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A APPENDIX OVERVIEW

The appendix provides detailed information and supplementary results complementing the main
paper. Specifically, Appendix [B|provides details on the two VSD datasets used in this work, including
details on the annotators and annotation process of the VSD-Furniture as well as examples of labeled
image pairs.

In Appendix |C] we present extensive ablation studies justifying the design choices taken in the imple-
mentation of SPA in this work. Appendix [D|complements Experiment 2 (Sec by examining the
correlation between VSD-metric evaluation results across various coverage levels, and HR @5 results
in the ideal full coverage scenario.

Appendix [E| provides additional implementation details of the evaluated representation learning
methods, including preprocessing, optimization process, hyperparameter tuning, model architecture,
and similarity computation. Appendix [F] describes the metrics used in our experiments. Finally,
Appendix [G|discusses the limitations of our work and suggests potential avenues for future research.

B VSD DATASETS

This section contains extended information of the VSD datasets used in our experiments.

B.1 VSD FURNITURE DATASET

In this work, we employed the same EDS method from Barkan et al.| (2023) for creating a novel VSD
dataset in the Furniture domain. For a detailed description of the EDS method and protocol used to
surface the query-candidate pairs for annotation, please refer to Sec. [3]and Barkan et al.| (2023).

For the labeling task, four human annotators (two males and two females) were hired based on their
expertise in furniture and home design domains. These experts are graduate students in architecture
and design programs and have been working for several years as human annotators and data curators
for machine learning systems in the fields of apparel, jewelry, furniture, home design, and artwork.
The annotators were presented with a series of image pairs and tasked with determining whether
each pair was similar or dissimilar based on their judgment. The primary guideline communicated to
the annotators was that similar images (positive pairs) are those containing objects demonstrating
visual similarity in terms of style, design, and relatedness, making them suitable as alternative
recommendations to each other from a visual perspective.

Following the EDS protocol, image pairs were distributed among the experts with overlap, such
that each image pair was labeled by at least two different experts to ensure consistency. Label
disagreements were discussed to reach consensus, and unresolved pairs were excluded from the
dataset (to avoid label collision during training).

Moreover, each annotator’s self-consistency was measured to ensure integrity: For each annotator, a
set of 200 pairs was randomly sampled, with each pair shown to the annotator at three different times.
We then validated the annotator’s consistency by comparing the annotation made at each time.

The resulting dataset, after removing duplicates and excluding controversial pairs, consists of 63,298
labeled query-retrieval pairs, with 39,194 labeled as positive and 24,104 as negative.

Examples from the VSD Furniture dataset are presented in Figures(?] and (3| These figures present
examples of both positive and negative pairs. Positive pairs are identified as visually similar by
our expert annotators, while negative pairs exhibit visual dissimilarity despite being ranked within
the top-K candidates by one of the generator models. Therefore, these hard negatives are typically
anticipated to pose a greater challenge for evaluation compared to randomly selected negatives.

The experts were compensated on an hourly basis, with annotation throughput ranging between
110 and 140 pairwise annotations per working hour, excluding controversial examples, which were
addressed in designated discussion sessions. Each expert labeled approximately 35K image pairs
due to overlapping sets. The annotation project required around 1,200 expert hours, with each expert
contributing approximately 300 hours over four months, as they worked part-time.

The VSD Furniture dataset will be released under the permissive CCO license as a self-contained
package, including both the GUIE-Furniture images (which are also released under the CCO license)
and their pairwise labels. This ensures accessibility and long-term usability for the sake of repro-
ducibility. Notably, the GUIE-Furniture dataset does not contain any confidential or sensitive data,
and the same applies to the resulting VSD-Furniture dataset.
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Figure 2: Labeled examples from the Furniture dataset. Each row displays the query image (left) and
the candidate image retrieved from the top-K retrievals by one of the generator models (right). The
label assigned by the experts for each pair is presented on the left side of the row.
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Figure 3: Labeled examples from the Furniture dataset. Each row displays the query image (left) and
the candidate image retrieved from the top-K retrievals by one of the generator models (right). The
label assigned by the experts for each pair is presented on the left side of the row.
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B.2 VSD FASHION DATASET

The VSD Fashion dataset was released by |[Barkan et al.|(2023) for accelerating VSD research. In our
experiments, we utilized the VSD Fashion dataset which is publicly available on HuggingFace’| This
dataset was curated from a subset of the DeepFashion dataset Liu et al.| (2016), comprising 52,712
images of clothing worn by models. According to |Barkan et al.| (2023), in order to construct this
dataset, 2,000 query images were meticulously selected, and top-K candidate images were retrieved
based on visual similarity according to the generator models. These candidates underwent expert
annotation, resulting in a dataset featuring 54,170 positively or negatively labeled image pairs.

