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1 Definitions

The Mahalanobis distance is generally used to measure the distance between a data sample x and
a distribution D. Given the distribution has a mean representation y and an invertible covariance
matrix ¥ € RP>*P | then the squared Mahalanobis distance can be expressed as:

D, p) = (z — p)"Z7 2 — p) (1
where 31 is the inverse of the covariance matrix.

The covariance matrix is symmetric in nature and can be defined as:
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where 4, j € 1,...D, var(i) denotes the variance of the data along the ith dimension and cov(i, j)
denotes the covariance between the dimensions ¢ and 7. The diagonals of the matrix represent the
variances and the non-diagonal entries are the covariance values.

In euclidean space, 3 = I, where I is an identity matrix. Thus, in euclidean space, we consider
identical variance along all dimensions and ignore the positive and negative correlations between the
variables.

2 Implementation Details

We analyze the effect of the covariance shrinkage hyperparamaters y; and -y, in Fig. [I] for the many-
shot setting (T=5) on Cifar100. Based on the observations, we see that the chosen parameters y; = 1
and 2 = 1 obtain good results. Similarly, we use 7; = 1 and 5 = 1 for all many-shot experiments
on CIFAR100, TinyImageNet and ImageNet-Subset. We use v; = 1 and o = 0 for the experiments
on Split-CIFAR100 and Core50 datasets. For Split-ImageNet-R, We use v; = 10 and 2 = 10. For
all the few-shot CIL settings, we obtain better results with y; = 100 and 2 = 100.

Since the Resnet-18 feature extractor uses a ReLU activation function, the feature representation
values are all non-negative, so the inputs to tukey’s ladder of powers transformation are all valid.
However, when using the ViT encoder pre-trained on ImageNet-21K, we also have negative values
in the feature representations, hence we do not apply the tukey’s transformation on the features for
those experiments.

Evaluation. Similar to [5, |11} 10], we evaluate the methods in terms of average incremental accuracy.
Average incremental accuracy A;,,. is the average of the accuracy a; of all incremental tasks (including
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Figure 1: Impact of covariance shrinkage hyperparameters on many-shot CIFAR100 (T=5) setting
using the proposed FeCAM method

the first task) and is a fair metric to compare the performances of different methods across multiple
tasks.
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3 Further Analysis

Storage requirements. We analyze the storage requirements of FeECAM and compare it with the
exemplar-based CIL methods in Table [I] for ImageNet-Subset (T=5) setting. Due to the symmetric
nature of covariance matrices, we can store half (lower or upper triangular) of the covariance matrices
and reduce the storage to half. While most of the exemplar-based methods preferred a constant
storage requirement of 2000 exemplars, storage requirement for FeCAM gradually increases across
steps and is still less by about 206 MBs after the last task.

Table 1: Analysis of storage requirements across tasks for FeECAM and the exemplar-based methods
(storing 2000 exemplars) for the ImageNet-Subset (T=5) setting.

Method Task 0 Task 1 Task 2 Task 3 Task 4 Task 5

Exemplar-based 312MB 312MB 312MB 312MB 312MB 312 MB
FeCAM (ours) 53MB 63MB 75MB 85MB 96MB 106 MB

Pre-training with dissimilar classes. Similar to [2], we perform experiments using the DeiT-S/16
vision transformer pretrained on the ImageNet data with different pre-training data splits and then
evaluate the performance of NCM (with euclidean distance) and the proposed FeCAM method on
Split-CIFAR100 (10 tasks with 10 classes in each task). In order to make sure that the pretrained
classes are not similar to the classes of CIFAR100, [2] manually removed 389 classes from the 1000
classes in ImageNet. We take the publicly available DeiT-S/16 weights pre-trained on remaining 611
classes of ImageNet by [2] and evaluate NCM and FeCAM as shown in Table2] As expected, the
performance of both methods drops a bit when the pre-training is not done on the similar classes.
Still FeCAM outperforms NCM by about 10% on the final accuracy. Thus, this experiment further
validates the effectiveness of modeling the covariance relations using our FeCAM method in settings
where images from the initial task are dissimilar to new task images.

4 Few-Shot CIL results

FeCAM can easily be adapted to available few-shot methods in CIL since most methods obtain class
prototypes from few-shot data of new classes and then use the euclidean distance for classification.



Table 2: Performance of FeCAM and NCM-euclidean using Deit-S/16 pretrained transformer on
Split-CIFAR100 dataset.

DeiT pre-trained on 1k classes  DeiT pre-trained on 611 classes [2]

Method Last Acc Avg Acc Last Acc Avg Acc
Euclidean-NCM 60.5 71.4 58.5 69.2
FeCAM (ours) 70.2 78.5 68.6 76.9

We show in our paper that starting from the base task model from ALICE and simply using the
FeCAM metric for classification significantly improves the performance across all tasks for the
standard few-shot CIL benchmarks.

We report the average accuracy after each task for all methods on Cifar100 in Table |3} on CUB200
in Table ] and on miniImageNet in Table 5]

Table 3: Detailed accuracy of each incremental session on CIFAR100 dataset. Best among columns
in bold.

