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Figure 1: Top-1 zero-shot classification accuracy (y-axis) vs resolution (x-axis): Backbones for
foundation models are merged as shade, with average performance across backbones in the dark.

ABSTRACT

Visual-language foundation Models (FMs) exhibit remarkable zero-shot general-
ization across diverse tasks, largely attributed to extensive pre-training on large-
scale datasets. However, their robustness on low-resolution/pixelated (LR) im-
ages, a common challenge in real-world scenarios, remains underexplored. We
introduce LR0.FM, a comprehensive benchmark evaluating the impact of low res-
olution on the zero-shot classification performance of 10 FM(s) across 66 back-
bones and 15 datasets. We propose a novel metric, Weighted Aggregated Ro-
bustness, to address the limitations of existing metrics and better evaluate model
performance across resolutions and datasets. Our key findings show that: (i)
model size positively correlates with robustness to resolution degradation, (ii)
pre-training dataset quality is more important than its size, and (iii) fine-tuned
and higher resolution models are less robust against LR. Our analysis further re-
veals that the model makes semantically reasonable predictions at LR, and the
lack of fine-grained details in input adversely impacts the model’s initial layers
more than the deeper layers. We use these insights and introduce a simple strat-
egy, LR-TK0, to enhance the robustness of models without compromising their
pre-trained weights. We demonstrate the effectiveness of LR-TK0 for robust-
ness against low-resolution across several datasets and its generalization capabil-
ity across backbones and other approaches. Code is available at this link.

1 INTRODUCTION

Vision-Language Foundation Models (FMs), such as CLIP (Radford et al., 2021), LLaMA (Tou-
vron et al., 2023), and other variants, have shown extraordinary generalization capabilities across a
wide range of downstream tasks, including image classification (Ilharco et al., 2021), object detec-
tion (Zhong et al., 2022), and semantic segmentation (Xu et al., 2023). These models benefit from
large-scale, multi-modal pre-training on diverse datasets like DataComp-1B (Gadre et al., 2023) and
LAION-5B (Schuhmann et al., 2022), enabling them with zero-shot capabilities. Although these
models excel on high-resolution benchmarks, their performance with low-resolution (LR) pixelated
images, a common real-world challenge, remains adequately underexplored.

Low-resolution images frequently arise in various practical scenarios, such as surveillance
footage (Davila et al., 2023), satellite imagery (Patil et al., 2017), and privacy-protected pixelated
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Figure 2: Zero-Shot misclassifications: EVA-CLIP [2023a] correct classification at 224⇥224 (green)
& misclassification at lower resolution (red). However, ImageNet labels-based mispredictions are
semantically reasonable (humans), indicating viability of pre-trained weights at low resolution.

data (Zhou et al., 2020) etc. In these cases, details crucial for accurate classification may be ob-
scured by artifacts like pixelation and compression, leading to substantial performance degradation.
For instance, small objects (faces) within larger images (Cheng et al., 2019) pose unique challenges,
often requiring models to rely on limited visual cues. Given the widespread presence of LR images
in real-world applications, it is crucial to understand how robust FMs are in these settings.

Motivated by this, we present an in-depth benchmarking study of FMs, focusing on their zero-shot
classification performance under LR conditions. We introduce LR0.FM, a comprehensive bench-
mark that evaluates 10 foundation models across 66 backbones and 15 diverse image classification
datasets, ranging from large-scale datasets like ImageNet (Deng et al., 2009) to fine-grained and
texture-specific datasets like Oxford Pets (Parkhi et al., 2012) and DTD (Cimpoi et al., 2014). Our
study systematically examines the effects of resolution degradation, revealing key insights into how
model size, pre-training dataset quality, and fine-tuning impact robustness in LR scenarios.

Metrics for measuring robustness � (Schiappa et al. (2024b)) and its averaging across datasets (SAR)
have some limitations; 1) They can produce misleadingly high scores when models perform poorly
on challenging datasets, and 2) They tend to ignore certain datasets, skewing the overall comparison.
To address these, we propose a new metric, Weighted Aggregated Robustness (WAR), which
provides a more balanced evaluation by considering performance drops across datasets more fairly.

Our analysis reveals several interesting insights. Larger models tend to maintain robustness better
when faced with LR inputs, while the quality of the pre-training dataset is more crucial than its
size in preserving performance. Furthermore, fine-tuned models and those with higher-resolution
inputs significantly underperform against resolution drop. We also observe that although models
struggle at low-resolution (fig. 1) and loss of fine-grained details (fig. 2: e.g. Vulture vs Bald Eagle,
Bubble vs Balloon etc.), their predictions often remain semantically reasonable, even at extreme
resolutions (fig. 2: e.g. Orange vs Banana, Church vs Volcano etc.). Supplementary demonstrates
more examples (including real-world) where such mispredictions are made. This suggests a solution
for low-resolution does not require extensive modifications to the model and its pre-trained weights.