Compared to the Fashion dataset, our newly introduced Furniture dataset includes 75% more queries
(3,494) than the Fashion dataset and a greater number of labeled image pairs. Moreover, our
experimental results reveal that the Furniture dataset is significantly more challenging, as evidenced
by the lower VSD metric scores achieved on this dataset relative to those on the Fashion dataset. This
increased difficulty can be attributed to the presence of complex and varied distractors commonly
found in furniture scenes, which make it more difficult for models to isolate and focus on the objects
of interest. In contrast, the Fashion dataset primarily contains images of individuals modeling clothing
in relatively clean and isolated environments, resulting in fewer distractors and an easier setting for
visual similarity discovery.

C SPA ABLATION STUDY

In this section, we present an ablation study supporting the specific SPA implementation used in this
work.

C.1 SOFT VS. NON-SOFT POSITIVE AUGMENTATION

To evaluate the necessity of label softness in SPA, we conducted an experiment by setting 3 = 0 in
the positiveness function defined in Eq. (3| This adjustment effectively assigns a weight of 1 to all
augmented positives, making them equivalent to the GT positives. We denote this non-soft variant of
SPA as Non-Soft Positive Augmentation (NSPA). Tablepresents a comparison of the performance
of SupCon, SupCongpa, SupConnspa, and the pretrained baseline (Pre).

As shown in Table [3| the use of NSPA significantly reduces the effectiveness of the augmented
positives. In both the Furniture and Fashion domains, NSPA consistently underperforms relative
to SPA, and in some cases, even falls behind SupCon and the pretrained baseline. These results
indicate that relying solely on the GT labels often yields better performance than using SupConygpa .
This highlights the critical role of the positiveness function, which introduces softness to transitive
augmented labels by assigning varying confidence levels during loss supervision.

C.2 SPA PARAMETERS

The SPA method relies on two key parameters, 5 and L, to control the positiveness scores of the
augmented labels, as detailed in Section[6.1] We conducted an ablation study to determine the optimal
values for these parameters, performing a grid search over L (ranging from 2 to 7) and 3 (ranging
from 0.1 to 2.0), using DCS as the monitored evaluation metric. Based on validation set performance,
the best results on average were achieved with L = 7 and 8 = 0.7. Results from a representative
subset of experimental runs on the test set are presented in Table ]

This study demonstrates that the test set performance closely aligns with that of the validation set,
indicating that the selected parameter values (L = 7 and § = 0.7) generalizes well, yielding near-
optimal results on the DCS metric for both datasets. While in this work we focused on monitoring
the DCS metric, it is important to note that the choice of metric to monitor can vary depending on the
user’s preferences and specific requirements.

D VSD METRIC CONSISTENCY TESTS ACROSS VARIOUS COVERAGE LEVELS

We define the coverage (COV) of a query for a model as the fraction of the query’s top-5 retrieved
results that are labeled, with COV ranging from O (zero coverage) to 1 (full coverage). For example,
if three among the top-5 results retrieved by the model are labeled, the query has a COV of 0.6. A
fully covered model has all its queries fully labeled.

