
8 Appendix439

8.1 Details of robotic environments440

We consider 5 tasks (four from DM Control suite [55] and one task on Cassie-walking [56]) for the441

low dimensional proprioceptive sensory failure, 5 tasks for high-dimensional modality failures from442

the ManiSkill2 [59] suite as shown in Figure 4. The dimensionality of the observation space and443

action space is mentioned in Table 4.444
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Figure 4: Tasks – We consider 5 bi-pedal locomotion tasks (top) and 5 robotic manipulation tasks
(bottom). We test the low-dimensional sensory failures (e.g., the robot’s proprioception) in the
locomotion task suite and the high-dimensional sensory failures (e.g., cameras) in the manipulation
task suite.

Task Observation dim Observation type Action dim
Walker-Walk 24 Proprioception 6
Walker-Run 24 Proprioception 6
Walker-WalkBack 24 Proprioception 6
Walker-RunBack 24 Proprioception 6
Cassie-Walk 39 Proprioception 10

Pick Cube (64× 64× 3) RGB & Depth (TP, FP) 4
Pick YCB (64× 64× 3) RGB & Depth (TP, FP) 7
Stack Cube (64× 64× 3) RGB & Depth (TP, FP) 4
Open Door (128× 128× 3) RGB & Depth (TP, FP) 11
Open Drawer (128× 128× 3) RGB & Depth (TP, FP) 11

Table 4: State and Action spaces of each task in the locomotion and manipulation suite.

8.2 Details on Cassie bipedal walking experiment445

8 feet (2.43 meters)

Figure 5: Measuring Commandability of locomotion policy on Cassie (left) commadability in the
x-direction and (right) angular drift

Setting: We consider sensory failures in 4 joint links of Cassie, a bipedal robot. Specifically, we446

simulate the failure in shin and tarsus links on both the legs. We train the policy following the447

reward function design in [12] and train the model in 2 stages. The first stage considers dynamics448

and environment state variable randomization, and the second stage involves learning a robust policy449

under random external forces (of 30N) with a probability of 0.1 acting on Cassie. We follow this450
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training procedure from [12]. Each of the stages is trained for 500M steps each.451

Metrics: It is important to measure a set of quantifiable metrics to measure the progress in real-world452

robot deployments. For this we adopt two metrics from [12] that measure the commandability of the453

robot in x-direction and angular drift. The evaluation setup is shown in Figure 5.454

Commandability in x-direction. We consider a distance of 8 feet (or 2.43 meters) as shown in Figure455

5 and command Cassie to travel at a speed of 0.25 m/s. For a near-optimal policy, it takes about456

9.72 seconds. We then measure how long it takes for an RME based policy to travel the distance and457

report it in Table 3.458

Commandability to measure angular drift. We consider a circular region with a diameter of 50cm459

and initialize Cassie at the center of the circle (center of Cassie is defined as the mid-point of line460

joining the feet of Cassie as shown by the in Figure 5). We command an angular speed of 15461

degree/s and measure the time taken to complete a single rotation (360◦). We consider the trial462

successful if the center of Cassie is withing 10 cm from the circumference of the circle. For an463

optimal policy it takes 24 seconds and we compare this against RME based policy with sensory464

failures to see how much additional time it takes for our policy (Table 3).465

8.3 Architecture Details466

RME multimodal transformer: For the base TD-MPC2 model (5M parameters), the multimodal467

transformer consists of 2 encoder blocks – each consisting of multi-head attention (MHA) and468

feedforward network [47]. We consider 16 heads for MHA module. The input to the transformer is469

the encodings from each modality and the [CLS] token which are all of 512 dimensions each.We470

also generate fixed 512 dimensional modality type embeddings and add them to the corresponding471

modality encodings. The hidden dimension of the feedforward network in each encoder block of472

transformer is 256.473

474

Imputation Network: For the locomotion tasks, we consider a 3 layer MLP with LayerNorm [57]475

and Mish activation function [58] with the final output layer as linear layer. We train one imputation476

network for predicting each proprioceptive sensor value for 200 epochs with a learning rate chosen477

from {1e-5, 5e-5, 1e-4}. The network parameters are optimized by Adam [62] and the transitions478

from the replay buffer of RME are used to train the network with a 80-10-10 (train-val-test) split.479

480

Decoder architecture for Informed TD-MPC2 baseline. We use the decoder structure from [41].481

We show the architecture in Table 5.

Layer Channels Kernel Size Norm/Activation
ConvTranspose2d 512 2 LayerNorm/SiLU()
ConvTranspose2d 256 2 LayerNorm/SiLU()
ConvTranspose2d 128 4 LayerNorm/SiLU()
ConvTranspose2d 32 4 LayerNorm/SiLU()
ConvTranspose2d 3 2 LayerNorm/SiLU()
Sigmoid() - - -

Table 5: Decoder Architecture for Informer-TDMPC2 baseline.