Based on these insights, we propose a simple yet effective solution, LR-TK0: LR-Zero-Shot To-
kens, which introduces low-resolution-specific tokens to enhance robustness without altering the
pre-trained model weights. Our method preserves the model’s semantic reasoning capabilities while
compensating for the loss of fine-grained detail, offering a feature super-resolution-like approach
(Chen et al., 2024). By training on synthetic diffusion-based high-resolution images, LR-TK0 im-
proves performance in low-resolution zero-shot classification tasks, making FMs more robust for
practical, real-world applications.

In summary, we make the following contributions in this work,
1. We present LR0.FM, a comprehensive benchmarking of Visual-Language Foundation

Models (FMs) on zero-shot classification of low-resolution images, providing several key
insights. To the best of our knowledge, no prior work has explored this aspect of FMs.

2. We introduce a simple and effective method, LR-TK0, to enhance model robustness against
low-resolution inputs without altering the pre-trained weights.

3. We introduce Weighted Aggregated Robustness (WAR), a novel robustness metric for eval-
uating models under challenging conditions, overcoming the limitations of existing metrics.
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Table 1: Benchmark Models (66 Backbones): Pre-training is image-text pairs from datasets like
DataComp-1B (DC-1B) (Gadre et al., 2023), Conceptual Captions (CC) (Sharma et al., 2018), Con-
ceptual 12M (C-12M) (Changpinyo et al., 2021). Text Encoders are mostly modified vanilla trans-
formers (Tran.)(Vaswani et al., 2017). Vision backbones use (modified) ViTs (Dosovitskiy, 2021).

Models #Backbones Pre-training (Dataset / Size Billion:B & Million:M) Text Encoder

CLIP [2021] 4 ViTs & 5
ResNets

WIT-400M [2021] 400M Tran. [2019]

OpenCLIP [2021] 8 ViTs DC-1B, LAION-2B[2022], DFN-5B[2023] 1B-5B Tran.[2021]
MetaCLIP [2024a] 8 ViTs Self 400M-2.5B OpenCLIP
CLIPA (v1&v2)
[2023b; 2023c]

7 ViTs DC-1B, LAION-2B [2022] 1B-2B Autoregressive
Tran. [2017]

SigLIP [2023] 8 ViTs WebLI [2023b] 10B Tran.
CoCa [2022] 3 ViTs LAION-2B [2022], COCO [2014] 2B Tran. Decoder
M2-Encoder[2024] 3M2-Encoder BM-6B [2024] 6B Magneto [2023]
ALBEF [2021] 4 ALBEF

(ViT)
COCO [2014], Visual Genome [2017],

CC, SBU Captions [2011], C-12M
4M-14M BERT [2019]

BLIP [2022b] 8 ViTs ALBEF [2021], LAION-400M [2021] 14M-129M BERT [2019]
EVA-CLIP(&18B)
[2023a; 2023b]

8 EVA(s)
(ViT(s))

LAION-400M[2021], LAION-2B[2022],
Merged-2B [2023a]

400M-2B OpenCLIP

2 RELATED WORKS

Foundation Models (FM): Large-scale models (Kirillov et al., 2023; Girdhar et al., 2023), pre-
trained on massive datasets, demonstrate generalization across numerous downstream tasks. For ex-
ample, CLIP (Radford et al., 2021) embeds⇠400 million image-text pairs in a shared feature space
for zero-shot image classification and image-text retrieval. It is also effective in other domains like
video-text retrieval (Luo et al., 2022), and video and audio understanding (Lin et al., 2022; Guzhov
et al., 2022). Joint vision-text learning has also succeeded in tasks such as self-supervision (Miech
et al., 2020), few-shot (Alayrac et al., 2022), multi-modal retrieval (Yu et al., 2022) etc. However,
the robustness of these models against real-world challenges e.g. harmful images (Qu et al., 2024),
image quality (Wu et al., 2024), text quality (Xu et al., 2024b), etc. requires further exploration.

