
A Appendix

All our ML code uses the PyTorch (Paszke et al., 2019) library. We reimplement RL and other
baselines. We use the AutoDock Vina (Trott and Olson, 2010) library for binding energy estimation
and RDKit (Landrum) for chemistry routines.

Running all the molecule experiments presented in this paper takes an estimated 26 GPU days. We
use a cluster with NVidia V100 GPUs. The grid experiments take an estimated 8 CPU days (for a
single-core).

All implementations are available at https://github.com/bengioe/gflownet.

A.1 Proofs

Proposition 1. Let C : A∗ 7→ S associate each allowed action sequence ~a ∈ A∗ to a state
s = C(~a) ∈ S. Let Ṽ : S 7→ R+ associate each state s ∈ S to Ṽ (s) =

∑
~b∈A∗(s)R(s +

~b) > 0,

whereA∗(s) is the set of allowed continuations from s and s+~b denotes the resulting state, i.e., Ṽ (s)
is the sum of the rewards of all the states reachable from s. Consider a policy π which starts from
the state corresponding to the empty string s0 = C(∅) and chooses from state s ∈ S an allowable
action a ∈ A(s) with probability π(a|s) = Ṽ (s+a)∑

b∈A(s) Ṽ (s+b)
. Denote π(~a = (a1, . . . , aN)) =∏N

i=1 π(ai|C(a1, . . . , ai−1)) and π(s) with s ∈ S the probability of visiting a state s with this policy.
The following then obtains:
(a) π(s) =

∑
~ai:C(~ai)=s

π(~ai).

(b) IfC is bijective, then π(s) = Ṽ (s)

Ṽ (s0)
and as a special case for terminal states x, π(x) = R(x)∑

x∈X R(x) .
(c) If C is non-injective and there are n(x) distinct action sequences ~ai s.t. C(~ai) = x, then
π(x) = n(x)R(x)∑

x′∈X n(x
′)R(x′) .

Proof. Since s can be reached (from s0) according to any of the action sequences ~ai such that
C(~ai) = s and they are mutually exclusive and cover all the possible ways of reaching s, the
probability that π visits state s is simply

∑
~ai:C(~ai)=s

π(~ai), i.e., we obtain (a).
If C is bijective, it means that there is only one such action sequence ~a = (a1, . . . , aN) landing in
state s, and the set of action sequences and states forms a tree rooted at s0. hence by (a) we get
that π(s) = π(~a). First note that because Ṽ (s) =

∑
~b∈A∗(s)R(s+

~b), i.e., Ṽ (s) is the sum of the

terminal rewards for all the leaves rooted at s, we have that Ṽ (s) =
∑
b∈A(s) V (s+ b). Let us now

prove by induction that π(s) = Ṽ (s)

Ṽ (s0)
. It is true for s = s0 since π(s0 = 1) (i.e., every trajectory

includes s0). Assuming it is true for s′ = C(a1, . . . , aN−1), consider s = C(a1, . . . , aN):

π(s) = π(aN |s′)π(s′) =
Ṽ (s)∑

b∈A(s′) Ṽ (s′ + b)

Ṽ (s′)

Ṽ (s0)
.

Using our above result that Ṽ (s) =
∑
b∈A(s) Ṽ (s+ b), we thus obtain a cancellation of Ṽ (s′) with∑

b∈A(s′) Ṽ (s′ + b) and obtain

π(s) =
Ṽ (s)

Ṽ (s0)
, (15)

proving that the recursion holds. We already know from the definition of Ṽ that Ṽ (s0) =∑
x∈X R(x), so for the special case of x a terminal state, Ṽ (x) = R(x) and Eq. 15 becomes

π(x) = R(x)∑
x′∈X R(x′) , which finishes to prove (b).