Shttps://huggingface.co/datasets/vsd-benchmark/vsd-fashion
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Furniture Fashion
Backbone Method EHR AUC DCS EHR AUC DCS
@5 @20 mic mac @5 @20 mic mac

SWAG SupCongp g 88.19 83.67 7754 748 69.78 | 99.37 988 86.63 92.79 87.89
SupConyspa | 809 791 69.67 699 66.71 | 99.19 98.64 8537 91.76 84.29

SupCon 83.92 80.79 7627 744 68.48 | 99.19 98.52 83.65 9222 85.19
Pre 80.76 78.16 69.01 69.68 6554 | 97.71 97.29 75.68 87.14 75.62
oC SupCongp g 88.23 83.76 7827 7535 69.97 | 99.41 98.86 86.48 92.6 87.81
SupConyspa | 8429 81.6 7135 71.53 67.57 | 99.3 98.68 8523 91.69 83.86
SupCon 84.84 8138 77.03 7474 68.57 | 98.93 9848 8353 92.06 87.06
Pre 83.09 8032 7135 7153 67.57 | 99.1 9849 80.72 90.25 82.85

DINO2 SupCongpa 88.13 83.74 7841 7549 70.22 | 99.26 98.77 86.57 92.87 87.74
SupConyspa | 85.63 815 725 7227 6828 | 992 98.68 85.19 91.65 83.8

SupCon 85.28 81.04 76.88 74.66 68.67 | 99.03 9834 835 92.13 87.19
Pre 85.14 80.38 7238 7227 67.65| 973 96.87 70.1 86.14 69.42
BEiT SupCongpa 88.82 83.87 77.68 7539 69.59 | 98.69 9837 8493 92.0 8758
SupConyspa | 84.53 80.7 70.7 7539 67.73 | 98.62 97.98 83.08 90.35 84.46
SupCon 86.22 80.8 76.61 75.11 6828 | 98.36 98.12 81.85 9143 84.45
Pre 84.53 80.18 70.7 72.15 67.73 | 96.03 9543 75.67 87.85 83.85

Table 3: Soft vs. non-soft positive augmentation comparison. See section for more details.

In this experiment, we examine the correlation between VSD-metric evaluation results across various
coverage levels and HR @5 results in the ideal full coverage scenario, which serves as a benchmark.
This analysis assesses the reliability of each metric under different coverage conditions by comparing
its results to HR @S5 in the fully covered dataset. HR @5 is chosen as a benchmark because, in fully
covered scenarios, it is one of the most widely used top-K metrics for evaluating IR systems in
real-world applications. To explore this, we selected queries that were fully covered by each model
and then artificially reduced their coverage by removing top-ranked annotations, simulating lower
coverage scenarios, across various coverage levels.

The results for the Furniture and Fashion datasets are presented in Tables Eland [6] respectively. We
observe similar trends across both datasets: EHR exhibits the strongest correlation with HR@5 in the
coverage range of 0.2 to 0.8, where DCS, AUC, and BPF are approximately on par. At full coverage
(COV =1), EHR naturally achieves perfect correlation with HR @5, as they coincide. However, EHR
cannot be computed at 0% coverage.

Based on these findings, we conclude that in very low coverage scenarios, DCS and AUC are
preferable due to their ability to maintain a positive correlation with HR@5 under full coverage
conditions. While BPF also exhibits a positive correlation in low coverage settings, it underperforms
compared to DCS and AUC.

E IMPLEMENTATION DETAILS

For each backbone, the same architectural modification was uniformly applied across both self-
supervised and supervised methods to ensure a consistent evaluation framework. Specifically, we
modified each backbone by appending a projection head composed of the following layers:

1. A linear layer with input and output dimensionality equal to featg;,, corresponding to the
output dimensionality of the backbone’s final layer.
2. A ReLU activation function.
3. A second linear layer with input and output dimensionality set to projg;m.
We set projqim to 2048 to standardize the projection dimensionality across all models. To compute

the similarity between two images, we use the cosine similarity between the representations generated
by the output of the projection head for supervised methods, and the representations produced by the

finetuned backbone (i.e., the inputs to the projection head) for self-supervised methodsﬂ

®In SimCLR, these backbone representations are used for downstream tasks. Indeed, in our experiments, for
self-supervised methods, these representations outperformed those produced by the output of the projection head.
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Fashion Furniture
EHR AUC DCS EHR AUC DCS
@5 @20 mac mic @5 @20 mac mic

2 010 | 8486 8132 749 7717 6875 | 99.13 98.64 9223 8395 87.35
030 | 8495 812 7491 7717 6873 | 99.01 9852 9227 8397 8735
050 | 84.7 8139 7485 77.14 68.69 | 9896 98.66 9223 83.88 87.35
0.70 | 84.79 813 7487 77.06 68.69 | 99.01 9849 9228 839 8735
090 | 84.38 81.15 74.83 77.04 68.69 | 99.07 98.66 9233 83.89 8735

