
Supplementary Material: Landscape analysis of an
improved power method for tensor decomposition

In these appendices, we supply proofs for the statements made in the main body of the paper. We
indicate references to sections or statements in the main body of the paper by adding M to the
reference. Results solely within this supplementary material are labeled with a leading S.
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Section C: Proofs of lemmas in Sections M.3 and M.4
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Section G: Proof of Theorem M.7
Section H: Proof of Theorem M.16
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A Overview of main proofs

Before commencing with the exact details, let us first give a high-level overview of the main steps
in the proofs of Theorems M.7 and M.16. We recall the definition A := [a1| . . . |aK ] ∈ RD×K .
The proofs consist of three steps. We begin by plugging in y = ai, where i is the index such that
|⟨ai, x⟩| = ∥A⊤x∥∞, in (M.7). Then using either incoherence constants ρs and ρn for Theorem M.7,
or using Assumptions M.A1-M.A3 for Theorem M.16, a suitable rearrangement of (M.7) immediately
gives

∥A⊤x∥2∞ ≥

1− 2ρ2 − 2 ρn
1−2ρn

− 3 ∆A
FA(x) , for Theorem M.7,

1− 2δ − C̄
(

εK
FA(x)

)1
n − 3 ∆A

FA(x) , for Theorem M.16,
(S.1)

where the constant C̄ in the second case depends on n, c1 and c2. For Theorem M.7, this immediately
suggests the largest correlation coefficient satisfies ∥A⊤x∥∞ ≥ 1 − O(ρ2 + ρn +∆A), provided
FA(x)≫ ∆A as assumed in the statement. In the case of Theorem M.16, and within the level set
FÂ(x) ≥ CεK + 5∆A, (S.1) first implies that ∥A⊤x∥∞ is bounded from below by a constant that is
independent of D,K. However, by FA(x) ≥ ∥A⊤x∥2n∞ , we can update the lower bound on FA(x)

and re-use it again in (M.7). The resulting bootstrap argument implies ∥A⊤x∥∞ ≥ 1−O(ε1/nK +∆A),
i.e., there must be at least one large correlation coefficient.

The second step is to show that the Riemannian Hessian∇2
SD−1FÂ is negative definite on spherical

caps around the tensor components ±ai. We prove, uniformly for all unit norm z ⊥ x, the bound

1

2n
z⊤∇2

SD−1 f̂(x)z ≤

{
−1 + n 2−ρn

1−ρn η + 3n−2
1−ρn ρn + 4∆A, for Theorem M.7,

−1 + C̄
√
η + C̃ε

n−1
2n

K + 4∆A, for Theorem M.16,
(S.2)

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



where η := 1−maxi∈[K]⟨ai, x⟩2n, and C̄, C̃ depend only on n, c1, c2 and cδ . Hence, the Riemannian
Hessian is negative definite and FÂ is strictly concave in spherical caps around ±ai.
In a third step, we consider a spherical cap Bsai (s ∈ {−1, 1}) around sai. By compactness, a
local maximizer x∗ of FÂ must exist within the cap Bsai and by strict concavity it must be unique.
Moreover, its objective is bounded from below via FÂ(x

∗) ≥ FÂ(ai) ≥ 1 −∆A. Using a Taylor
expansion of the function g(t) = FÂ(γ(t)) where γ is the geodesic path from x∗ to ai, and combining
this with the upper bound in (S.2), we obtain ∥x∗−sai∥22 ≤ 2∆A/n. Since we can start the argument
with a spherical cap which is strictly larger than {y ∈ SD−1 : ⟨y, sai⟩ ≥ 1−∆A/n}, it follows that
x∗ is not on the boundary of Bsai , and thus x∗ is a local maximizer of nSPM-P.

We complete the proof by noting that all local maximizers of nSPM-P contained in the superlevel set,
which is specified in the respective theorem, satisfy ∥A⊤x∥∞ ≥ 1− ϵ, where ϵ depends on ∆A and
ρ2, ρn, or εK . In particular, they are contained in spherical caps Bsai constructed in the third step.

B Setup and notation

Additional notation. Besides the notation in Section M.2, we will use the following in the rest of the
supplementary materials.

• For tensors S, T , we abbreviate their tensor product via concatenation, ST := S ⊗ T , and
the tensor power by Sn := S⊗n. (It will be clear from context when concatenation denotes
matrix multiplication instead.)

• We use Vec(T ) to denote the vectorization of a tensor T ∈ T nD , i.e., Vec(T ) :=
Reshape(T,Dn). Also, Tensor(−) := Reshape(−, [D, . . . ,D]) indicates the inverse
mapping, which tensorizes a vector.

• We denote the (columnwise) Khatri-Rao power by a bullet: if a ∈ RD then a•n :=
Vec(a⊗n) ∈ RDn

. If A = [a1| . . . |aK ] ∈ RD×K then A•n := [a•n1 | . . . |a•nK ] ∈ RDn×K .

• We write the Tucker tensor product as follows: for T ∈ T nD and M (1), . . . ,M (n) ∈ RE×D,
the Tucker product is denoted T ×1 M

(1) ×2 . . .×n M (n) ∈ T nE and defined by

(
T ×1 M

(1) ×2 . . .×n M (n)
)
i1,...,in

:=

D∑
j1=1

. . .

D∑
jn=1

Tj1,...,jnM
(1)
i1,j1

. . .M
(n)
in,jn

.

The next definition serves to collect together the key quantities appearing later in our proofs.

Definition S.1. Let {ai : i ∈ [K]} ⊆ SD−1 be a given set of unit-norm vectors. Write A =
[a1| . . . |aK ] ∈ RD×K . Consider the corresponding set of tensors {ani : i ∈ [K]}, and the subspace
A = Span{ani : i ∈ [K]} ⊆ Sym(T nD ). Let PA : T nD → A denote orthogonal projection onto A.
Write A•n := [Vec(an1 )| . . . |Vec(anK)] ∈ RDn×K for the n-th columnwise Khatri-Rao power of A.

1. Define the n-th Grammian matrix to be Gn = (A•n)⊤A•n ∈ Sym(T 2
K). Thus

(Gn)ij := ⟨ani , anj ⟩ = ⟨ai, aj⟩n ∀ i, j ∈ [K]. (S.3)

2. Let x ∈ SD−1. Define the correlation coefficients of x with respect to {ai : i ∈ [K]} to be
ζ = ζ(x) := A⊤x ∈ RK . Thus

ζi := ⟨x, ai⟩ ∀ i ∈ [K]. (S.4)

3. Let x, y ∈ SD−1 and s ∈ {0, 1, . . . , n}. Define the correlation coefficients of xsyn−s with
respect to {ani : i ∈ [K]} to be η = η(xsyn−s) = (A•n)⊤ Vec(xsyn−s) ∈ RK . Thus

ηi := ⟨xsyn−s, ani ⟩ = ⟨x, ai⟩s⟨y, ai⟩n−s ∀ i ∈ [K]. (S.5)
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4. Let x ∈ SD−1. Define the expansion coefficients of PA(x
n) with respect to {ani : i ∈ [K]}

to be σ = σ(x) ∈ RK so that the following expansion holds

PA(x
n) =:

K∑
i=1

σia
n
i . (S.6)

(If an1 , . . . , a
n
K are linearly independent, then Eq. (S.6) uniquely defines σ; otherwise, we

fix once and for all a choice of σ so that (S.6) holds.)

5. Let x ∈ SD−1. For i ∈ [K] and s ∈ {0, . . . , n}, define the remainder term for PA(x
n) with

respect to xn−sasi to be Ri,s = Ri,s(x) ∈ R so that the following equation holds

⟨PA(x
n), xn−sasi ⟩ =: σiζ

n−s
i +Ri,s. (S.7)

Last, define the maximal s-th remainder size to be Rs = Rs(x) := maxi∈[K] |Ri,s| ∈ R.

Remark S.2. Arguably all the quantities in Definition S.1 are natural to consider, with the possible
exception of Ri,s and Rs. In fact these terms play a key role in our proofs; see inequality (S.44) in
Proposition S.18. We call Ri,s a “remainder" because, under the assumptions of Theorems M.7 and
M.16, as we will see it holds that ⟨PA(x

n), xn−sasi ⟩ ≈ σiζ
n−s
i , whence Ri,s and Rs are small.

C Proofs of lemmas in Sections M.3 and M.4

In this section, we prove the various isolated results stated in Sections M.3 and M.4 of the main
submission.

C.1 Proof of Lemma M.1

Lemma S.3 (= Lemma M.1). Let m ≥ 3, n = ⌈m2 ⌉, T ∈ Sym(T mD ) and assume M :=
Reshape(T, [Dn, Dm−n]) has exactly K nonzero singular values σ1(M) ≥ . . . ≥ σK(M) > 0. Let
T̂ ∈ Sym(T mD ), M̂ := Reshape(T, [Dn, Dm−n]). Assume ∆M := ∥M − M̂∥2 < σK(M). Then∥∥∥PIm(M) − PImK(M̂)

∥∥∥
2
≤ ∆M

σK(M)−∆M
, (S.8)

where Im(M) ⊆ RDn

denotes the image of M and ImK(M̂) ⊆ RDn

denotes the subspace
spanned by the K leading left singular vectors of M̂ . In particular, if T =

∑K
i=1 λia

⊗2n
i ,

A = span{a⊗ni : i ∈ [K]}, dim(A) = K, and Â is the subspace spanned by K leading tensorized
left singular vectors of M̂ , the right-hand side of (S.8) upper-bounds ∆A.

Proof. We note that (S.8) is valid for any matrices W, Ŵ ∈ Rp×q , such that the rank of W is r. That
is, defining ∆W := ∥W − Ŵ∥2 < σr(W ) and Im(W ), Imr(Ŵ ) as in the statement, we have∥∥∥PIm(W ) − PImr(Ŵ )

∥∥∥
2
≤ ∆W

σr(W )−∆W
. (S.9)

We first show the result if W, Ŵ are symmetric matrices. In that case, we denote the eigenvalue
decomposition of W, Ŵ as

W = (V1 V2)

(
Λ1 0
0 Λ2

)(
V ⊤
1

V ⊤
2

)
and Ŵ =

(
V̂1 V̂2

)(Λ̂1 0

0 Λ̂2

)(
V̂ ⊤
1

V̂ ⊤
2

)
,

where Λ1 and Λ̂1 are diagonal matrices with the largest K eigenvalues, in magnitude, of W and
Ŵ on the diagonal, respectively. Letting Σ1 be a diagonal matrix with the singular values of W ,
we have |Λ1| = Σ1, and the same holds for Ŵ . From the eigenvector decomposition, we can write
PIm(W ) = V1V

⊤
1 and PImr(Ŵ ) = V̂1V̂

⊤
1 . Lemma 2.3 in [5] implies that∥∥∥PIm(W ) − PImr(Ŵ )

∥∥∥
2
= ∥V ⊤

1 V̂2∥2.
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Then (S.9) holding for symmetric matrices follows from

∆W = ∥W − Ŵ∥2 ≥ ∥V ⊤
1 (W − Ŵ )V̂2∥2 = ∥Λ1V

⊤
1 V̂2 − V ⊤

1 V̂2Λ̂2∥
≥ ∥Λ1V

⊤
1 V̂2∥2 − ∥V ⊤

1 V̂2Λ̂2∥2 ≥ σr(W )∥V ⊤
1 V̂2∥2 − ∥Λ̂2∥2∥V ⊤

1 V̂2∥2

≥ (σr(W )−∆W )
∥∥∥PIm(W ) − PImr(Ŵ )

∥∥∥
2
.

Here we used the following facts:

• ∥W − Ŵ∥2 ≥ ∥V ⊤
1 (W − Ŵ )V̂2∥2 since V1 and V2 have orthonormal columns.

• Since V̂ ⊤
2 V1(Λ

2
1 − σr(W )2Idr)V

⊤
1 V̂2 is positive semi-definite, we have

∥Λ1V
⊤
1 V̂2∥2 =

√
∥V̂ ⊤

2 V1Λ2
1V

⊤
1 V̂2∥2 ≥ σr(W )

√
∥V̂ ⊤

2 V1V ⊤
1 V̂2∥2 = σr(W )∥V ⊤

1 V̂2∥2.

• By Weyl’s inequality [13], it holds ∥Λ̂2∥ ≤ ∆W .

Now, if W, Ŵ are not symmetric, we apply the result for the symmetric matrices

H =

(
0 W

W⊤ 0

)
and Ĥ =

(
0 Ŵ

Ŵ⊤ 0

)
.

Denote the singular vector decomposition of W and Ŵ by W = UΣV ⊤ and Ŵ = Û Σ̂V̂ ⊤. We
can further split U = (U1, U2), Σ = Blockdiag(Σ1,Σ2) and V = (U1, U2), where U1,Σ1, V1

correspond to the largest K singular values of W , and split Û , Σ̂, V̂ analogously. The eigen-
decomposition of H is related to the singular vector decomposition of W as follows

H =

(
1√
2
U 1√

2
U

1√
2
V − 1√

2
V

)(
Σ 0
0 −Σ

)( 1√
2
U⊤ 1√

2
V ⊤

1√
2
U⊤ − 1√

2
V ⊤

)
, (S.10)

and an analogous relation holds between Ĥ and Ŵ . It can be checked that this is an eigen-
decomposition by using that W = UΣV ⊤ to show that the RHS in (S.10) is equal to H , and
use that U and V have orthonormal columns to show(

1√
2
U 1√

2
U

1√
2
V − 1√

2
V

)⊤( 1√
2
U 1√

2
U

1√
2
V − 1√

2
V

)
= Id2r.

Thus, if W has rank r, H has rank 2r, and since H is symmetric,∥∥∥PIm(H) − PIm2r(Ĥ)

∥∥∥
2
≤ ∆H

σ2r(H)−∆H
(S.11)

Regarding the right-hand side, denote δW = Ŵ − W . Equation (S.10) implies σ2r(H) =
|λ2r(H)| = σr(W ), while

∆H = ∥H − Ĥ∥2 =

∥∥∥∥( 0 δW
δW⊤ 0

)∥∥∥∥
2

=

∥∥∥∥∥
(

0 δW
δW⊤ 0

)2
∥∥∥∥∥

1
2

2

=

∥∥∥∥(δWδW⊤ 0
0 δW⊤δW

)∥∥∥∥ 1
2

2

= max{∥δWδW⊤∥2, ∥δW⊤δW∥2}
1
2

= ∥δW∥2 = ∆W

On the left-hand side, we have

PIm(H) =

(
1√
2
U1

1√
2
U1

1√
2
V1 − 1√

2
V1

)(
1√
2
U⊤
1

1√
2
V ⊤
1

1√
2
U⊤
1 − 1√

2
V ⊤
1

)
=

(
U1U

⊤
1 0

0 V1V
⊤
1

)
,

4



thus ∥∥∥PIm(H) − PIm2r(Ĥ)

∥∥∥
2
=

∥∥∥∥(U1U
⊤
1 − Û1Û

⊤
1 0

0 V1V
⊤
1 − V̂1V̂

⊤
1

)∥∥∥∥
2

= max
{∥∥∥PIm(W ) − PImr(Ŵ )

∥∥∥
2
,
∥∥∥PIm(W⊤) − PImr(Ŵ⊤)

∥∥∥
2

}
Replacing these in (S.11), we show (S.9) when W, Ŵ are not symmetric.∥∥∥PIm(W ) − PImr(Ŵ )

∥∥∥
2
≤
∥∥∥PIm(H) − PIm2r(Ĥ)

∥∥∥
2
≤ ∆H

σ2r(H)−∆H
=

∆W

σr(W )−∆W
.

The bound for ∆A follows from

∆A = sup
T∈T n

D , ∥T∥F=1

∥∥PA(T )− PÂ(T )
∥∥
F
= sup
u∈RDn , ∥u∥2=1

∥∥∥PIm(M)(u)− PImK(M̂)(u)
∥∥∥
2

=
∥∥∥PIm(M) − PImK(M̂)

∥∥∥
2
.

C.2 Proof of Lemma M.4

Lemma S.4 (= Lemma M.4). Let A := [a1| . . . |aK ] ∈ RD×K and {a⊗ni : i ∈ [K]} be linearly
independent. We have

FA(x) =
∥∥PA(x

⊗n)
∥∥2
F
=
(
(A⊤x)⊙n

)⊤
G−1
n

(
(A⊤x)⊙n

)
. (S.12)

Proof. This is the case n = s in (S.13) in Lemma S.5 below, as η(xn) = ζ(x)⊙n = (A⊤x)⊙n.