On the other hand, if C is non-injective, the set of paths forms a DAG, and not a tree. Let us transform
the DAG into a tree by creating a new state-space (for the tree version) which is the action sequence
itself. Note how the same original leaf node x is now repeated n(x) times in the tree (with leaves
denoted by action sequences ~ai) if there are n(x) action sequences leading to x in the DAG. With the
same definition of Ṽ and π(a|s) but in the tree, we obtain all the results from (b) (which are applicable

15

https://github.com/bengioe/gflownet

because we have a tree), and in particular π(~ai) under the tree is proportional to R(x′) = R(x).
Applying (a), we see that π(x) ∝ n(x)R(x), which proves (c).

Proposition 3. Let trajectories τ used to train Fθ be sampled from an exploratory policy P with the
same support as the optimal π defined in Eq. 5 for a consistent flow F ∗ ∈ F∗. A flow is consistent
if Eq. 4 is respected. Also assume that ∃θ : Fθ = F ∗, i.e., we choose a sufficiently rich family of
predictors. Let θ∗ ∈ argminθEP (τ)[Lθ(τ)] a minimizer of the expected training loss. Let Lθ(τ)
have the property that when flows are matched it achieves its lowest possible value. First, it can be
shown that this property is satisfied for the loss in Eq. 12. Then

Fθ∗ = F ∗, and (16)
Lθ∗(τ) = 0 ∀τ ∼ P (θ), (17)

i.e., a global optimum of the expected loss provides the correct flows. If

πθ∗(a|s) =
Fθ∗(s, a)∑

a′∈A(s) Fθ∗(s, a
′)

(18)

then we also have

πθ∗(x) =
R(x)

Z
. (19)

Proof. A per-trajectory loss of 0 can be achieved by choosing a θ such that Fθ = F ∗ (which we
assumed was possible), since this makes the incoming flow equal the outgoing flow. Note that there
always exists a solution F ∗ in the space of allow possible flow functions which satisfies the flow
equations (incoming = outgoing) by construction of flow networks with only a constraint on the flow
in the terminal nodes (leaves). Since having Lθ(τ) equal to 0 for all τ ∼ P (θ) makes the expected
loss 0, and this is the lowest achievable value (since Lθ(τ) ≥ 0 ∀θ), it means that such a θ is a global
minimizer of the expected loss, and we can denote it θ∗. If we optimize F in function space, we can
directly set to 0 the gradient of the loss with respect to F (s, a) separately, and find a solution.

Since we have chosen P with support large enough to include all the trajectories leading to a terminal
state R(x) > 0, it means that Lθ(τ) = 0 for all these trajectories and that Fθ = F ∗ for all nodes on
these trajectories. We can then apply Proposition 2 (since the flows match everywhere and we have
defined the policy correspondingly, as per Eq. 5). We then obtain the conclusion by applying result
(c) from Proposition 2.

Note that in the general case, an infinite number of solutions exist. Consider the case where two
trajectories are possible, say s0, a1, sA, a2, sT and s0, a3, sB , a4, sT , and both lead to the same
terminal state sT with reward r. Then a valid solution solves the constrained system of equations
F (sA)+F (sB) = r, F (sA) > 0, F (sB) > 0, and we see that there is an infinite number of solutions
described by one parameter u where F (sA) = u, F (sB) = r − u u ∈ [0, r].

A.2 Action-value function equivalence

Here we show that the flow F (s, a) that the proposed method learns can correspond to a “real”
action-value function Q̂µ(s, a) in an RL sense, for a policy µ.

First note that this is in a way trivially true: in inverse RL (Ng et al., 2000) there typically exists an
infinite number of solutions to defining R̂ from a policy π such that π = argmaxπi V

πi(s; R̂) ∀s,
where V πi(s; R̂) is the value function at s for reward function R.

More interesting is the case where F (s, a;R) obtained from computing the flow corresponding to R
is exactly equal to some Qµ(s, a; R̂) modulo a multiplicative factor f(s) . What are µ and R̂?

In the bijective case a simple answer exists.

Proposition 4. Let µ be the uniform policy such that µ(a|s) = 1/|A(s)|, let f(x) =
∏n
t=0 |A(st)|

when x ≡ (s0, s1, ..., sn), and let R̂(x) = R(x)f(sn−1), then Qµ(s, a; R̂) = F (s, a;R)f(s).