3 010 | 8496 81.79 7459 7739 6939 | 99.26 9886 92.61 84.78 87.39
0.30 | 86.02 82.15 7442 7743 6934 | 99.26 98.79 9245 84.62 874
0.50 | 86.98 8244 7424 7725 6927 | 99.2 98.7 9233 8454 87.42
0.70 | 86.47 8231 7472 7745 6928 | 992 9873 9248 84.55 87.43
090 | 86.78 8231 749 7753 6928 | 99.19 98.68 9233 844 8743

4 0.10 | 8497 81.63 7337 76.17 69.26 | 99.06 98.84 9249 8576 87.31
030 | 85.64 82.1 7358 7635 69.41 | 99.07 9875 9254 8531 87.48
0.50 | 86.23 8236 7393 77.19 69.6 | 99.05 98.78 92.64 8541 87.58
0.70 | 86.99 8296 7453 7736 69.67 | 994 9879 9251 8521 87.59
090 | 87.61 83.16 7461 77.39 6955 | 99.15 98.76 9271 85.18 87.54

5 010 | 8352 80.7 7285 749 6895 | 98.82 9874 9238 8641 86.8
030 | 8.2 8177 73.16 7548 6925 | 990 9893 9255 86.51 87.38
0.50 | 86.55 82.01 7422 77.13 69.68 | 99.12 9879 9259 86.36 87.61
0.70 | 87.51 832 7469 7771 69.75 | 99.19 9881 9281 85.83 87.73
090 | 87.6 83.18 7479 7772 69.67 | 99.28 9877 92.69 8551 877

6 0.10 | 83.39 8043 71.81 7291 68.18 | 99.17 9892 922 8649 86.12
0.30 | 8493 81.22 7359 7581 69.43 | 99.08 9881 9259 8649 87.13
0.50 | 87.33 8273 7491 7729 6984 | 99.18 9876 92.6 86.57 87.68
0.70 | 88.24 83.17 751 77.85 69.9 | 9931 9858 92.98 86.48 87.89
090 | 87.89 83.47 7486 77.8 69.74 | 99.34 98.89 9281 8581 878

7 010 | 8232 79.84 71.65 7244 6831 | 993 98.88 91.88 86.06 85.41
030 | 85.33 81.18 743 7629 69.67 | 99.05 98.92 9229 86.67 87.04
0.50 | 87.27 8287 7496 7753 69.79 | 99.12 9891 9247 865 87.71
0.70 | 89.02 83.85 75.02 77.85 69.92 | 99.36 9853 92.86 86.73 87.92
090 | 88.32 8343 7451 77.64 69.76 | 99.11 98.86 92.78 86.13 879

Table 4: Ablation study on the positiveness function parameters L and 3 defined in section[6.1] See
section[C|for details.

For optimization, we employed the AdamW optimizer with PyTorch’s default settings, except for the
learning rate. A cosine learning rate scheduler was used to decay the learning rate to a minimum of
10% of its initial value. Early stopping was applied based on performance on a VSD-relevant metric
evaluated (DCS in this work) on the validation set, and the best-performing checkpoint was selected
accordingly. Hyperparameters specific to each supervised and self-supervised method, as well as
learning rate and batch size, were automatically tuned using the default TPE sampler in Optuna Akiba
et al.| (2019). Tuning was conducted independently for each combination of finetuning method, model
architecture, and dataset, based on the validation split.

While our primary goal is to demonstrate the benefit of supervised finetuning on VSD labels,
irrespective of the specific learning method, we followed best practices to ensure a fair comparison
across the evaluated supervised methods (SupCon, TRPL, and Con). Specifically, we adopted
the same preprocessing and data augmentation pipeline proposed in |Khosla et al.| (2021) for all
supervised methods, and all methods utilized the same GT labels for supervision. In our experiments,
we employed SupCon following Eq. 2 from |[Khosla et al.|(2021)), as this formulation has been shown
to produce superior results. TRPL and Con losses were implemented as described in their original
works, building upon the codebase released by [Musgrave et al.| (2020).

