
TOWARD GENERALIZING VISUAL BRAIN DECODING
TO UNSEEN SUBJECTS

Xiangtao Kong 1∗, Kexin Huang 1∗, Ping Li 1†, Lei Zhang 1†
1The Hong Kong Polytechnic University
{xiangtao.kong, kexin0.huang}@connect.polyu.hk,
ping2.li@polyu.edu.hk, cslzhang@comp.polyu.edu.hk

ABSTRACT

Visual brain decoding aims to decode visual information from human brain activ-
ities. Despite the great progress, one critical limitation of current brain decoding
research lies in the lack of generalization capability to unseen subjects. Prior
work typically focuses on decoding brain activity of individuals based on the ob-
servation that different subjects exhibit different brain activities, while it remains
unclear whether brain decoding can be generalized to unseen subjects. This study
aims to answer this question. We first consolidate an image-fMRI dataset con-
sisting of stimulus-image and fMRI-response pairs, involving 177 subjects in the
movie-viewing task of the Human Connectome Project (HCP). This dataset allows
us to investigate the brain decoding performance with the increase of participants.
We then present a learning paradigm that applies uniform processing across all
subjects, instead of employing different network heads or tokenizers for individu-
als as in previous methods, so that we can accommodate a large number of subjects
to explore the generalization capability across different subjects. A series of ex-
periments are conducted and we have the following findings. First, the network
exhibits clear generalization capabilities with the increase of training subjects.
Second, the generalization capability is common to popular network architectures
(MLP, CNN and Transformer). Third, the generalization performance is affected
by the similarity between subjects. Our findings reveal the inherent similarities in
brain activities across individuals. With the emergence of larger and more compre-
hensive datasets, it is possible to train a brain decoding foundation model in the fu-
ture. Codes and models can be found at https://github.com/Xiangtaokong/TGBD.

1 INTRODUCTION

Visual brain decoding (Kay et al., 2008; Kamitani & Tong, 2005; Naselaris et al., 2011) aims to
decode visual information from human brain activities, including tasks of brain-image classification
(Kaur & Gandhi, 2019; Zhou et al., 2024), retrieval (Scotti et al., 2024a; Xia et al., 2024) and recon-
struction (Takagi & Nishimoto, 2023; Ozcelik & VanRullen, 2023; Ferrante et al., 2024; Scotti et al.,
2024a), and so on. It involves analyzing neural patterns collected via brain imaging techniques like
functional magnetic resonance imaging (fMRI) (Schirrmeister et al., 2017; Benchetrit et al., 2023;
Kamitani & Tong, 2005) or electroencephalography (EEG) (Schirrmeister et al., 2017; Vallabha-
neni et al., 2021) to infer the visual information received by the participants. Among them, fMRI
is favored by researchers because of its high spatial resolution and more informative depiction of
the whole brain activity, which has resulted in a number of important decoding studies (Allen et al.,
2022; Takagi & Nishimoto, 2023; Scotti et al., 2024a) with the help of deep learning techniques.

A major limitation of current brain decoding research, however, lies in the lack of generalization
capability to unseen subjects. That is, the trained decoding models can hardly be applied to new,
unseen individuals not in the original training. Such a limitation can be owed to two reasons. First,
there are individual differences of the brain activities across subjects (Haxby et al., 2020). There-
fore, it is assumed that brain decoding cannot be generalized and hence researchers are focused on
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Figure 1: The performance on unseen subjects with the increase of the number of training subjects.
developing subject-specific models. Second, commonly used brain visual decoding datasets are built
upon only a small number of participants. For example, the Natural Scenes Dataset (NSD) dataset
(Allen et al., 2022) includes only 8 subjects. Most NSD-based studies (Kaur & Gandhi, 2019; Scotti
et al., 2024a) employ only 4 of the 8 subjects, and use the NSDGeneral data, which contain only the
manually mapped brain regions, rather than the entire brain data (See more detailed discussions in
Sec. 3.1). Even those studies attempting to leverage multiple subjects are typically limited to less
than 10 participants, and their networks are designed to handle only a small number of individuals.
For instance, MindEye2 (Scotti et al., 2024b) and UMBRAE (Xia et al., 2024) use separate heads
or tokenizers for different subjects. Therefore, the model becomes increasingly more complex with
the increase of number of subject, which is hard to scale up to a larger number of subjects.