16

Proof. By definition of the action-value function in terms of the action-value at the next step and by
definition of µ:

Qµ(s, a; R̂) = R̂(s′) +
1

|A(s′)|
∑

a′∈A(s′)

Qµ(s′, a′; R̂) (20)

where s′ = T (s, a), as the environment is deterministic and has a tree structure.

For some leaf s′,Qµ(s, a; R̂) = R̂(s′) = R(s′)f(s). Again for some leaf s′, the flow is F (s, a;R) =
R(s′). Thus Qµ(s, a; R̂) = F (s, a;R)f(s). Suppose (20) is true, then by induction for a non-leaf s′:

Qµ(s, a; R̂) = R̂(s′) +
1

|A(s′)|
∑

a′∈A(s′)

Qµ(s′, a′; R̂) (21)

Qµ(s, a; R̂) = 0 +
1

|A(s′)|
∑

a′∈A(s′)

F (s′, a′;R)f(s′) (22)

we know from Eq 4 that
F (s, a;R) =

∑
a′∈A(s′)

F (s′, a′;R) (23)

and since f(s′) = f(s)|A(s′)|, we have that:

Qµ(s, a; R̂) =
F (s, a;R)f(s′)

|A(s′)| (24)

=
F (s, a;R)f(s)|A(s′)|

|A(s′)| (25)

= F (s, a;R)f(s) (26)

Thus we have shown that the flow in a bijective case corresponds to the action-value of the uniform
policy. This result suggests that the policy evaluation of the uniform policy learns something
non-trivial in the tree MDP case. Perhaps such a quantity could be used in other interesting ways.

In the non-injective case, since an infinite number of valid flows exists, it’s not clear that such a
simple equivalence always exists.

As a particular case, consider the flow F which assigns exactly 0 flow to edges that would induce
multiple paths to any node. In other words, consider the flow which induces a tree, i.e. a bijection
between action sequences and states, by disallowing flow between edges not in that bijection. By
Proposition 4, we can recover some valid Qµ.

Since there is at least one flow for which this equivalence exists, we conjecture that more general
mappings between flows and action-value functions exist.

Conjecture There exists f a function of n(s) the number of paths to s, A(s), and np(s) =

|{(p, a)|T (p, a) = s}| the number of parents of s, such that f(s, n(s), np(s),A(s))Qµ(s, a; R̂) =
F (s, a;R) and R̂(x) = R(x)f(x) for the uniform policy µ and for some valid flow F (s, a;R).

A.3 Molecule domain details

We allow the agent to choose from a library of 72 predefined blocks. We duplicate blocks from the
point of view of the agent to allow attaching to different symmetry groups of a given block. This
yields a total of 105 actions per stem; stems are atoms where new blocks can be attached to. We
choose the blocks via the process suggested by Jin et al. (2020) over the ZINC dataset (Sterling and
Irwin, 2015). We allow the agent to generate up to 8 blocks.

The 72 block SMILES are Br, C, C#N, C1=CCCCC1, C1=CNC=CC1, C1CC1, C1CCCC1,
C1CCCCC1, C1CCNC1, C1CCNCC1, C1CCOC1, C1CCOCC1, C1CNCCN1, C1COCCN1, C1COCC[NH2+]1,
C=C, C=C(C)C, C=CC, C=N, C=O, CC, CC(C)C, CC(C)O, CC(N)=O, CC=O, CCC, CCO, CN,
CNC, CNC(C)=O, CNC=O, CO, CS, C[NH3+], C[SH2+], Cl, F, FC(F)F, I, N, N=CN,
NC=O, N[SH](=O)=O, O, O=CNO, O=CO, O=C[O-], O=PO, O=P[O-], O=S=O, O=[NH+][O-],

17

O=[PH](O)O, O=[PH]([O-])O, O=[SH](=O)O, O=[SH](=O)[O-], O=c1[nH]cnc2[nH]cnc12,
O=c1[nH]cnc2c1NCCN2, O=c1cc[nH]c(=O)[nH]1, O=c1nc2[nH]c3ccccc3nc-2c(=O)[nH]1,
O=c1nccc[nH]1, S, c1cc[nH+]cc1, c1cc[nH]c1, c1ccc2[nH]ccc2c1, c1ccc2ccccc2c1,
c1ccccc1, c1ccncc1, c1ccsc1, c1cn[nH]c1, c1cncnc1, c1cscn1, c1ncc2nc[nH]c2n1.