For self-supervised finetuning, we employed the DINO |Caron et al.| (2021)) and SimCLR [Chen et al.
(2020) paradigms, using the recommended preprocessing and augmentation pipelines as proposed

This can be attributed to the fact that both SimCLR and DINO losses do not utilize VSD labels and therefore
optimize for objectives that differ significantly from the VSD task.
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COV | Metric | r | KT | SC |
0.0 BPF 026 | 0.21 | 0.27
0.2 BPF 043 | 035 | 045
0.4 BPF 054 | 044 | 0.55
0.6 BPF 0.61 | 0.5 0.63
0.8 BPF 0.67 | 0.55 | 0.69
1.0 BPF 0.71 | 0.6 0.74
0.0 DCS 034 | 0.22 | 0.29
0.2 DCS 048 | 0.32 | 042
0.4 DCS 0.59 | 041 | 0.53
0.6 DCS 0.68 | 049 | 0.62
0.8 DCS 0.75 | 0.56 | 0.69
1.0 DCS 0.8 0.61 | 0.75

0.0 EHR@5 | nan | nan | nan
0.2 EHR@5 | 0.6 0.53 | 0.58
0.4 EHR@5 | 0.77 | 0.7 0.75
0.6 EHR@5 | 0.88 | 0.81 | 0.86
0.8 EHR@5 | 095 | 091 | 0.94
1.0 EHR@5 1.0 1.0 1.0

0.0 AUCpuqc | 0.15 | 0.11 | 0.14
0.2 AUCnace | 0.38 | 0.28 | 0.36
0.4 AUCpac | 049 | 039 | 0.5

0.6 AUCpac | 056 | 047 | 0.6

0.8 AUCec | 0.62 | 0.53 | 0.67
1.0 AUC0c | 0.65 | 0.58 | 0.73

Table 5: The correlation between VSD-metric evaluation results computed under simulated low
coverage conditions of the fully covered Furniture dataset and the benchmark HR@35 evaluation
results obtained from the fully covered dataset. See Appendix P] for details.

COV | Metric | r | KT | SC |

0.0 BPF 0.08 | 0.1 | 0.11
0.2 BPF 02 | 0.15 | 0.17
0.4 BPF 032102 |023
0.6 BPF 0.36 | 0.23 | 0.27
0.8 BPF 043 | 029 | 0.35
1.0 BPF 0.51 | 0.37 | 0.44
0.0 DCS 0.28 | 0.16 | 0.2

0.2 DCS 047 | 0.14 | 0.18
0.4 DCS 0.65 | 0.28 | 0.34
0.6 DCS 0.72 | 0.34 | 0.41
0.8 DCS 0.79 | 0.4 | 0.49
1.0 DCS 091 | 052 | 0.62

0.0 EHR @5 nan | nan | nan
0.2 EHR@5 | 0.35 | 0.46 | 0.47
0.4 EHR@5 | 0.63 | 0.61 | 0.63
0.6 EHR@5 | 0.79 | 0.73 | 0.74
0.8 EHR@5 | 0.88 | 0.79 | 0.8

1.0 EHR@5 1.0 1.0 1.0

0.0 AUC hae | 0.2 0.11 | 0.12
0.2 AUC ae | 045 | 0.32 | 0.34
04 AUC pae | 055 | 0.4 0.43
0.6 AUCpae | 059 | 049 | 0.52
0.8 AUCpae | 0.62 | 0.56 | 0.61
1.0 AUCpae | 0.69 | 0.74 | 0.79

Table 6: The correlation between VSD-metric evaluation results computed under simulated low
coverage conditions of the fully covered Fashion dataset and the benchmark HR@5 evaluation results
obtained from the fully covered dataset. See Appendix @] for details.
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in the original works. These configurations yielded better results than the configurations set for the
supervised methods. Although these methods are unsupervised in nature and are typically used as
pretraining steps prior to downstream finetuning, in this work, we utilize the VSD labels to guide
the training process indirectly. To that end, we applied the same hyperparameter optimization and
VSD metric monitoring procedures as used for the supervised learning methods, selecting the best-
performing model checkpoint based on validation performanceﬂ We found that applying DINO and
SimCLR in a purely unsupervised setting, without hyperparameter tuning or metric-based monitoring,
often results in performance inferior to that of the pretrained model.