In this work, we aim to address this limitation and answer the question of whether brain decoding
can be generalized to unseen subjects. (The term “generalization” refers to the model’s ability to
accurately decode information from unseen subjects, rather than merely performing inference.) To
this end, we first consolidated an image-fMRI dataset, which consists of pairs of the stimulus image
and the corresponding brain fMRI response. We build this dataset using the data from the Human
Connectome Project (HCP) (Van Essen et al., 2013), which contains human brain neuroimages for
various tasks. Among them, 177 subjects participated in the movie-viewing task, which provides
the largest number of subjects available for extracting image-fMRI pairs for visual decoding study.
In total, we collected 3,127 data pairs from 4 films watched by the 177 subjects. Compared to the
commonly used datasets like NSD (8 subjects) (Allen et al., 2022) and BOLD5000 (4 subjects)
(Chang et al., 2019), this dataset enables us to explore brain decoding performance with a much
larger number of subjects. We consequently propose a new learning paradigm. Following MindEye1
(Scotti et al., 2024a), we use CLIP to encode the images, and employ a brain decoding network
to map brain activities (characterized by fMRI voxels) into the same CLIP space by contrastive
learning. To handle the varying fMRI voxel sizes across subjects, we normalize them to a common
size through upsampling. Unlike previous methods that rely on specially designed input heads or
subject-specific tokenizers, our paradigm uses the same processing for all subjects so that it can
handle a large number of subjects without increasing the model complexity and parameters. (See
the example in Appendix.)

We perform experiments on the fundamental retrieval task, which reflects well the capabilities of
decoding models. Our method also has the potential to extend to reconstruction or grounding tasks
with additional modules such as Stable Diffusion (Rombach et al., 2022). Through detailed exper-
imentation, we uncover several important and intriguing findings. First, as shown in Fig. 1, the
network demonstrates clear generalization ability as the number of training subjects increases, with
top-1 accuracy rising from 2% (1 training subject) to 45% (167 training subjects) on unseen subjects
(100 image-fMRI pairs). The accuracy can be further improved to 50% with additional training
strategies. Second, the generalization capability holds for different network architectures. Using
MLP, CNN and Transformer as the backbone, we achieve top-1 accuracies of 45%, 42%, and 34%,
respectively, with 167 training subjects. Third, the generalization performance is influenced by sub-
ject similarity. We observe a bias when training on distinct groups such as gender, which represents
one of the most easily identifiable categories of sample similarity. The model trained on 50 males
achieves 36% top-1 accuracy on an unseen male subject, while the model trained on 50 females only
obtains 27% top-1 accuracy on this test. Therefore, to explore further, we design an algorithm to
calculate the similarity of fMRI responses among 167 individuals and train two models on the 20
most similar and 20 least similar subjects. The models achieve 21% and 2% top-1 accuracy, respec-
tively, on an unseen subject, indicating the degree of similarity across subjects greatly affects the
generalization performance. Our findings reveal that human brain activities share similarities, that
require further exploration for generalization studies. It may be possible to train a large foundation
model for brain decoding as bigger and more comprehensive datasets become available.
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2 RELATED WORK