We illustrate these building blocks and their attachment points in Figure 8.

Figure 8: The list of building blocks used in molecule design. The stem, the atom which connects the
block to the rest of the molecule, is highlighted.

We compute the reward based on a proxy’s prediction. This proxy is trained on a dataset of 300k
randomly generated molecules, whose binding affinity with a target protein has been computed with
AutoDock (Trott and Olson, 2010). Since the binding affinity is an energy where lower is better, we
takes its opposite and then renormalize it (subtract the mean, divide by the standard deviation) to
obtain the reward.

We use the sEH protein and its 4JNC inhibitor. The soluble epoxide hydrolase, or sEH, is a well
studied protein which plays a role in respiratory and heart disease, which makes it an interesting
pharmacological target and benchmark for ML methods.

Note that we also experimented with other biologically relevant quantities, in particular logP (the
n-octanol-water partition coefficient) and QED (Bickerton et al., 2012). Both were very easy to
maximize with GFlowNet. For logP we quickly find molecules with a >20 logP, which at this point
is biologically uninteresting (for reference, ibuprofen’s logP is between 3.5 and 4). For QED, we
also quickly find molecules with the maximum possible QED in our action space, which is 0.948 (in
fact our top-1000 is >0.94 after 100k molecules seen). Since docking is a much harder oracle, we
focused on it. Also note that we experimented with combining different scores multiplicatively (e.g.
multiplying docking score by a renormalized QED and synthesizability), with some success. A more
specific contribution in that regards is left to future work.

A.4 Molecule domain implementation details

For the proxy of the oracle, from which the reward is defined, we use an MPNN (Gilmer et al.,
2017) that receives the atom graph as input. We compute the atom graph using RDKit. Each node in
the graph has features including the one-hot vector of its atomic number, its hybridization type, its
number of implicit hydrogens, and a binary indicator of it being an acceptor or a donor atom. The
MPNN uses a GRU at each iteration as the graph convolution layer is applied iteratively for 12 steps,
followed by a Set2Set operation to reduce the graph, followed by a 3-layer MLP. We use 64 hidden
units in all of its parts, and LeakyReLU activations everywhere (except inside the GRU).

In the non-active-learning experiments, we train the proxy with a dataset of 300k molecules. To make
the task interesting, we use 80% of molecules obtained from random trajectories, and 20% obtained
from previous runs of RL agents. This extra 20% contains slightly higher scoring molecules that are

18

varied enough to allow for an interesting challenge. See Fig. 3 for the reward distribution. The exact
dataset is provided on our github repository for reproducibility.

For the flow predictor F we also use an MPNN, but it receives the block graph as input. This graph is
a tree by construction. Each node in the graph is a learned embedding (each of the 105 blocks has
its own embedding and each type of bond has an edge embedding). We again use a GRU over the
convolution layer applied 10 times. For each stem of the graph (which represents an atom or block
where the agent can attach a new block) we pass its corresponding embedding (the output of the
10 steps of graph convolution + GRU) into a 3-layer MLP to produce 105 logits representing the
probability of attaching each block to this stem for MARS and PPO, or representing the flow F (s, a)
for GFlowNet; since each block can have multiple stems, this MLP also receives the underlying
atom within the block to which the stem corresponds. For the stop action, we perform a global mean
pooling followed by a 3-layer MLP that outputs 1 logit for each flow prediction. We use 256 hidden
units everywhere as well as LeakyReLU activations.