It is important to emphasize that neither SimCLR nor DINO incorporates any VSD label information
directly in their loss functions. Our goal in comparing with self-supervised finetuning is to investigate
whether optimizing self-supervised objectives such as DINO and SimCLR can serve as stronger
baselines than the pretrained models and yield representations that are effective for the VSD task,
while leveraging VSD labels only indirectly through validation-based monitoring.

F METRICS
This section covers the different metrics we used in our experiments.

1. Discounted Credit Score (DCS) is explained in detail in Section |4} specifically we set
a = 10.

2. Hit Ratio at K (HR@K) (Krichene & Rendle,|2022) is explained in detail in Section E}
3. Estimated Hit Ratio at X (EHR @K) is explained in detail in Section

4. The Area Under the Receiver Operating Characteristic Curve - ROC-AUC
(AUC) (Fawcett, 20006) is introduced in|Barkan et al.|(2023) as a key performance metric for
VSD tasks. ROC-AUC evaluates the model’s capability to accurately distinguish between
positive and negative observations. This is achieved by adjusting a threshold to plot true
positive rates versus false positive rates on the ROC curve. Notably, ROC-AUC is computed
in two distinct manners:

(a) Mi_cro—averaged AUC (AU Cipic), which aggregates the scores of all query-candidate
pairs.

(b) Macro-averaged AUC (AU C),4c), which calculates the AUC for each query individu-
ally followed by averaging these scores across all queries.

This metric effectively measures the likelihood that a randomly selected positive pair is
ranked higher by the model than a randomly selected negative pair, demonstrating the
model’s proficiency in prioritizing positive over negative data without considering their
absolute positions in the ranking.

5. BPREF (BPF) (Buckley & Voorhees|,2004) is a metric used to evaluate the effectiveness
of information retrieval systems when complete relevance judgments are unavailable, and
as been shown to outperform mAP and Precision@K in such cases. It assesses how well a
system ranks known relevant documents above known irrelevant ones. For each relevant
document, BPF calculates the proportion of irrelevant documents ranked above it. The
aim is for relevant documents to outrank all irrelevant ones, indicating superior retrieval
performance. This metric offers a practical means to measure search result quality in large
databases where full relevance assessments are not feasible. In our experiments we utilized

a specific BPF implementation from the IR Measures packag

G LIMITATIONS AND FUTURE WORK

While our proposed methods and metrics demonstrate effectiveness in learning and evaluating VSD
models, several limitations and avenues for future work warrant consideration. First, the applicability
of DCS and EHR metrics may be influenced by specific dataset characteristics and task nature.
Future work could investigate the adaptability of these metrics across diverse domains and benchmark

"The best checkpoint was selected from those obtained after the first training epoch onward (excluding the
pretrained model itself), which means it is possible for the best checkpoint to perform worse than the original
pretrained model.

$https://github.com/terrierteam/ir_measures
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datasets to evaluate their generalizability to IR applications beyond VSD, including document retrieval
and general search.

Second, although the SPA method improved VSD performance on the datasets used in this work, its
effectiveness may depend on the quality of the GT labels. Investigating SPA’s robustness under noisy
labeling conditions, such as datasets with a high proportion of incorrect or ambiguous annotations,
remains an open question for future research. Moreover, since SPA is heuristic in nature and validated
empirically, future work could seek to establish a theoretical grounding for the method, explore its
properties when integrated with different loss functions, and examine its implications for positive
augmentation across various scenarios, including those involving noisy GT labels.

Lastly, while our proposed methods have been evaluated on datasets of considerable size, their
scalability to even larger datasets and real-world applications (e.g., e-commerce platforms with
millions of items) remains an open avenue for future research.

We believe that addressing the aforementioned limitations and exploring these avenues for future
work will contribute to the ongoing advancement and applicability of our proposed metrics and
methods in the evolving landscape of VSD research and beyond.



	Appendix Overview
	VSD Datasets
	VSD Furniture Dataset
	VSD Fashion Dataset

	SPA Ablation Study
	Soft vs. non-soft Positive Augmentation
	SPA parameters

	VSD Metric Consistency Tests across Various Coverage Levels
	Implementation Details
	Metrics
	Limitations and Future Work