Zero Shot: Zero Shot/Open-set/In-the-wild image classification predicts an unseen class by match-
ing the image with labels (Sun et al., 2023a). In the past, traditional models have been tested for
their zero-shot capabilities (Chao et al., 2016; Xian et al., 2017), however, FMs are better suited for
this task. Benchmarking their zero-shot capabilities is a relatively newer area of research (Schiappa
et al., 2024a; Schulter et al., 2023). To assess the performance comprehensively, we have expanded
the pool of models from traditional 10-11 FM backbones e.g. 4 backbones (Li et al., 2022a), 9 back-
bones (Liu et al., 2024), 6 backbones ((Zhang et al., 2024)) etc. to 66 backbones.

Low Resolution (LR): LR images are captured in various practical scenarios and are sometimes
used intentionally for computational cost reduction (RECLIP (Li et al., 2023a)). LR benchmarks
mostly focus on face recognition (Luevano et al., 2021; Li et al., 2018; Tirupattur et al., 2021), with
some work in zero-shot/unconstrained recognition (Li et al., 2019; Cheng et al., 2019). Super Res-
olution (Ohtani et al., 2024; Gao et al., 2023) are often domain-specific or restores only � 64⇥64.
However, there is a lack of study on the robustness of FM(s) against real-world challenges (Xu et al.,
2024b; Schiappa et al., 2023), with no previous work on very LR. We benchmark FM(s) against LR
images and propose a lightweight solution for improving robustness, without training on any of the
target datasets (Chen et al., 2024).

3 BENCHMARKING SETUP

Model: Table 1 lists all 10 Foundation models used in our benchmarking1. CLIP, OpenCLIP, Meta-
CLIP, CLIPA, and SigLIP use the same ViT model with different pre-training datasets and slight
architectural modifications (e.g. layer norm position, token masking etc.). M2-Encoder (built on
top of CoCa), ALBEF, and BLIP use modified cross attention between text and vision transformers.
EVA-CLIP is a family of models equipped with recent advancements e.g. architectural modifica-

1EVA-CLIP (Sun et al., 2023a) & EVA-CLIP-18B (Sun et al., 2023b) merged into one.
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Figure 3: Left: Dataset: Size / log # test images, and color gradient / # of test classes orange is 10
& black is 1000 classes). Right: Zero Shot Evaluation: Food-101 image (32⇥32) generates image
embeddings fImg , while class labels are filled in templates (1 shown) generating text embeddings
(averaged across templates). The dot product of fImg with text features gives classification logits.

tions, token dropping, training via distillation etc. surpassing all existing works. Backbones are re-
ferred to using their publicly available pre-trained weights, e.g. CLIP-ViT L (400M), which means:
CLIP model ViT-L architecture, pre-trained on 400 million datasets. ‘B’ would indicate a billion.
Dataset: Figure 3 (left) highlights benchmarking datasets size and the number of classes for: Im-
agenet [2009], ImageNet-A [2021b], ImageNet-V2 [2019], ImageNet-R [2021a], ImageNet-Sketch
(ImageNet-SK) [2019], Caltech101 [2007], DTD split-1 (DTD) [2014], Food101 [2014], SUN397
[2014] Stanford Cars (Cars) [2020], FGVC Aircraft (Aircraft) [2013], Oxford Pets (Pets) [2012], Ox-
ford Flowers102 (Flowers102) [2016], EuroSAT [2019], UCF101 [2012]. Details in Supplementary.
Zero-Shot Image Classification We adopt CLIP (Radford et al., 2021) evaluation protocol for all
the models as shown in fig. 3 (right). Image encoder generates embeddings for images, while test
labels are used with dataset-specific templates (multiple templates, Supplementary) e.g. “a photo of
a [label]”. Model’s Text encoder generates final text embeddings (averaged across all templates) for
the class label. The dot product of visual and text embeddings produces class logits, with the highest
logit score determining the predicted class. Accuracy is computed using Top-1 match.
Low Resolution: Models are evaluated on their pre-trained resolution, namely 224⇥224 256⇥256,
378⇥378 etc. Low resolution is simulated by downsampling HR images to 16⇥16, 32⇥32, 64⇥64,
and 128⇥128 using bicubic interpolation, followed by model specific preprocessing similar to their
HR counterparts, e.g. resizing to 224⇥224, center crop, etc. Performance degradation starts below
64⇥64 (fig. 1), so we focus mainly on 16⇥16 and 32⇥32. This downsampling mimics pixelation
as seen in low-resolution cameras (e.g. self-driving cars) and distant images (e.g. CCTV), etc.
Evaluation Metrics: We represent top-1 accuracy on the dataset ‘D’ with a resolution n⇥n as
AD

n
2 [0, 1], e.g. HR accuracy AD

HR
� AD

n
(LR accuracy), where HR is model specific 2 {224,

256, 372, 384, 512}. Top-1 scores averaged across datasets is ACC-n. Robustness against arti-
facts (Schiappa et al., 2024b) is measured by relative robustness (�D

n
= 1 � (AD

HR
� AD

n
)/AD

HR
).