For further stability we found that multiplying the loss for terminal transitions by a factor λT > 1
helped. Intuitively, doing so prioritizes correct predictions at the endpoints of the flow, which can
then propagate through the rest of the network/state space via our bootstrapping objective. This is
similar to using reward prediction as an auxiliary task in RL (Jaderberg et al., 2017).

Here is a summary of the flow model hyperparameters:

Learning rate 5× 10−4

Minibatch size 4 # of trajectories per SGD step
Adam β, ε (0.9, 0.999), 10−8

hidden & # embed 256
convolution steps 10

Loss ε 2.5× 10−5 ε in (12)
Reward T 8
Reward β 10 R̂(x) = (R(x)/T)β

Random action probability 0.05 exploratory factor
λT 10 leaf loss coefficient
Rmin 0.01 R is clipped below Rmin, i.e.

R̂min = (Rmin/T)
β

For MARS we use a learning rate of 2.5× 10−4 and for PPO, 1× 10−4. For PPO we use an entropy
regularization coefficient of 10−6 and we set the reward β to 4 (higher did not help). For MARS we
use the same algorithmic hyperparameters as those found in Xie et al. (2021). For JT-VAE, we use
the code provided by Jin et al. (2020) as-is, only replacing the reward signal with ours.

A.5 Multi-Round Experiments

Algorithm 1 defines the procedure to train the policy πθ and used in inner loop of the multi-round
experiments in the hyper-grid and molecule domains. The effect of diverse generation becomes
apparent in the multi-round setting. Since the proxy itself is trained based on the input samples
proposed by the generative models (and scored by the oracle, e.g., using docking), if the generative
model is not exploratory enough, the reward (defined by the proxy) would only give useful learning
signals around the discovered modes. The oracle outcomes O(x) are scaled to be positive, and a

19

hyper-parameter β (a kind of inverse temperature) can be used to make the modes of the reward
function more or less peaked.

Algorithm 1: Multi-Round Active Learning
Input: Initial dataset D0 = {xi, yi}, i = 1, . . . , k ; K for TopK evaluation; number of rounds

(outer loop iterations) N ; inverse temperature β
Result: A set TopK(DN) of high valued x
Initialization:
Proxy M ;
Generative policy πθ;
Oracle O;
i = 1;
while i <= N do

Fit M on dataset Di−1;
Train πθ with unnormalized probability function r(x) =M(x)β as target reward;
Sample query batch B = {x1, . . . , xb} with xi ∼ πθ;
Evaluate batch B with O, D̂i = {(x1, O(x1)), . . . , (xb, O(xb))};
Update dataset Di = D̂i ∪Di−1;
i = i+ 1;

end

A.5.1 Hyper-grid

We use the Gaussian Process implementation from botorch2 for the proxy. The query batch size of
samples generated after each round is 16. The hyper-parameters for training the generative models
are set to the best performing values from the single-round experiments.

The initial dataset only contains 4 of the modes. GFlowNet discovered 10 of the modes within 5
rounds, while MCMC discovered 10 within 10 rounds, whereas PPO managed to discover only 8
modes by the end (with R0 = 10−1).

A.5.2 Molecules

The initial set D0 of 2000 molecules is sampled randomly from the 300k dataset. At each round,
for the MPNN proxy retraining, we use a fixed validation set for determining the stopping criterion.
This validation set of 3000 examples is also sampled randomly from the 300k dataset. We use fewer
iterations when fitting the generative model, and the rest of the hyper-parameters are the same as in
the single round setting.

Reward after 1800 docking evaluations
method top-10 top-100

GFlowNet 8.83± 0.15 7.76± 0.11
MARS 8.27± 0.20 7.08± 0.13

(a) Reward=8.26 (b) Reward=9.18 (c) Reward=9.08 (d) Reward=8.73 (e) Reward=8.64

Figure 9: (a) Highest reward molecule in D0 in the multi-round molecule experiments. (b) Highest
Reward molecule generated by GFlowNet. (c)-(e) Samples from the top-10 molecules generated by
GFlowNet.