Lemma S.5. Assume {ani : i ∈ [K]} ⊆ Sym(T nD ) is linearly independent. Then in the setup of
Definition S.1, we have the following formulas in terms of the inverse Grammian:∥∥PA(x

syn−s)
∥∥2
F
= η(xsyn−s)⊤G−1

n η(xsyn−s) for all x, y ∈ SD−1, (S.13)

and σ(x) = G−1
n η(xn) = G−1

n (ζ(x)⊙n) for all x ∈ SD−1. (S.14)

Proof. Let A•n := [Vec(a⊗n1 )| . . . |Vec(a⊗nK )] ∈ RDn×K . Up to reshapings, PA is projection onto
the column space of A•n. Since A•n has full column rank by assumption, projection onto the column
space of A•n is represented by the matrix

A•n ((A•n)⊤A•n)−1
(A•n)⊤ = A•nG−1

n (A•n)⊤.

It follows that for T ∈ T nD , we have

PA(T ) = Tensor
(
A•nG−1

n (A•n)⊤ Vec(T )
)
, (S.15)

∥PA(T )∥2F = ⟨PA(T ), T ⟩ = Vec(T )⊤A•nG−1
n (A•n)⊤ Vec(T ). (S.16)

Substituting T = xsyn−s in (S.15) and using (A•n)⊤ Vec(T ) = η(xsyn−s) yields (S.13), while
substituting T = xn into (S.16) gives (S.14). This completes the calculation.

C.3 Proof of Lemma M.5

Lemma S.6 (= Lemma M.5). Assume there exist ρ ∈ (−1, 1) \ { −1
K−1} and M ∈ R such that

⟨ai, aj⟩n = ρ for all i ̸= j and
∑
i∈[K]⟨x, ai⟩n = M for all x ∈ SD−1. Denote A = [a1| . . . |aK ] ∈

RD×K . Then

FA(x) = (1− ρ)−1∥A⊤x∥2n2n −
(
(1− ρ)2 +Kρ(1− ρ)

)−1
ρM2.
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Proof. Write ζ := ζ(x) = A⊤x. From ⟨ani , anj ⟩ = ⟨ai, aj⟩n = ρ whenever i ̸= j and ⟨ani , ani ⟩ =
⟨ai, ai⟩n = 1 for each i, we can write the Grammian of an1 , . . . , a

n
K as

Gn = (1− ρ)IdK + ρ1K ⊗ 1K , (S.17)

where 1K ∈ RD denotes the all-ones vector. By the Sherman-Morrison inversion formula,

G−1
n = ((1− ρ)IdK + ρ1K ⊗ 1K)

−1
=

1

1− ρ

(
IdK +

ρ

1− ρ
1K ⊗ 1K

)−1

=
1

1− ρ

(
IdK −

ρ
1−ρ

1 +K ρ
1−ρ

1K ⊗ 1K

)
=

1

1− ρ
IdK −

ρ

(1− ρ)2 +Kρ(1− ρ)
1K ⊗ 1K .

Using that
∑
i∈[K]⟨x, ai⟩n = M uniformly on SD−1, we have ⟨1K , ζ(x)⊙n⟩ = M . By writing FA

as in Lemma S.4, we can complete the proof:

FA(x) = ζ⊙nG−1
n ζ⊙n =

1

1− ρ
∥ζ∥2n2n −

ρ

(1− ρ)2 +Kρ(1− ρ)

(
K∑
i=1

⟨ai, x⟩n
)2

=
1

1− ρ
∥ζ∥2n2n −

ρM2

(1− ρ)2 +Kρ(1− ρ)
.

C.4 Proof of Lemma M.6

Lemma S.7 (= Lemma M.6). Let {ai : i ∈ [K]} ⊆ SD−1 and (Gs)ij := ⟨ai, aj⟩s for s ∈ N. Then
we have

1− ρs ≤ µK(Gs) ≤ µ1(Gs) ≤ 1 + ρs ≤ µ1(G⌊s/2⌋).

Proof. By Gershgorin’s circle theorem and the fact ∥ai∥2 = 1, the eigenvalue µℓ(Gs) for each
ℓ = 1, . . . ,K adheres to

|µℓ(Gs)− 1| ≤
∑
i:i ̸=ℓ

|⟨aℓ, ai⟩|s ≤ ρs, hence µ1(Gs) ≤ 1 + ρs and µK(Gs) ≥ 1− ρs.

First, we suppose that s is even. By a classic result in frame theory [6, Prop. 3.6.7], the extremal
eigenvalues of the Grammian Gs/2 satisfy

µK(Gs/2) ≤
K∑
i=1

⟨T, as/2i ⟩
2 ≤ µ1(Gs/2), for all unit-norm T ∈ span{as/2i : i ∈ [K]}. (S.18)

The right-most inequality of (S.18) implies

K∑
i=1

⟨T, as/2i ⟩
2 =

K∑
i=1

〈
P
span{as/2i :i∈[K]}(T ), a

s/2
i

〉2
≤ µ1(Gs/2) for all unit-norm T ∈ T s/2D .

(S.19)
Substituting T = xs/2 into (S.19) and using that s is even, we obtain

K∑
i=1

|⟨x, ai⟩|s =
K∑
i=1

⟨xs/2, as/2i ⟩
2 ≤ µ1(Gs/2) for all x ∈ SD−1,

whence ρs ≤ µ1(Gs/2) − 1. If instead s is odd, we may similarly derive the upper bound ρs ≤
µ1(G⌊s/2⌋), so that we have the following relation in general

1− ρs ≤ µK(Gs) ≤ µ1(Gs) ≤ 1 + ρs ≤ µ1(G⌊s/2⌋).
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C.5 Proof of Lemma M.9

Lemma S.8 (= Lemma M.9). Let δ ∈ (0, 1), a ∈ SD−1 and A = span{a⊗n}. Then there exists a
subspace Â ⊆ Sym(T nD ) with dim(Â) = 1 and ∥PA − PÂ∥F→F = δ such that nSPM-P possesses
a strict local maximizer of objective value exactly δ2.

Proof. This argument relies on Lemma S.9, which is proven independently in the next section.
Choose b ∈ SD−1 with b ⊥ a. Define S :=

√
1− δ2an − δbn ∈ Sym(T nD ), and consider the

corresponding subspace Â := span{S}.
For each T ∈ T nD with ∥T∥F = 1, using ∥an∥F = ∥bn∥F = 1, ⟨an, bn⟩ = 0 and ∥S∥F = 1,∥∥PA(T )− PÂ(T )

∥∥2
F
=
∥∥∥⟨an, T ⟩an − ⟨√1− δ2an − δbn, T ⟩(

√
1− δ2an − δbn)

∥∥∥2
F

=
∥∥∥⟨δ2an + δ

√
1− δ2bn, T ⟩an + ⟨δ

√
1− δ2an − δ2bn, T ⟩bn

∥∥∥2
F

= ⟨δ2an + δ
√
1− δ2bn, T ⟩2 + ⟨δ

√
1− δ2an − δ2bn, T ⟩2

= δ2⟨an, T ⟩2 + δ2⟨bn, T ⟩2.

This quadratic is maximized over the unit sphere in T nD at any unit-norm T ∈ span{an, bn}, where
its value is δ2. It follows

∥∥PA − PÂ
∥∥
F→F

= δ.

Also, we have
FÂ(b) = ∥⟨S, b

n⟩S∥2F = ⟨S, bn⟩2 = δ2.

We now verify that b is a local maximizer of FÂ by checking the optimality conditions. By (S.20),

∇SD−1FÂ(b) = 2nPÂ(b
n) · bn−1 − 2nFÂ(b)b

= 2n⟨S, bn⟩S · bn−1 − 2nδ2n

= 2n(−δ)(−δb)− 2nδ2b

= 0,

which shows that b is a stationary point of FÂ. Now taking any unit norm z ⊥ b and using (S.21),

z⊤∇2
SD−1FÂ(b)z = 2n2

∥∥PÂ(b
n−1z)

∥∥2
F
+ 2n(n− 1)⟨PÂ(b

n), bn−2z2⟩ − 2nFÂ(b)

= 2n2
∥∥⟨S, bn−1z⟩S

∥∥2
F
+ 2n(n− 1)⟨⟨S, bn⟩S, bn−2z2⟩ − 2nδ2

= −2n(n− 1)δ
√

1− δ2⟨a, b⟩n−2⟨a, z⟩2 − 2nδ2

≤ −2nδ2

< 0,

where we used the fact n ≥ 2 in third equality. Thus, the Riemannian Hessian of FÂ is strictly
negative-definite at b. Therefore, b is a strict local maximizer of FÂ as we wanted.

D Derivation of Riemannian derivatives and optimality conditions for
nSPM-P

In this section, we derive the Riemannian derivatives and optimality conditions for nSPM-P.

D.1 Riemannian derivatives of FÂ on the sphere

Lemma S.9. Let x, z ∈ SD−1 with z ⊥ x. The Riemannian gradient and Hessian of FÂ satisfy

∇SD−1FÂ(x) = 2nPÂ(x
n) · xn−1 − 2nFÂ(x)x, (S.20)

z⊤∇2
SD−1FÂ(x)z = 2n2∥PÂ(x

n−1z)∥2F + 2n(n− 1)⟨PÂ(x
n), xn−2z2⟩ − 2nFÂ(x). (S.21)
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Remark S.10. In this lemma z is a tangent vector to the unit sphere at x, since z ⊥ x. For
convenience we work with normalized tangent vectors, which is why there is the further assumption
that ∥z∥2 = 1. This is without loss of generality: second-order criticality for nSPM-P is the condition
that the quadratic form on the tangent space given by ∇2

SD−1FÂ(x) is negative semi-definite. By
homogeneity of the quadratic form, this is verified by just checking normalized tangent vectors.

Proof. We first calculate the Euclidean gradient and Hessian of FÂ. Let U1, . . . , UK ∈ Sym(T nD )

form an orthonormal basis of Â. Then for all S, T ∈ T nD ,

PÂ(T ) =

K∑
i=1

⟨Ui, T ⟩Ui, ⟨PÂ(T ), S⟩ =
K∑
i=1

⟨Ui, T ⟩⟨Ui, S⟩, and ∥PÂ(T )∥
2
F =

K∑
i=1

⟨Ui, T ⟩2.

Also, direct calculations verify that if T ∈ Sym(T nD ), then∇⟨T, xn⟩ = nT · xn−1 and∇2⟨T, xn⟩ =
n(n− 1)T · xn−2 (see [9, Lem. 3.1, Lem. 3.3]). Therefore,

∇FÂ(x) = ∇∥PÂ(x
n)∥2F =

K∑
i=1

∇⟨Ui, xn⟩2

= 2

K∑
i=1

⟨Ui, xn⟩∇⟨Ui, xn⟩ = 2n

K∑
i=1

⟨Ui, xn⟩Ui · xn−1 = 2nPÂ(x
n) · xn−1,

and

∇2FÂ(x) =

K∑
i=1

∇2⟨Ui, xn⟩2 = 2

K∑
i=1

(∇⟨Ui, xn⟩)(∇⟨Ui, xn⟩)⊤ + 2

K∑
i=1

⟨Ui, xn⟩∇2⟨Ui, xn⟩

= 2n2
K∑
i=1

(Ui · xn−1)(Ui · xn−1)⊤ + 2n(n− 1)

K∑
i=1

⟨Ui, xn⟩Ui · xn−2.

Thus,

z⊤∇2FÂ(x)z = 2n2
K∑
i=1

⟨Ui, xn−1z⟩2 + 2n(n− 1)

K∑
i=1

⟨Ui, xn⟩⟨Ui, xn−2z2⟩

= 2n2∥PÂ(x
n−1z)∥2F + 2n(n− 1)⟨PÂ(x

n), xn−2z2⟩.
We now calculate the Riemannian gradient and Hessian of FÂ. In general, for a twice-differentiable
function g : Rn → R, the Riemannian gradient and Hessian of the restriction of g to the unit sphere
SD−1 are related to the Euclidean counterparts of g as follows (see [1, Ex. 3.6.1] and [2, Eq. (10),
Sec. 4.2]):

∇SD−1g(x) = (I − xx⊤)∇g(x),
and ∇2

SD−1g(x) = (I − xx⊤)(∇2g(x)− (x⊤∇g(x))IdD)(I − xx⊤).

Applying this to FÂ, and using x⊤∇FÂ(x) = 2nPÂ(x
n) · xn = 2nFÂ(x), (I − xx⊤)z = z (since

z ⊥ x) and z⊤z = 1 (since z ∈ SD−1), yields the result.

D.2 Proof of Proposition M.3

Proposition S.11 (= Proposition M.3). Let x ∈ SD−1 be first and second-order critical for M.nSPM-
P. Then for each z ∈ SD−1 with z ⊥ x, we have

PÂ(x
n) · xn−1 = FÂ(x)x, (S.22)

FÂ(x) ≥ n∥PÂ(x
n−1z)∥2F + (n− 1)⟨PÂ(x

n), xn−2z2⟩. (S.23)

Furthermore, for any y ∈ SD−1 we have

FÂ(x) ≥ n
∥∥PÂ(x

n−1y)
∥∥2
F
+ (n− 1)⟨PÂ(x

n), xn−2y2⟩ − 2(n− 1)FÂ(x)⟨x, y⟩
2. (S.24)
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Proof. The first-order (stationary point) condition is given by setting the Riemannian gradient (S.20)
to zero. The second-order condition is the requirement that the Riemannian Hessian be negative
semi-definite, i.e., that (S.21) is non-positive for all unit norm z ⊥ x. Dividing by 2n and rearranging
yields (S.22) and (S.23) respectively.

It remains to show (S.24). Assume x ∈ SD−1 is first and second-order critical for nSPM-P. For each
y ∈ SD−1, let α, β ∈ [0, 1], z ∈ SD−1 be such that β =

√
1− α2, z ⊥ x and y = αx+ βz. Then,∥∥PÂ(x

n−1y)
∥∥2
F
=
∥∥αPÂ(x

n) + βPÂ(x
n−1z)

∥∥2
F

= α2
∥∥PÂ(x

n)
∥∥2
F
+ β2

∥∥PÂ(x
n−1z)

∥∥2
F
+ 2αβ⟨PÂ(x

n), PÂ(x
n−1z)⟩

= α2FÂ(x) + β2
∥∥PÂ(x

n−1z)
∥∥2
F
+ 2αβ⟨PÂ(x

n), xn−1z⟩

= α2FÂ(x) + β2
∥∥PÂ(x

n−1z)
∥∥2
F
+ 2αβ⟨PÂ(x

n) · xn−1, z⟩

= α2FÂ(x) + β2
∥∥PÂ(x

n−1z)
∥∥2
F
+ 2αβ⟨FÂ(x)x, z⟩ (S.25)

= α2FÂ(x) + β2
∥∥PÂ(x

n−1z)
∥∥2
F
, (S.26)

where we used the stationary point condition (S.22) in (S.25) and x ⊥ z in (S.26). By similar logic,

⟨PÂ(x
n), xn−2y2⟩ = ⟨PÂ(x

n), xn−2(αx+ βz)2⟩

= α2
∥∥PÂ(x

n)
∥∥2
F
+ 2αβ⟨PÂ(x

n), xn−1z⟩+ β2⟨PÂ(x
n), xn−2z2⟩

= α2FÂ(x) + β2⟨PÂ(x
n), xn−2z2⟩. (S.27)

Finally, we substitute (S.26) and (S.27) into (S.24), and use the second-order condition (S.23):

n
∥∥PÂ(x

n−1y)
∥∥2
F
+ (n− 1)⟨PÂ(x

n), xn−2y2⟩

= (2n− 1)α2FÂ(x) + β2
(
n
∥∥PÂ(x

n−1z)
∥∥2
F
+ (n− 1)⟨PÂ(x

n), xn−2z2⟩
)

≤ (2n− 1)α2FÂ(x) + β2FÂ(x)

= (2n− 1)α2FÂ(x) + (1− α2)FÂ(x)

= (1 + (2n− 2)α2)FÂ(x). (S.28)

Substituting α = ⟨x, y⟩ into (S.28) gives (S.24) as desired.

E Preparatory results on random ensembles over the sphere and
Conjecture M.15

In this section, we prove the results on random ensembles over the sphere that are used in the analysis
of the overcomplete random tensor model. Namely, we prove Lemma M.11 and Proposition M.13.

E.1 Proof of Lemma M.11

Lemma S.12 (= Lemma M.11). Suppose that A = [a1| . . . |aK ] ∈ RD×K satisfies the (p, δ)-RIP for
p = ⌈cδD/ log(K)⌉. Let c̃δ := (1 + δ)/cδ . Then for each x ∈ SD−1, there exists a subset of indices
I(x) ⊆ [K] with cardinality p such that

1− δ ≤
∑
i∈I(x)

⟨ai, x⟩2 ≤ 1 + δ and ⟨ai, x⟩2 ≤ c̃δ
log(K)

D
for i ̸∈ I(x).

