(3C").

2. Let d;; = |(a;,a;)|. By rotational symmetry, d;; 4 |ay1| for ¢ # j in distribution, where
a1 = {a1, e1) denotes the first coordinate of a;. By [12] Thm. 3.4.6], a1 is a sub-Gaussian random
variable with sub-Gaussian norm ||a11 || v < c’lD_% for a universal constant ¢} > 0. Using this, a
union bound and a tail bound for sub-Gaussian random variables [12| Eq. 2.14],

K K
P (r?%xdu < t) 1 — P (there exists ¢ # js.t. di; >t) > 1 — Z Z P(d;j > t)

i=1 j=i+1
KK -1 t2D
=1- QP(\CLM >t) > 1— K%exp <—H>
2 cf
for a universal constant ¢/ > 0. We finish by setting ¢t = /3¢/ log(K)/D and ¢; = 3¢j. O
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Next we come to|A3|for a random ensemble on the sphere when n = 2.

Proposition S.14 in Proposition . Let K,D € Nsatisfy 1 < K < D? Letay,...,ax be
independent copies of the random vector a ~ Unif(SP~1). Define the Grammian Gy € Sym(T2)
by (Ga)ij := (a3?,a%?) = (a;, a;)*. Then there exists a universal constant C' > 0 such that the
minimal eigenvalue of G satisfies

—CoVE
VK D D\ ¢
pr(Ge) > 1—(C+ 1)7 log (\e/?) with probability at least 1 —C (k)

In particular, if K = o(D?), then for each constant c; > 1, we have |G *||2 < ¢ with probability
tending to 1 as D — oc.

(8.32)

The statement is implied by (p, §)-RIP with p = K for matrices like [a}?]...|a%?] (columns are
Khatri-Rao squares of vectors). Such RIP statements have been analyzed in [[7]. The main technical
ingredients are [3, Thm. 3.3], which proves RIP for matrices containing columnwise sub-exponential
random vectors, and the fact that certain vectorized Khatri-Rao products of sub-Gaussian random
vectors are sub-exponential with favorable sub-exponential norm. For completeness, we include a
self-contained proof of Proposition@} First, here is a version of |3, Thm. 3.3] tailored to our needs.

Proposition S.15 (Tailored version of [3, Thm. 3.3]). Let K,D € N satisfy 1 < K < D?. Let

Xq,..., Xk € RP” be independent copies of a sub-exponential random vector X € RP” with o)
sub-exponential norm (i.e., upper bounded independently of D and K ). Furthermore, assume that

| X |l, = D almost surely. Define M := 5[X:|...|Xk] € RD**K  Then there exists a universal
constant C > 0 such that

VK eD eD \ OVE
MTM —1d <C—log [ — —
H KH2 — D Og< /K /K>

In particular, in this event the minimal eigenvalue of the associated Grammian satisfies

), with probability at least 1 — C ( (8.33)

p(MTM) >1— C\/g log (\e/%) : (S.34)

Proof. The first part of the statement is [3, Thm. 3.3], in the special case (relating their notation to
our notation)n = D2, m=K, N=K,r=1,K =1, K' =1+ eforany ¢ € (0,1) and § — 0,
where we note that M satisfies (K, §)-RIP if and only if |[M "M — Idx||2 < 6, since M has K
columns. The second part follows immediately from the definition of the spectral norm. O

To deduce Proposition [S.14] we apply Proposition to a centered and scaled version of the

Khatri-Rao squares a$? = Vec(a?), following [7].

Proof of Proposition[S.14} Consider the Khatri-Rao square A*? := [a$?|...|a%?] € RDP**K and
note that Go = (A*2) T A*2. Instead of working with a$?,...,a%?, we introduce auxiliary variables

D
Xi =\ 5 Vee(Da? ~ ldp) € RD?

in order to be able to apply Proposition[S.15] Then X, ..., X are independent copies of the random
vector X € RP® given by

X = % Vec(Da? — Idp), where a ~ Unif(SP~1). (S.35)

Note that E[X;] = /27 (Vec(DE[a?] — Idp)) = 0. Using a; € SP~, we also have

D
D1 D1 (IDaia |3 — 2(Da;a ,1dp) + [[ldpl|7)
D

D
~D_1 (D?||a;||3 — 2Dla;||3 + D) = 51 (D2 —2D + D) = D2,

X3 = |Daial —1dp|% =

11



so that | X;||2 = D as required in Proposition|S.15

Define M := 5[Xi|...|Xk] € RP**K Foreachi,j € [K], again using a;, a; € SP~1, we have

1
T T T
(M M)i,j = m(Daiai — IdD,Dajaj — IdD>F
1
= 5= (D*(aia; ,aja; )p — D{asa; + aja; \dp)r + (Idp,ldp)F)
1
= BIE) (D*(ai, a;)* — Dl|ai||3 - Dlla;|3 + D)
D 9 1
“ D1 %u) oo
Hence, M T M = %GQ — ﬁ]lK]l}r(, which may be rewritten Gy = %MTM + %]lK]l;.
This implies
pr(Ga) > =——pg (M M). (S.36)

Thus, we focus on the Grammian associated with the shifted and centered random variables
Xi,...,Xk. To apply Proposition to M T M, it remains to show that the sub-exponential
norm of X in (S33) is bounded by some universal constant, independent of K, D.

We briefly indicate how this is done. We first note that all random vectors VDay, ...,/ Dak have
the so-called convex concentration property for some universal constant C’ > 0, see [[7, Thm. 6,
Def. 7, Thm. 8]. Following [7] and the references therein, this can be used to prove the Hanson-Wright
type inequality

2
P (|D(a;-rYai - ]E[a;-rYai])| >t) < 2exp [ —C' min %, o , (8.37)
IV[I% 1Yl

for all (deterministic) Y € RP*P and ¢ > 0. Taking now an arbitrary unit-norm vector y € R” 2,
denoting Y € RP*P as the matrix satisfying y = vec(Y’), and using E[aa"] = £1dp, we have

(X,y) = \/Zwacﬁ —ldp,Y)
D T T
_ \/;D(a Ya—Ela"Ya)). (5.38)

Combining (S.38), (S:37) and ||Y||, < ||| = 1, we obtain

P ((X, y) > 1/% t) < 2exp(—C’' min(t?,1)).

This implies (X, y) is sub-exponential with sub-exponential norm C’+/D/(D — 1) = O(1). Taking
a supremum over all unit-norm vectors y € R” * does not change this bound, since it is independent
of y, and so the random vector X has sub-exponential norm O(1). Thus, Proposition applies and
implies there exists a universal constant C' > 0 such that (S.34) holds with the probability in (S.33).
We now notice that (S:32)) follows by substituting (S:34) into (S:36) and using that 1 < K < D?
implies & < ‘/—5 log(eD/VK), because then

1 VK eD VK eD
ur(Ga) > (1— 5) (1 - CT log (\/E)) >1—-(C+ 1)710g (\/E) . (S.39)

To conclude, we justify the last sentence in Proposition where K = o(D?). It only remains to

note that, in this case, the right-most quantity in (S.39) tends to 1 as D — oo. However, this holds
because % — 07 by K = o(D?), and lim, _,+ log(2) = 0 by L’Hopital’s rule. O

12



As mentioned in the main body of the paper, this proof technique cannot be immediately applied
to the case n > 2 because some key technical results are missing. We are not aware of extensions
of Proposition [S.13]to random variables with tails heavier than subexponential random variables.
Further we do not know how to show that an auxiliary variable Z formed from higher-order vectorized
tensors a; satisfies a suitable tail bound, which would be needed in an extended Proposition@

F Technical tools for proving Theorems M.7 and M.16|

In this section we prove the key technical tools to be used in the proofs of our landscape theorem.
Lemma S.16 (Subspace perturbation effect). Let A, A be any two subspaces of Sym(T}), and define

Ap:=||Pa— Pillrsr = sup [Pa(T) = P4(T)| F-
TeSym(T5), IT] =1

Then for all S, T in T, we have
(PA(T) = P4(T), )| < Aull Sym(T)| || Sym(S)|lr < Al T[S F, (S.40)

and
1PATD)% — 1PA(DIF| < Al Sym(T)|7 < AT |3 (S41)

Proof. Using the fact A, AcC Sym(7}), the Cauchy-Schwarz inequality, and the definition of A 4,
[(PA(T) = P4(T), 8)| = [(Pa(Sym(T)) — P4(Sym(T)), Sym(S))|
< [[Pa(Sym(T)) — P4(Sym(T))|| . [Sym(S)| ¢
< AuISym(T) | [ Sym(S)lr,

which gives (S.40). Equation (S.41)) then follows by setting S = T in (S.40), and using (PA(T) —
Pi(T),T) = ||[Pa(T)||% — || P4(T)||3 which holds since P4 and P ; are orthogonal projectors. [

Next we recall the remainder terms for P4 (z") with respect to ™~ a$ (S.7). These are defined by
(Pa(z"),2"%a7) = 03" + Ry s.
Lemma S.17. The following alternative expressions for the remainder terms hold:

1. Foranyx € SP~1, i € [K] and 0 < 5 < n, we have
R; s = (Pa(z™), 2" %aj) — 0;¢]°. (5.42)

2

2. Forany z € SP~1 andi € [K], we have
Rip=C"— o, (S.43)

In the first step of the proofs of our two main results, we derive lower bounds for HATxH o where x
is a second-order critical point. For both theorems, this step is based on the following inequality.

