A Sample-driven Selection Framework: Towards Graph
Contrastive Networks with Reinforcement Learning

Anonymous Authors

1 A. OVERVIEW OF DATA AUGMENTATIONS
FOR GRAPHS

Table 1 shows the overview of four data augmentations for graphs.
For different domains of graph datasets, we adopt [15] to strate-
gically select data augmentations. Specifically, for Molecules and
Bioinformatics, we employ two strategies as: node dropping and
subgraph. For Social networks, we use all data augmentation strate-
gies.

2 B. ALGORITHM

The entire learning process is described in Algorithm 1.

Algorithm 1: SDG Algorithm
Input: Graph dataset D = {By, By, ..., BN}; y; W(SDG);
Graph representation (I>Bj and ® A d(-,-); epochs L.
Output: Updated W.
1 Initialize W with standard Gaussian distribution;

2 while not converging do

3| 2=0;
4 while k < L do
5 2r=0;
6 D ={B1,By,....,Bn};
7 for Bj € D do
®7 — 01 (Bj);® «—0;_1(A));
8 B,-<_11(J) Aj<_11(1)
9 On current bag state s; ,
D; W(<1>Sf' );
10 j «— - 14j .
1 select <I>§ from @ via Dj(take action a;);
j J o
12 r(sicy, as;) — d(@7, 077 - yd(@ , 0% );
(j-1.s)) A @7 ) -y %)
13 X Zp 7 (s5-1,a4.5)
14 end
15 e +Z§V:1 Vplogmw (a§|s;?) >
16 end
7 | Vo (W) — 13
18 W — W+ 1] (0);
19 end

3 C.DATESETS

To evaluate our model, we conduct experiments on eight widely
used benchmark datasets ! in three fields, including three molecules
datasets: MUTAG, PTC, NCI-1, three social network datasets: REDDIT-
BIN, IMDB-BINARY (IMDB-B), IMDB-MULTI (IMDB-M), and two

!Eight widely used datasets are publicly available at
www.cs.tudortmund.de/staff/morris/graphkerneldatasets.

https://1s11-

bioinformatics datasets: PROTEINS, D&D. More details about the
data statistics and properties can be seen in Table 2.

4 D.BASELINE METHODS

The following models, including the state-of-art and closely re-
lated works, are used as representative baselines to evaluate the
performance of the proposed model.

e HGCL [6]: HGCL investigates the hierarchical structural seman-
tics of a graph at both node and graph levels.

AD-GCL [9]: AD-GCL enables GNNs to avoid capturing redun-
dant information during the training by optimizing adversarial
graph augmentation strategies used in GCL.

SimGRACE [11]: SimGRACE does not require data augmenta-
tions, and is inspired by the observation that graph data can
preserve their semantics well during encoder perturbations.

GraphMAE [5]: GraphMAE that mitigates these issues for gen-
erative self-supervised graph pretraining, and simple graph au-
toencoder with careful designs-can consistently generate outper-
formance over both contrastive and generative state-of-the-art
baselines.

LaGraph [12]: LaGraph is a theoretically grounded predictive
SSL framework based on latent graph prediction, and provides ex-
planations for recent successes of predictive models that include
invariance-based objectives.

CuCo [1]: CuCo propose a novel curriculum contrastive learning
based graph representation learning model, which effectively
combines curriculum learning and contrastive learning.

GraphCL [15]: GraphCL designs four types of graph data aug-
mentations, each of which imposes certain prior over graph data
and parameterized for the extent and pattern.

o InfoGraph [8]: InfoGraph maximizes the mutual information
between the graph-level representation and the representations
of substructures of different scales (e.g., nodes, edges, triangles).
JOAO [14]: JOAO is to automate the augmentation selection
when performing contrastive learning on specific graph data.

LG2AR [4]: The work is an end-to-end automatic graph aug-
mentation framework that helps encoders learn generalizable
representations on both node and graph levels.

e GCN [7]: GCN based on an efficient variant of convolutional
neural networks which operate directly on graphs via a localized
first-order approximation of spectral graph convolutions.

e GraphSAGE [3]: GraphSAGE, a general inductive framework
that leverages node feature information (e.g.,text attributes) to
efficiently generate node embeddings for previously unseen data.

e GIN [13]: GIN show that its discriminative/representational power
is equal to the power of the WL test.

e GAT [10]: GAT is a novel neural network architecture that oper-
ate on graph-structured data, leveraging masked self-attentional
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Table 1: Overview of data augmentations for graphs

Data augmentation Type

Detailed Description

Node dropping Nodes, edges
Edge perturbation Edges
Attribute masking Nodes

Subgraph Nodes, edges

randomly discarding a certain portion of nodes along with their connections
randomly adding or dropping certain ratio of edges
recovering masked node attributes using their context information

samples a subgraph from G using random walk

Table 2: Properties of the Biological and Social Network
Datasets.