Proof. Fix x ∈ SD−1, and assume without loss of generality that the indices are ordered according to
⟨a1, x⟩2 ≥ . . . ≥ ⟨aK , x⟩2. We claim that the index set I(x) = [p] satisfies the specified conditions.
Denote by Ap ∈ RD×p the submatrix of A consisting of the first p columns. The (p, δ)-RIP implies

1 + δ = (1 + δ)∥x∥22 ≥ x⊤ApA
⊤
p x =

p∑
i=1

⟨ai, x⟩2 ≥ (1− δ)∥x∥22 = 1− δ. (S.29)
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Hence, I(x) satisfies the first condition. As for the second condition, by the ordering assumption,
p∑
i=1

⟨ai, x⟩2 ≥ p⟨ap, x⟩2. (S.30)

Inequalities (S.29) and (S.30) imply ⟨ap, x⟩2 ≤ (1 + δ)p−1. Then again by the ordering relation,

max
i ̸∈I(x)

⟨ai, x⟩2 ≤ ⟨ap, x⟩2 ≤
1 + δ

p
≤ 1 + δ

cδ

log(K)

D
= c̃δ

log(K)

D
.

E.2 Proof of Proposition M.13

Now consider a random ensemble of independent copies a1, . . . , aK of the random vector a ∼
Unif(SD−1). Before showing Proposition M.13, which states that for this ensemble the assumptions
A1-A2 hold with high probability for all n, and A3 holds with high probability if n = 2, we will
recall these assumptions. Write A := [a1| . . . |aK ] ∈ RD×K .

A1 There exists cδ > 0, depending only on δ, such that A is (⌈cδD/ log(K)⌉, δ)-RIP.
A2 There exists c1 > 0, independent of K,D, such that maxi ̸=j⟨ai, aj⟩2 ≤ c1 log(K)/D.

A3 There exists c2 > 0, independent of K,D, such that
∥∥G−1

n

∥∥
2
≤ c2.

The proof for A3 is lengthy and more technically involved (even though we only prove it for the case
of n = 2). So, we first give the arguments for A1-A2.
Lemma S.13 (A1-A2 in Proposition M.13). Let a1, . . . , aK be independent copies of the random
vector a ∼ Unif(SD−1), and define A := [a1| . . . |aK ] ∈ RD×K . Assume logK = o(D).

1. Fix δ ∈ (0, 1). There exists a universal constant C > 0 and constants D0 ∈ N, cδ > 0 depending
only on δ such that, if D ≥ D0 and we put p := ⌈cδD/ log(K)⌉, then A is (p, δ)-RIP with probability
at least 1− 2 exp(−Cδ2D).

2. There exists a universal constant c1 > 0 such that

P
(
max
i,j:i̸=j

⟨ai, aj⟩2 ≤ c1
log(K)

D

)
≥ 1− 1

K
.

Proof. 1. By [11, Thm. 5.65], A satisfies the (p, δ)-RIP with probability at least 1− 2 exp(−Cδ2D),
provided that D ≥ C ′δ−2p log(eK/p), where C,C ′ > 0 are universal constants. Thus it suffices to
check the latter inequality holds if cδ, D0 are appropriately chosen. Because logK = o(D), for each
fixed cδ > 0, there exists D0 such that p > e whenever D ≥ D0. In this case, we have

C ′δ−2p log(eK/p) < C ′δ−2p log(K) = C ′δ−2 ⌈cδD/ log(K)⌉ log(K)

≤ C ′δ−2cδD + C ′δ−2 log(K) < C ′δ−2 3
2cδD, (S.31)

where the last inequality in (S.31) is because p > e implies log(K) < 1
2cδD. We note that the

right-most quantity in (S.31) is bounded above by D, as desired, if we choose cδ ≤ 2δ2/(3C ′).

2. Let dij := |⟨ai, aj⟩|. By rotational symmetry, dij
d
= |a11| for i ̸= j in distribution, where

a11 := ⟨a1, e1⟩ denotes the first coordinate of a1. By [12, Thm. 3.4.6], a11 is a sub-Gaussian random
variable with sub-Gaussian norm ∥a11∥ψ2

≤ c′1D
− 1

2 for a universal constant c′1 > 0. Using this, a
union bound and a tail bound for sub-Gaussian random variables [12, Eq. 2.14],

P
(
max
i ̸=j

dij ≤ t

)
= 1− P (there exists i ̸= j s.t. dij > t) ≥ 1−

K∑
i=1

K∑
j=i+1

P (dij > t)

= 1− K(K − 1)

2
P (|a11| > t) > 1−K2 exp

(
− t2D

c′′1

)
for a universal constant c′′1 > 0. We finish by setting t =

√
3c′′1 log(K)/D and c1 = 3c′′1 .
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Next we come to A3 for a random ensemble on the sphere when n = 2.
Proposition S.14 (A3 in Proposition M.13). Let K,D ∈ N satisfy 1 ≤ K ≤ D2. Let a1, . . . , aK be
independent copies of the random vector a ∼ Unif(SD−1). Define the Grammian G2 ∈ Sym(T 2

K)
by (G2)ij := ⟨a•2i , a•2j ⟩ = ⟨ai, aj⟩2. Then there exists a universal constant C > 0 such that the
minimal eigenvalue of G2 satisfies

µK(G2) ≥ 1− (C+1)

√
K

D
log

(
eD√
K

)
, with probability at least 1−C

(
eD√
K

)−C√
K

(S.32)

In particular, if K = o(D2), then for each constant c2 > 1, we have ∥G−1
2 ∥2 ≤ c2 with probability

tending to 1 as D →∞.

The statement is implied by (p, δ)-RIP with p = K for matrices like [a•21 | . . . |a•2K ] (columns are
Khatri-Rao squares of vectors). Such RIP statements have been analyzed in [7]. The main technical
ingredients are [3, Thm. 3.3], which proves RIP for matrices containing columnwise sub-exponential
random vectors, and the fact that certain vectorized Khatri-Rao products of sub-Gaussian random
vectors are sub-exponential with favorable sub-exponential norm. For completeness, we include a
self-contained proof of Proposition S.14. First, here is a version of [3, Thm. 3.3] tailored to our needs.

Proposition S.15 (Tailored version of [3, Thm. 3.3]). Let K,D ∈ N satisfy 1 ≤ K ≤ D2. Let
X1, . . . , XK ∈ RD2

be independent copies of a sub-exponential random vector X ∈ RD2

with O(1)
sub-exponential norm (i.e., upper bounded independently of D and K). Furthermore, assume that
∥X∥2 = D almost surely. Define M := 1

D [X1| . . . |XK ] ∈ RD2×K . Then there exists a universal
constant C > 0 such that∥∥M⊤M − IdK

∥∥
2
≤ C

√
K

D
log

(
eD√
K

)
, with probability at least 1− C

(
eD√
K

)−C√
K

(S.33)

In particular, in this event the minimal eigenvalue of the associated Grammian satisfies

µK(M⊤M) ≥ 1− C

√
K

D
log

(
eD√
K

)
. (S.34)

Proof. The first part of the statement is [3, Thm. 3.3], in the special case (relating their notation to
our notation) n = D2, m = K, N = K, r = 1, K = 1, K ′ = 1 + ϵ for any ϵ ∈ (0, 1) and θ′ → 0,
where we note that M satisfies (K, δ)-RIP if and only if ∥M⊤M − IdK∥2 ≤ δ, since M has K
columns. The second part follows immediately from the definition of the spectral norm.

To deduce Proposition S.14, we apply Proposition S.15 to a centered and scaled version of the
Khatri-Rao squares a•2i = Vec(a2i ), following [7].

Proof of Proposition S.14. Consider the Khatri-Rao square A•2 := [a•21 | . . . |a•2K ] ∈ RD2×K and
note that G2 = (A•2)⊤A•2. Instead of working with a•21 , . . . , a•2K , we introduce auxiliary variables

Xi :=

√
D

D − 1
Vec(Da2i − IdD) ∈ RD

2

,

in order to be able to apply Proposition S.15. Then X1, . . . , XK are independent copies of the random
vector X ∈ RD2

given by

X :=

√
D

D − 1
Vec(Da2 − IdD), where a ∼ Unif(SD−1). (S.35)

Note that E[Xi] =
√

D
D−1

(
Vec(DE[a2i ]− IdD)

)
= 0. Using ai ∈ SD−1, we also have

∥Xi∥22 =
D

D − 1
∥Daia

⊤
i − IdD∥2F =

D

D − 1

(
∥Daia

⊤
i ∥2F − 2⟨Daia

⊤
i , IdD⟩+ ∥IdD∥2F

)
=

D

D − 1

(
D2∥ai∥42 − 2D∥ai∥22 +D

)
=

D

D − 1

(
D2 − 2D +D

)
= D2,

11



so that ∥Xi∥2 = D as required in Proposition S.15.

Define M := 1
D [X1| . . . |XK ] ∈ RD2×K . For each i, j ∈ [K], again using ai, aj ∈ SD−1, we have(

M⊤M
)
i,j

=
1

D(D − 1)
⟨Daia

⊤
i − IdD, Daja

⊤
j − IdD⟩F

=
1

D(D − 1)

(
D2⟨aia⊤i , aja⊤j ⟩F −D⟨aia⊤i + aja

⊤
j , IdD⟩F + ⟨IdD, IdD⟩F

)
=

1

D(D − 1)

(
D2⟨ai, aj⟩2 −D∥ai∥22 −D∥aj∥22 +D

)
=

D

D − 1
⟨ai, aj⟩2 −

1

D − 1
.

Hence, M⊤M = D
D−1G2 − 1

D−11K1
⊤
K , which may be rewritten G2 = D−1

D M⊤M + 1
D1K1

⊤
K .

This implies

µK(G2) ≥
D − 1

D
µK(M⊤M). (S.36)

Thus, we focus on the Grammian associated with the shifted and centered random variables
X1, . . . , XK . To apply Proposition S.15 to M⊤M , it remains to show that the sub-exponential
norm of X in (S.35) is bounded by some universal constant, independent of K,D.

We briefly indicate how this is done. We first note that all random vectors
√
Da1, . . . ,

√
DaK have

the so-called convex concentration property for some universal constant C ′ > 0, see [7, Thm. 6,
Def. 7, Thm. 8]. Following [7] and the references therein, this can be used to prove the Hanson-Wright
type inequality

P
(∣∣D(a⊤i Y ai − E[a⊤i Y ai])

∣∣ > t
)
≤ 2 exp

(
−C ′ min

(
t2

∥Y ∥2F
,

t

∥Y ∥2

))
, (S.37)

for all (deterministic) Y ∈ RD×D and t > 0. Taking now an arbitrary unit-norm vector y ∈ RD2

,
denoting Y ∈ RD×D as the matrix satisfying y = vec(Y ), and using E[aa⊤] = 1

D IdD, we have

⟨X, y⟩ =
√

D

D − 1
⟨Daa⊤ − IdD, Y ⟩

=

√
D

D − 1
⟨Daa⊤ −DE[aa⊤], Y ⟩

=

√
D

D − 1
D(a⊤Y a− E[a⊤Y a]). (S.38)

Combining (S.38), (S.37) and ∥Y ∥2 ≤ ∥Y ∥F = 1, we obtain

P

(
⟨X, y⟩ >

√
D

D − 1
t

)
≤ 2 exp(−C ′ min(t2, t)).

This implies ⟨X, y⟩ is sub-exponential with sub-exponential norm C ′
√
D/(D − 1) = O(1). Taking

a supremum over all unit-norm vectors y ∈ RD2

does not change this bound, since it is independent
of y, and so the random vector X has sub-exponential normO(1). Thus, Proposition S.15 applies and
implies there exists a universal constant C > 0 such that (S.34) holds with the probability in (S.33).

We now notice that (S.32) follows by substituting (S.34) into (S.36) and using that 1 ≤ K ≤ D2

implies 1
D ≤

√
K
D log(eD/

√
K), because then

µK(G2) ≥ (1− 1

D
)

(
1− C

√
K

D
log

(
eD√
K

))
≥ 1− (C + 1)

√
K

D
log

(
eD√
K

)
. (S.39)

To conclude, we justify the last sentence in Proposition S.14 where K = o(D2). It only remains to
note that, in this case, the right-most quantity in (S.39) tends to 1 as D →∞. However, this holds
because

√
K
D → 0+ by K = o(D2), and limx→0+ x log( 1x ) = 0 by L’Hôpital’s rule.
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As mentioned in the main body of the paper, this proof technique cannot be immediately applied
to the case n > 2 because some key technical results are missing. We are not aware of extensions
of Proposition S.15 to random variables with tails heavier than subexponential random variables.
Further we do not know how to show that an auxiliary variable z̃ formed from higher-order vectorized
tensors ani satisfies a suitable tail bound, which would be needed in an extended Proposition S.15.

F Technical tools for proving Theorems M.7 and M.16

In this section we prove the key technical tools to be used in the proofs of our landscape theorem.
Lemma S.16 (Subspace perturbation effect). LetA, Â be any two subspaces of Sym(T nD ), and define

∆A := ∥PA − PÂ∥F→F = sup
T∈Sym(T n

D ), ∥T∥F=1

∥PA(T )− PÂ(T )∥F .

Then for all S, T in T nD , we have
|⟨PA(T )− PÂ(T ), S⟩| ≤ ∆A∥ Sym(T )∥F ∥ Sym(S)∥F ≤ ∆A∥T∥F ∥S∥F , (S.40)

and ∣∣∥PA(T )∥2F − ∥PÂ(T )∥
2
F

∣∣ ≤ ∆A∥Sym(T )∥2F ≤ ∆A∥T∥2F . (S.41)

Proof. Using the fact A, Â ⊆ Sym(T nD ), the Cauchy-Schwarz inequality, and the definition of ∆A,∣∣⟨PA(T )− PÂ(T ), S⟩
∣∣ = ∣∣⟨PA(Sym(T ))− PÂ(Sym(T )),Sym(S)⟩

∣∣
≤
∥∥PA(Sym(T ))− PÂ(Sym(T ))

∥∥
F
∥Sym(S)∥F

≤ ∆A ∥Sym(T )∥F ∥ Sym(S)∥F ,
which gives (S.40). Equation (S.41) then follows by setting S = T in (S.40), and using ⟨PA(T )−
PÂ(T ), T ⟩ = ∥PA(T )∥2F −∥PÂ(T )∥2F which holds since PA and PÂ are orthogonal projectors.

Next we recall the remainder terms for PA(x
n) with respect to xn−sasi (S.7). These are defined by

⟨PA(x
n), xn−sasi ⟩ =: σiζ

n−s
i +Ri,s.

Lemma S.17. The following alternative expressions for the remainder terms hold:

1. For any x ∈ SD−1, i ∈ [K] and 0 ≤ s ≤ n, we have
Ri,s = ⟨PA(x

n), xn−sasi ⟩ − σiζ
n−s
i . (S.42)

2. For any x ∈ SD−1 and i ∈ [K], we have
Ri,n = ζni − σi. (S.43)

In the first step of the proofs of our two main results, we derive lower bounds for
∥∥A⊤x

∥∥
∞, where x

is a second-order critical point. For both theorems, this step is based on the following inequality.

Proposition S.18 (Tool #1). For any second-order critical point x of nSPM-P and i ∈ [K], it holds

(1 + 2(n− 1)ζ2i )FA(x) ≥ (2n− 1)σiζ
n−2
i + nζn−2

i Ri,n + (n− 1)Ri,2 − (4n− 2)∆A. (S.44)

Proof. We substitute y = ai into the inequality (S.24), which is a consequence of x being first and
second-order critical for nSPM-P:

(1 + 2(n− 1)ζ2i )FÂ(x) ≥ n
∥∥PÂ(x

n−1ai)
∥∥2
F
+ (n− 1)⟨PÂ(x

n), xn−2a2i ⟩. (S.45)
Then by the subspace perturbation results (S.40) and (S.41), we have

FÂ(x) = ∥PÂ(x
n)∥2F ≤ ∥PA(x

n)∥2F +∆A = FA(x) + ∆A, (S.46)

∥PÂ(x
n−1ai)∥2F ≥ ∥PA(x

n−1ai)∥2F −∆A ≥ ∥PSpan{ani }(x
n−1ai)∥2F −∆A

= ζ2n−2
i −∆A = ζn−2

i (Ri,n + σi)−∆A, (S.47)

⟨PÂ(x
n), xn−2a2i ⟩ ≥ ⟨PA(x

n), xn−2a2i ⟩ −∆A = Ri,2 + σiζ
n−2
i −∆A. (S.48)

Here we used Span{ani } ⊆ A in the second inequality of (S.47), the identity (S.43) in the second
equality of (S.47), and the identity (S.42) in the equality of (S.48). Substituting (S.46), (S.47) and
(S.48) into (S.45) completes the proof.
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In the second part of both proofs, we show concavity holds in a spherical cap near each sai,
i ∈ [K], s ∈ {−1, 1}. As a starting point in both arguments, we use the next statement to upper
bound the eigenvalues of the Riemannian Hessian.