�D

n
is dataset-specific, and it is common to average scores across datasets for model comparison,

denoted by Simple Aggregated Robustness (SAR-n). Higher number indicates more robustness.
However, there are two significant issues with �D

n
and SAR-n:

Problem A) Misleading high robustness: If the model performs poorly on a challenging dataset
i.e. performance close to random predictions, then downsampling will likely maintain this random
prediction with minimal drop in accuracy, giving abnormally high robustness score. Ex. ‘ALBEF
(4M)’ for Aircraft dataset, (Aaircraft

rand =1%), Aaircraft
HR

=2.7%, Aaircraft
16 =1%, �aircraft

16 =37%, i.e. random
predictions yields⇠40% robustness (40% robustness is among the highest, more in Supplementary).

Solution: Improved Relative Robustness �D

n
: A naive solution is to calculate relative robustness

only for correct predictions at the HR resolution. However, tracking predictions for each model
across all datasets might not be scalable, especially if the dataset contains millions of images. We
propose zero-ing out robustness near random predictions. We first define accuracy gap for the model
on a dataset with ‘C’ classes as ED=AD

HR
�AD

rand
, with ED 2 [0, 1], and AD

rand
=1/C represents

random prediction accuracy2. If AD

HR
>>AD

rand
, ED will be high. Conversely, if AD

HR
' random

prediction, ED!0. Using ED, we compute improved relative robustness �D

n
as

�D

n
= �D

n
⇥ (1� e�↵(ED)2) | ↵ >> 1 & 0  ED  1 (1)

2Random guessing one of the ‘C’ class yields 1/C accuracy, referred to as AD
rand in this work.
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Figure 5: Evaluations at 16⇥16. Left: SAR vs WAR: WAR improves the correlation (between
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size / Model Size, positively impact robustness. ResNets (?), and transformers (�).

when ED ⇠ 0 i.e. near random predictions, �D

n
⇠ 0, otherwise �D

n
⇡ �D

n
, as shown in fig. 4 (left).

Hyperparameter ↵ is the rate at which �D

n
declines as accuracy approaches random prediction. We

chose ↵ = 200 as a middle between 100 (the drop at ED ⇠ 0.2) and 500 (the drop at ED ⇠ 0).

Problem B) SAR overlooks datasets: When comparing models, their robustness scores are averaged
across datasets (SAR). Ideally, model ranking, after averaging robustness across datasets, should
stay consistent with their rankings on individual datasets. However, fig. 4 (mid) shows the rankings
of 66 models after averaging correlate (Spearman Rank) highly with ImageNet (0.99) and DTD
(0.88), but only moderately with ImageNet-A (0.56) and weakly / not with EuroSAT (0.26). Most
datasets follow the ImageNet trend, influencing the final model rankings and minimizing the impact
of datasets like ImageNet-A and EuroSAT (behave differently) as if these datasets aren’t present.

Solution: Weighted Aggregated Robustness: Averaging the robustness scores gives each dataset
score of 1. We propose adjusting the dataset weights so that the model rankings after aggregation
reflect each dataset fairly (fig. 4 (right)). Weights are optimized such that the correlation (Spearman)
between the model rankings after the weighted average and individual dataset rankings are maxi-
mized. The weighted sum of robustness is: WAR-n=

PDatasets
d

|�d

n
⇥wd

n
|/
PDatasets

d
|wd

n
|, where wd

n

is dataset weight, and �d

n
is dataset-specific improved robustness score for the resolution n⇥n.

We use Ax tool (Bakshy et al., 2018) for optimizing the weights of the dataset wd

16 2 [0.1, 1] such
that the Spearman correlation (SC) between the final model ranking obtained after the weighted av-
eraging and individual dataset ranking is maximized on empirically found (more in Supplementary):

0.95⇥
�
SC(Imagenet)+SC(ImageNet-V2)+SC(DTD)

�
+ SC(ImageNet-A)+SC(EuroSAT) (2)

Optimizing wd

16 may give minimal weights to some datasets, thus WAR-n may not reflect the true
robustness and is more apt for model comparisons, representing all the datasets. Hence we use both
Weighted Aggregated Robustness (WAR) using improved relative robustness �D

n
(eq. (1)) and sim-

ple averaging (SAR) using traditional robustness �D

n
for evaluating models. Note, �D

n
and �D

n
mea-

sure dataset robustness while SAR and WAR measure averaged robustness across the datasets.
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4 BENCHMARKING ANALYSIS