Visual Brain Decoding. With the advancement of deep learning (Radford et al., 2021; He et al.,
2016; Vaswani et al., 2017; Rombach et al., 2022) and the emergence of high-quality fMRI datasets
(Allen et al., 2022; Chang et al., 2019; Van Essen et al., 2013), many brain decoding methods with
promising performance have been proposed. Takagi & Nishimoto (2023) utilized a latent diffusion
model, specifically Stable Diffusion (Ho et al., 2020; Sohl-Dickstein et al., 2015), to reconstruct
high-resolution images from fMRI data, preserving semantic fidelity without requiring additional
training or fine-tuning. Brain-Diffuser (Ozcelik & VanRullen, 2023) improves the reconstruction
process by first reconstructing basic image properties from fMRI signals and then refining the im-
ages using a latent diffusion model conditioned on multimodal features. Moreover, MindEye (Scotti
et al., 2024a) encodes images using CLIP and then maps the corresponding fMRI data to the CLIP
feature space, enabling strong image retrieval or reconstruction performance. However, most ex-
isting methods focus on decoding stimuli for individual subjects. While effective for individual
decoding, they lack the generalization capability to new, unseen subjects.

Visual Brain Decoding on Multiple Subjects. Some brain decoding methods have been devel-
oped to leverage multiple subjects, which can be divided into two categories based on their objec-
tives: (1) using multiple subjects to enhance subject-specific models, and (2) developing models
that handle multiple subjects directly. For the first category, a straightforward way is to pre-train
models on multiple subjects and then fine-tune them for individual subjects (Scotti et al., 2024b;
Jiang et al., 2024; Qian et al., 2023; Ferrante et al., 2024). For example, MindEye2 (Scotti et al.,
2024b) pre-trains the model on 7 subjects from the NSD dataset (Allen et al., 2022) and fine-tunes
it on a different subject, using only 1/40 of the original data while achieving similar performance.
The second category of methods aim to train a model with multiple subjects so that its performance
on each subject (included in the training set) surpasses the models trained on each single subject.
CLIP-MUSED (Zhou et al., 2024) and UMBRAE (Xia et al., 2024) are methods of this kind. How-
ever, most methods in this category still require separate heads or tokenizers for each subject. As
the number of subjects increases, their training costs and model parameters grow linearly, making
this approach impractical for larger subject pools. (We show an example in Appendix.) These
multi-subject methods generally involve a limited number of subjects (less than 10), which are not
sufficient enough for exploration. More importantly, while these methods demonstrate that certain
information can be shared across subjects, they cannot generalize to unseen subjects.

Subjects Alignment. Some methods have been proposed to align new subjects to pre-trained mod-
els, known as subject alignment, to handle unseen subjects. Based on the alignment approach, these
methods can be categorized into anatomical alignment (Jenkinson et al., 2002) and functional align-
ment (Haxby et al., 2011; Lorbert & Ramadge, 2012; Xu et al., 2012; Chen et al., 2015), among
others. In visual brain decoding, the mainstream methods fall into functional alignment, which di-
rectly aligns the neural activity patterns across different subjects. For instance, Ferrante et al. (2024)
used 1,000 common images viewed by 8 subjects from the NSD dataset to train an alignment model
that maps other subjects to Subject 1. During inference, the brain signals of other subjects are con-
verted into the format of Subject 1 and fed into the model trained on Subject 1. This approach can
process new subjects with the model of existing subjects at a lower cost, yet it requires shared data
for alignment. In this work, we aim to achieve model generalization without such alignment.

3 METHODS

In this section, we first describe how we consolidate the dataset for exploring generalizable visual
brain decoding in Sec. 3.1. Then, we describe the proposed learning paradigm in Sec. 3.2. Finally,
in Sec. 3.3 we outline how we calculate the subject similarity.

3.1 DATASET CONSOLIDATION

Most previous studies (Scotti et al., 2024a;b; Xia et al., 2024; Zhou et al., 2024) are conducted on
datasets with fewer than 10 participants, which cannot be used to study whether visual decoding
can be generalizable. Therefore, to explore the generalization capabilities of brain decoding models,
the first step is to collect a dataset with a larger number of subjects. However, as shown in Tab. 1,
current publicly available image-viewing datasets are limited in size. For example, the NSD dataset
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Table 1: Summary of commonly used visual brain decoding datasets.