Proposition S.19 (Tool #2). For any x, z ∈ SD−1 with z ⊥ x, the Riemannian Hessian of FÂ
satisfies, for any i ∈ [K],

1

2n
z⊤∇2

SD−1FÂ(x)z ≤ n
∥∥PA(x

n−1z)
∥∥2
F
+ (n− 1)⟨PA(x

n), xn−2z2⟩ − ζ2ni + 4∆A. (S.49)

Proof. We first show that for all integers 0 ≤ s ≤ n

∥∥Sym(xn−szs)
∥∥
F
=

(
n

s

)−1/2

. (S.50)

Let R ∈ SO(D) (special orthogonal group). Then we have (denoting Tucker product on the RHS)∥∥Sym(xn−szs)
∥∥
F
=
∥∥Sym(xn−szs)×1 R×2 . . .×n R

∥∥
F

(S.51)

by rotational invariance of Frobenius norm. Furthermore,

Sym(xn−szs)×1R×2. . .×nR = Sym(xn−szs×1R×2. . .×nR) = Sym((Rx)n−s(Rz)s) (S.52)

by a direct calculation. Inserting (S.52) into (S.51), and choosing R appropriately,∥∥Sym(xn−szs)
∥∥
F
=
∥∥Sym(en−s1 es2)

∥∥
F

where e1, e2 are the first two standard basis vectors of RD. However, Sym(en−s1 es2) is the tensor
whose (i1, . . . , in)-entry equals

(
n
s

)−1
if (i1, . . . , in) consists of n − s ones and s twos (in some

order), and equals 0 otherwise. Hence,

∥∥Sym(en−s1 es2)
∥∥
F
=

√(
n

s

)
·
(
n

s

)−2

=

(
n

s

)−1/2

.

Then, by the formula for the Riemannian Hessian (S.21),

1

2n
z⊤∇2

SD−1FÂ(x)z = n
∥∥PÂ(x

n−1z)
∥∥2
F
+ (n− 1)⟨PÂ(x

n), xn−2z2⟩ − FÂ(x). (S.53)

To upper-bound this with quantities involving A rather than Â, we use the subspace perturbation
result Lemma S.16, and (S.50):∥∥PÂ(x

n−1z)
∥∥2
F
≤
∥∥PA(x

n−1z)
∥∥2
F
+∆A

∥∥Sym(xn−1z)
∥∥2
F
=
∥∥PA(x

n−1z)
∥∥2
F
+

1

n
∆A,

⟨PÂ(x
n), xn−2z2⟩ ≤ ⟨PA(x

n), xn−2z2⟩+
∥∥Sym(xn−2z2)

∥∥
F
∆A

= ⟨PA(x
n), xn−2z2⟩+

√
2√

n(n− 1)
∆A ≤ ⟨PA(x

n), xn−2z2⟩+ 2

n− 1
∆A,

FÂ(x) =
∥∥PÂ(x

n)
∥∥2
F
≥ ∥PA(x

n)∥2F −∆A ≥
∥∥PSpan(ani )

(xn)
∥∥2
F
−∆A = ζ2ni −∆A.

Inserting these bounds into (S.53) gives (S.49) as announced.

We now recall some basics about geodesic convexity on the sphere.

Definition S.20. Spherical caps and geodesics are defined on the unit sphere as follows.

1. For y ∈ SD−1 and r ∈ (0, 1), define the spherical cap with center y and height r by

Br(y) := {x ∈ SD−1 : ⟨x, y⟩ ≥ 1− r} ⊆ SD−1.
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2. Given distinct points x1, x2 ∈ Br(y), the geodesic segment connecting x1 to x2 is the curve
c : [0, 1]→ Br(y) defined by

c(t) := cos(tθ)x1 + sin(tθ)x⊥
2 for 0 ≤ t ≤ 1. (S.54)

Here θ := cos−1(⟨x1, x2⟩) ∈ (0, π) is the angle between x1 and x2, and x⊥
2 is the compo-

nent of x2 that is orthogonal to x1 (normalized to lie on the unit sphere) given by

x⊥
2 :=

x2 − ⟨x1, x2⟩x1

∥x2 − ⟨x1, x2⟩x1∥2
=

−⟨x1, x2⟩√
1− ⟨x1, x2⟩2

x1 +
1√

1− ⟨x1, x2⟩2
x2 ∈ SD−1.

(If x1 = x2, the geodesic segment connecting x1 to x2 is the constant curve at x1.)

The standard notion of concavity for twice-differentiable functions on the sphere is as follows.

Definition S.21. Let F be a real-valued function defined on an open subset of SD−1 containing the
spherical cap Br(y). Assume that F is twice-differentiable.

1. We say F is geodesically strictly concave on Br(y) if the Riemannian Hessian of F is
negative definite throughout Br(y),

z⊤∇2
SD−1F (x)z < 0, ∀x ∈ Br(y) ∀z ∈ SD−1 with x ⊥ z. (S.55)

2. Let µ > 0. We say F is geodesically µ-strongly concave on Br(y) if the Riemannian
Hessian of F satisfies the following eigenvalue bound throughout Br(y),

z⊤∇2
SD−1F (x)z ≤ −µ, ∀x ∈ Br(y) ∀z ∈ SD−1 with x ⊥ z. (S.56)

The terminology in Definition S.21is justified by the following standard lemma.

Lemma S.22 (Restricting to geodesics). Let F be a real-valued function defined on an open subset
of SD−1 containing the spherical cap Br(y). Assume that F is twice-differentiable.

1. If F is geodesically strictly concave on Br(y), then for all geodesic segments c : [0, 1]→
Br(y) with image contained in Br(y) and c(0) ̸= c(1), the pulled-back function F ◦ c :
[0, 1]→ R is strictly concave on [0, 1].

2. Let µ > 0. If F is geodesically µ-strongly concave on Br(y), then for all geodesic segments
c : [0, 1]→ Br(y) with image contained in Br(y) and c(0) ̸= c(1), the pulled-back function
F ◦ c : [0, 1] → R is µL(c)2-strongly concave on [0, 1]. Here L(c) :=

∫ 1

0
∥ċ(t)∥2dt =

cos−1(⟨c(0), c(1)⟩) denotes the length of c.

Proof. See [4, Thm. 11.19(3), Def. 11.3] and [4, Thm. 11.19(2), Def. 11.5] respectively.

The usual implications of geodesic concavity are as follows.

Lemma S.23. Assume the setup of Lemma S.22.

1. If F is geodesically strictly concave on Br(y), there exists at most one point x ∈ Br(y)
where ∇SD−1F (x) = 0. Such a point x is automatically a strict local maximizer of F .

2. Let µ > 0. If F is geodesically µ-strongly concave on Br(y), then for all geodesics segments
c as in the lemma above, F ◦ c is upper-bounded by a concave quadratic function via:

(F ◦ c)(t) ≤ (F ◦ c)(0) + (F ◦ c)′(0) t− µL(c)2

2
t2, ∀t ∈ [0, 1].

Proof. 1. We first show that for all geodesic segments c : [0, 1] → Br(y) with c(0) ̸= c(1), the
derivative (F ◦ c)′ is strictly decreasing on [0, 1]. To see this, note that since F is twice-differentiable,
F ◦ c is twice-differentiable; and since c is a geodesic it holds

(F ◦ c)′′(t) = ċ(t)⊤∇2
SD−1F (c(t))ċ(t), (S.57)
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by [4, Eq. (5.30), page 106]. The right-hand side of (S.57) is strictly negative by (S.55) and the fact
ċ(t) ̸= 0 (note ∥ċ(t)∥2 = cos−1(⟨c(0), c(1)⟩) and we are assuming c(0) ̸= c(1)). Thus (F ◦ c)′′ is
strictly negative on [0, 1]. Hence by the mean value theorem, (F ◦ c)′ is strictly decreasing on [0, 1].

Now, to deduce item 1 in the lemma, assume for a contradiction that there exist two distinct points
x1, x2 ∈ Br(y) where the Riemannian gradient vanishes. Let c be the geodesic segment connecting
x1 to x2. Again by [4, Eq. (5.30), page 106],

(F ◦ c)′(t) = ċ(t)⊤∇SD−1F (c(t)).

By the vanishing Riemannian gradient assumption, this implies (F ◦ c)′(0) = 0 and (F ◦ c)′(1) = 0.
But that contradicts the fact that (F ◦ c)′ is strictly decreasing. So item 1 follows.

2. By Taylor’s theorem applied to F ◦ c, for each t ∈ [0, 1] there exists ξ ∈ [0, t] such that

(F ◦ c)(t) = (F ◦ c)(0) + (F ◦ c)′(0) t +
(F ◦ c)′′(ξ)

2
t2. (S.58)

From (S.57), (S.56) and ∥ċ(ξ)∥2 = L(c), we get (F ◦ c)′′(ξ) ≤ −µL(c)2. Insert this into (S.58).

The next tool is how we complete the proofs of our main results, by showing a second-order critical
point with sufficiently large functional value must land in a spherical cap around one of sai.

Proposition S.24 (Tool #3). Let {ai : i ∈ [K]} ⊆ SD−1 be any system of vectors, letA = Span{ani :

i ∈ [K]} ⊆ Sym(T nD ) be the corresponding subspace of tensors and let Â ⊆ Sym(T nD ) be another
subspace of tensors which is a perturbation of A with approximation error ∆A. Let 0 < r ≤ R < 1,
so there is an inclusion of spherical caps Br(sai) ⊆ BR(sai). Assume FÂ is geodesically n-strongly
concave on the inner cap Br(sai), the height of the inner cap satisfies r > ∆A/n, and FÂ is
geodesically strictly concave on the outer cap BR(sai). Then, in BR(sai) there exists a unique
first-order critical point x∗ of nSPM-P. Further, this point is a strict local maximizer for nSPM-P
on SD−1. Finally, the distance between x∗ and sai is upper-bounded independently of R and r via:

∥x∗ − sai∥22 ≤
2∆A

n
. (S.59)

Proof. By Lemma S.23(a) and the assumption that FÂ is strictly concave on the outer cap, there
exists at most one critical point of FÂ in BR(sai). To prove the rest of the proposition, we let
the maximum of FÂ in the inner cap Br(sai) be attained at x∗ ∈ Br(sai); such a point exists by
compactness of Br(sai). We will first show that x∗ satisfies (S.59), which is the main assertion. To
this end, by the choice of x∗, note FÂ(x

∗) ≥ FÂ(sai). Of course, 1 ≥ FÂ(x
∗). By the perturbation

bound (S.41), FÂ(sai) ≥ FA(sai)−∆A = 1−∆A. Combining the last three sentences gives

−∆A ≤ FÂ(sai)− FÂ(x
∗). (S.60)

Now let c be the geodesic segment (S.54) connecting x∗ to sai. By Lemma S.23(b) and the assumption
that FÂ is n-strictly concave on the inner cap, we have FÂ(sai)− FÂ(x

∗) ≤ (F ◦ c)′(0)− nL(c)2

2 .
By the choice of x∗, (F ◦ c)(0) ≥ (F ◦ c)(t) for all t ∈ [0, 1], whence (F ◦ c)′(0) ≤ 0. It follows

FÂ(sai)− FÂ(x
∗) ≤ −nL(c)2

2
. (S.61)

Putting Eq. (S.60) and (S.61) together, we get

−∆A ≤ −
nL(c)2

2
⇐⇒ L(c)2 ≤ 2∆A

n
. (S.62)

Here the geodesic length L(c) is θ0, where θ0 = cos−1(⟨x∗, sai⟩) is the angle between x∗ and sai in
radians. This is related to the squared Euclidean distance between x∗ and sai as follows:

∥x∗ − sai∥22 = 2− 2⟨x∗, sai⟩ = 2− 2 cos(θ0).

Using the elementary inequality cos(θ) ≥ 1− 1
2θ

2, which is true for all θ ∈ R, we see

∥x∗ − sai∥22 ≤ θ20 = L(c)2.
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Thus (S.59) follows from (S.62) as desired. We can quickly obtain the rest of the statement, and see
that x∗ is a strict local maximizer of FÂ on SD−1 (hence also a first-order critical point), by noting

2− 2⟨x∗, sai⟩ = ∥x∗ − sai∥22 ≤
2∆A

n
=⇒ 1− ⟨x∗, sai⟩ ≤

∆A

n
.

For then from the assumption that r > ∆A/n, we get 1 − ⟨x∗, sai⟩ < r. Hence x∗ lies strictly
in the interior of the inner cap Br(sai). Therefore x∗ is a local maximizer of FÂ on SD−1. By
Lemma S.23(a) and strict concavity, x∗ is in fact a strict local maximizer. This ends the proof.

G Proof of Theorem M.7

In this section we prove our deterministic theorem. Here we define ζ , σ and Ri,s as in Definition S.1.

G.1 Bounds on Ri,s and ∥G−1
n ∥2

We start by relating the auxiliary scalars Ri,s to the frame constants ρs.

Lemma S.25. For each i ∈ [K] and s ∈ [n], we have

|Ri,s| ≤ max
ℓ:ℓ ̸=i
|σℓζn−sℓ | ρs ≤ ∥σ ⊙ ζ⊙n−s∥∞ ρs. (S.63)

If s is even, then we have a slight refinement:

min
ℓ:ℓ ̸=i

σℓζ
n−s
ℓ ρs ≤ Ri,s ≤ max

ℓ:ℓ̸=i
σℓζ

n−s
ℓ ρs. (S.64)

Proof. For each i and s, use the definition of Ri,s, the triangle inequality and the definition of ρs:

|Ri,s| = |
∑
ℓ:ℓ̸=i

σℓζ
n−s
ℓ ⟨ai, aℓ⟩s| ≤

∑
ℓ:ℓ̸=i

|σℓζn−sℓ ||⟨ai, aℓ⟩|s ≤ max
ℓ:ℓ ̸=i
|σℓζn−sℓ |

∑
ℓ:ℓ ̸=i

|⟨ai, aℓ⟩|s

≤ max
ℓ:ℓ̸=i
|σℓζn−sℓ |(

K∑
ℓ=1

|⟨ai, aℓ⟩|s − 1) ≤ max
ℓ:ℓ ̸=i
|σℓζn−sℓ |ρs ≤ ∥σ ⊙ ζ⊙n−s∥∞ρs.

If s is even, then each term ⟨ai, aℓ⟩s is nonnegative. So we have

Ri,s =
∑
ℓ:ℓ̸=i

σℓζ
n−s
ℓ ⟨ai, aℓ⟩s ≤ max

ℓ:ℓ ̸=i
σℓζ

n−s
ℓ

∑
ℓ:ℓ ̸=i

⟨ai, aℓ⟩s ≤ max
ℓ:ℓ ̸=i

σℓζ
n−s
ℓ ρs,

and likewise Ri,s ≥ minℓ:ℓ ̸=i σℓζ
n−s
ℓ ρs as announced.

Remark S.26. The frame constants are small under the assumptions of Theorem M.7 with τ > 0,
for then:

n2ρ2 ≤ n2ρ2 + (n2 + n)ρn <
1

6
=⇒ ρ2 <

1

6n2
≤ 1

24
(S.65)

and (n2 + n)ρn ≤ n2ρ2 + (n2 + n)ρn <
1

6
=⇒ ρn <

1

6(n2 + n)
=

1

36
. (S.66)

Consequently in the setting of Theorem M.7, the system {ani : i ∈ [K]} is linearly independent.

Corollary S.27. Under the assumptions of Theorem M.7, the Grammian matrix given by (Gn)i,j =
⟨ai, aj⟩n is invertible. In fact,

∥G−1
n ∥2 ≤

1

1− ρn
≤ 36

35
.

Proof. This follows immediately from (S.66), and the bound 1− ρn ≤ µn(Gn) in Lemma M.6.

17



G.2 Lower bound on maximum correlation coefficient

We begin the proof of Theorem M.7 by showing that any constrained second-order critical point x
has at least one large correlation coefficient.