Proposed WAR Metrics: Spearman correlation between the rankings of 66 models, calculated us-
ing SAR and WAR averaging of relative robustness �D

16 (across all datasets), and the individual
dataset rankings is shown in fig. 5(left). WAR shows a slight decrease in avg. correlation (SAR-16
0.89 vs WAR-16 0.87), but it also improves the representation of EuroSAT & ImageNet-A. The
correlation score for EuroSAT increased from a weak/no correlation of 0.26 to a moderate 0.49.

Model Architecture / Pretraining: Figure 5 (right, (i)) shows, on average, larger model (x-axis)
are more robust. Among the models, CLIP-ResNets (stars) are the least robust (compared to trans-
formers (dots)) while EVA, MetaCLIP, CLIPA, and OpenCLIP exhibit the highest robustness against
the LR. Higher GFLOP (size of dots) weakly impacts robustness with too many exceptions.

Pretraining ‘Quality over Quantity’: Figure 5 (right (ii)) shows pre-training dataset size weakly
correlates with robustness, with exceptions like SigLIP (10B), and M2-encoder (6B) performing
worse. Models pre-trained on DataComp-1B generally outperform those pre-trained on LAION-2B,
despite having over 500M fewer image-text pairs (fig. 6 (left)). This suggests that the model and
quality of pre-training have a greater impact on robustness than the quantity of pre-training.

Model Specific: We remove architectural size advantages by categorizing top-performing models
into parameter buckets as shown in fig. 6 (mid). For smaller models (150M and 430M parameters),
OpenCLIP matches EVA and outperforms MetaCLIP and CLIPA, despite these two being built on
top of OpenCLIP. However, for larger models, this trend reverses, with EVA-CLIP remaining su-
perior for comparable sizes. Two factors contribute to performance discrepancies within models of
the same parameter size: (1) Fine-tuning: ALBEF and BLIP fine-tuned variants are less robust on
EuroSAT and Aircraft, reducing their overall robustness (fig. 6 (right)) (2) Higher input resolution:
Models with higher input resolutions (e.g. 336⇥336) are generally less robust than their 224⇥224
counterparts, likely due to increased interpolation from 16⇥16 to higher resolutions (fig. 7 (left)).

Dataset Specific: Relative robustness of 66 models on each dataset forms its robustness vector rep-
resentations. Representing these vectors using t-SNE (fig. 7 (mid)), reveal three major dataset clus-
ters: high-robustness (long bars) (e.g. Caltech101), weakly robust (medium bars) (e.g. ImageNet),
and least robust (smallest bar) (e.g. , ImageNet-A). This indicates that low-resolution performance
varies by dataset, which warrants a deeper dive into dataset-specific robustness, left as future work.
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Figure 8: Feats t-SNE: EVA-02-CLIP-B/16 test features for Food-101, colored using class labels.
With low resolutions (16⇥16, and 32⇥32), features become indistinguishable, thereby overlapping.
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Figure 9: Super resolution at 16⇥16: Image from Pets (left) and Food102 (right). Models include
AddSR [2024], BSRGAN [2021], ESRGAN [2018], IDM [2023], Inf-DiT [2024], and Swinir [2021].

Inside Model: Figure 1 shows the accuracy of all models first drops at 64⇥64, with a more signifi-
cant decline after 32⇥32. EVA-B/16 features t-SNE (fig. 8) shows features become indistinguish-
able as resolution decreases. Inside the model, Figure 7 (right) shows the pairwise similarity (L2
distance) (Kornblith et al., 2019) between layers of models trained at different resolutions with the
224⇥224. Diagonal elements (ith layer of n⇥n model similarity with ith layer of a model trained
at 224⇥224), is more similar towards the deeper end (lower right, the similarity is brighter), than
the initial layers (upper left, the similarity is dull). Additionally, model similarity increases with
resolution, while layers remain differentiable at all resolutions (dull non-diagonal values).