Proposition S.18 (Tool #1). For any second-order critical point x of nSPM-P|and i € [K], it holds
(1+2(n— 1)) Fa(x) > (2n — 1) 2 4+ n *Rip + (n — 1)R; o — (4n — 2)A 4. (S.44)

Proof. We substitute y = a; into the inequality (S:24), which is a consequence of x being first and
second-order critical for nSPM-P|

_ 2
(1+2(n-— 1>C§>FA(.I) >n HPA(JC" 1ai)HF
Then by the subspace perturbation results (S:40) and (S-4T)), we have

+ (n— 1)(Py(z™), 2" a?). (S.45)

K2

Fyi(z) = |Pa(z")IF < |Paz™)||F + Aa = Falz) + Au, (S.46)
IP4(z" ai)[|F > [[Pa(@™'ai) |7 — Aa > | Pspanary (@™ 'ai) |7 — Aa

=" = A= (Rin +03) — Ay, (S.47)
(Pi(z™), 2" %a3) > (Pa(a™), 2" %a}) — Au = Rip + 03¢ > — Ay (S.48)

Here we used Span{a}'} C A in the second inequality of (S.47), the identity (S-43) in the second

equality of (S:47), and the identity (S:42) in the equality of (S.48). Substituting (S.46), (S.47) and
(S:48) into (S.43) completes the proof.
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In the second part of both proofs, we show concavity holds in a spherical cap near each sa;,
1 € [K], s € {—1,1}. As a starting point in both arguments, we use the next statement to upper
bound the eigenvalues of the Riemannian Hessian.

Proposition S.19 (Tool #2). For any xz,z € SP~1 with z 1 x, the Riemannian Hessian of F i
satisfies, for any i € [K],

1
%vagg,lFA(x)z <n ||PA(J:"71Z)H; + (n — 1)(Pa(a™), 2" 22%) — (" +4A 4. (S49)

Proof. We first show that for all integers 0 < s < n

—1/2
[Sym(z"—*2*)| . = (Z) . (S.50)
Let R € SO(D) (special orthogonal group). Then we have (denoting Tucker product on the RHS)
||Sym(x”75zs)’|F = [[Sym(z"%2%) x4 R x2... X, RHF (S.51)
by rotational invariance of Frobenius norm. Furthermore,
Sym(z"*2°)x1 RXg... X, R = Sym(z"°2°%x1 RX5...x, R) = Sym((Rxz)"~*(Rz)*) (S.52)
by a direct calculation. Inserting (S.32) into (S-31)), and choosing R appropriately,

I e G

where ey, e are the first two standard basis vectors of R”. However, Sym (e} ~*e3) is the tensor

‘ ‘ 1., . . . .
whose (i1,...,i,)-entry equals (7)  if (iy,...,i,) consists of n — s ones and s twos (in some

order), and equals O otherwise. Hence,

sl = (1) ()= ()

Then, by the formula for the Riemannian Hessian (S.21)),

ivagp,IFA(x)z =[Py )|+ (- 1) (Py(a™), 27222 — Fa(x).  (5.53)

To upper-bound this with quantities involving A rather than A, we use the subspace perturbation

result Lemma[S.16] and (S:50):

1
1P 2) [} < [|Pa@2)|[ + Aa|Sym " 2) [ = [Pale™ 2 + ~ A,

<PA(93”),1””7222> <A(Pa(z™), 2" 22%) + ||Sym(z"7222)HF Ay

= (Py(a™), 1:"7222) + LAA < (PA(x"),ﬂ“ZzZ) + LAA,
n(n—1) n—1

FA(x) = HPA((E )HF > ||P_A(.’E )”F_AA > HPSpan(a?)(x )HF_AA:<7,2 —A_A.
Inserting these bounds into (S:33) gives (S:49) as announced. O

We now recall some basics about geodesic convexity on the sphere.

Definition S.20. Spherical caps and geodesics are defined on the unit sphere as follows.
1. Fory € SP~tand r € (0,1), define the spherical cap with center y and height 7 by

By(y) :={z €SP i (z,y) > 1-r} CSP7N.
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2. Given distinct points x1, 22 € B,.(y), the geodesic segment connecting x1 to x5 is the curve
¢ :[0,1] — B, (y) defined by

c(t) := cos(t0)zy + sin(th)zy for0 <t < 1. (S.54)

Here 0 := cos™!((x1,22)) € (0,7) is the angle between x1 and x2, and x5 is the compo-
nent of zo that is orthogonal to x; (normalized to lie on the unit sphere) given by

r3 = T2 ~ <£E1,m2>x1 = _<$1’$2> T+ ! Ty € sP—1,
? [z2 = (z1,22)21ll2 /T (21,22)2 V1= (21, 32)2

(If 1 = 2, the geodesic segment connecting x; to x5 is the constant curve at x.)

The standard notion of concavity for twice-differentiable functions on the sphere is as follows.

Definition S.21. Let F be a real-valued function defined on an open subset of SP~!

spherical cap B, (y). Assume that F' is twice-differentiable.

containing the

1. We say F is geodesically strictly concave on B,(y) if the Riemannian Hessian of F' is
negative definite throughout B,.(y),

2'Vi,  F(z)z <0, Vz € B.(y) Vz € SP~L withz L 2. (S.55)

2. Let u > 0. We say F is geodesically p-strongly concave on B,.(y) if the Riemannian
Hessian of F satisfies the following eigenvalue bound throughout B,.(y),

2 Vi F(z)z < —p, Vz € B,(y) Vz € SP~L withz L 2. (S.56)

The terminology in Definition s justified by the following standard lemma.

Lemma S.22 (Restricting to geodesics). Let F' be a real-valued function defined on an open subset
of SP~! containing the spherical cap B,.(y). Assume that F is twice-differentiable.

1. If F is geodesically strictly concave on B,.(y), then for all geodesic segments ¢ : [0,1] —
B, (y) with image contained in B,.(y) and ¢(0) # ¢(1), the pulled-back function F o ¢ :
[0,1] — R is strictly concave on [0, 1].

2. Let pu > 0. If F is geodesically p-strongly concave on B,.(y), then for all geodesic segments
¢ :[0,1] — B, (y) with image contained in B, (y) and c(0) # c(1), the pulled-back function
Foc:[0,1] — Ris pL(c)?-strongly concave on [0,1]. Here L(c) := fol le(@)]|2dt =
cos~1((c(0),¢(1))) denotes the length of c.

Proof. See [4, Thm. 11.19(3), Def. 11.3] and [4, Thm. 11.19(2), Def. 11.5] respectively. ]

The usual implications of geodesic concavity are as follows.

Lemma S.23. Assume the setup of Lemma

1. If F is geodesically strictly concave on B,.(y), there exists at most one point x € B,.(y)
where Vgp-1 F(x) = 0. Such a point x is automatically a strict local maximizer of F.

2. Let u > 0. If F is geodesically u-strongly concave on B,.(y), then for all geodesics segments
c as in the lemma above, F o c is upper-bounded by a concave quadratic function via:

_ pL(e)?

(Foc)(t) < (Foo)(0)+(Foc)(0)t— £

t2, vt € [0,1].

Proof. 1. We first show that for all geodesic segments ¢ : [0,1] — B, (y) with ¢(0) # (1), the
derivative (F o ¢)’ is strictly decreasing on [0, 1]. To see this, note that since F' is twice-differentiable,
F o cis twice-differentiable; and since c is a geodesic it holds

(Foe)'(t) = é(t) " Van-1 Fe(t))é(t), (S.57)
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by [4l Eq. (5.30), page 106]. The right-hand side of (S:37) is strictly negative by (S.33) and the fact
é(t) # 0 (note ||¢(t)|l2 = cos™1({c(0),c(1))) and we are assuming c(0) # c(1)). Thus (F o c)” is
strictly negative on [0, 1]. Hence by the mean value theorem, (F o ¢)’ is strictly decreasing on [0, 1].

Now, to deduce item 1 in the lemma, assume for a contradiction that there exist two distinct points
21, %2 € B, (y) where the Riemannian gradient vanishes. Let ¢ be the geodesic segment connecting
x1 to xo. Again by [4} Eq. (5.30), page 106],

(Foc)(t) = é(t)  Vsp-1 F(c(t)).

By the vanishing Riemannian gradient assumption, this implies (F' o ¢)’(0) = 0 and (F o ¢)'(1) = 0.
But that contradicts the fact that (F o ¢)’ is strictly decreasing. So item 1 follows.