Proposition S.28. Consider a system {ai : i ∈ [K]} that satisfies the assumptions of Theorem M.7.
For a second-order critical point x of nSPM-P, then either FA(x) = 0 or we have

∥ζ∥2∞ ≥ 1−
(
1 +

n

2(n− 1)

)
ρ2

1 + ρ2
− n

2(n− 1)

ρn
(1− 2ρn)(1 + ρ2)

− 4n− 2

2(n− 1)

∆A

FA(x)

≥ 1− 2ρ2 − 2ρn − 3
∆A

FA(x)
.

Proof. Fix a second-order critical point x ∈ SD−1 of nSPM-P, and let ζ = ζ(x) = A⊤x ∈ RK .
Since we can change aℓ to −aℓ without altering the function FA or the constants ρs, we may assume
without loss of generality that ζℓ ≥ 0 for each ℓ ∈ [K]. We may also assume that FA(x) ̸= 0.

Our starting point is Eq. (S.44) in Proposition S.18, which says that for each i ∈ [K] we have(
1 + 2(n− 1)ζ2i

)
FA(x) ≥ (2n− 1)σiζ

n−2
i + nζn−2

i Ri,n + (n− 1)Ri,2 − (4n− 2)∆A.
(S.67)

Since we want to deduce that ∥ζ∥∞ is large, we fix i ∈ [K] to be an index such that the first (main)
term on the right-hand side of (S.67) is maximal; that is, let i ∈ argmaxℓ∈[K] σℓζ

n−2
ℓ . Now notice

0 < FA(x) = ⟨PA(x
n), xn⟩ = ⟨

K∑
ℓ=1

σℓa
n
ℓ , x

n⟩ =
K∑
ℓ=1

σℓζ
n
ℓ ≤ σiζ

n−2
i

K∑
ℓ=1

ζ2ℓ , (S.68)

from which it follows that σiζn−2
i > 0. In (S.67), our goal is to bound FA(x) on the left-hand side

from above, and Ri,n, Ri,2 on the right-hand side from below, all by quantities involving ζi.

Firstly using (S.68), the fact σiζn−2
i > 0 and the definition of ρ2, we have

FA(x) ≤
K∑
ℓ=1

σℓζ
n
ℓ ≤ σiζ

n−2
i

K∑
ℓ=1

ζ2ℓ = σiζ
n−2
i (1 + ρ2). (S.69)

Then by Lemma S.25, Eq. (S.64) with s = n we have

Ri,2 ≥ min
ℓ:ℓ ̸=i

σℓζ
n−2
ℓ ρ2, (S.70)

while by (S.63) with s = n we have

ζn−2
i Ri,n ≥ −ζn−2

i ∥σ∥∞ ρn. (S.71)

To further bound the right-hand sides in (S.70) and (S.71) in terms of ζi, we now show that σi ≈ ∥σ∞∥
and that minℓ ̸=i σℓζ

n−2
ℓ ≥ −σiζn−2

i .

Showing σi ≈ ∥σ∥∞: Let j ∈ [K] be an index such that |σj | = ∥σ∥∞. We note that σj ≥ 0, because
if σj < 0, then using ζj ≥ 0 and (S.43) we would have

∥σ∥∞ = |σj | ≤
∣∣σj − ζnj

∣∣ = |Rj,n| |∑
ℓ̸=j

σℓ⟨aj , aℓ⟩n| ≤ ∥σ∥∞ ρn.

This contradicts the assumption ρn < 1, so indeed σj ≥ 0. Now consider the three facts:

1. σiζ
n−2
i ≥ σjζ

n−2
i by definition of i;

2. σj ≥ σi by σj ≥ 0 and definition of j;

3. ζi ≥ 0 and ζj ≥ 0.

18



It follows that ζi ≥ ζj . Using this and the bound for the auxiliary constants (S.63), we can estimate:

σj − σi ≤ σj − ζnj + ζni − σi = −Rj,n+Ri,n ≤ |Rj,n|+ |Ri,n| ≤ 2σjρn.

Rearranging gives

σj ≥ σi ≥ (1− 2ρn)σj = (1− 2ρn) ∥σ∥∞ . (S.72)

By the assumptions in Theorem M.7 and (S.66), in particular ρn/(1− 2ρn) > 0. Hence multiplying
throughout by ρn/(1− 2ρn) in (S.72) yields

ρn
1− 2ρn

σi ≤ ρn∥σ∥∞,

and then substituting into (S.71) we obtain

ζn−2
i Ri,n ≥ −ζn−2

i ∥σ∥∞ ρn ≥ −ζn−2
i

ρn
1− 2ρn

σi. (S.73)

Showing minℓ ̸=i σℓζ
n−2
ℓ ≥ −σiζn−2

i : Assume to the contrary that minℓ ̸=i σℓζ
n−2
ℓ < −σiζn−2

i and
let k be an index attaining the minimum on the left-hand side. Since σiζ

n−2
i > 0 and ζn−2

k ≥ 0, it
must be that σk < 0. Using σk < 0 and ζk ≥ 0, we estimate

|σk| ≤ |σk − ζnk |∞ = |Rk,n| ≤ ∥σ∥∞ ρn.

This implies∥∥σ ⊙ ζn−2
∥∥
∞ = max{σiζn−2

i ,−σkζn−2
k } = −σkζn−2

k ≤ ∥σ∥∞ ζn−2
k ρn.

Similarly to the previous part, using −σkζn−2
k > σkζ

n−2
j we can see ζk ≥ ζj , where j is again the

index such that σj = ∥σ∥∞. Hence, as before, we have

σj − σk = σj − ζnj + ζnk − σk = −Rj,n +Rk,n ≤ 2σjρn,

which rearranges to σk ≥ (1− 2ρn)σj . Since we have previously shown σj ≥ 0 and we know ρn <

1/2 by (S.66), this is in contradiction with σk < 0. Thus it follows that minℓ:ℓ ̸=i σℓζ
n−2
ℓ ≥ −σiζn−2

i
as desired. Substituting into (S.70) yields

Ri,2 ≥ min
ℓ:ℓ ̸=i

σℓζ
n−2
ℓ ρ2 ≥ −σiζn−2

i ρ2. (S.74)

We can now complete the proof of the proposition. Substituting the bounds (S.69), (S.73), and (S.74)
into the second-order criticality inequality (S.67), we get(

1 + 2(n− 1)ζ2i
)
(1 + ρ2)σiζ

n−2
i ≥ (2n− 1)σiζ

n−2
i − n

ρn
1− 2ρn

σiζ
n−2
i

− (n− 1)ρ2σiζ
n−2
i − (4n− 2)∆A.

Dividing by (1 + ρ2)σiζ
n−2
i > 0, subtracting 1 and then dividing by 2(n− 1), this simplifies to

ζ2i ≥
1

1 + ρ2
− n

2(n− 1)

(
ρn

(1− 2ρn)(1 + ρ2)
+

ρ2
1 + ρ2

)
− 4n− 2

2(n− 1)

∆A

(1 + ρ2)σiζ
n−2
i

.

We replace the denominator in the last term by FA(x) by re-using the bound FA(x) ≤ σiζ
n−2
i (1+ρ2)

(S.69). Then we rearrange the terms and substitute ∥ζ∥2∞ ≥ ζ2i . This gives the first inequality in the
proposition. The second stated inequality is an immediate consequence of the first, where we simplify
each term up to a constant factor using n

2(n−1) ≤ 1, 1 + ρ2 ≥ 1, 1− 2ρn > 1
2 and 4n−2

2(n−1) ≤ 3 .

G.3 Concavity

In the next proof step we analyze the Riemannian Hessian and show that it is strictly negative definite.
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Proposition S.29. Consider a system {ai : i ∈ [K]} that satisfies the assumptions in Theorem M.7.
For any x, z ∈ SD−1 with z ⊥ x, the Riemannian Hessian of FÂ satisfies

z⊤∇2
SD−1FÂ(x)z ≤ −2n+ 2n2 2− ρn

1− ρn

(
1− ∥ζ∥2n∞

)
+ 2n(3n− 2)

ρn
1− ρn

+ 8n∆A. (S.75)

Proof. Let i ∈ [K] be such that |ζi| = ∥ζ∥∞ where ζ = ζ(x) = A⊤x. Our starting point is (S.49)
in Proposition S.19, which reads

1

2n
z⊤∇2

SD−1FÂ(x)z ≤ n
∥∥PA(x

n−1z)
∥∥2
F
+ (n− 1)⟨PA(x

n), xn−2z2⟩ − ζ2ni + 4∆A. (S.76)

Expanding PA(x
n) =

∑K
ℓ=1 σℓa

n
ℓ as in Definition S.1, we can upper-bound the second term on the

right-hand side of (S.76) as follows by applying Hölder’s inequality and the definition of ρn:

⟨PA(x
n), xn−2z2⟩ =

K∑
ℓ=1

σℓζ
n−2
ℓ ⟨aℓ, z⟩2 =

K∑
ℓ=1

ζ2n−2
ℓ ⟨aℓ, z⟩2 +

K∑
ℓ=1

(σℓ − ζnℓ )ζ
n−2
ℓ ⟨aℓ, z⟩2

≤
K∑
ℓ=1

ζ2n−2
ℓ ⟨aℓ, z⟩2 + ∥σ − ζ⊙n∥∞

K∑
ℓ=1

ζn−2
ℓ ⟨aℓ, z⟩2

≤
K∑
ℓ=1

ζ2n−2
ℓ ⟨aℓ, z⟩2 +

∥∥σ − ζ⊙n
∥∥
∞

(
K∑
ℓ=1

ζnℓ

)n−2
n
(

K∑
ℓ=1

⟨aℓ, z⟩n
) 2

n

≤
K∑
ℓ=1

ζ2n−2
ℓ ⟨aℓ, z⟩2 +

∥∥σ − ζ⊙n
∥∥
∞ (1 + ρn). (S.77)

Further we can quickly bound the second term in the right-hand side of (S.77). Firstly by (S.43) and
(S.63), we have ∥σ − ζ⊙n∥∞ = maxi∈[K] |Ri,n| ≤ ∥σ∥∞ρn. Then we can bound ∥σ∥∞ via

∥σ∥∞ =
∥∥σ − ζ⊙n + ζ⊙n

∥∥
∞ ≤ 1 +

∥∥σ − ζ⊙n
∥∥
∞ ≤ 1 + ∥σ∥∞ ρn =⇒ ∥σ∥∞ ≤ (1− ρn)

−1.

Putting the last two sentences together gives us

∥σ − ζ⊙n∥∞(1 + ρn) ≤ ∥σ∥∞ρn(1 + ρn) ≤
1 + ρn
1− ρn

ρn. (S.78)

As for the first term on the right-hand side of (S.77), we first split the sum:
K∑
ℓ=1

ζ2n−2
ℓ ⟨aℓ, z⟩2 = ζ2n−2

i ⟨ai, z⟩2 +
∑
ℓ:ℓ ̸=i

ζ2n−2
ℓ ⟨aℓ, z⟩2. (S.79)

We use Bessel’s inequality and the assumptions x, z ∈ SD−1 and x ⊥ z to get

ζ2n−2
i ⟨ai, z⟩2 = ζ2n−2

i (⟨ai, z⟩2 + ⟨ai, x⟩2 − ζ2i ) ≤ ζ2n−2
i (∥ai∥22 − ζ2i ) ≤ ζ2n−2

i (1− ζ2i ).
(S.80)

Then we estimate∑
ℓ:ℓ ̸=i

ζ2n−2
ℓ ⟨aℓ, z⟩2 ≤

∑
ℓ:ℓ ̸=i

ζ2n−2
ℓ =

K∑
ℓ=1

ζ2n−2
ℓ − ζ2n−2

i ≤ 1 + ρ2n−2 − ζ2n−2
i ≤ 1 + ρn − ζ2n−2

i ,

(S.81)

where the last inequality used 2n− 2 ≥ n. Finally we substitute (S.80) and (S.81) into (S.79) to get
K∑
ℓ=1

ζ2n−2
ℓ ⟨aℓ, z⟩2 ≤ 1− ζ2ni + ρn. (S.82)

Combining (S.77), (S.82), (S.78) we arrive at:

⟨PA(x
n), xn−2z2⟩ ≤ 1− ζ2ni + ρn +

1 + ρn
1− ρn

ρn. (S.83)
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At this point, we turn to the first term on the right-hand side of (S.76). Recalling Lemma S.5,
Definition S.1 and Corollary S.27, we may write∥∥PA(x

n−1z)
∥∥2
F
= η(xn−1z)⊤G−1

n η(xn−1z), (S.84)

where η(xn−1z)ℓ := ⟨xn−1z, anℓ ⟩ = ζn−1
ℓ ⟨aℓ, z⟩. Clearly (S.84) is less than or equal to

∥∥G−1
n

∥∥
2
∥η(xn−1z)∥22 =

∥∥G−1
n

∥∥
2

K∑
ℓ=1

ζ2n−2
ℓ ⟨aℓ, z⟩2.

Re-using the just-proven (S.82) as well as Corollary S.27, it follows that

∥∥PA(x
n−1z)

∥∥2
F
≤
∥∥G−1

n

∥∥
2

K∑
ℓ=1

ζ2n−2
ℓ ⟨aℓ, z⟩2 ≤

1− ζ2ni + ρn
1− ρn

. (S.85)

To complete the proof, we plug (S.85) and (S.83) into (S.76) and rearrange terms to get (S.75).

As a corollary of S.29, we can now prove the existence of exactly one local maximizer within
spherical caps of the global maximizers ±a′is of the clean objective FA.
Corollary S.30. Consider a system {ai : i ∈ [K]} that satisfies the assumptions in Theorem M.7.
Define the height r+ ∈ (0, 1) by

1− r+ :=

(
1− 1

n

1− ρn
2− ρn

+
3n− 2

n

ρn
2− ρn

+
4

n

1− ρn
2− ρn

∆A

) 1
2n

≤
(
1− 1

3n
+ 2ρn +

2

n
∆A

) 1
2n

.

Then the 2K spherical caps Br+(a1), Br+(−a1), Br+(a2), . . . , Br+(−aK) are disjoint. Further
for each s ∈ {−1,+1} and i ∈ [K], there exists exactly one first-order critical point x∗ of FÂ in
Br+(sai). Morerover x∗ is a strict local maximum of FÂ (hence second-order critical), and

∥x∗ − sai∥22 ≤
2∆A

n
.

Proof. First, we check that r+ ∈ (0, 1). Indeed r+ > 0 is clear from (S.66), and r+ < 1 is
equivalent to (3n − 1)ρn + 4(1 − ρn)∆A < 1 which holds by the assumptions in Theorem M.7.
Also 1− r+ ≤ (1− 1

3n + 2ρn + 2
n∆A)

1
2n as stated, by the bound on ρn (S.66).

Next, we check that the 2K spherical caps are disjoint. For a contradiction, suppose there exist
distinct (s, i), (s′, i′) ∈ {−1, 1} × [K] and x ∈ SD−1 such that x ∈ Br+(sai) ∩ Br+(s

′ai′). Thus
⟨x, sai⟩ ≥ 1−r+ and ⟨x, s′ai′⟩ ≥ 1−r+. By the triangle inequality with respect to geodesic distances
on the sphere, we know arccos ⟨sai, s′ai′⟩ ≤ arccos ⟨sai, x⟩+arccos ⟨x, s′ai′⟩ ≤ 2 arccos (1− r+),
hence by the double angle formula for cosine ⟨sai, s′ai′⟩ ≥ 2(1− r+)

2 − 1. But note that this gives
a lower bound on ρ2: letting y ∈ SD−1 be the midpoint of the arc joining sai and s′ai′ , we have

ρ2 ≥ ⟨y, ai⟩2 + ⟨y, ai′⟩2 − 1 = ⟨y, sai⟩2 + ⟨y, s′ai′⟩2 − 1 = ⟨sai, s′ai′⟩ ≥ 2(1− r+)
2 − 1,

where the second equality is again by the double angle formula. Therefore

ρ2 ≥ 2(1− r+)
2 − 1 ≥ 2

(
1− 1

2n

) 1
n

− 1 > 2

(
1− 1

2n

)
− 1 = 1− 1

n
,

which contradicts the implied upper bound on ρ2 (S.65). So the 2K spherical caps are disjoint.

For the remaining statements we apply Proposition S.24. Thus it suffices to check that FÂ is strictly
n-concave on B(sai, 1− ∆A

n ) and strictly concave in the interior of Br+(sai). To verify these, we
will use Proposition S.29 to upper-bound the eigenvalues of the Riemmanian Hessian of FÂ.