Datasat ‘ Classes Size Avg.Nodes Label Category
MUTAG 2 188 17.9 7 Small molecules
PTC 2 344 25.5 19 Small molecules
NCI-1 2 4110 29.8 37 Small molecules
PROTEINS 2 1113 39.1 3 Bioinformatics
D&D 2 1178 284.31 82 Bioinformatics
IMDB-BINARY 2 1000 19.77 - Social
IMDB-MULTI 3 1500 13 - Social
REDDIT-BINARY 2 2000 429.61 - Social

layers to address the shortcomings of prior methods based on
graph convolutions or their approximations.

5 E.OTHER EXPERIMENTS
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Figure 1: The results of different DDM.

5.0.1 Analysis on DDM. We summarize the results for three
different distribution discrepancy measurements (DDM) calculated
as a reinforcement reward to automatically guide the model to
select appropriate samples. To evaluate the effect of DDM, we
choose datasets: NCI-1, IMDB-B, PROTEINS, D&D as examples
and conduct experiments. As shown in Figure 1, it is evident that
three DDM achieve better results across four datasets, especially
the RENYI that yields superior performance compared to the other

two methods. Meanwhile, JS and MMD have similar performance.

Finally, we conclude that three DDM methods are all suitable as
reinforcement rewards to guide our model so as to achieve better
performance.

5.0.2 Analysis on the Position of Selection . We conduct this
experiment to explore the impact of different positions on negative
sample selection, as shown in Figure 2. There are two lines: A line

Reinforcement Learning
PPl <«

- Probability ]
A line
Before GNN encoder After GNN encoder

Select negative instances
from original graphs

Select negative instances
from graph representations

Figure 2: Two positions of selection.

Table 3: Analysis on the position of selection

Ours | NCI-1 IMDB-B PROTEINS
GraphSaSe-A | 78.8%  73.1% 75.9%
GraphSaSe-B | 815%  75.8% 77.1%

represents that we select negative samples from original graphs
in a batch before conducting GNN embedding. B line denotes
that we select negative samples from graph representation after
conducting GNN embedding. The results in Table 3 show that
the B line achieves better performance compared to A line. We
conjecture that suppose positive pairs may have a considerable
distance initially, but they become close to each other in the latent
space after the GNN encoder. Thus, we believe that employing
selection for the negative samples after the GNN encoder could
further improve the performance.

5.0.3 Hyperparameters Analysis. In this section, we present
the sensitivity analysis of two critical hyper-parameters employed
by the GraphSaSe model, namely, the hyper-parameter A to control
the magnitude of RL task, and the number of layers N of GNNs.
For brevity, we conducted the experiments on three datasets: NCI-
1, IMDB-B, and PROTEINS. Additionally, the default parameter
settings of the analysis are A=0.05, and N=4. To be strict, when
we tested the hyper-parameters specific to GraphSaSe, the other
parameters were set to the default settings.

e The impact of the hyper-parameter A: We analyze the sensi-

tivity to the graph embedding dimension size A € {0.01,0.05, 0.1, 0.5}.

Figure 3 demonstrates that GraphSaSe with different A all achieves
good results in general, which verifies that our GraphSaSe is not
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very sensitive to hyper-parameter A, stable over hyper-parameters
in most cases. To get better performance, we select 1=0.05.
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Figure 3: The hyper-parameter A.
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Figure 4: The number layers N of GNNs.

e The impact of the hyper-parameter N: Next, we examine

the effects of the number layers N of GNNs, which is a hyper-
parameter for the graph encoder. We select different number of
layers N € {2,3,4,5,6}. The results are shown in Figure 4. We
observe that N = 3 generally gives the best performance, and the
performance is rather stable over various datasets. Although N
= 4 brings limited performance improvement on IMDB-B than N
= 3, the computational complexity is more in calculating. So we
choose N = 3 to reduce the computational complexity and keep
the rather better performance.
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