482

8.4 Additional results for sensor failures in high-dimensional modalities (Easy)483

In this section, we present the results for sensory failures in high-dimensional modalities where only484

one of the modalities is dropped during evaluation. Specifically, for all tasks either the RGB or the485

depth modalities from the first-person (FP) or the third-person (TP) cameras are dropped out. Since486

only one of the modality is dropped, we denote this setting by Easy as compared to only operating487

on a single modality (Hard) as shown in Table 2 of the main paper.488
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Task Base Policy
(No Sensor Failure)

Informed
TD-MPC2

RME
(w/o Modality Dropout)

RME
(Ours)

max
(sensor)

min
(sensor)

mean max
(sensor)

min
(sensor)

mean max
(sensor)

min
(sensor)

mean

PickCube 1.0 ±0
0.79 ±0.17

(C-FP)
0.69 ±0.15

(D-FP)
0.72 ±0.05 0.30 ±0.10

(C-FP)
0.10 ±0.03

(C-TP)
0.17 ±0.11 0.91 ±0.06

(D-FP)
0.80 ±0.20

(D-TP)
0.86 ±0.05

PickYCB 0.83 ±0.30
0.65 ±0.08

(C-FP)
0.60 ±0.19

(C-TP)
0.62 ±0.02 0.40 ±0.11

(D-TP)
0.07 ±0.01

(C-TP)
0.18 ±0.14 0.75 ±0.01

(D-TP)
0.81 ±0.06

(D-FP)
0.79 ±0.04

StackCube 0.96 ±0.05
0.74 ±0.13

(C-FP)
0.51 ±0.21

(D-FP)
0.72 ±0.10 0.31 ±0.18

(C-FP)
0.02 ±0.03

(D-TP)
0.15 ±0.14 0.89 ±0.09

(C-FP)
0.71 ±0.20

(C-TP)
0.82 ±0.07

OpenDrawer 0.81 ±0.20
0.73 ±0.11

(C-FP)
0.69 ±0.18

(C-TP)
0.70 ±0.01 0.27 ±0.05

(D-TP)
0.09 ±0.01

(D-FP)
0.19 ±0.09 0.80 ±0.11

(D-TP)
0.77 ±0.08

(C-FP)
0.79 ±0.01

OpenDoor 0.76 ±0.30
0.66 ±0.10
(C-TP&D-FP)

0.61 ±0.05
(C-FP)

0.65 ±0.02 0.40 ±0.08
(C-TP)

0.11 ±0.27
(D-FP)

0.28 ±0.13 0.81 ±0.23
(D-FP)

0.73 ±0.08
(C-TP)

0.77 ±0.04

Table 6: Robustness towards modality dropout during deployment (Easy). We test MMWM against
others by removing one of {RGB/Depth images}. We report the mean,min,max success rates
averaged over 3 seeds. The sensor is of the format (RGB Color (C)/Depth (D) - Third Person
(TP)/First Person (FP)) as marked below the numbers.

Results: We show the results for the Easy scenario in Table 6. Not surprisingly, we observe that489

removing only one modality during evaluation leads to better performance across all baselines. How-490

ever, there still remains a considerable gap between Informed TD-MPC2 and RME. Additionally, for491

the case of RME w/o Modality Dropout, we observe that even removal of a single modality can have492

huge impacts with a relative 357% drop in performance compared to RME. For the Easy scenario,493

the RME has a relative increase of 18.1% compared to Informed TD-MPC2 baseline.494

8.5 Wall-clock time495

In Table 7, we present the wall-clock running time on a single NVIDIA Quadro RTX 8000 GPU.496

The increase in relative wall-clock time because of addition of RME is 27% when we don’t include497

the Walker tasks. Adding the walker tasks skews the results to a relative 72% increase in the wall-498

clock time. However, the Walker tasks take the least amount of time to learn (3 hours), so the impact499

of such an increase is not significant in practice.500

Task TD-MPC2 ↓ RME ↓
Walker 1 3.1
Cassie 70 70.1

PickCube 13 20
StackCube 25 32

Table 7: Wall-clock training time in (hrs).

8.6 Ablation: Stability of Transformer as opposed to Masking MLP for low-dimensional501

proprioceptive inputs502

As mentioned in Section 4, we observed that, to accommodate low-dimensional sensors such as503

proprioception, treating each low-dim sensor as an independent input after encoding via MLP led504

to instability in training. We show one such result in Table 6 on Walker Walk, where only 1 seed505

for a transformer with 16 heads in the multi-head attention led to a successful policy. Remaining506

4 seeds as well as all seeds for 8 and 4-head transformer layer led to no successful training. TThis507

could be potentially due to the difficulty of converting a small-dimensional vector, such as the one508

in proprioceptive input, into a meaningful 512 dimensional modality encoding vector via MLP. This509

also can add redundant dimensions in the latent space, slowing down the transformer’s training510

8.7 Compounding errors in imputation511

We additionally analyze how the error of the imputation network behaves as a function of time512

steps. Specifically, for the imputation baseline in Cassie simulation, we plot the mean-squared error513

between the predicted missing sensor values and the ground truth value. The imputation network is514
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Figure 6: Ablation study on instability of using low-dimensional sensors as direct input to trans-
former

trained to predict the current timestep’s value based on a history of the previous 10 timesteps.515

Observation: We observe that the initial 5-10 timestep predictions of the imputation network are516

accurate. However, the prediction quickly worsens around t=15-20. Visually, this corresponds to517

Cassie finding it hard to balance its legs on the ground and after this point, it tries to maintain518

its balance before falling onto the ground in about 250 timesteps. We hypothesize that states that519

correspond to this peak in the plot are potentially underexplored in the replay buffer on which the520

imputation network was trained – hence causing a compounding effect in the imputation prediction521

values, and thus causing the robot to fail.

Left Tarsus Right ShinLeft Shin

Figure 7: Imputation error as a function of time steps (on horizontal axis).
522
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