So for the strict n-concavity condition, we want to show:

−2n+ 2n2 2− ρn
1− ρn

(1− (1− ∆A

n
)2n) + 2n(3n− 2)

ρn
1− ρn

+ 8n∆A < −n. (S.86)
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Since (1− x)2n ≥ 1− 2nx for x ∈ R, we have(
1− ∆A

n

)2n

≥ 1− 2∆A,

whence (S.86) is implied by

−2n+ 4n2 2− ρn
1− ρn

∆A + 2n(3n− 2)
ρn

1− ρn
+ 8n∆A < −n. (S.87)

Rearranging terms, Eq. (S.87) is equivalent to

(4n(2− ρn) + 8(1− ρn))∆A + (6n− 3)ρn < 1. (S.88)

However indeed, (S.88) holds as a consequence of the assumptions in Theorem M.7.

As for the concavity condition on Br+(sai), we want to show:

−2n+ 2n2 2− ρn
1− ρn

(1− (1− r+)
2n) + 2n(3n− 2)

ρn
1− ρn

+ 8n∆A ≤ 0. (S.89)

However upon substituting in the definition of r+, we see that the left-hand side of (S.89) is precisely 0,
i.e., r+ was chosen to be maximal so that (S.89) holds. This completes the proof of the corollary.

G.4 Completing the proof of Theorem M.7

Finally, we can conclude the proof of Theorem M.7 by combining the previous three steps.

Proof of Theorem M.7. Let ℓ = 3n2+2
2τ ∆A +∆A. It suffices to verify the following two claims:

1. Each second-order critical point x∗ of nSPM-P satisfying FÂ(x
∗) > ℓ must lie in one of

the spherical caps Br+(a1), Br+(−a1), . . . , Br+(−aK) from Corollary S.30.

2. The level ℓ satisfies ℓ < 1−∆A.

It is easy to see that these statements imply Theorem M.7. By the first claim and Corollary S.30, there
are at most 2K second-order critical points x∗ with FÂ(x

∗) > ℓ. They are all strict local maximizers
of FÂ. For each such point, there exists unique i ∈ [K], s ∈ {−1,+1} with ∥x∗ − sai∥22 ≤ 2∆A

n .
Meanwhile by the second claim, for each s ∈ {−1,+1}, i ∈ [K] the maximizer x∗ of FÂ in
Br+(sai) from Corollary S.30 satisfies FÂ(x) ≥ FÂ(sai) ≥ FA(sai)−∆A = 1−∆A > ℓ. Thus
there are at least 2K second-order critical points in the superlevel set, and the theorem follows.

Now we verify the first claim. Letting ζ = A⊤x∗, we want ∥ζ∥∞ ≥ 1− r+. Indeed using the bound
∆A

FA(x∗)
≤ ∆A

FÂ(x
∗)−∆A

<
∆A

ℓ−∆A
=

2τ

2 + 3n2

=
2τ

3n2

3n2

2 + 3n2
≤ 2τ

3n2

3n2 + 4τ

2 + 3n2 + 4τ
=

2τ

3n2

(
1− 2

2 + 3n2 + 4τ

)
=

2

3n2
(τ −∆0)

≤ 2

3n2
(τ −∆A),

where we used a+c
b+c ≥

a
b if b ≥ a ≥ 0 and c ≥ 0, Proposition S.28 gives

∥ζ∥2∞ ≥ 1− 2ρ2 − 2ρn − 3
∆A

FA(x)
≥ 1− 2ρ2 − 2ρn −

2

n2
(τ −∆A)

= 1− 2ρ2 − 2ρn −
2

n2

(
1

6
−∆A − n2ρ2 − (n2 + n)ρn

)
= 1− 1

3n2
+

2

n
ρn +

2

n2
∆A

≥
(
1− 1

3n
+ 2ρn +

2

n
∆A

)1
n

≥ (1− r+)
2.
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Note that the penultimate line used (1 − x)
1
n ≤ 1 − x

n for x ≤ 1, and the last line was a part of
Corollary S.30.

Next we check the second claim. Substituting the definition of ℓ, we require

3n2 + 2

2τ
∆A +∆A < 1−∆A ⇐⇒ ∆A <

1
3n2+2

2τ + 2
= ∆0.

But this is guaranteed by the assumption ∆A < ∆0. The proof of Theorem M.7 is finished.

H Proof of Theorem M.16

In this section we prove our random overcomplete theorem. Here we define ζ, σ and Ri,s as in
Definition S.1. We recall the shorthand εK = K logn(K)/Dn. Furthermore, as required by the
statement of Theorem M.16, we assume that conditions hold A1–A3 hold.

H.1 Bounds on Ri,s

A central part of the proof is to bound the remainder |Ri,s|. We start with a general result that bounds
inner products with the basis coefficients σ. Then we deduce a first bound on Ri,s.

Lemma S.31. Assume that conditions A2 and A3 hold. For any vector ξ ∈ RK , we have∣∣σ⊤ξ
∣∣ ≤√c2FA(x)∥ξ∥2. (S.90)

In particular, letting Rs = maxi |Ri,s| as in Definition S.1, we have

Rs ≤
√

c2cs1FA(x) ε
s
2n

K ∥ζ∥
n−s
2n . (S.91)

Proof. Since G−1
n is symmetric and positive definite, we can reason as follows for the first claim:∣∣σ⊤ξ
∣∣ = ∣∣(ζ⊙n)⊤G−1

n ξ
∣∣ (Eq. (S.14))

≤
√
(ζ⊙n)⊤G−1

n ζ⊙n
√
ξ⊤G−1

n ξ (Cauchy-Schwartz w.r.t. G−1
n )

=
√
FA(x)

√
ξ⊤G−1

n ξ (Eq. (S.12))

≤
√
FA(x)

√
∥G−1

n ∥2∥ξ∥2

≤
√

c2FA(x)∥ξ∥2 (condition A3).

For (S.91), we note that Ri,s = σ⊤ξ, where ξ ∈ RK is given by ξj = 1(j ̸= i)ζn−sj ⟨ai, aj⟩s (each
j ∈ [K]). Substituting this into (S.90) gives (S.91), because

∥ξ∥2 =

√∑
j:j ̸=i

ζ2n−2s
j ⟨ai, aj⟩2s

≤

√√√√√∑
j:j ̸=i

ζ2nj


2n−2s

2n
∑
j:j ̸=i

⟨ai, aj⟩2n

2s
2n

(Hölder’s inequality)

≤ ∥ζ∥n−s2n

(
K

(
c1 log(K)

D

)n)s
2n

(condition A2)

= c
s
2
1 ε

s
2n

K ∥ζ∥
n−s
2n ,

where the last equation follows from the definition of εK . This completes the proof of the lemma.
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The restricted isometry property plays an important part in our analysis of the overcomplete regime.
In the next statement, we present the inequalities that we will use which rely on the RIP assumption.
Then as a corollary, we obtain a bound on the remainders Ri,s that will be more useful than (S.91).

Lemma S.32 (Consequences of RIP). Assume that conditions A1-A3 hold. Let x ∈ SD−1 and let
I = I(x) ⊆ [K] satisfy the conclusions of Lemma S.12. Then it holds∣∣∣∣∣FA(x)−

∑
i∈I

σiζ
n
i

∣∣∣∣∣ ≤√c2c̃nδFA(x)εK . (S.92)

Further, there exists a constant C1, depending only on n, c1, c2 and c̃δ, and another constant C2,
depending only on n and c̃nδ , such that we have

∥ζ∥2n2n ≤ FA(x) + C1

√
εKFA(x) + C2εK . (S.93)

Proof. To show (S.92), start with the identity FA(x) =
∑K
i=1 σiζ

n
i , then apply the inner product

bound (S.90) with ξ ∈ RK given by ξj = 1(j /∈ I)ζnj , and then use Lemma S.12 based on RIP:∣∣∣∣∣FA(x)−
∑
i∈I

σiζ
n
i

∣∣∣∣∣ =
∣∣∣∣∣∑
i/∈I

σiζ
n
i

∣∣∣∣∣
≤
√
c2FA(x)

√∑
i/∈I

ζ2ni (Eq. (S.90))

≤
√
c2FA(x)

√
K

(
c̃nδ

log(K)

D

)n
(Lemma S.12)

=
√
c2c̃nδFA(x)εK .

Next to show (S.93), split ∥ζ∥2n2n into a sum over I and [K] \ I:

∥ζ∥2n2n =
∑
i∈I

ζ2ni +
∑
i/∈I

ζ2ni . (S.94)

As before, the sum over [K] \ I is upper-bounded using the second conclusion in Lemma S.12:∑
i/∈I

ζ2ni ≤ c̃nδ εK . (S.95)

As for the sum over I in (S.94), we can relate this to FA(x) by using∑
i∈I

ζ2ni =
∑
i∈I

σiζ
n
i +

∑
i∈I

Ri,nζ
n
i . (S.96)

Indeed we have already proven that the first sum on the right-hand side of (S.96) is approximately
FA(x); more precisely (S.92) holds. We can see that the other sum is small by using our initial bound
on Rs (S.91) together with the first conclusion of Lemma S.12:∣∣∣∣∣∑

i∈I
Ri,nζ

n
i

∣∣∣∣∣ ≤ Rn
∑
i∈I
|ζi|n ≤ Rn

∑
i∈I

ζ2i ≤ Rn(1 + δ)

≤ (1 + δ)
√
c2cn1FA(x)εK ≤ 2

√
c2cn1FA(x)εK .

Putting the last three sentences together via the triangle inequality gives∣∣∣∣∣∑
i∈I

ζ2ni − FA(x)

∣∣∣∣∣ ≤√c2c̃nδFA(x)εK + 2
√
c2cn1FA(x)εK .

Combining (S.94), (S.95), (S.96), we conclude that we may set

C1 = c̃nδ and C2 =
√
c2c̃nδ + 2

√
c2cn1 ,

and (S.93) follows as desired.
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Corollary S.33. Assume that conditions A1-A3 hold. Let x ∈ SD−1 be arbitrary and s ∈ {0, . . . , n}.
Then there exists a constant C̃s, depending only on s, n, c1, c2 and c̃δ , such that

Rs ≤ C̃sε
s
2n

K max{εK , FA(x)}1−
s
2n . (S.97)

Proof. Plugging (S.93) into (S.91) yields

Rs ≤
√
c2cs1FA(x) ε

s
2n

K

(
FA(x) + C1

√
εKFA(x) + C2εK

)n−s
2n ≤ C̃sε

s
2n

K max{εK , FA(x)}1−
s
2n ,

where C̃s =
√
c2cs1 (1 + C1 + C2)

n−s
2n .

H.2 Lower bound on maximum correlation coefficient

We now provide a lower bound on ∥ζ∥∞ depending on εK
FA(x) .

Proposition S.34. Suppose that x is a second-order critical point of nSPM-P and FA(x) ≥ εK .
Then there exists a constant C2 depending only on n, c1, c2, c̃δ, δ, and another constant Cn depending
only on n, c1, c2, c̃δ , such that we have

∥ζ∥2∞ ≥ 1− 2n− 1

2n− 2

δ

1 + δ
− C2

(
εK

FA(x)

)1
2

− Cn

(
εK

FA(x)

)1
n

− 3
∆A

FA(x)
, (S.98)

≥ 1− 2n− 1

2n− 2

δ

1 + δ
− (C2 + Cn)

(
εK

FA(x)

)1
n

− 3
∆A

FA(x)
.

Remark S.35. Note that while the statement is for a constrained second-order critical point of FÂ,
(S.98) contains FA(x). This is intentional: later we use this result together with a bound on FA(x).

Proof. Our starting point is Eq. (S.44) in Proposition S.18, which says that for each i ∈ [K] we have(
1 + 2(n− 1)ζ2i

)
FA(x) ≥ (2n− 1)σiζ

n−2
i + nζn−2

i Ri,n + (n− 1)Ri,2 − (4n− 2)∆A.

Multiplying both sides by ζ2i and using that 1 + 2(n− 1)∥ζ∥2∞ ≥ 1 + 2(n− 1)ζ2i , we have

ζ2i
(
1 + 2(n− 1)∥ζ∥2∞

)
FA(x) ≥ (2n− 1)σiζ

n
i + ζ2i

(
nζn−2
i Ri,n + (n− 1)Ri,2 − (4n− 2)∆A

)
.

(S.99)

Now let I = I(x) ⊆ [K] satisfy the conclusions of Lemma S.12, and sum the inequalities (S.99) as
i ranges over I. Denoting ∥ζ∥22,I =

∑
i∈I ζ2i , this gives

∥ζ∥22,I
(
1 + 2(n− 1)∥ζ∥2∞

)
FA(x) ≥ (2n− 1)

∑
i∈I

σiζ
n
i +

∑
i∈I

ζ2i (nζ
n−2
i Ri,n + (n− 1)Ri,2

− (4n− 2)∆A). (S.100)

We lower-bound each of the sums on the right-hand side in turn. Firstly by (S.92),

(2n− 1)
∑
i∈I

σiζ
n
i ≥ (2n− 1)

(
FA(x)−

√
c2c̃nδFA(x)εK

)
. (S.101)

Secondly by combining the triangle inequality, the trivial bound |ζn−2
i | ≤ 1, Corollary S.33 with

s = 2, n and the assumption FA(x) ≥ εK , we have∑
i∈I

ζ2i (nζ
n−2
i Ri,n + (n− 1)Ri,2 − (4n− 2)∆A)

≥ −∥ζ∥22,I (nRn + (n− 1)R2 + (4n− 2)∆A)

≥ −∥ζ∥22,I
(
nC̃n

√
εKFA(x) + (n− 1)C̃2ε

1
n

KFA(x)
n−1
n + (4n− 2)∆A

)
. (S.102)
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Inserting (S.101) and (S.102) into (S.100) gives

∥ζ∥22,I(1 + 2(n− 1)∥ζ∥2∞)FA(x) ≥ (2n− 1)

(
FA(x)−

√
c2c̃nδFA(x)εK

)
− ∥ζ∥22,I

(
nC̃n

√
εKFA(x) + (n− 1)C̃2ε

1
n

KFA(x)
n−1
n + (4n− 2)∆A

)
.

Isolating ∥ζ∥2∞, and using 1− δ ≤ ∥ζ∥22,I ≤ 1 + δ and 4n−2
2n−2 ≤ 3, yields (S.98) as desired where

C2 =
1

1− δ

√
c2c̃nδ

2n− 2
+

n

2n− 2
C̃n and Cn =

1

2
C̃2.

This completes the proof of the proposition.

H.3 Concavity

We now show that FA is strictly geodesically concave in a spherical cap around each ±ai.
Proposition S.36. There exist constants C, ∆0 and D0, where C and ∆0 depend only on n, c2, and
D0 depends additionally on c1, c̃δ, such that C < 1 and if ∆A < ∆0, and D ≥ D0, then for all
i ∈ [K] and s ∈ {−1, 1}, it holds

1. FÂ is strictly concave on the spherical cap Br+(sai), where

r+ := 1−
(
1− C (0.99− 4∆A)

2
) 1

2n

.

2. There exists exactly one local maximum in each spherical cap Br+(sai), and denoting it by
x∗, we have

∥x∗ − sai∥2 ≤
2∆A

n
. (S.103)

Proof. We first note that Lemma S.32 implies that, for all y ∈ SD−1,

K∑
i=1

⟨y, ai⟩2n = ∥ζ(y)∥2n2n ≤ FA(y) + C
√
εK max{εK , FA(y)} ≤ 1 +O(

√
εK),

thus since limD→∞ εK = 0, for all µ ∈ (0, 1) there exist D0 such that if D ≥ D0,

K∑
i=1

⟨y, ai⟩2n ≤ 1 + µ, uniformly for all y ∈ SD−1. (S.104)

Let i ∈ [K], s ∈ {−1, 1} and y ⊥ x arbitrary and recall (S.49),

1

2n
y⊤∇2

SD−1FÂ(x)y ≤ n
∥∥PA(x

n−1y)
∥∥2 + (n− 1)⟨PA(x

n), xn−2y2⟩ − ζ2ni + 4∆A. (S.105)

The second term can be bounded using Lemma S.16.∣∣⟨PA(x
n), xn−2y2⟩

∣∣ ≤ ∣∣⟨xn, xn−2y2⟩
∣∣+ ∣∣⟨PA(x

n)− xn, xn−2y2⟩
∣∣

≤ 0 + ∥PA⊥(xn)∥F ∥Sym(xn−2y2)∥

=

√
2√

n(n− 1)

√
1− ∥PA(xn)∥2F ≤

2

n− 1

√
1− ⟨ai, x⟩2n.