5 PROPOSED METHOD: LR-TK0

Figure 2 reveals two key insights: i) LR lacks fine-grained details ii) FM(s) make semantically
reasonable predictions even at 16⇥16, highlighting the importance of preserving semantic capabili-
ties (pre-training). While super-resolution (SR) methods could restore lost details without affecting
models, zero-shot SR for very low resolutions ( 64⇥64), doesn’t work well in practice, as shown
in fig. 9, where SR models fail to reconstruct out-of-domain images at 16⇥16. To enhance model
robustness against low resolution, our solution LR-TK0 adds trainable LR tokens on top of frozen
transformers (preserving the pre-trained weights). These LR tokens learn to bridge the gap be-
tween the high-resolution (HR) and low-resolution (LR) domains, via self-supervised distillation
(section 5.1). We train these tokens on synthetically generated diffusion-based images (Section 5.2)
in a task-agnostic setting, ensuring the model is not exposed to any of the 15 target datasets.

5.1 LR TOKENS

To preserve the zero-shot capabilities of the model; pre-trained weights of the model are frozen. In-
stead, additional trainable tokens, referred to as “LR Tokens”, are added on top of the spatial tokens
after RGB to patch tokens conversion (patchification) and before each transformer block. As shown
in fig. 10 (left) # LR tokens = # Spatial tokens⇥ (N+1) blocks. These tokens aim to compensate
for the loss of details in low resolution, thereby enhancing the model’s interpretability of LR im-
ages. Contrary to prompt learning (Jia et al., 2022), where task-specific tokens are concatenated to
the spatial tokens, ours are added/merged. Figure 7 (right) indicates LR feature at the initial layer
deviates more than the later ones, thus LR tokens are added at every block.

LR-TK0 Technique: We adopt the multi-scale paradigm (Chen et al., 2019) i.e. training multiple
low resolutions per HR image, given its success in the LR domain. Model without LR tokens
(frozen pre-trained weights) acts as a teacher generating feature representations for HR images,
as true embedding fT

HR
. In contrast, LR tokens (& pre-trained model) act as student, generating
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Figure 10: Fire (& ice) icons represent trainable (& frozen) parameters. Left: LR tokens are added
to the frozen spatial patches (white) after patch generation, before each frozen transformer block, and
class token as a final feature. Right: LR-TK0: Multi-scale training (only 1 shown for simplicity).
Teacher (w/o LR tokens) generates fT

HR
(HR), Student (w/ LR tokens) generates both fS

HR
, fS

LR
.

waves hit the beach 
during high tide

animal in the 
grass of the park

logo with head of a 
fox

“wedding under the oak trees”

fresh fish at the 
market “wedding under the oak trees”

Figure 11: Synthetic Images: (Left) Images generated using PIXART-↵ [2023a] using randomly
sampled captions from Conceptual Captions [2018]. (Right) Multiple images per caption.

embeddings for both HR (fS
HR

) and LR image(s) (fS
LR

) as shown in fig. 10 (right). fS
HR

, fS
LR

(s)
are matched with fT

HR
using a contrastive loss (Radford et al., 2021), similar to text and image

alignment. Anchoring HR-LR features around frozen teacher avoids direct matching of HR-LR
embeddings, preventing pulling the HR features towards LR ones (converging into one) (Khalid
et al., 2020). This also ensures features w/ and w/o spatial tokens remain similar (regularization).
Feature matching doesn’t require any labels for these synthetic images, aka unsupervised. It also
task agnostic, i.e. doesn’t involve any model task-related characteristics (classification in this case).

5.2 SYNTHETIC HR DATASET

We use the diffusion model PIXART-↵ (Chen et al., 2023a) to generate synthetic HR images, via
7,000 randomly sampled captions from Conceptual Captions (Sharma et al., 2018). We expand
our training set by creating multiple images (variations, human observation) per caption as shown in
fig. 11. Conceptual Captions are commonly used in pretraining many zero-shot models (table 1), and
using synthetic diffusion-based images helps LR tokens capture a wide range of domains, ensuring
generalized training. Random captions avoid targeting any specific dataset. To our knowledge,
our work is the first to train a model on synthetic diffusion images for zero-shot evaluation, contrary
to training on a subset of target datasets (Chen et al., 2024). Following the multi-scale paradigm, we
downsample HR images to a randomly sampled spatial resolution (height = width) from three LR
resolution buckets [16,32], [32, 64], [64, 128], forming HR-LR image pairs.
Zero-Shot: If 7,000 (or fewer) concepts/captions can consistently enhance model performance
across 15 datasets, it suggests that the model is likely learning the relationship between HR and
LR features rather than exploiting shortcuts. This is supported by greater improvements at LR
(16⇥16) compared to HR (128⇥128). If the model somehow cheats the zero-shot evaluation using
diffusion-generated images, we would expect similar or better performance improvements at HRs.