2http://botorch.org/

20

http://botorch.org/

A.6 Hypergrid Experiments

Let’s first look at what is learned by GFlowNet. What is the distribution of flows learned? First,
in Figure 10 (Left), we can observe that the distribution learned, πθ(x), matches almost perfectly
p(x) ∝ R(x) on a grid where n = 2, H = 8. In Figure 10 (Middle) we plot the visit distribution
on all paths that lead to mode s = (6, 6), starting at s0 = (0, 0). We see that it is fairly spread out,
but not uniform: there seems to be some preference towards other corners, presumably due to early
bias during learning as well as the position of the other modes. In Figure 10 (Right) we plot what the
uniform distribution on paths from (0, 0) to (6, 6) would look like for reference. Note that our loss
does not enforce any kind of distribution on flows, and a uniform flow is not necessarily desirable
(investigating this could be interesting future work, perhaps some distributions of flows have better
generalization properties).

0 2 4 6

0

2

4

6

0 2 4 6

0

2

4

6

0 2 4 6

0

2

4

6

Figure 10: Grid with n = 2, H = 8. Left, the distribution πθ(x) learned on the grid matches p(x)
almost perfectly; measured by sampling 30k points. Middle, the visit distribution on sampled paths
leading to (6, 6). Right, the uniform distribution on all paths leading to (6, 6).

Note that we also ran Soft Actor Critic (Haarnoja et al., 2018) on this domain, but we were unable to
find hyperparameters that pushed SAC to find all the modes for n = 4, H = 8; SAC would find at
best 10 of the 16 modes even when strongly regularized (but not so much so that the policy trivially
becomes the uniform policy). While we believe our implementation to be correct, we did not think
it would be relevant to include these results in figures, as they are poor but not really surprising:
as would be consistent with reward-maximization, SAC quickly finds a mode to latch onto, and
concentrates all of its probability mass on that mode, which is the no-diversity failure mode of RL we
are trying to avoid with GFlowNet.

Next let’s look at the losses as a function of R0, again in the n = 4, H = 8 setting. We separate the
loss in two components, the leaf loss (loss for terminal transitions) and the inner flow loss (loss for
non-terminals). In Figure 11 we see that as R0 decreases, both inner flow and leaf losses get larger.
This is reasonable for two reasons: first, for e.g. with R0 = 10−3, log 10−3 is a larger magnitude
number which is harder for DNNs to accurately output, and second, the terminal states for which
log 10−3 is the flow output are 100× rarer than in the R0 = 10−1 case (because we are sampling
states on-policy), thus a DNN is less inclined to correctly predict their value correctly. This incurs
rare but large magnitude losses. Note that theses losses are nonetheless, small, in the order of 10−3
or less, and at this point the distribution is largely fit and the model is simply converging.

GFlowNet as an offline off-policy method To demonstrate this feature of GFlowNet, we train it
on a fixed dataset of trajectories and observe what the learned distribution is. For this experiment we
use R(x) = 0.01 +

∏
i(cos(50xi) + 1)fN (5xi), fN is the normal p.d.f., n = 2 and H = 30. We

show results for two random datasets. First, in Figure 12 we show what is learned when the dataset
is sampled from a uniform random policy, and second in Figure 13 when the dataset is created by
sampling points uniformly on the grid and walking backwards to the root to generate trajectories. The
first setting should be much harder than the second, and indeed the learned distribution matches p(x)
much better when the dataset points are more uniform. Note that in both cases many points are left
out intentionally as a generalization test.

21

0 25000 50000
SGD steps

10−4

10−2

100

to
ta

ll
os

s

R0 = 10−1

R0 = 10−2

R0 = 10−3

0 25000 50000
SGD steps

le
af

lo
ss

0 25000 50000
SGD steps

flo
w

lo
ss

Figure 11: Losses during training for the “corners” reward function in the hypergrid, with n = 4,
H = 8. Shaded regions are the min-max bounds.