The first term in (S.105) is slightly more involved. We first use Lemma S.5 and A3 to write∥∥PA(x
n−1y)

∥∥2
F
= β(xn−1y)⊤G−1

n β(xn−1y) ≤ c2
∥∥β(xn−1y)

∥∥2
2
.

26



Then, by leveraging the fact that y ⊥ x, we further get∥∥β(xn−1, y)
∥∥2
2
=

K∑
j=1

⟨aj , x⟩(2n−2)⟨aj , y⟩2 ≤ ⟨ai, x⟩2n−2⟨ai, y⟩2 +
K∑
j ̸=i

⟨aj , x⟩(2n−2)⟨aj , y⟩2

≤ ⟨ai, x⟩2n−2(∥ai∥2 − ⟨ai, x⟩2) +
K∑
j ̸=i

⟨aj , x⟩(2n−2)⟨aj , y⟩2

= ⟨ai, x⟩2n−2 − ⟨ai, x⟩2n +

K∑
j ̸=i

⟨aj , x⟩(2n−2)⟨aj , y⟩2,

where ⟨ai, y⟩2 + ⟨ai, x⟩2 ≤ ∥ai∥2 is a consequence of Bessel’s inequality. On one hand, since the
function f(x) = (1 − x)

n−1
n − (1 − x) is concave in [0, 1], and f ′(0) = 1

n , we have f(x) ≤ x
n ,

which implies ⟨ai, x⟩2n−2(1− ⟨ai, x⟩2) ≤ 1−⟨ai,x⟩2n
n . On the other hand, using Hölder’s inequality

with p = n and q = n
n−1 satisfying 1/n+ (n− 1)/n = 1, and Equation (S.104), we get

K∑
j ̸=i

⟨aj , x⟩(2n−2)⟨aj , y⟩2 ≤

 K∑
j ̸=i

⟨aj , x⟩2n


n−1
n
∑
j ̸=i

⟨aj , y⟩2n
 1

n

≤ (1 + µ)
1
n

(
1 + µ− ⟨ai, x⟩2n

)n−1
n

≤
(
1 +

µ

n

) (
1 + µ− ⟨ai, x⟩2n

)n−1
n .

Combining the estimates and writing η := 1− ⟨ai, x⟩2n for short, we obtain
1

2n
y⊤∇2

SD−1FÂ(x)y ≤
∥∥G−1

n

∥∥
2

(
η + (n+ µ) (η + µ)

n−1
n

)
+ (n− 1)

√
η − 1 + η + 4∆A

≤
∥∥G−1

n

∥∥
2

(
η + (n+ µ)(η

n−1
n + µ

n−1
n )
)
+ (n− 1)

√
η − 1 + η + 4∆A

≤
∥∥G−1

n

∥∥
2

(
(1 + n+ µ)

√
η + (n+ µ)µ

n−1
n

)
+ n
√
η + 4∆A − 1

≤ (n+ (n+ µ+ 1)c2)
√
η + (n+ µ)c2µ

n−1
n + 4∆A − 1.

Now choosing µ (and consequently D0) such that (n + µ)c2µ
n−1
n ≤ 0.01, noticing that µc2 ≤

(n+ µ)c2µ
n−1
n , and setting C =

(
1

n+0.01+(n+1)c2

)2
, we get

1

2n
y⊤∇2

SD−1FÂ(x)y ≤
√

η

C
+ 4∆A − 0.99, (S.106)

and thus, by rearranging terms, we get that FÂ is strictly geodesically concave in Br+sai.

We now define

r̃+ := 1−
(
1− C (0.49− 4∆A)

2
) 1

2n

,

and notice that for all x ∈ Br̃+(sai) and y ∈ SD−1, (S.106) implies that y⊤∇2
SD−1FÂ(x)y ≤ −n.

We also have

1− 2n

√
1− C (0.49− 4∆A)

2
> 1−

(
1− C

2n
(0.49− 4∆A)

2

)
= 0.492

C

2n

(
1− 4

0.49
∆A

)2

≥ 0.492
C

2n

(
1− 8

0.49
∆A

)
>

∆A

n
,

where the last equality follows if we choose ∆0 = 0.492 C2n/
(
1
n + 3.92 C2n

)
, since ∆A < ∆0.

Therefore, applying Proposition S.24, we obtain that it exists exactly one local maximum x∗ ∈
Br̃+(sai), and x∗ satisfies (S.103).

Finally, since FÂ is strictly geodesically concave on Br+(sai), Proposition S.24 implies that there
exists at most one local maximum in Br+(sai), thus since Br̃+(sai) ⊂ Br+(sai), x∗ is also the only
local maximum of Br+(sai).
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H.4 Completing the proof

We now have all the pieces to conclude the argument for Theorem M.16.

Proof of Theorem M.16. Suppose that x is a local maximum and FÂ(x) ≥ CεK + 5∆A, where C
will be defined below. Our proof strategy is to show that this implies that x is in one of the 2K
spherical caps defined in Proposition S.36. The rest of the proof then follows from Proposition S.36,
since each spherical cap contains exactly one local maximum.

Denote C̃ = C2+Cn from the statement of Proposition S.34, and define C so that C ≥ 1. Therefore
FÂ(x) ≥ εK and Proposition S.34 implies

∥ζ∥2∞ ≥ 1− 2n− 1

2n− 2

δ

1 + δ
− C̃

(
εK

FA(x)

) 1
n

− 3
∆A

FA(x)
.

By the AM-GM inequality, we have

C̃

(
εK

FA(x)

) 1
n

≤ 1

n

(
4n−1C̃n εK

FA(x)
+

1

4
(n− 1)

)
,

thus

C̃

(
εK

FA(x)

) 1
n

+ 3
∆A

FA(x)
≤ 1

FA(x)

(
4n−1

n
C̃nεK + 3∆A

)
+

1

4
− 1

4n
.

We now define C := 1
34
nC̃n, thus having

FA(x) ≥ FÂ(x)−∆A ≥ CεK + 4∆A ≥
4

3

(
4n−1

n
C̃nεK + 3∆A

)
,

and

C̃

(
εK

FA(x)

) 1
n

+ 3
∆A

FA(x)
≤ 3

4
+

1

4
− 1

4n
≤ 1− 1

4n
.

If we now choose δ0 such that 2n−1
2n−2

δ0
1+δ0

≤ 1
8n , we have that if δ < δ0, then

∥ζ∥2∞ ≥ 1− 2n− 1

2n− 2

δ

1 + δ
−
(
1− 1

4n

)
≥ 1

8n
. (S.107)

Note that we always have FA(x) ≥ ∥ζ∥2n∞ . To show this, define i such that ∥ζ∥∞ = |ζi|. Then
FA(x) = ∥PA(x

n)∥2 ≥ ∥Pani (x
n)∥2 = ζ2ni = ∥ζ∥2n∞ . Therefore, (S.107) implies that FA(x) ≥(

1
8n

)n
, and since limD→∞ εK = 0, for any ν ∈ (0, 1), there exists D0 such that if D ≥ D0, then

C̃

(
εK

FA(x)

) 1
n

≤ 8nC̃ε
1
n

K ≤
1

2
ν.

Furthermore, choosing δ0 such that 2n−1
2n−2

δ0
1+δ0

≤ min
{

1
8n ,

1
2ν
}

, we obtain, by applying Proposi-
tion S.34 again, that for all ν ∈ (0, 1) there exists D0 and δ0 such that, if D ≤ D0 and δ ≤ δ0,

∥ζ∥2∞ ≥ 1− ν − 3
∆A

FA(x)
. (S.108)

Simply to improve the implicit constant, we can choose ν = 0.01, and notice that FA(x) ≥ 4∆A, to
get ∥ζ∥2∞ ≥ 0.96/4, and consequently, FA(x) ≥ (0.96/4)n. Plugging this in (S.108), we obtain

∥ζ∥2∞ ≥ 1− ν − 3(4/0.96)n∆A.

We now further choose ∆0 and a smaller ν such that, if ∆A < ∆0, then
n

√
1− C (0.99− 4∆A)

2 ≤ 1− C

n
(0.99− 4∆A)

2

≤ 1− C

n
(0.98− 7.92∆A)

≤ 1− ν − 3(4/0.96)n∆A ≤ ∥ζ∥2∞. (S.109)
This then implies that x must lie in one of the caps defined in Proposition S.36, and the rest of the
result follows from Proposition S.36. For (S.109) to hold, it suffices to choose ν = min(0.49Cn , 0.01)

and ∆0 = 0.49Cn /
(
3(4/0.96)n + 7.92Cn

)
.
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I Deflation bounds and proof of Theorem M.18

Suppose we want to decompose the tensor T̂ , which is an estimate of the low rank tensor T =∑K
i=1 λia

⊗m
i . We will consider the following slight modification of the SPM algorithm [8].

Algorithm 1 SPM with modified deflation step

Input: T̂ ∈ T mD
Hyper-parameters: α, τ ∈ R+

Returns: (âk, λ̂k)k∈[K]

M̂ ← Reshape(T̂ , [Dn, Dm−n]).
Set K as the number of singular values of M̂ exceeding α.
Set M̂K as the rank-K truncation of the SVD of M̂ .
Let Â = colspan(Û) and Â1 = Â
for k = 1, . . . ,K do

Obtain ãk by applying POWER METHOD [8] on functional FÂk
until convergence.

Repeat last step with new initializations until FÂk
(ãk) ≥ τ .

if k = 1 then â1 ← ã1
else Obtain âk by applying POWER METHOD on FÂ with ãk as starting point until convergence.

λ̂k ←
1

vec(â⊗nk )⊤(M̂⊤
K)† vec(â⊗m−n

k )
(S.110)

if k < K then
Âk+1 ← Âk ∩ ((M̂⊤

K)† vec(â⊗m−n
k ))⊥

We analyze Algorithm 1 assuming the conditions of Theorems M.7 or M.16. The conclusion
will be Theorem M.18. We note the sign and permutation ambiguity there are inherent to the CP
decomposition.

Theorem S.37 (= Theorem M.18). Let T =
∑K
i=1 λia

⊗m
i ∈ Sym(T mD ), M :=

Reshape(T, [Dn, Dm−n]) and σ1(M) ≥ . . . ≥ σK(M) > 0 be the singular values of M . De-
fine α, τ, M̂ as in Algorithm 1, assume ∆M := ∥M − M̂∥2 < 1

2σK(M) and let ∆̂A = ∆M

σK(M)−∆M
.

Suppose that T verifies the assumptions of either Theorem M.7 or Theorem M.16, define ∆0 as in
the corresponding theorem statement and let ℓ(∆A) be the corresponding level set threshold, which
in both statements depends on ∆A. Then there exists constants C1, C2, not depending on T̂ or ∆M

(see (S.117) - (S.118) for definitions of these two contants), such that if ∆M < α < σK(M)−∆M ,
∆̃A := C1∆̂A + C2

√
∆̂A < ∆0 and τ > ℓ(∆̃A), there exist a permutation π ∈ SK and unit

scalars s1, . . . , sK ∈ {−1, 1} such that Algorithm 1 returns (âk, λ̂k)k∈[K] with error bounded by

∥skaπ(k) − âk∥ ≤

√
2∆̂A

n
and

∣∣∣∣ smk
λπ(k)

− 1

λ̂k

∣∣∣∣ ≤ 2
√
m/n

σK(M)

√
∆̂A +

4

σK(M)
∆̂A (S.111)

In particular, in the noiseless case (∆M = 0), Algorithm 1 returns the exact CP decomposition of T ,
up to permutation and sign ambiguity.

A result on the stability of matrix pseudo-inversion is needed; we include a proof for completeness.
Lemma S.38. Let W, Ŵ ∈ Rp×q and suppose that W has exactly r nonzero singular values
σ1(W ) ≥ . . . ≥ σr(W ) > 0 and ∆W := ∥W − Ŵ∥2 < σr(W ). Define Ŵr as the SVD of Ŵ
truncated at the r-th singular value. Then

∥W † − Ŵ †
r ∥2 ≤

∆W

σr(W )−∆W

(
2

σr(W )
+

1

σr(W )−∆W

)
.

Proof. We denote the singular value decomposition of matrices W, Ŵ ∈ Rp×q as

W = (U1 U2)

(
Σ1 0
0 Σ2

)(
V ⊤
1

V ⊤
2

)
and Ŵ =

(
Û1 Û2

)(Σ̂1 0

0 Σ̂2

)(
V̂ ⊤
1

V̂ ⊤
2

)
,
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where Σ1 and Σ̂1 are diagonal matrices with the largest r singular values of W and Ŵ on the diagonal,
respectively. We have ∥W † − Ŵ †

r ∥2 =
∥∥∥U1Σ

−1
1 V ⊤

1 − Û1Σ̂
−1
1 V̂ ⊤

1

∥∥∥
2
. Then

U1Σ
−1
1 V ⊤

1 − Û1Σ̂
−1
1 V̂ ⊤

1 = (U1U
⊤
1 − Û1Û

⊤
1 )U1Σ

−1
1 V ⊤

1 + Û1Û
⊤
1 (U1Σ

−1
1 V ⊤

1 − Û1Σ̂
−1
1 V̂ ⊤

1 )

= (U1U
⊤
1 − Û1Û

⊤
1 )U1Σ

−1
1 V ⊤

1 + Û1Σ̂
−1
1 V̂ ⊤

1 (Ŵ⊤U1Σ
−1
1 V ⊤

1 − V̂1V̂
⊤
1 ),

where we used U1Û
⊤
1 Û1Σ̂

−1
1 V̂ ⊤

1 = Û1Σ̂
−1
1 V̂ ⊤

1 = Û1Σ̂
−1
1 V̂ ⊤

1 V̂1V̂
⊤
1 and

Û1Σ̂
−1
1 V̂ ⊤

1 W⊤ = Û1Σ̂
−1
1 V̂ ⊤

1 (V̂1Σ̂1Û
⊤
1 + V̂2Σ̂2Û

⊤
2 ) = Û1Û

⊤
1 .

Furthermore,

Ŵ⊤U1Σ
−1
1 V ⊤

1 − V̂1V̂
⊤
1 = Ŵ⊤U1Σ

−1
1 V ⊤

1 − V1V
⊤
1 + (V1V

⊤
1 − V̂1V̂

⊤
1 )

= (Ŵ⊤ − V1Σ1U
⊤
1 )U1Σ

−1
1 V ⊤

1 + (V1V
⊤
1 − V̂1V̂

⊤
1 )

= (Ŵ⊤ −W⊤)U1Σ
−1
1 V ⊤

1 + (V1V
⊤
1 − V̂1V̂

⊤
1 ).

We then have

∥W † − Ŵ †
r ∥2 =

∥∥∥U1Σ
−1
1 V ⊤

1 − Û1Σ̂
−1
1 V̂ ⊤

1

∥∥∥
2

=
∥∥(U1U

⊤
1 − Û1Û

⊤
1 )U1Σ

−1
1 V ⊤

1 + Û1Σ̂
−1
1 V̂ ⊤

1 (Ŵ⊤ −W⊤)U1Σ
−1
1 V ⊤

1

+ Û1Σ̂
−1
1 V̂ ⊤

1 (V1V
⊤
1 − V̂1V̂

⊤
1 )
∥∥
2

≤
∥∥∥U1U

⊤
1 − Û1Û

⊤
1

∥∥∥
2

∥∥U1Σ
−1
1 V ⊤

1

∥∥
2
+
∥∥∥Û1Σ̂

−1
1 V̂ ⊤

1

∥∥∥
2

∥∥∥Ŵ⊤ −W⊤
∥∥∥
2

∥∥U1Σ
−1
1 V ⊤

1

∥∥
2

+
∥∥∥Û1Σ̂

−1
1 V̂ ⊤

1

∥∥∥
2

∥∥∥V1V
⊤
1 − V̂1V̂

⊤
1

∥∥∥
2

≤ ∆W

σr(W )−∆W

(
2

σr(W )
+

1

σr(W )−∆W

)
.

The last line uses Wedin’s bound and ∥Û1Σ̂
−1
1 V̂ ⊤

1 ∥2 = 1
σr(Ŵ )

≤ 1
σr(W )−∆W

, which comes from
Weyl’s inequality.

Next we control the propagation of error on the weights and intermediate subspaces in Algorithm 1.