6 PROPOSED METHOD: EXPERIMENTATION & ABLATION

Implementation Details Models are trained with 7K captions (& 30 images/captions) in a multi-
scale paradigm. EVA is trained for 200 epochs, while MetaCLIP and OpenCLIP are for 10 epochs.
Evaluation metrics (section 3): SAR (simple averaging of �D

n
), WAR (weighted averaging of �D

n
),

and Acc (average top-1). Higher number means better performance. Vanilla model’s HR accuracy
computes the accuracy gap ED, and dataset weights derived for 16⇥16 used for all resolutions (more
in Supplementary). ‘EVA-02-CLIP-B/16’ (EVA-B/16), is used for all our model-level analysis.
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Table 2: LR-TK0 improvement on Foundation models: ‘Meta-B/16’: MetaCLIP-ViT-B/16
(2.5B), ‘OC-B/16’: OpenCLIP-ViT-B/16. Higher number / better performance.

# 16⇥16 32⇥32 64⇥64 128⇥128 224⇥224Model
Param SAR WAR Acc SAR WAR Acc SAR WAR Acc SAR WAR Acc SAR WAR Acc

EVA-B/16 149.7M 38.0 30.7 28.1 74.4 64.8 53.5 92.4 85.8 65.2 98.4 96.1 68.8 100 100 69.6
+LR-TK0 155.2M 42.4 35.4 31.3 75.3 66.4 54.1 91.8 85.9 64.8 97.8 95.5 68.3 99.1 98.7 69.0

Meta-B/16 149.6M 32.1 27.2 23.4 65.3 54.4 47.0 89.5 83.6 62.9 98.5 96.7 68.5 100 100.0 69.4
+LR-TK0 151.6M 41.9 38.9 30.2 71.7 66.0 51.0 89.3 85.4 62.6 96.7 95.4 67.3 97.6 97.4 67.9

OC-B/16 149.6M 33.4 26.5 24.8 68.6 59.5 49.8 89.2 84.1 63.6 96.8 94.8 68.3 100 100 70.4
+LR-TK0 151.6M 37.4 34.4 27.4 69.0 63.0 49.9 88.8 84.2 63.4 96.8 95.1 68.4 99.0 99.0 69.8

EVA-02-CLIP-B/16 EVA-02-CLIP-B/16 + LR-Tk0

To
p-

1

EVA-02-CLIP-B/16 EVA-02-CLIP-B/16 + LR-TK0

To
p-

1

Figure 12: Baseline vs LR-TK0: Top-1 accuracy for EVA-B/16 on 16⇥16. (more in Supplementary)

Table 3: Comparison with SR methods:
EVA-B/16 results, SR-specific pre-processing.

16⇥16 32⇥32Method
SAR WAR Acc SAR WAR Acc

Baseline 34.1 26.8 25.0 71.8 59.0 51.2
BSRGAN 12.4 12.2 8.8 37.3 28.7 26.9
ESRGAN 14.2 15.1 10.0 40.3 32.6 28.9
Swinir 17.9 17.6 12.7 47.7 38.3 34.3
AddSR 20.5 16.8 15.0 48.3 36.0 35.2
Inf-DiT 29.0 25.3 20.9 67.7 58.6 48.0
Our 38.9 29.5 28.4 73.1 62.0 52.0

Table 4: Generalization of LR-TK0 with other
Zero-Shot Techniques: Visual prompt Tuning
(VPT) [2022] concatenates 50 learnable tokens to
spatial tokens. RobustSAM [2024] is an image
segmentation model modified for classification.

WAR SARLR-TK0 16 32 64 128 224 16
Baseline 30.7 64.8 85.8 96.1 100 38.0
+VPT 35.5 64.1 84.6 94.5 97.8 42.6
+RobustSAM 32.2 61.5 82.7 92.4 93.0 37.8
+LR Tokens 35.4 66.4 85.9 95.5 98.7 42.4

6.1 RESULTS

Table 2 shows our LR tokens consistently enhance robustness at low resolutions (16⇥16 & 32⇥32),
particularly for MetaCLIP. While the low resolution is often seen as a domain shift problem (Ge
et al., 2020), leading to potential declines in HR performance, our multi-scale training and HR
teacher distillation minimize accuracy drops at higher resolutions (1-2% accuracy drop). Also, LR
tokens have a minimal parameter gain (+3%). Figure 12 shows Top-1 accuracy for EVA-B/16
with and without our LR-TK0, at 16⇥16, with max improvement on Flower-102 (6.2%). Table 3
compares EVA-B/16 with super-resolution (SR) methods, with SR methods performing poorly in
zero-shot settings for very low resolutions (fig. 9). In contrast, our approach is better suited for
zero-shot scenarios. Diffusion-based SR method IDM is too computationally expensive to evaluate
on large datasets like ImageNet (results in Supplementary). Table 4 applies our LR-TK0 technique
to visual prompt tuning which concatenates tokens (instead of adding) only before the first block.
RobustSAM (segmentation models) modified for image classification (Supplementary).