0 10 20

0

5

10

15

20

25

empirical distribution

0 10 20

0

5

10

15

20

25

true distribution

0 10 20

0

5

10

15

20

25

dataset distribution (log-scale)

Figure 12: Grid with n = 2, H = 30. Left, the learned distribution πθ(x). Middle, the true
distribution. Right, the dataset distribution, here generated by executing a uniform random policy
from s0.

These results suggest that GFlowNet can easily be applied offline and off-policy. Note that we did not
do hyperparameter search on these two plots, these are purely illustrative and we believe it is likely
that better generalization can be achieved by tweaking hyperparameters.

A.7 GFlowNet results on the molecule domain

Here we present additional results to give insights on what is learned by our method, GFlowNet.

Let’s first examine the numerical results of Figure 4:

Reward at 105 samples
method top-10 top-100 top-1000

GFlowNet 8.36± 0.01 8.21± 0.03 7.98± 0.04

MARS 8.05± 0.12 7.71± 0.09 7.13± 0.19

PPO 8.06± 0.26 7.87± 0.29 7.52± 0.26

Reward at 106 samples
GFlowNet 8.45± 0.03 8.34± 0.02 8.17± 0.02

MARS 8.31± 0.03 8.03± 0.08 7.64± 0.16

PPO 8.25± 0.12 8.08± 0.12 7.82± 0.16

Reward for 106-equivalent compute
JT-VAE + BO 6.03 5.86 5.31

These are means and standard deviations computed over 3 runs. We see that GFlowNet produces
significantly better molecules. It also produces much more diverse ones: GFlowNet has a mean

22

0 10 20

0

5

10

15

20

25

empirical distribution

0 10 20

0

5

10

15

20

25

true distribution

0 10 20

0

5

10

15

20

25

dataset distribution

Figure 13: Grid with n = 2, H = 30. Left, the learned distribution πθ(x). Middle, the true
distribution. Right, the dataset distribution, here generated by sampling a point uniformly on the grid
and sampling random parents until s0 is reached, thus generating a training trajectory in reverse.

pairwise Tanimoto similarity for its top-1000 molecules of 0.44±0.01, PPO, 0.62±0.03, and MARS,
0.59± 0.02 (mean and std over 3 runs). A random agent for this environment would yield an average
pairwise similarity of 0.231 (and very poor rewards).

0.0 0.2 0.4 0.6 0.8 1.0
states visited ×106

0

100

200

300

400

500

#
of

m
od

es
w

ith
R
>

7

GFlowNet
MARS
PPO

0.0 0.2 0.4 0.6 0.8 1.0
states visited ×106

0

10

20

#
of

m
od

es
w

ith
R
>

8

GFlowNet
MARS
PPO

Figure 14: Number of Tanimoto-separated modes found above reward threshold T as a function of
the number of molecules seen. See main text. Left, T = 7. Right, T = 8.

0.0 0.2 0.4 0.6 0.8 1.0
states visited ×106

0

2000

4000

6000

8000

10000

#
of

m
od

es
w

ith
R
>

7.
5 GFlowNet

MARS
PPO

0.0 0.2 0.4 0.6 0.8 1.0
states visited ×106

0

500

1000

1500

#
of

m
od

es
w

ith
R
>

8

GFlowNet
MARS
PPO

Figure 15: Number of diverse Bemis-Murcko scaffolds (Bemis and Murcko, 1996) found above
reward threshold T as a function of the number of molecules seen. Left, T = 7.5. Right, T = 8.

We also see that GFlowNet produces much more diverse molecules by approximately counting the
number of modes found within the high-reward molecules. Here, we define "modes" as molecules
with an energy above some threshold T , at most similar to each other in Tanimoto space at threshold
S. In other words, we consider having found a new mode representative when a new molecule has a

23

Tanimoto similarity smaller than S to every previously found mode’s representative molecule. We
choose a Tanimoto similarity S of 0.7 as a threshold, as it is commonly used in medicinal chemistry
to find similar molecules, and a reward threshold of 7 or 8. We plot the results in Figure 14. We
see that for R > 7, GFlowNet discovers many more modes than MARS or PPO, over 500, whereas
MARS only discovers less than 100.