2. By Taylor’s theorem applied to F o ¢, for each t € [0, 1] there exists £ € [0, ¢] such that

(Foc)(t) = (Foc)(0)+ (Foc)(0)t + %t? (S.58)

From (S.37), (S:36) and ||¢(¢) |2 = L(c), we get (Foc)”(€) < —uL(c)?. Insert this into (S:38). O

The next tool is how we complete the proofs of our main results, by showing a second-order critical
point with sufficiently large functional value must land in a spherical cap around one of sa;.

Proposition S.24 (Tool #3). Let {a; : i € [K]} C SP~! be any system of vectors, let A = Span{a® :
i € [K]} C Sym(T}) be the corresponding subspace of tensors and let A C Sym(T}y) be another
subspace of tensors which is a perturbation of A with approximation error A 4. Let 0 < r < R < 1,
so there is an inclusion of spherical caps B,.(sa;) € Br(sa;). Assume F 4 is geodesically n-strongly
concave on the inner cap B (sa;), the height of the inner cap satisfies v > Aa/n, and Fj is
geodesically strictly concave on the outer cap Br(sa;). Then, in Bgr(sa;) there exists a unique
first-order critical point x* of Further, this point is a strict local maximizer for nSPM-P]
on SP~1. Finally, the distance between x* and sa; is upper-bounded independently of R and r via:

2A 4

2 — sag||3 < (S.59)

Proof. By Lemma a) and the assumption that F; is strictly concave on the outer cap, there
exists at most one critical point of F'; in Br(sa;). To prove the rest of the proposition, we let
the maximum of F ; in the inner cap B,.(sa;) be attained at z* € B,.(sa;); such a point exists by
compactness of B, (sa;). We will first show that z* satisfies (S.39), which is the main assertion. To
this end, by the choice of z*, note F 4(z*) > F';(sa;). Of course, 1 > F ;(z*). By the perturbation
bound (S:4T), F ;(sa;) > Fa(sa;) — Aaq =1— A 4. Combining the last three sentences gives

—Aq < Fj(sa;) — Fy(z™). (S.60)

Now let ¢ be the geodesic segment (S.54) connecting z* to sa;. By LemmalS.23b) and the assumption
2

that F ; is n-strictly concave on the inner cap, we have F';(sa;) — F ;(z*) < (F o ¢)'(0) — %

By the choice of z*, (F o ¢)(0) > (F o ¢)(t) forall t € [0, 1], whence (F o ¢)'(0) < 0. It follows

N nL(c)?
Fj(sa;) = Fi(z") < — ; ) . (S.61)
Putting Eq. (S.60) and (S.61) together, we get
L(c)? 2A
AL < _nl(e)® L(e)? < =4, (S.62)
n

Here the geodesic length L(c) is §p, where §y = cos~!((x*, sa;)) is the angle between x* and sa; in
radians. This is related to the squared Euclidean distance between z* and sa; as follows:

llz* — sa;||3 = 2 — 2(z*, sa;) = 2 — 2cos(fp).
Using the elementary inequality cos(¢) > 1 — 162, which is true for all § € R, we see

lo* = sall3 < 65 = L(c)*.
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Thus (S:39) follows from (S.62) as desired. We can quickly obtain the rest of the statement, and see
that z* is a strict local maximizer of F ; on SP~1 (hence also a first-order critical point), by noting
Aa

1—(a* sa;) < —=.
(@ sai) < =

2A
2 —2(z" sa;) = ||z* — saiH% < oA

For then from the assumption that r > A 4/n, we get 1 — (x*, sa;) < r. Hence x* lies strictly

in the interior of the inner cap B,.(sa;). Therefore 2 is a local maximizer of F'; on SP-1. By
Lemma @ka) and strict concavity, z* is in fact a strict local maximizer. This ends the proof. [

G Proof of Theorem M.7|

In this section we prove our deterministic theorem. Here we define ¢, o and Iz; , as in Definition

G.1 Boundson R; ; and |G, !||2

We start by relating the auxiliary scalars I?; , to the frame constants ps.
Lemma S.25. For each i € [K] and s € [n], we have

‘Ri,s| = %E;é}g |0£C?75‘ ps < Jlo® C®n78||oo Ps- (5.63)
If s is even, then we have a slight refinement:
min o,¢;' *ps < R; s < maxoe() *ps. (S.64)

(0#i = bt

Proof. For each i and s, use the definition of R; , the triangle inequality and the definition of p,:

|Risl =1 ) 00 (aiyan)’| < ) oo~ Iai, an) | < max o > Hai,an)l?

0:044 £:044 02044
K
< oy IC a0}l = 1) < e o~ < lr © €7 o

{=1

If s is even, then each term (a;, a,)® is nonnegative. So we have

— n—s A S n—s . S n—s
R;s = g%; 0eC) *ag, ae)® < %1}5 oGy E%;(a“ ap)® < %?25 o) ps,
: 1 : ¥

and likewise R; s > ming.e-; 0,(;'" °p, as announced. O

Remark S.26. The frame constants are small under the assumptions of Theorem [M.7with 7 > 0,
for then:

1 1 1
2 2 2
n°ps < n°pa+ (n +n)pn<6 - p2<@§ﬂ (S.65)
1 1 1
d 2 n< 2 2 " — n —_— = S.66
and (n°+n)p, <np2+ (n°+n)p <g = P <6(n2+n) %6 (5.66)

Consequently in the setting of Theorem[M.7] the system {a* : ¢ € [K]} is linearly independent.

Corollary S.27. Under the assumptions of Theorem@ the Grammian matrix given by (G,,); j =
(a;, a;)™ is invertible. In fact,

1 36
<

G2 < —.

Proof. This follows immediately from (S.66), and the bound 1 — p,, < 1,(Gy,) in Lemma[M.6] [
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G.2 Lower bound on maximum correlation coefficient

We begin the proof of Theorem [M.7] by showing that any constrained second-order critical point =
has at least one large correlation coefficient.

Proposition S.28. Consider a system {a; : i € [K]} that satisfies the assumptions of Theorem@
For a second-order critical point x of then either F 4(x) = 0 or we have

n—-2 A
2 >1—(1+ n ) Pz _ d L - .
1<% = 2n—1)) 1+ps 2(n—1)(1—=2p,) (1 +p2) 2(n—1) Fa(x)
A
>1—2p9 —2p, — .
- P2 Pn SF_A(II?)

Proof. Fix a second-order critical point z € SP~! of pSPM-P| and let ( = ((z) = ATz € RX.
Since we can change a, to —a, without altering the function F4 or the constants p,, we may assume
without loss of generality that ¢, > 0 for each ¢ € [K]. We may also assume that F 4 (x) # 0.

Our starting point is Eq. (S:44) in Proposition [S.18| which says that for each i € [K] we have

(1+2(n = 1)¢7) Fa(e) = (2n = Doi¢)* +n¢Rip + (n — D Riz — (4n — 2)As.
(S.67)

Since we want to deduce that ||{|| is large, we fix i € [K] to be an index such that the first (main)
term on the right-hand side of (S.67) is maximal; that is, let i € argmax e (x| 0¢¢;'~>. Now notice

K K K
0< Fa(x) = (Pa(a"),2") = ) _ovaf,a") =Y o0l <o > (7, (S.68)
=1 /=1 =1

from which it follows that ;¢* =2 > 0. In (S.67), our goal is to bound F4(z) on the left-hand side
from above, and R; ,,, R; 2 on the right-hand side from below, all by quantities involving ¢;.

Firstly using (S:68), the fact o;¢"~? > 0 and the definition of p, we have

K K
Fale) <Y ou(i <o) ¢ =i (1 + pa). (8.69)
=1 =1
Then by Lemma([S.23] Eq. (S.64) with s = n we have
Riz = minou(; ™ pa, (S.70)
while by (S.63) with s = n we have
G Rin = =7 o]l oo (S.71)

To further bound the right-hand sides in (S.70) and (S.71)) in terms of ¢;, we now show that o; ~ |0 ||
and that ming; 04C)' 2 > —0; (72

Showing o; = ||o|| : Let j € [K] be an index such that |o;| = ||o|| .. We note that o; > 0, because
if 0; < 0, then using ¢; > 0 and (S.43) we would have

1> oelag,a0)™ < o]l pa-

(£

o]l = lojl <|oj = | = [Rjm

This contradicts the assumption p,, < 1, so indeed o; > 0. Now consider the three facts:

1. 0:¢""% > 5;¢" 2 by definition of i;
2. 0; > 0; by 0; > 0 and definition of j;
3. ¢;>0and(; > 0.
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It follows that ¢; > (;. Using this and the bound for the auxiliary constants (S.63), we can estimate:

0j—0i<0; = +(' —0i=—Rjn+Rin <|Rjn|+|Rin| <20;pn.