Accuracy in each session (%)

Method 0 T 7 3 3 5 3 7 g Aved
Finewne G310 3961 1537 980 667 380 370 314 265 1654
D-Cosinc 6] 7455 6743 6363 5955 561 5380 5168  49.67  47.68 5823
CEC[T] 7307 6888 6526 6119 5809 5557 5322 5134 4914 5953
LIMIT [0] 7381 7209 6787 6389 6070 5777 5567 5352 5123 6184
MetaFSCIL [T} 7450 7010 6684 6277 5948 5652 5436 5256 4997 6079
Data-free Replay (3] 7440 7020 6654 6251 5971 5658 5452 5239 5014 6078
FACT [§] 7460 7209 6756 6352 6138 5836 5628 5424 5210 6224
ALICE [4] 80.03 7038 666 6272 6028 5806 5683 5535 5356 6265
ALICE+FeCAM 80.03 7405 7016 6557 6282 6025 5846 5686 5494  64.80

Table 4: Detailed accuracy of each incremental session on CUB200 dataset. Best among columns in
bold.

Accuracy in each session (%)

Method 0 T 7 3 3 3 6 7 g o0 AveAd
Finctunc 68 4370 2505 1772 1808 1695 1510 1006 893 893 847 2107
D-Cosine [6] 7552 7095 6646 6120 60.86 5688 5540 5349 5104 5093 4931  59.36
CEC ] 7585 7194 6850 6350 6243 5827 5773 5581 5483 5352 5228 6133
LIMIT [9] 7632 7418 7268 69.19 6879 65.64 6357 6269 6147 6044 5845  66.67
MetaFSCIL (] 7500 7241 6878 6478 6296 5999 5830 5685 5478 5382 5264  61.93
Data-free Replay (3] 75.90 7214  68.64 6376 6258 59.11 57.82 5580 5492 5358 5239 6152
FACT [8] 7793 7494 7157 6632 6596 6240 6123 3976 5794 5756 3641 6470
FACT+FeCAM 7792 7534 7223 6756 67.02 6350 6239 6125 5984 5910 5789  65.80
ALICE ] 7734 7264 T0.17 6668 6534 6278 6181 6084 35922 5026 5870 6408
ALICE+FeCAM 7734 The4 7222 69.02 6750 6482 6374 6270 6120 6114 6030  66.78

Table 5: Detailed accuracy of each incremental session on minilmageNet dataset. Best among
columns in bold.

Accuracy in each session (%)

Method 0 T 7 3 7 3 3 7 g Avg A
Finewne 6131 2722 1637 608 254 156 193 26 T4 1345
D-Cosine [6] 7037 6545 6141 5800 5481 5189 4910 4727 4563 5599
CEC (7] 7200 6683 6297 5943 5670 5373 5119 4924 4763 5775
LIMIT [9] 7232 6847 6430 6078 5795 5507 5270 5072 49.19  59.06
MetaFSCIL [I] 7204 6794 6377 6029 5758 5516 5290 5079 4919 5885
Data-frec Replay (3]~ 71.84 6712 6321 5977 5701 5395 5155 4952 4821  58.02
FACT 8] 7256 6963 6638 6277  60.6 5733 5434 5216 5049 6070
ALICE [4] 8187 7088 6777 6441 6258 6007 5773 5621 5531 6409
ALICE+FcCAM 8187 7606 7224 6792 6549 6269 5998 5854 5716 6688

For further analysis to demonstrate the applicability of FeCAM, we take the base task model from
FACT [8] and use FeCAM in the incremental tasks for the CUB200 dataset. FeCAM improves the
performance on all tasks when applied to FACT as shown in Table [}

One of the main drawbacks of the many-shot continual learning methods is overfitting on few-shot
data from new classes and hence these methods are not suited for few-shot settings. FeCAM is a



single solution for both many-shot and few-shot settings and thus can be applied in both continual
learning settings.

5 Pseudo Code

In Algorithm[I]} we present the pseudo code for using FeCAM classifier.

Algorithm 1 FeCAM

Require: Training data (D1, Do, .., D), Test data for evaluation (X7, X5, .., X%), Model ¢
1: fortask ¢ € [1,2,..,T] do

2: if ¢ == 1 then
3: Train ¢ on Dy = (X1,Y7) > Train the feature extractor
4: end if
5 fory € Y, do
6: Hy = ﬁ Yo X, o(x) > Compute the prototypes
7: q&(j(y) = Tukeys(¢(Xy)) > Tukeys transformation Eq. (9)
8: 3, = Cov(e(Xy)) > Compute the covariance matrices
9: (2,)s = Shrinkage(%,) > Apply covariance shrinkage Eq. (8)
10 (2y), = Normalization((3,)s) > Apply correlation normalization Eq. (7)
11: end for
12: for x € X7 do
13: y* = argmin Dy (p(x), py) where
y=1,...,Y;
14; Dar(o(), by) = (d(2) — fiy)" (2y), (6(x) — fiy)
15: > Compute the squared mahalanobis distance to prototypes
16: end for
17: end for
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