6.2 ABLATION STUDY

Design Choices: Table 5 shows not freezing the pre-trained weights (i.e. fine-tuning the last 4
blocks at 1/100 of the default learning rate) with and without LR tokens (first two rows) degrades the
performance, indicating the necessity of preserving pre-trained weights. Our design choice is task
agnostic i.e. model’s classification plays no role in learning the HR-LR relationship but classifying
LR images into captions (as class labels, task-oriented) has more or less the same performance.
Table 6 shows benefit of multi-scale training (3 buckets, faster to train).
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Table 5: Ablation: EVA-B/16 trained with 7K captions
and 50 images/caption. ‘CL’: use of classifier. Not
frozen means fine-tuning end-to-end.

Frozen LR Tk. CL SAR-16 WAR-16 SAR-32 WAR-32

Baseline (frozen) 38.0 30.7 74.4 64.8
31.1 24.5 67.2 56.6

X 32.8 27.8 68.1 58.3
X X 42.3 35.2 75.3 66.4
X X X 42.0 34.7 75.2 65.9

Table 6: Multi-Scale (MS) Buckets:
‘+’ indicates Cumulative addition. E.g.
[64,128] has [16,32] and [32,64] buckets.

MS Buckets WAR-16 WAR-32

Baseline 30.74 64.81
[16, 32] 34.01 64.77
+ [32, 64] 35.28 66.10
+ [64, 128] 35.45 66.40
+ [128, 224] 35.73 65.91

Baseline

2K Captions

7K Captions

# of Images / Caption

AC
C-

16

Baseline

2K Captions

7K Captions

# of Images / Caption

SA
R-

16

Figure 13: #Images/Cap-
tion: Robustness vs. Size of
diffusion generated dataset.

W
AR

-1
6

+4.7
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+LR-TK0

+6.6

+4.9
+7.9

+13.6

B/16 L/14 L@336 G/14 G/14+

Figure 14: LR-TK0 improves
all EVA backbones: L@336
is L/14 with 336 input
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Figure 15: [i] LR tokens intro-
duced starting from ith block
(& none after patchification).
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Figure 16: LR token Grad-CAM: Baseline (EVA-B/16) attention is scattered at 16⇥16 (compared to
224⇥224). LR-TK0 focuses on the object, likely capturing fine-grained details. @: input resolution.

# Images/Caption: Figure 13 shows multiple images per caption & even 2000 captions consistently
improve performance across 15 datasets, hinting at bridging the gap between HR-LR domains.
EVA backbones: Figure 14 shows LR tokens enhance various EVA backbones, namely, Base
(B/16), Large (L/14 & L@336), and G (G/14 & G/14+). Larger backbones, B<L<G, benefit from
more tokens (via more layers). Model with 336⇥336 input underperforms (validation, fig. 7 (left)).
Position of LR Tokens: Figure 15 shows introducing tokens in the earlier layer (starting from [i]-th
block, and subsequent layers) is more helpful than later. This helps validate the observation in fig. 7
(right), i.e. initial layers suffer more at low resolution than deeper ones, validating the choice of
fixing (introducing tokens) at initial layers than just at final features.
Grad-CAM results: On low resolutions of 16⇥16, vanilla model attention is dispersed and not as
concentrated as 224⇥224 (fig. 16). However, our method (w/ LR tokens) shows focus on the object
which helps to learn better representations at low resolution.

7 CONCLUSION

Our extensive evaluation of Visual-Language Foundation Models through the LR0.FM benchmark
has highlighted critical limitations in their ability to generalize under low-resolution conditions, a
prevalent issue in real-world scenarios. While larger models and higher-quality pre-training datasets
offer increased robustness, our findings underscore the significant impact of fine-tuning and input
resolution on performance. Importantly, we observed that low-resolution inputs primarily disrupt
the early layers of these models, leading to degraded performance. To address these challenges, we
introduced the LR-TK0 strategy, which improves model robustness to low-resolution inputs without
altering pre-trained weights, offering a practical solution for real-world applications. Additionally,
our proposed Weighted Aggregated Robustness metric provides a more comprehensive evaluation
of model resilience, addressing the limitations of existing metrics.
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