Rearranging gives

05 20 2 (1- 2pn)aj = (1-2py) ”UHOC : (8.72)
By the assumptions in Theorem and (S.66), in particular p,, /(1 — 2p,,) > 0. Hence multiplying
throughout by p,, /(1 — 2p,,) in (5.72)) yields
pn
0i < pnllolloo,
1—-2p,

and then substituting into (S.71)) we obtain

G Rin = =GP oo pn 2 ¢ (8.73)
s 0o 1— 2pn

Showing ming; O'ZCEL_Q > —aig“i"_2: Assume to the contrary that ming; 04(?_2 < —aiCi"_Q and

let k& be an index attaining the minimum on the left-hand side. Since (" 2 > 0and Q,?*z >0, it

must be that o, < 0. Using 0 < 0 and (i > 0, we estimate

lok| < ok — G loe = [Rin| <ol o on-
This implies
lo®¢"=2 . = max{oi¢ 2, —onGi 2 = —onGi* < ol G2

Similarly to the previous part, using —akgg” > akC;L*Z we can see (i > (;, where j is again the
index such that o; = ||o|| . Hence, as before, we have

oj =0 =0 =+ —0ok=—Rjn+ Ripn < 205pn,

which rearranges to o, > (1 — 2p,,)0o;. Since we have previously shown o; > 0 and we know p,, <
1/2 by (S.66), this is in contradiction with o), < 0. Thus it follows that ming.s; U(C;_Q > —ain_Q
as desired. Substituting into (S.70) yields

Riz = min a0l 2y > —0i (M2 pa. (S.74)

We can now complete the proof of the proposition. Substituting the bounds (S.69), (S-73), and (S.74)
into the second-order criticality inequality (S.67), we get

(1420 = 1)¢F) (14 p2)oic] ™ = (2n = Noi(] > = 7 fgp

— (0= D)paoi % — (dn — 2)A4.

-2
Uz'@n

Dividing by (1 + p2)o;¢* 2 > 0, subtracting 1 and then dividing by 2(n — 1), this simplifies to

2> 1 n ( Pn 4P )_ dn — 2 Ay
S T 3 D\ 2o i) Tim) 2D U)o

We replace the denominator in the last term by F.4 () by re-using the bound F.4(z) < 0;¢" *(1+4ps)
(S:69). Then we rearrange the terms and substitute ||¢||2, > ¢Z. This gives the first inequality in the
proposition. The second stated inequality is an immediate consequence of the first, where we simplify

each term up to a constant factor using ﬁ <L14+p2>1,1-2p, > % and 2%2:% <3. O

G.3 Concavity

In the next proof step we analyze the Riemannian Hessian and show that it is strictly negative definite.
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Proposition S.29. Consider a system {a; : i € [K|} that satisfies the assumptions in Theorem|[M.7}
For any x,z € SP~1 with z | x, the Riemannian Hessian of F'j satisfies

p

2 — n
ZTvéD—lFA@?)Z < —2n+ 2712? + 8nA 4. (S.75)

(1= GI22) + 2n(3n — 2) 2

Proof. Leti € [K] be such that |¢;| = ||¢||, where ¢ = ((z) = AT . Our starting point is (S.49)
in Proposition[S.T9] which reads
1

57 Vb Fyle )z < n||Pa(@ 2|5+ (n — 1D(Pa@"), 2" %2%) — " + 404, (S.76)

Expanding P (z™) = Zﬁil ogay asin Deﬁnition we can upper-bound the second term on the
right-hand side of (S.76) as follows by applying Holder’s inequality and the definition of p,,:

K
(Pa(a™),2"%2%) =Y oul) g, 2 Z ;a2 +Z (00 = ¢ ae, 2)?

(=1
K
<D G a2 + o = (Ml Zc;*%ae, 2)?
=1 =1
K K " K 2
<Y G an2)? + [l = ¢ (Z g;) <Z(a4, z>">
=1 =1 /=1
K
<D G a2 + [lo = ¢ L+ pa)- (S.77)

~
[
—

Further we can quickly bound the second term in the right-hand side of (S:77). Firstly by (S:43) and
(S-63), we have [|o — (©" oo = max;c (k] |Ri.n| < [|0]|oopn- Then we can bound ||o| via

lofloe = [lo = ¢+ ¢ <1+ [lo = ¢ <1+ llolleprn = ol < (1= pn)~"
Putting the last two sentences together gives us

1+ pn

lo = ¢ oo (14 pn) < llollocpn(l + pn) < 1— Pn- (S.78)
As for the first term on the right-hand side of (S.77), we first split the sum:
Z M a2 = M an,2) + Y G s 2), (8.79)
£
We use Bessel’s inequality and the assumptions x, z € SP~1 and z L z to get

¢ ai,2)” = (a0, 2)7 + (aa, ) = ) < G (llaalls — ¢ < PP - ¢D).
(S.80)

Then we estimate

> G Hag ) < Yy G Zcz" P l prae — (TR < L o = G

0204 0200
(S.81)

where the last inequality used 2n — 2 > n. Finally we substitute (S.80) and (S.87)) into (S.79) to get

Zc% Har2)” <1=G"+ p. (S.82)

Combining (S.77), (S-82), (]'577'8[) we arrive at:

(Pa(a™), " 22%) < 1= (" 4 pp +

L+ pn
1—pn

. (S.83)
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At this point, we turn to the first term on the right-hand side of (S.76). Recalling Lemma [S.3]
Definition[S.T]and Corollary [S.27] we may write

[Pa(a" 1 2)|| 5 = n(a" " 2) Gy in(a" " 2), (S.84)

n—1

where (2" 12) := (2" 1z, a}) = ¢} "(ay, 2). Clearly (S.84) is less than or equal to

HG 1“2 HT] " 1 ||2 = ||G7L1H2Z<2n 2 QK,Z>2.
(=1

Re-using the just-proven (S:82) as well as Corollary@[, it follows that

17 20 4 o
HG 1| ZCM 2(ag,2)? < 1@_ p:ﬂ . (S.85)

To complete the proof, we plug (S.83) and m into (S:76) and rearrange terms to get (S.73). O

|Pate""2) [ <

As a corollary of [S.29] we can now prove the existence of exactly one local maximizer within
spherical caps of the global maximizers ta;s of the clean objective F 4.

Corollary S.30. Consider a system {a; : i € K|} that satisfies the assumptions in Theorem|[M.7}
Define the height v, € (0,1) by

1
11— 3n—2 41— 2n
1—T+ — <1_ pn+ n Pn + 2 pnAA>

n2-—py no 2—pn n2-—pp

1
1 2 2n
3n n

Then the 2K spherical caps B, (a1), B, (—a1), By, (a2), ..., B, (—ax) are disjoint. Further
for each s € {—1,+1} and i € [K], there exists exactly one first-order critical point x. of F ; in
B, (sa;). Morerover x is a strict local maximum of F i (hence second-order critical), and

Proof. First, we check that ry € (0,1). Indeed 7 > 0 is clear from (S.66), and r, < 1 is
equivalent to (3n — 1) on +4(1 — pp)A A< 1 which holds by the assumptions in Theorem [M.7}
Alsol—ry < (1— 3 +2p, + 2A4)20 2n as stated, by the bound on p,, (S.66).

Next, we check that the 2K spherical caps are disjoint. For a contradiction, suppose there exist
distinct (s,4), (s',i') € {—1,1} x [K] and x € SP~! such that # € B, (sa;) N B, (s'a;). Thus
(x,sa;) > 1—r4 and (z, s'a;) > 1—r,. By the triangle inequality with respect to geodesic distances
on the sphere, we know arccos (sa;, s'a;/) < arccos (sa;, x)+arccos (x, s'ay) < 2arccos (1 —ry),
hence by the double angle formula for cosine (sa;, s'a;/) > 2(1 — 7, )% — 1. But note that this gives
a lower bound on ps: letting y € S ~! be the midpoint of the arc joining sa; and s’a;, we have

p2 2 (y, i) + (y,ai)® =1 = (y,50:)” + (y,s'ar)? = 1 = (sa;, s'ar) > 2(1 —r4)* ~ 1,

where the second equality is again by the double angle formula. Therefore

1

1\" 1 1
>2(1—ry)?—1>2(1-—) —1>2(1—-—]-1=1--
p2 2 2(1=r+) = < 2n> ~ ( 2n> ’

n
which contradicts the implied upper bound on py (S:63). So the 2K spherical caps are disjoint.

For the remaining statements we apply Proposition@l Thus it suffices to check that F'; is strictly

n-concave on B(sa;, 1 — —) and strictly concave in the interior of B, (sa;). To verify these, we
will use Proposmon@to upper-bound the eigenvalues of the Rlemmaman Hessian of F ;.

So for the strict n-concavity condition, we want to show:

2—p, Aa P
—On+2m2— (1 — (1 — =2)2) 1+ 2n(3n — 2) 2
no+ 20 T (1= (1= S+ 2n(3n - 2) 12

+ 8nAy < —n. (S.86)
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Since (1 — x)** > 1 — 2na for x € R, we have

(1—A*‘) >1-2Ay,

n
whence (S:86) is implied by
2 _
o+ 4n21_7p”AA +2n(3n - 2)5 f”p +8nA4 < —n. (5.87)
Rearranging terms, Eq. (S-87) is equivalent to
(4n(2 — pn) +8(1 — pn)) A + (61 — 3)pn < 1. (S.88)

However indeed, (S-88) holds as a consequence of the assumptions in Theorem [M.7}

As for the concavity condition on B, " (sa;), we want to show:

,2— n
—2n + 2?2 P (1—(1—7’+)2”)+2n(3n—2)1p

n pn

However upon substituting in the definition of 7, we see that the left-hand side of (S.89) is precisely 0,
i.e., 74 was chosen to be maximal so that (S:89) holds. This completes the proof of the corollary. [J

+8nA4 < 0. (S.89)

G.4 Completing the proof of Theorem [M.7]

Finally, we can conclude the proof of Theorem [M.7]by combining the previous three steps.