Another way to approximate the number of modes is to count the number of diverse Bemis-Murcko
scaffolds present within molecules above a certain reward threshold. We plot these counts in Figure
5, where we again see that GFlowNet finds a greater number of modes.

Next, let’s try to understand what is learned by GFlowNet. In a large scale domain without access to
p(x), it is non-trivial to demonstrate that πθ(x) matches the desired distribution p(x) ∝ R(x). This
is due to the many-paths problem: to compute the true pθ(x) we would need to sum the pθ(τ) of all
the trajectories that lead to x, of which there can be an extremely large number. Instead, we show
various measures that suggest that the learned distribution is consistent with the hypothesis the πθ(x)
matches p(x) ∝ R(x)β well enough.

In Figure 16 we show how Fθ partially learns to match R(x). In particular we plot the inflow of
leaves (i.e. for leaves s′ the

∑
s,a:T (s,a)=s′ F (s, a)) as versus the target score (R(x)β).

10−4 10−3 10−2 10−1 100

score

10−4

10−3

10−2

10−1

100

pr
ed

ic
te

d
un

no
rm

al
iz

ed
pr

ob
ab

ili
ty

bin average
x=y
log-log linear regression
a = 0.58 r = 0.69

Figure 16: Scatter of the score (R(x)β) vs the inflow of leaves (the predicted unnormalized probabil-
ity). The two should match. We see that a log-log linear regression has a slope of 0.58 and a r of
0.69. The slope being less than 1 suggests that GFlowNet tends to underestimate high rewards (this
is plausible since high rewards are visited less often due to their rarity), but nonetheless reasonably
fits its data. Here β = 10. We plot here the last 5k molecules generated by a run.

Another way to view that the learned probabilities are self-consistent is that the histograms ofR(x)/Z
and p̂θ(x)/Z match, where we use the predicted Z =

∑
a∈A(s0)

F (s0, a), and p̂θ(x) is the inflow of
the leaf x as above. We show this in Figure 17.

In terms of loss, it is interesting that our models behaves similarly to value prediction in deep RL, in
the sense that the value loss never goes to 0. This is somewhat expected due to bootstrapping, and
the size of the state space. Indeed, in our hypergrid experiments the loss does go to 0 as the model
converges. We plot the loss separately for leaf transitions (where the inflow is trained to match the
reward) and inner flow transitions (at visited states, where the inflow is trained to match the outflow)
in Figure 18.

24

10−6 10−5 10−4 10−3 10−2 10−1

predicted p̂(x)

0.00

0.01

0.02

0.03

0.04

em
pi

ri
ca

lf
re

qu
en

cy
of

p̂(
x)

0.00

0.01

0.02

0.03

0.04

em
pi

ri
ca

lf
re

qu
en

cy
of

R
(x

)/
Z

Figure 17: Histogram of the predicted density vs histogram of reward. The two should match. We
compute these with the last 10k molecules generated by a run. This plot again suggests that the model
is underfitted. It thinks the low-reward molecules are less likely than they actually are, or vice-versa
that the low-reward molecules are better than they actually are. This is consistent with the previous
plot showing a lower-than-1 slope.

100 101 102 103 104 105

SGD steps

10−3

10−2

10−1

100

101

102

103

lo
ss

leaf loss
flow loss

Figure 18: Loss as a function of training for a typical run of GFlowNet on the molecule domain.
The shaded regions represent the min-max over the interval. We note several phases: In the initial
phase the scale of the predictions are off and the leaf loss is very high. As prediction scales adjust we
observe the second phase where the flow becomes consistent and we observe a dip in the loss. Then,
as the model starts discovering more interesting samples, the loss goes up, and then down as it starts
to correctly fit the flow over a large variety of samples. The lack of convergence is expected due to
the massive state space; this is akin to value-based methods in deep RL on domains such as Atari.

25