Proposition S.39. Define T, T̂ as in Algorithm 1, with M := Reshape(T, [Dn, Dm−n]) and its
singular values σ1(M) ≥ . . . ≥ σK(M) > 0. Let M̂ := Reshape(T̂ , [Dn, Dm−n]), and suppose
that ∆M := ∥M − M̂∥2 < σK(M). Then the error for λ̂k obtained by Algorithm 1 is bounded as
follows:∣∣∣∣ 1λk − 1

λ̂k

∣∣∣∣ ≤ 1

σK(M)

√
2m∥ak−âk∥+

∆M

σK(M)−∆M

(
2

σK(M)
+

1

σK(M)−∆M

)
. (S.112)

Additionally, let Ak = span{a⊗ni , i ∈ {k, . . . ,K}}, A[k−1] the submatrix of A with columns in
[k − 1], Gd,[k−1] = (A•s

[k−1])
⊤(A•k

[k−1]) = (A⊤
[k−1]A[k−1])

⊙k and φd,k−1 =
√
∥Gd,[k−1]∥2. Then

the error of the deflated subspace is bounded by∥∥∥PAk
− PÂk

∥∥∥
2
≤ ∆M

σK(M)−∆M

(
1 + max

i∈[K]
|λi|
√
∥Gn∥2∥Gm−n∥2

(
2

σK(M)
+

1

σK(M)−∆M

))

+ max
i∈[K]

|λi|
√
∥Gn∥2

1

σK(M)−∆M

√√√√(m− n)

k−1∑
i=1

∥as − âs∥2.

(S.113)

Proof. We start by showing that (S.110) holds in the clean case, that is,

λk =
1

vec(a⊗nk )⊤(M⊤)† vec(a⊗m−n
k )

.
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We have

M =

K∑
i=1

λi vec(a
⊗n
i ) vec(a⊗m−n

i )⊤ = A•nΛ(A•m−n)⊤,

where Λ = diag(λ1, . . . , λK). Therefore, (M⊤)† = ((A•n)⊤)†Λ−1(A•m−n)† and

(A•n)⊤(M⊤)†A•m−n = Λ−1. (S.114)

Denoting by ek the k-th canonical basis vector, we have vec(a⊗nk ) = (A•n)ek, thus

vec(a⊗nk )⊤(M⊤)† vec(a⊗m−n
k ) = e⊤k

(
(A•n)⊤(M⊤)†A•m−n) ek = e⊤k Λ

−1ek =
1

λk

Then∣∣∣∣ 1λ̂k − 1

λk

∣∣∣∣ = ∣∣∣vec(â⊗nk )⊤(M̂⊤
K)† vec(â⊗m−n

k )− vec(a⊗nk )⊤(M⊤)† vec(a⊗m−n
k )

∣∣∣
≤
∣∣∣vec(â⊗nk )⊤((M̂⊤

K)† − (M⊤)†) vec(â⊗m−n
k )

∣∣∣
+
∣∣vec(â⊗nk )⊤(M⊤)†(vec(â⊗m−n

k )− vec(a⊗m−n
k ))

∣∣
+
∣∣(vec(â⊗nk )− vec(a⊗nk ))⊤(M⊤)† vec(a⊗m−n

k )
∣∣

≤
∥∥∥M̂†

K −M†
∥∥∥
2
+ ∥M†∥2

(
∥a⊗ni − â⊗ni ∥F + ∥a⊗m−n

i − â⊗m−n
i ∥F

)
The first term is bounded using Lemma S.38, while the bound for the second term follows from
∥M†∥2 = 1

σk(M) and

∥x⊗d − y⊗d∥2 = 2− 2(x⊤y)d = 2− 2

(
1− 1

2
∥x− y∥2

)d
≤ 2− 2 + d∥x− y∥2 = d∥x− y∥2, (S.115)

where we used (1− x)d ≥ 1− dx for all x ≤ 1 and d ≥ 1. Using AM – GM, we obtain

∥a⊗ni − â⊗ni ∥F + ∥a⊗m−n
i − â⊗m−n

i ∥F ≤
(√

m− n+
√
n
)
∥ai − âi∥ ≤

√
2m∥ai − âi∥,

and the proof of (S.110) is complete. Regarding, (S.113), we have that

Âk = Â ∩
k−1⋂
i=1

((M̂⊤
K)† vec(â⊗m−n

i ))⊥ = Â ∩ colspan((M̂⊤
K)†Â•m−n

[k−1] )
⊥

and
Â = colspan(M̂K) = colspan((M̂⊤

K)†) ⊇ colspan((M̂⊤
K)†Â•m−n

[k−1] ). (S.116)

We first show that if T̂ = T , Âk = Ak, that is,

A ∩ colspan((M⊤)†A•m−n
[k−1] )

⊥ = span{a⊗ni , i ∈ {k, . . . ,K}}.

It is enough to show that dim(Âk) = K − k + 1 = dim(Ak) and that Ak ⊂ Âk. We have
that dim(Â) = K, dim(colspan((M̂⊤

K)†A•m−n
[k−1] )) = k − 1, thus (S.116) implies that dim(Âk) =

K − k + 1. To show that Âk ⊂ A ∩ colspan((M⊤)†A•n
[k−1])

⊥, note that,

Ak = span{a⊗ni , i ∈ {k, . . . ,K}} = colspan(A•n
[k:K]) ⊂ colspan(A•m−n) = A,

where [k : K] = {k, . . . ,K}. On other hand, colspan(A•n
[k:K]) ⊂ ((M⊤)†A•m−n

[k−1] )
⊥ is equivalent

to, for all i ∈ [k : K], j ∈ [k − 1], vec(a⊗ni )⊤(M⊤)† vec(a⊗m−n
k ) = 0. In fact, (S.114) implies

that, vec(a⊗ni )⊤(M⊤)† vec(a⊗m−n
k ) = (Λ−1)ij = 0 for all i ∈ [k : K], j ∈ [k − 1], as we wanted

to show.

Let U = (U1, U2), Û = (Û1, Û2) be orthogonal matrices such that the columns of U1 and Û1

are orthonormal basis for A and Â, respectively. Moreover, since colspan((M̂⊤
K)†Â•m−n

[k−1] ) ⊂ Â,
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there exist orthogonal matrices O = (O1, O2) and Ô = (Ô1, Ô2) such that colspan(U1O1) =

colspan((M⊤)†A•m−n
[k−1] ) and colspan(Û1Ô1) = colspan((M̂⊤

K)†Â•m−n
[k−1] ), respectively. We then

have Ak = colspan(U1O2) Âk = colspan(Û1Ô2), thus:∥∥∥PAk
− PÂk

∥∥∥
2
=
∥∥∥U1O2O

⊤
2 U

⊤
1 − Û1Ô2Ô

⊤
2 Û

⊤
1

∥∥∥
2
,

=
∥∥∥U1U

⊤
1 − Û1Û

⊤
1 − U1O1O

⊤
1 U

⊤
1 − Û1Ô1Ô

⊤
1 Û

⊤
1

∥∥∥
2
,

≤
∥∥∥U1U

⊤
1 − Û1Û

⊤
1

∥∥∥
2
+
∥∥∥U1O1O

⊤
1 U

⊤
1 − Û1Ô1Ô

⊤
1 Û

⊤
1

∥∥∥
2
.

The first term is bounded by Lemma S.3, while the second term is bounded using [5, Theorem 2.5]:∥∥∥U1O1O
⊤
1 U

⊤
1 − Û1Ô1Ô

⊤
1 Û

⊤
1

∥∥∥
2
≤
∥∥∥∥((M⊤)†A•m−n

[k−1] − (M̂⊤
K)†Â•m−n

[k−1]

)(
(M⊤)†A•m−n

[k−1]

)†∥∥∥∥
2

,

≤
∥∥∥(M⊤)†A•m−n

[k−1] − (M̂⊤
K)†Â•m−n

[k−1]

∥∥∥
2

∥∥∥∥((M⊤)†A•m−n
[k−1]

)†∥∥∥∥
2

.

Let η1 ≥ · · · ≥ ηK be the singular values of (M⊤)†A•m−n, and ν1 ≥ · · · ≥ νk−1 the singular values

of (M⊤)†A•m−n
[k−1] . We have

∥∥∥((M⊤)†A•m−n)†∥∥∥
2
= 1

ηK
and

∥∥∥∥((M⊤)†A•m−n
[k−1]

)†∥∥∥∥
2

= 1
νk−1

. More-

over, by [10, Theorem 1], we have νk−1 ≥ ηK , thus
∥∥∥∥((M⊤)†A•m−n

[k−1]

)†∥∥∥∥
2

≤
∥∥∥((M⊤)†A•m−n)†∥∥∥

2
.

Furthermore (S.114) implies that
(
(M⊤)†A•m−n)† = Λ(A•n)⊤, therefore,∥∥∥∥((M⊤)†A•m−n

[k−1]

)†∥∥∥∥
2

≤
∥∥Λ(A•n)⊤

∥∥
2
≤ max
i∈[K]

|λi|
√
∥Gn∥2.

On other hand, we have∥∥∥(M⊤)†A•m−n
[k−1] − (M̂⊤

K)†Â•m−n
[k−1]

∥∥∥
2

≤
∥∥∥((M⊤)† − (M̂⊤

K)†
)
A•m−n

[k−1]

∥∥∥
2
+
∥∥∥(M̂⊤

K)†
(
A•m−n

[k−1] − Â•m−n
[k−1]

)∥∥∥
2

≤
∥∥∥(M⊤)† − (M̂⊤

K)†
∥∥∥
2

∥∥∥A•m−n
[k−1]

∥∥∥
2
+
∥∥∥(M̂⊤

K)†
∥∥∥
2

∥∥∥A•m−n
[k−1] − Â•m−n

[k−1]

∥∥∥
2
.

The term
∥∥∥(M⊤)† − (M̂⊤

K)†
∥∥∥
2

is bounded by Lemma S.38,∥∥∥A•m−n
[k−1]

∥∥∥
2
≤
∥∥A•m−n∥∥

2
=
√
∥Gm−n∥2,

and
∥∥∥(M̂⊤

K)†
∥∥∥
2
= 1

σK(M̂K)
≤ 1

σK(M)−∆M
. Finally,

∥∥∥A•m−n
[k−1] − Â•m−n

[k−1]

∥∥∥
2
≤
∥∥∥A•m−n

[k−1] − Â•m−n
[k−1]

∥∥∥
F
=

√√√√k−1∑
i=1

∥∥a⊗m−n
i − â⊗m−n

i

∥∥2
F

≤

√√√√(m− n)

k−1∑
i=1

∥ai − âi∥22,

where we used (S.115) in the last line.

We can now prove our guarantee for end-to-end symmetric tensor decomposition using SPM.

Proof of Theorem S.37. First, to show that Algorithm 1 picks the correct tensor rank K, we use the
assumptions of Theorem S.37 and Weyl’s inequality to obtain

σK(M̂) ≥ σK(M)−∆M > α > ∆M ≥ σK+1(M̂).
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Then, we show the bound on ∥âk − ak∥ using induction on k. When k = 1, we have Â1 = Â. Then,
Lemma M.1 implies that ∥PÂ − PA∥ ≤ ∆̂A. Since â1 was returned by the POWER METHOD, it is
a second order critical point of FÂ, and Algorithm 1 asserts that FÂ(âi) > τ ≥ ℓ(∆̃A) ≥ ℓ(∆̂A).
Therefore â1 is a second order critical point in the level set stated in Theorem M.7 / M.16, which

implies that there exists π(1) := i ∈ [K] and s1 ∈ {−1, 1} such that ∥â1 − s1aπ(1)∥ ≤
√

2∆̂A
n . If

k > 1, let π([k − 1]) = {π(i), i ∈ [k − 1]} and Ak = span{a⊗ni , i ∈ [K]\π([k − 1])}. Since the
subspace deflation step in Algorithm 1 does not depend on the sign of âi, i ∈ [k − 1], we can flip the
sign in the bound provided in Proposition S.39∥∥∥PAk

− PÂk

∥∥∥
2
≤ ∆M

σK(M)−∆M

(
1 + max

i∈[K]
|λi|
√
∥Gn∥2∥Gm−n∥2

(
2

σK(M)
+

1

σK(M)−∆M

))

+ max
i∈[K]

|λi|
√
∥Gn∥2

1

σK(M)−∆M

√√√√(m− n)

k−1∑
i=1

∥aπ(i) − siâi∥2

≤ ∆̂A

(
1 + max

i∈[K]
|λi|
√
∥Gn∥2∥Gm−n∥2

4

σK(M)

)
+ max
i∈[K]

|λi|
√
∥Gn∥2

2

σK(M)

√
2(m− n)(k − 1)

n

√
∆̂A

≤ ∆̂A

(
1 + max

i∈[K]
|λi|
√
∥Gn∥2∥Gm−n∥2

4

σK(M)

)
+ max
i∈[K]

|λi|
√
∥Gn∥2

2

σK(M)

√
2(m− n)K

n

√
∆̂A

= ∆̃A,

where we set
C1 = 1 + max

i∈[K]
|λi|
√
∥Gn∥2∥Gm−n∥2

4

σK(M)
, (S.117)

and

C2 = max
i∈[K]

|λi|
√
∥Gn∥2

2

σK(M)

√
2(m− n)K

n
. (S.118)

Then, since FÂk
(ãk) > τ ≥ ℓ(∆̃A), and ãk is a second order critical point of Âk, Theorem

M.7 / M.16 implies that there exists π(k) ∈ [K]\π([k − 1] and sk ∈ {−1, 1}, such that

∥âk − skaπ(k)∥ ≤
√

2∆̃A
n . In particular, it is shown in the proof of both theorems that âk lies in a

spherical cap centered around skaπ(k) where FÂk
is concave. However, in both theorem statements,

the radius of the spherical cap where concavity holds is a decreasing function of ∆A, therefore âk is
also in a spherical cap centered around skaπ(k) where FÂ is concave. Applying the POWER METHOD
with the functional FÂ, using ãi as a starting point will then converge for the local maxima in this
concave region, and the bound for ∥âk − skaπ(k)∥ follows.

Finally, the error bound for λ̂k follows from the bound on ∥âk − skaπ(k)∥ and Proposition S.39.

We conclude with a bound on the error in terms of the scalar coefficients λi, which follows from a
bound on σK(M).
Lemma S.40. With σK(M) defined and under the same conditions of Theorem S.37, it holds

σK(M) ≥ mini |λi|√
∥G−1

n ∥2∥G−1
m−n∥2

(S.119)

Proof. Let µj(A) denote the j-th algorithm (in descending order) of A, that is µ1(A) ≥ µ2(A) ≥ · · · .
We first show that for all matrices An×m and Bn×n such that m ≥ n and B is symmetric and positive
definite, we have

µn(A
⊤BA) ≥ µn(B)µn(A

⊤A)
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In fact, we have A⊤BA = µn(B)A⊤A+A⊤(B − µn(B)I)A, therefore by Weyl’s inequality [13]:

µn(A
⊤BA) ≥ µn(B)µn(A

⊤A) + µn(A
⊤(B − µn(B)I)A) ≥ µn(B)µn(A

⊤A).

Applying this twice, we have

σK(M) = σK
(
A•nΛ(A•m−n)⊤

)
=
√
µK (A•nΛ(A•m−n)⊤A•m−nΛ(A•n)⊤),

≥
√
µK(Gm−n)

√
µK (A•nΛ2(A•n)⊤),

≥ min
i
|λi|
√
µK(Gm−n)

√
µK (A•n(A•n)⊤) = min

i
|λi|
√

σK(Gn)σK(Gm−n).

Now the lemma follows from σK(Gn) = 1/∥G−1
n ∥2.

Remark S.41 (Small λi). Lemma S.40 indicates that the smaller mini |λi| is, the larger is the error
of the decomposition obtained by SPM. For instance, the lemma can be used to obtain the bound

∆̂A ≤
∆M

√
∥G−1

n ∥2∥G−1
m−n∥2

mini |λi| −∆M

√
∥G−1

n ∥2∥G−1
m−n∥2

,

which suggests a smaller mini |λi| increases the subspace error ∆A. This is also evident in the error
arising from deflation. Substituting Lemma S.40 into the definition of C1 and C2 in Theorem S.37,

C1 ≤ 1 + 4
maxi |λi|
mini |λi|

√
κ(Gn)κ(Gm−n),

and

C2 ≤ 2
maxi |λi|
mini |λi|

√
κ(Gn)

∥∥G−1
m−n

∥∥
2

√
2(m− n)K

n
.

Here we denoted the condition number of a matrix A by κ(A) := ∥A∥2
∥∥A−1

∥∥
2
.

Finally, the issue also shows up in the bound of the tensor coefficient error of Theorem S.37:

∣∣∣∣ smk
λπ(k)

− 1

λ̂k

∣∣∣∣ ≤
√
∥G−1

n ∥2∥G−1
m−n∥2

mini |λi|

(
2

√
m/n∆̂A + 4∆̂A

)
.
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