Proof of Theorem[M7} Let £ = 342 A 4 4 A 4. Tt suffices to verify the following two claims:

1. Each second-order critical point z* of P|satisfying F 4 (z*) > ¢ must lie in one of
the spherical caps B,, (a1), Br, (—a1), ..., r+( ar) from Corollary-

2. The level £ satisfies £ < 1 — A 4.

It is easy to see that these statements imply Theorem|[M.7} By the first claim and Corollary[S.30] there
are at most 2K second-order critical points 2* with F'; (z*) > £. They are all strict local maximizers
of F ;. For each such point, there exists unique i € [K],s € {—1,+1} with [|z* — sa,||3 < 224,
Meanwhile by the second claim, for each s € {—1,+1},7 € [K] the maximizer z* of F; in
B, (sa;) from Corollary satisfies I 4 (x) > F 4(sa;) > Fa(sa;) — Aq =1— Ay > L. Thus
there are at least 2K second-order crltlcal points in the superlevel set, and the theorem follows.

Now we verify the first claim. Letting ¢ = AT z*, we want ||(||oo > 1 — . Indeed using the bound
Ay < Ay Ay 27
Fa(z*) = Fyi(z*) — Ag Sic Ax 2+3n2

21 3n? 27 3n2+4r 2T 2 2
i D s Sy R A NS
3n224+3n2 ~ 3n22+3n2+41 3n? 2+ 3n2 +4r 3n2
2
< 53T = A),
where we used ‘”C >¢ifb>a>0andc >0, Propositiongives
A 2
2 > 1929y — 20, —3—2_ >1-92p— 29, — —(1— A
<115 > p2 —2p Fal) > p2 =200 — (7 = Aa)
2 (/1 9 9
=120 =2pp — 5 | o —Ba—1"p2 = (0" +n)py
1 2
—1-— 42, 4 ZA
3n2+n'0 Tzt
2(1—3+2,0n+AA>
(I=ry)



1

Note that the penultimate line used (1 — z)» < 1 — % for z < 1, and the last line was a part of

Corollary [S.30}

Next we check the second claim. Substituting the definition of ¢, we require

3n? 42

Apg+ A u<l—Ay = Ayu< 0-

72 =
3712:-2 )

But this is guaranteed by the assumption A 4 < Ag. The proof of Theorem [M.7]is finished. O

H Proof of Theorem M.16

In this section we prove our random overcomplete theorem. Here we define ¢, o and R; s as in
Definition We recall the shorthand ex = K log™(K)/D™. Furthermore, as required by the
statement of Theorem [M.16] we assume that conditions hold [ATHA3]hold.

H.1 Boundson R; ,

A central part of the proof is to bound the remainder |R; ;|. We start with a general result that bounds
inner products with the basis coefficients o. Then we deduce a first bound on R; ;.

Lemma S.31. Assume that conditionsand hold. For any vector ¢ € RE, we have

o Te| < Ve Fa(@)ll€] - (S.90)

In particular, letting Ry = max; |R; 5| as in Deﬁnition we have

Ry <\JeaciFa(z) e [ICllan, " (5.91)

Proof. Since G, is symmetric and positive definite, we can reason as follows for the first claim:

lo "¢l =1 TG e (Eq. (ST4))
< \/(CQ”)TGﬁlCQ” \/ETGﬁlf (Cauchy-Schwartz w.r.t. G, 1)
= \/FA(JC)\/ﬁTGTlf (Eq. (512))

< VFA@)/ G 121I€]l2
< \/MH&HQ (condition[A3).

For (S:91), we note that R; s = o "¢, where ¢ € R¥ is given by ¢; = 1(j#1)(} ™ *(ai, a;)° (each
J € [K]). Substituting this into (S:90) gives (S:91), because

I€lla = | D &> (ai,a5)%
Jii
2n—2s 2s
2n 2n
< D¢ > (ai, a) (Holder’s inequality)
jiji jii
_ log(K) Y'\**
< [<ll5, (K (qog()) ) (condition[A2)

s s

=cfe <z,

where the last equation follows from the definition of € k. This completes the proof of the lemma. [J
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The restricted isometry property plays an important part in our analysis of the overcomplete regime.
In the next statement, we present the inequalities that we will use which rely on the RIP assumption.
Then as a corollary, we obtain a bound on the remainders R; , that will be more useful than (S:9T).

Lemma S.32 (Consequences of RIP). Assume that conditions |Al] hold. Let x € SP~ and let
T = I(x) C [K] satisfy the conclusions of Lemma Then it holds

)= ol

1€L

C2CYFa(x)ek. (S.92)

Further, there exists a constant C1, depending only on n, ¢y, co and ¢s, and another constant Cs,
depending only on n and ¢y, such that we have

Il < Fa(z) + Civ/ex Fax) + Cock. (S.93)

Proof. To show (S5.92), start with the identity F4(z) = Zf( 1 0:C!", then apply the inner product
bound (S:90) with & € R¥ given by &; = 1(j ¢ Z)¢}', and then use Lemma-based on RIP:

= ol =D oy

i€Z i¢T

VeaFa(x) /Z " (Eq. (S.90))
gL
< VeaFa()y | K (Lemma[S.12)

\/CQC5FA .

Next to show (S:93), split ||¢[|5" into a sum over Z and [K] \ Z:

IClon =S¢+ > ¢ (S.94)
ieT i¢T
As before, the sum over [K] \ Z is upper-bounded using the second conclusion in Lemma
DG < Fex (S.95)
i¢T

As for the sum over Z in (S.94)), we can relate this to F 4(x) by using
N =D+ Rinl (S.96)
i€ i€T i€T

Indeed we have already proven that the first sum on the right-hand side of (S.96) is approximately

F 4(x); more precisely (S:92) holds. We can see that the other sum is small by using our initial bound
on R, (S:97) together with the first conclusion of Lemma[S:12}

€T

<R G <Ry Y (2 < Ry(1+9)
icT s

< (14 6)\Jeacf Fa(w)ex < 2y/eac Falalex

Putting the last three sentences together via the triangle inequality gives

> G — Fa(x)

i€T

Combining (S.94), (S:93), (S.96)), we conclude that we may set

C, =2y and Cy = /283 + 24/ cact,

and (S:93) follows as desired. O

< \/CQE?FA(QT)EK + 2 cocy FA( )
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Corollary S.33. Assume that conditions hold. Let x € SP~1 be arbitrary and s € {0,...,n}.
Then there exists a constant Cy, depending only on s, n, c1, co and ¢g, such that

R, < Cye¥ max{e, Fa(z)} 2. (5.97)
Proof. Plugging (S:93) into (S:91) yields

Rs < y\/caci Fu(x) 5}? (FA(x) + Civex Falx) + C25K)T"§ C’sef? max{sK,FA(x)}lfﬁ,

where és = y/cac} (1 +C1 + 02)% O]

H.2 Lower bound on maximum correlation coefficient

We now provide a lower bound on ||(||~, depending on NOR

Proposition S.34. Suppose that x is a second-order critical point of and Fa(z) > ek.

Then there exists a constant Cy depending only onn, c1, ca, &5, 0, and another constant C,, depending
only on n, cq, ca, Cs, such that we have

2 2n—1 ¢ — EK % — EK % AA
> - —— — — _ .
=15 =1 2\ me) "“\mw) *re %
m—1 6 [ ex V' . A4
> — - — .
=1 2n—21+9¢ (CQ+C")(FA(3;)> SFA(:U)

Remark S.35. Note that while the statement is for a constrained second-order critical point of F';,
(S98) contains F 4 (z). This is intentional: later we use this result together with a bound on F4(z).

Proof. Our starting point is Eq. (S:44) in Proposition|[S.18] which says that for each i € [K| we have
(14+2(n—1)¢) Fa(z) > 2n—1)0y¢ > + 0 *Rip + (n— 1)R;ip — (4n — 2)A 4.
Multiplying both sides by ¢? and using that 1 + 2(n — 1)||¢||2, > 1 + 2(n — 1)(?, we have

¢ (1+2(n = DICI%) Falz) 2 2n = D)o + ¢ (0GR + (n = DRi2 — (4n — 2)Ay).
(5.99)

Now let Z = Z(z) C [K] satisfy the conclusions of Lemma(S.12] and sum the inequalities (S:99) as
i ranges over Z. Denoting ||C||3 7 = Y7, (7, this gives

i€z
IS5z (1 +2(n = DCI1Z) Fa(z) = 2n = 1)) 0i¢i' + Y G(n¢ > Rin + (n — 1Ry
ez ez — (4n —2)A4). (S.100)
We lower-bound each of the sums on the right-hand side in turn. Firstly by (S.92),
(2n—1) Za,@" >(2n-1) (FA(x) - czéQFA(ac)gK) . (S.101)
ieT

Secondly by combining the triangle inequality, the trivial bound |¢}*~*| < 1, Corollary with
s = 2,n and the assumption F 4(x) > £, we have

Z C?(’I’LCZTL_2RLH + (’I’L — I)Ri,g — (47’L —2)AH)

1€L
> —[I¢13.2 (nRy + (n = 1)Ry + (4n — 2)A 4)
> —||¢|22 (né’n exFa(@) + (n— 1)Coc e Fa(z) ™ + (4n — 2)AA> . (S.102)
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Inserting (S.101) and (S.102) into (S-100) gives

1CI3.2(1 + 2(n — DIICIP.) Fala) > (20— 1) (FA<x> - czéyFAmsK)
1613z (nCuv/ZrcFa(@) + (n = 1)Cac Fa(@) "= + (dn — 2)A4) .

Isolating ||¢[|%,, and using 1 — & < [[¢]|3 7 < 1+ and 32=5 < 3, yields (S.98) as desired where

— 1 y/cacy n o =~ — 1~
= n d n == .
C2= T 5on—g Tan—gr M Ca=30
This completes the proof of the proposition. O

H.3 Concavity

We now show that F 4 is strictly geodesically concave in a spherical cap around each +a;.

Proposition S.36. There exist constants C, Ag and Dy, where C and A depend only on n, co, and
Dyq depends additionally on c1, ¢s, such that C' < 1 and if A4 < A, and D > Dy, then for all
i€ [K]and s € {—1,1}, it holds

1. Fj is strictly concave on the spherical cap B, (sa;), where
1
ry=1- (1 —C(0.99 - 4AA)2> >

2. There exists exactly one local maximum in each spherical cap B,., (sa;), and denoting it by

Ty, we have

2A
T. — sa;||2 < =4, (S.103)
n

Proof. We first note that Lemma implies that, for all y € SP~1,

K

D (wa)® = ICWI3n < Faly) + Cvex max{ex, Fa(y)} <1+ O(vex),

i=1

thus since limp_,o, ex = 0, for all u € (0, 1) there exist Dy such that if D > Dy,
K
Z(y, a;)®™ <1+, uniformly forall y € SP~1. (S.104)
i=1

Leti € [K], s € {—1,1} and y L x arbitrary and recall (S:49),

;wvsa VFi(@)y < [[Pa )7+ (0 - D(Pa@™), 2" ?) = " 4404, (S.105)

The second term can be bounded using Lemma [S.16]
[(Pa(a™),z"2y?)| < [(a™, 2" 72y?) [ + [(Pa(a"™) — 2", 2" %)
<0+ ”P.Ai( N g [l Sym(z "_2y2)||

\/1_HPA (xm)] |F

The first term in (S.103)) is slightly more involved. We first use Lemma[S.5]and [A3]to write

[Pa(@ )5 = B y) TG, B 1y) < e ||B(z"y)||2.

(ai,x
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Then, by leveraging the fact that y | z, we further get
K K

18" L )s =S (ag,2) D (a5, 4)? < (a5, 2)2 Hai, 9)? + Y _(aj,2) D, y)?
j=1 j#i
< ag, ©)?"2(|ag]® = (@i, x +Z aj,x) @ (a;,y)?
J#i
K
- <ai7 x>2n72 - <a'i7x>2n + Z<a'j7x>(2n72) <aja y>2a
e

where (a;,y)? + (a;, )2 < ||a;||? is a consequence of Bessel’s inequality. On one hand, since the
function f(z) = (1 — z) "7 — (1 — z) is concave in [0,1], and f/(0) = %, we have f(z) < £

which implies (a;, 2)?"2(1 — (a;,2)?) < % On the other hand, using Holder’s inequality
with p = n and ¢ = -5 satisfying 1/n 4 (n — 1) /n = 1, and Equation (S.104), we get

K K n "
Z<ag‘7$>(2n72) (aj,y)* < Z(%A@zn Z(aj,w%
J#i J#i JAi
n—1
<@+ p)r (14 p— (e, 2)™) "

IN

(1 + 5) (14 51— (as,2)>) "

Combining the estimates and writing 7 := 1 — {a;, z)?" for short, we obtain

ERR -1 et )
5y Vi Fa()y < (|65, (n+ (n+ p) (n+u) )+(n DV —1+n+484

<Gy (n+ (o ) 0"F + ™)) + (0= )y — 147+ 484
<G, ((1+n+ﬂ)\/ﬁ+(n+u)un ) +nyn+48.4—1
< (n+(n+p+ 1)) Vi + (n+ p)eap™ +4A4 — 1.
Now choosing w (and consequently Dy) such that (n + ,u)cz,u% < 0.01, noticing that pco <

2
(n+ p)cop™=, and setting C' = <m> , we get

L /n
and thus, by rearranging terms, we get that F'; is strictly geodesically concave in B, sa;.

‘We now define
1
Foi=1— (1 —C(0.49 — 4AA)2) .

and notice that for all # € B, (sa;) and y € SP~*, (S106) implies that y ' V2,_, F 4 (z)y < —n.
We also have

2n 2 C 2 20 2

1 1-C (049 — 4A4)* > 1 (1 5, (0.49 4AA)>049 o (1 049AA
c 8 Ay
>0492— (1- —A ——
092n< 0.49 A)>n’

where the last equality follows if we choose Ag = 0.492 26; ( + 3. 92 ), since Ay < Ag.

Therefore, applying Proposition [S.24] we obtain that it exists exactly one local maximum z, €
By, (sa;), and z, satisfies (S-103).

Finally, since F; is strictly geodesically concave on B, (sa;), Proposition implies that there
exists at most one local maximum in B, (sa;), thus since Bj, (sa;) C B, (sa;), T is also the only
local maximum of B, (sa;). O
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H.4 Completing the proof

We now have all the pieces to conclude the argument for Theorem [M.16]

Proof of Theorem[M.16] Suppose that x is a local maximum and F 4 (x) > Cex + 5A 4, where C
will be defined below. Our proof strategy is to show that this implies that x is in one of the 2K
spherical caps defined in Proposition[S.36] The rest of the proof then follows from Proposition[S.36]
since each spherical cap contains exactly one local maximum.

Denote C = C + C,, from the statement of Proposition[S.34] and define C'so that C' > 1. Therefore
F ;(z) > ek and Proposition implies
1
2n—1 ~ n A
n 1) _o EK _ 37.,4.
2n—21+494 Fy(x) Fp(x)
By the AM-GM inequality, we have

¢ (Fi@)) "< ; (4”_10”5@) + - ”) 7

~ £K % AA 1 411—1 ~ 1 1
< n Ag)4-——.
C(Mm)) +3FA<x>—FA<m>( n Cext3 ““)*4

We now define C' := £4"C™, thus having

(=T

thus

4 4n—1~
Fa(x) >FA(-T)—AAZC€K+4AAZ ( - CnEK—I—SAA),

- 3
and
3 €K " A_A 3 1 1 1
C|—— ——— <-4+ - - =<1 - —.
(FA(J:)> + Fyu(x) — 4 + 4  4n — 4n

2n—1 50 L 1
If we now choose dy such that 57— T < 5o We have that if § < Jg, then

l1¢IIZ >y 2zl o (1—1>>1 (S.107)

2n—21+0 dn) = 8n’
Note that we always have F4(x) > [|¢||*?. To show this, define i such that ||(||oc = |(;|. Then

Fa(@) = [Pa(@)[[? > | Py ()] = ¢ = |[¢|22. Therefore, (ST07) implies that Fa() >

(8%)n and since limp_, o, ex = 0, for any v € (0, 1), there exists Dy such that if D > Dy, then

N
C < 8nCe
(FA(I)) -

Furthermore, choosing &y such that %=1 %% < min { g, v/}, we obtain, by applying Proposi-

tion again, that for all v € (0, 1) there exists Dy and &g such that, if D < Dg and ¢ < o,

X3

1
< —v.
2

Au
Fa(x)
Simply to improve the implicit constant, we can choose v = 0.01, and notice that F 4(x) > 4A 4, to
get |[¢]|%, > 0.96/4, and consequently, Fl4(x) > (0.96/4)". Plugging this in (S.I08), we obtain

ICI% > 1— v —3(4/0.96)" A 4.
We now further choose A and a smaller v such that, if A 4 < Ay, then

’\”/1—0(0.99—4AA)2 §1—9(0.99—4AA)2
n

IC|Z >1-v—3 (S.108)

<1- % (0.98 — 7.92A 4)

<1—v—3(4/0.96)"A4 < |IC|I%- (S.109)
This then implies that 2 must lie in one of the caps defined in Proposition[S.36] and the rest of the
result follows from Proposition For (S:109) to hold, it suffices to choose = min(0.49<,0.01)

c n c
and A = 0495/ (3(4/0.96)" +7.92%). -
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I Deflation bounds and proof of Theorem [M.1§|

Suppose we want to decompose the tensor T', which is an estimate of the low rank tensor 7' =
Zfil AiaP™. We will consider the following slight modification of the SPM algorithm [§]].

Algorithm 1 SPM with modified deflation step

Input: 7 € T
Hyper-parameters: o, 7 € RT
Returns: (ay, 5\;6);66[[(]
M <« Reshape(T', [D™, D™~"]).
Set K as the number of singular values of M exceeding a.
Set M K as the rank K truncation of the SVD of M.
Let A = colspan(U) and A; = A
fork=1,...,Kdo
Obtain dk by applying POWER METHOD [8] on functional F; until convergence.
Repeat last step with new initializations until F 5, (ar) > .
ifk=1 thend1 — (Nll
else Obtain ay, by applying POWER METHOD on F'; with Gy, as starting point until convergence.

N 1
A S.110
O e@ T I vecl@™ ™) 510

if k < K then
Aps1 < Ap 0 (M) vec(af™ ™))+

We analyze Algorithm [I] assuming the conditions of Theorems or The conclusion
will be Theorem [M.T8] We note the sign and permutation ambiguity there are inherent to the CP
decomposition.

Theorem S.37 (= Theorem . Let T = Z@K=1 Nal™ e Sym(TRY), M =
Reshape(T', [D", D™7"]) and o1(M) = ... = ox (M) > 0 be the singular values of M. De-
fine o, 7, M as in Algorlthm assume Ay == || M — M|y < 50k (M) and let A 4 = m.

Suppose that T verifies the assumptions of either Theorem @or Theorem define Ay as in
the corresponding theorem statement and let £(A 4) be the corresponding level set threshold, which

in both statements depends on A 4. Then there exists constants C1, Cs, not depending on T or Ay
(see mfor definitions of these two contants), such that if Ay < o < o (M) — Ay,

Ay = ClAA + CovV Ay < Agand T > €(AA) there exist a permutation 7 € S and unit

scalars s1,...,8K € {71, 1} such thatAlgorlthmreturns (ag, j\k)ke[K] with error bounded by
[2A m _2Y )
[ Sk@r(ry — ak < A and k2 |< m/”\/ At AA (S.111)
n Ar (k) /\k ox (M

In particular, in the noiseless case (Ap; = 0), Algorlthmlreturns the exact CP decomposition of T,
up to permutation and sign ambiguity.

A result on the stability of matrix pseudo-inversion is needed; we include a proof for completeness.
Lemma S.38. Ler W,W € RP*Y and suppose that W has exactly r nonzero singular values
oo(W) > ...>0.,(W)>0and Ay = |W —W|2 < 0.(W). Define W, as the SVD of W
truncated at the r-th singular value. Then

. A 2 1
wt Wi, < W .
| T“—ammAw<mmo+mwmAw)

Proof. We denote the singular value decomposition of matrices W, W € RP*4 g5
_ 1 0 174 s s > V1
vy 2)() oo ol 2)(
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where ¥ and 3 are diagonal matrices with the largest r singular values of W and W on the diagonal,
respectively. We have |[WT — Wi, = HUlzflVlT - Ulf]flf/lTHz. Then
s v - 00 = Uy - GO s+ Oy (st - Ot

= (U] - UUETWV + STV (WO -,

where we used U U] U, STV, = U057 = U ST VT VAV, and
U7 VW =057V (M0 + Va0, ) = 0,07
Furthermore,
wrositv" -y =wTos v, —wvT + vy -y
=W —wviuHusT v+ vy -y
=W =whHuE VT + (T =i,
We then have
Wt =il = o= T - S|
= (U] =0 UST VT + O 57 VT (W T - whusTtvT
RSO AVAARSATD]
A N A e N L N

Flsev] v -],

= or<WA>VK Aw <or<2W> " w(W)l— Aw) |

The last line uses Wedin’s bound and ||U; 37V, |2 = . (1W) < s-wi—am» Which comes from

Weyl’s inequality. O

Next we control the propagation of error on the weights and intermediate subspaces in Algorithm|[T]
Proposition S.39. Define T, T as in Algorithm with M := Reshape(T, [D", D™~ "]) and its
singular values o1(M) > ... > ox(M) > 0. Let M := Reshape(T', [D", Dmnﬁ, and suppose

that Ayp := ||M — M||y < o (M). Then the error for \;, obtained by Algorithm
follows:

1 1 1 R Ay ( 2 1 )
— — — | < V2ml|ag —ag ||+ + . (8.112)
e Al ox(M) e =l ox(M) = Ay \oxg(M) " ox(M) = Ay

Additionally, let A, = span{a?",i € {k,...,K}}, Alg—1) the submatrix of A with columns in

[k = 1], Gae—1y = (AF_y)) T (AFy) = (Ag_yAp-1)®" and a1 = \/[Gap1ll2. Then

the error of the deflated subspace is bounded by

Ay 2 1
< .
k ‘2 - O'K(M) — Ay (1 +zrg[%§(] |>\Z| HGnH2”Gmin”2 (UK(]W) + UK(]W)—AM>)

k—1
1
+ max |\; Gullo———|(m—n as — agl2.
s VTG | (= ) 2 s

is bounded as

[P =24

(S.113)

Proof. We start by showing that (S:110) holds in the clean case, that is,
1
vec(aP™)T(MT)tvec(ad™ ™)

A =
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We have .
M = 3" 2 vee(a™) vee(af™ )T = AT A(A )T,
i=1

where A = diag(\1, ..., Ax). Therefore, (M T)T = ((A*™)T)TA=1(A*™~™)T and

(AT (MT)TA ™ = A7L, (S.114)
Denoting by ey, the k-th canonical basis vector, we have vec(a}™) = (A*")ey, thus
vec(aP™) " (M)t vec(al™ ") = e, ((A’")T(MT)TA""*”) er =ep A lep = )\ik
Then
‘;k — )\ik = lvec( ®") (M}) vec(ay, @m=ny _ vec(a%”)T(MT)Tvec(a%m_”)

< |vee(af™) T (VL)' = (MT)1) vec(af™ ")
el () e ) veelaf™ )
—|—‘ vec ak ") — Vec(ak NT(M T vec(a%m n)‘

< HMIT( - MTH + ||MT||2 (Hal@n _ @z@nHF + Hasém—n _ dz@m_n”F)

The first term is bounded using Lemma [S:38] while the bound for the second term follows from

HM Iz = M) and

d
1
o - 242 =2 2Ty =2 -2 (1~ gl — 1)
<2-2+d|z—y|* = dl|lz -yl (S.115)
where we used (1 — )¢ > 1 — dz forall z < 1 and d > 1. Using AM — GM, we obtain

o™ = aP™ [ p + [l = a?™ [P < (Vi —n+v/n) a; — aill < vV2mla; — all,
and the proof of (S.I10) is complete. Regarding, (S.113), we have that

k—1
Ay = A0 (M) vee(@@™ ™))" = AN colspan((Mg )T AR" )+
i=1
and . . . . A
A = colspan(Mp ) = colspan((M %)) D colspan((M;)TA[',::]"). (S.116)

We first show that if 7' = T, A = Ay, that is,
AN colspan((MT)TA['g':]")J‘ = span{a™,i € {k,...,K}}.

It is enough to show that dim(A) = K — k + 1 = dim(A) and that A, C A;. We have
that dim(A) = K, dim(colspan((M})TA[']:”*")) = k — 1, thus (S.116) implies that dim(A;) =
K — k+ 1. To show that Ay C AN colspan((M T)TAS" |))*, note that,

Ai, = span{al",i € {k,...,K}} = colspan (A ) C colspan(A*™™") = A,

where [k : K| = {k,..., K}. On other hand, colspan(A[‘k K]) (M T)TA["”_]")l is equivalent
to, for alli € [k K, j € [k — 1], vec(aP™) T (M ")t vec(a™ ™) = 0. In fact, (S.1T4) implies
that, vec(aP™) T (M 7)) vec(af™ ") = (A* )ij =0foralli € [k: K], j € [k — 1], as we wanted
to show.

Let U = (U, Us), U = (Ul, Ug) be orthogonal matrices such that the columns of U; and U1

are orthonormal basis for A and A, respectively. Moreover, since colspan((M T)TA['km 1]” ) C A,
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there exist orthogonal matrices O = (O1,05) and O = (01,02) such that colspan(U;07) =

colspan((M T)TAY™ ") and colspan(U7;0,) = colspan((M )t A['km 1]'). respectively. We then

have Ay, = colspan(U;03) Ay = colspan(Ulég) thus:

)

HPAk P; H —HU10202U1 0,0,0] U1’

- HUlUl — 0,07 —U,0,07 U7 —Uléloff]f‘

< HUlUleﬁlﬁlTH +HU10101FU1T*l710AlOAIUlTH .
2 2
The first term is bounded by Lemma@ while the second term is bounded using [S, Theorem 2.5]:

)

o] vy - 0:10:0707 || < H (amyagsy - () Ay ((MT)TA‘;"””)T‘

[k—1] [k 1]

<o -, |

o]

Letn; > --- > ng be the singular values of (M )T A*™~" andv; > --- > v,_; the singular values

oM —mn ] —_ T eMm—n T
of (MT)TAF™ ". We have H((MT)TA m=n) H2 = ;- and ’(( DA™ ) ‘ = .4~ More-
over, by [[10, Theorem 1], we have v, > 7k, thus (( Ht A['km 1]") ‘ < H )T Aem— n)THQ.

Furthermore (S.I1T14) implies that ((MT)TA"”*")T = A(A*") T, therefore,

[ (rmyages)'| < iacaenT, < masn VG
2
On other hand, we have

T em—n TT\T fem—n
H MY AR — AR

< ||(at = iyt) agsr

oyt (s = Ay

2

< [|rmyt = gyt|| [|agesr ),

+ |yt sy - Ay,

The term H (MYt — (M)t H2 is bounded by Lemma |S.38

147", = VIGm-allz,

T _ 1 1 :
and H(MK)TH2 = i < sron—ay - Finally,

HA[k_;] 2 =

k-1
- @m— ~®@m—n||2
HA.m 8 A[.I;nln HA.lgnl]n A[./:ll]n P 2\\%—"’ t—ag" nHF
=
k—1
2
<[ m=n)Y " lla; —aill3,
i=1
where we used (S-IT3) in the last line. O

We can now prove our guarantee for end-to-end symmetric tensor decomposition using SPM.

Proof of Theorem[S.37] First, to show that Algorithm [T] picks the correct tensor rank K, we use the
assumptions of Theorem [S.37)and Wey!’s inequality to obtain

ox (M) > o (M) = Apy > > App > o1 (M).
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Then, we show the bound on ||dj, — || using induction on k. When k = 1, we have .A; = A. Then,
Lemmaimplies that || P4 — P4|| < A4. Since a; was returned by the POWER METHOD, it is
a second order critical point of F'4, and Algorithm |ljasserts that F'4(a;) > 7 > UAL) > U(Ay).
Therefore a, is a second order critical point in the fevel set stated 1 in Theorem [M.7]/[M.16} which
implies that there exists 7(1) := 4 € [K] and s; € {—1,1} such that ||a1 — s1a1)|| </ MTA. If

k> 1,letn([k —1]) = {m(i),i € [k — 1]} and A}, = span{a®” i € [K]\7([k —1])}. Since the
subspace deflation step in Algorlthmﬁ]does not depend on the sign of @;, ¢ € [k — 1], we can flip the
sign in the bound provided in Proposition [S.39]

AM 2 1
< m )
2 ox(M) - Ay (Hief}?ﬁ Al VIGnllzl|Grm—nll2 <UK<M) " oK(M)AM))

k—1
1
—&-max)\i Gn —_— m-n aﬂ'i_sidiQ
max VIl 2= ¢ );” (i) [

[Pa =P

. 4
<Ay (1 A Grll2||Grm—nllo——=
< A (14w VTG TGl 7 )

2 2(m—n)(k—1) /%
e VIG5 2 ED

A 4
<A (14 max IVIGTRIG o Te i

2 2(m—n)K [
; A
e VTG 27 A

= Ay,
where we set 4
Ci=1 i Gull2l| Gm—nll2 ———, S.117
1=1+ {gﬁgﬂ VG2l HQaK(M) ( )

Cz = max X VGl |2 ,/ (S.118)

Then, since FAk (ag) > 17 > K(AA), and ay, is a second order critical point of Ay, Theorem

and

-/mimplies that there exists m(k) € [K|\m([k — 1] and s, € {—1,1}, such that
llar — skax@yll < . In particular, it is shown in the proof of both theorems that a; lies in a

spherical cap centered around Skax(k) Where F'; is concave. However, in both theorem statements,
the radius of the spherical cap where concavity holds is a decreasing function of A 4, therefore ay, is
also in a spherical cap centered around sga(x) where F ; is concave. Applying the POWER METHOD
with the functional F'4, using a; as a starting point will then converge for the local maxima in this
concave region, and the bound for ||y, — Sk (i)l follows.

Finally, the error bound for A, follows from the bound on llar — srar )| and Proposition O

We conclude with a bound on the error in terms of the scalar coefficients \;, which follows from a
bound on ok (M).

Lemma S.40. With o (M) defined and under the same conditions of Theorem it holds
min; ||

)>
VG alIGL 2

Proof. Let 11;(A) denote the j-th algorithm (in descending order) of A, thatis 111 (A) > pa(A4) > ---.
We first show that for all matrices A,,«,, and B, x,, such that m > n and B is symmetric and positive
definite, we have

ox (M (S.119)

.un(ATBA) > fin(B) (ATA)
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In fact, we have AT BA = pu,,(B)AT A+ AT (B — p,(B)I)A, therefore by Weyl’s inequality [13]:
pn(ATBA) > 11 (B) (AT A) + p1n(AT(B = pn(B)1)A) > pn(B)pn (AT A),
Applying this twice, we have

O’K(M) =0k (AonA(Aomfn)T) — \/,UK (AonA(Aomfn)TAoman(Aon)T),
> Vit Gonn)y 1 (ATmAZ(AS)T),
> Iniin INil vV i (Grn—n )\ K (Aen(A*m)T) = mln RY |\/‘7K n)0K (Gm—n).

Now the lemma follows from ok (G,,) = 1/||G;; |- O

Remark S.41 (Small A\;). Lemma indicates that the smaller min; || is, the larger is the error
of the decomposition obtained by SPM. For instance, the lemma can be used to obtain the bound

A JIGa [211G Ll
ming [Xi] = Anry/11Ga [a]| Gl

A.A<

which suggests a smaller min; |\;| increases the subspace error A 4. This is also evident in the error
arising from deflation. Substituting Lemma into the definition of C'; and C' in Theorem S.37}

i |\
01§1+4max‘ N (T (e

i [ Adl
and

o I0AX; max; |\ _
C \/ K |G \/
2% mm | Al | me "

Here we denoted the condition number of a matrix A by x(A) := HAH2 HA’l H2

Finally, the issue also shows up in the bound of the tensor coefficient error of Theorem [S.37}

¢||G allGrL sl —
4 .
i T (2\/m/nAA+ AA>

m
Sk

Ar(k) )\k

References

[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton
University Press, 2009.

[2] P.-A. Absil, R. Mahony, and J. Trumpf. An extrinsic look at the Riemannian Hessian. In International
Conference on Geometric Science of Information, pages 361-368. Springer, 2013.

[3] R.Adamczak, A. E. Litvak, A. Pajor, and N. Tomczak-Jaegermann. Restricted isometry property of matrices
with independent columns and neighborly polytopes by random sampling. Constructive Approximation,

34(1):61-88, 2011.
[4] N. Boumal. An introduction to optimization on smooth manifolds. Available online, Nov 2020.

[5] Y. M. Chen, X. S. Chen, and W. Li. On perturbation bounds for orthogonal projections. Numerical
Algorithms, 73(2):433-444, 2016.

[6] O. Christensen. An Introduction to Frames and Riesz Bases, volume 7. Springer, 2003.
[7

—_

—

A. Fengler and P. Jung. On the restricted isometry property of centered self Khatri-Rao products. arXiv
preprint, arXiv:1905.09245, 2019.

J. Kileel and J. M. Pereira. Subspace power method for symmetric tensor decomposition and generalized
PCA. arXiv preprint arXiv:1912.04007, 2019.

T. G. Kolda and J. R. Mayo. Shifted power method for computing tensor eigenpairs. SIAM Journal on
Matrix Analysis and Applications, 32(4):1095-1124, 2011.

[8

—

[9

—

34



[10] R. C. Thompson. Principal submatrices ix: Interlacing inequalities for singular values of submatrices.
Linear Algebra and its Applications, 5(1):1-12, 1972.

[11] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint,
arXiv:1011.3027, 2010.

[12] R. Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science, vol-
ume 47. Cambridge university press, 2018.

[13] H. Weyl. Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen
(mit einer anwendung auf die theorie der hohlraumstrahlung). Mathematische Annalen, 71(4):441-479,
1912.

35



	Overview of main proofs
	Setup and notation
	Proofs of lemmas in Sections M.3 and M.4
	Proof of Lemma M.1
	Proof of Lemma M.4
	Proof of Lemma M.5
	Proof of Lemma M.6
	Proof of Lemma M.9

	Derivation of Riemannian derivatives and optimality conditions for nSPM-P
	Riemannian derivatives of nSPM-P on the sphere
	Proof of Proposition M.3

	Preparatory results on random ensembles over the sphere and Conjecture M.15
	Proof of Lemma M.11
	Proof of Proposition M.13

	Technical tools for proving Theorems M.7 and M.16
	Proof of Theorem M.7
	Bounds involving error terms
	Lower bound on maximum correlation coefficient
	Concavity
	Completing the proof of Theorem M.7

	Proof of Theorem M.16
	Bounds on Ri,s
	Lower bound on maximum correlation coefficient
	Concavity
	Completing the proof

	Deflation bounds and proof of Theorem M.18