Dataset Task Scanner Subjects Works Based on This Dataset

BOLD5000 (Chang et al., 2019) image-viewing 3T 4 Chen et al. (2023); Prince et al. (2022);
Sexton & Love (2022)

GOD (Horikawa & Kamitani, 2017) image-viewing 3T 5 Chen et al. (2023); Du et al. (2023)

NSD (Allen et al., 2022) image-viewing 7T 8
MindEye1&2 (Scotti et al., 2024a;b); Gu
et al. (2022); Ferrante et al. (2024); Qian

et al. (2023); Han et al. (2024)

Raiders (Haxby et al., 2011) movie-viewing 3T 21 Chen et al. (2015); Shvartsman et al. (2018)

Forrest Gump (Hanke et al., 2014) movie-viewing 7T 20 Chen et al. (2015); Wagner et al. (2022);
Huang et al. (2022)

Budapest (Matteo et al., 2020) movie-viewing 3T 25 Matteo et al. (2021); Busch et al. (2021)

HCP (Van Essen et al., 2013) movie-viewing 7T 177 Zhou et al. (2024); Lu et al. (2024)
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Figure 2: Dataset reconstruc-
tion from the HCP data. We
extract the last frame i in
each second of the movie
clip as the stimulus image,
and average the fMRI voxels
in the subsequent 4 seconds
(due to hemodynamic delay)
as the corresponding neural
response v to obtain image-
fMRI pairs.

involves only 8 subjects (Allen et al., 2022) and BOLD5000 involves only 4 subjects (Chang et al.,
2019). This is mainly due to the high costs, time demands, and challenges in keeping participants
engaged during the long fMRI scanning sessions. Furthermore, these existing datasets are hard
to be combined due to their significant differences in scanning equipment, resolution, design and
post-processing methods. Even if combined, the total number of subjects remains very small.

We then turn to the movie-viewing task, which provides continuous, causally related visual inputs
over a short period. Compared to the image-viewing task, movie-viewing can yield more data pairs
in the same time-frame while keeping participants more engaged. Therefore, movie-viewing ex-
periments can involve more subjects, as shown in Tab. 1. Actually, some studies have proposed to
extract video frames for visual brain retrieval (Schneider et al., 2023) and classification (Zhou et al.,
2024). Therefore, we propose to extract image-fMRI pairs from the movie-viewing task to build our
dataset. Specifically, we choose the movie-viewing task in the HCP dataset, which involves 177 par-
ticipants, making it the largest movie-viewing dataset available for visual decoding research. In data
collection, the participants watched four audiovisual films, and the fMRI responses were captured
with a repetition time (TR) of 1 second using a high-resolution 7T scanner. The volumetric images
are registered to 1.6mm MNI space, with dimensions of 113 × 136 × 113 per TR.

As shown in Fig. 2, to extract the corresponding image-fMRI pairs, we extract the last frame i
of each second of the film as the stimulus image, whose corresponding fMRI response voxel is
denoted as v,i. Following the 4-second hemodynamic delay suggested by Khosla et al. (2020), we
average the fMRI signals from the subsequent 4 seconds to represent the neural response to each
stimulus image (e.g., average v,1 - v,5 to obtain v1 for i1), for a total of 3,127 image-fMRI pairs for
each subject. Finally, the reconstructed dataset includes 177 subjects with 177 × 3,127 image-fMRI
pairs. By leveraging this dataset, we can explore the generalization capabilities of brain decoding
models across a broader population. Our experiments in Sec. 4.2 demonstrate that generalization
will emerge when a sufficient number of subjects are involved in training. This dataset provides a
valuable foundation for researchers to investigate the behaviours of brain decoding models.
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Figure 3: The visualization of scanned brain data in NSD dataset. The highlighted regions indicate
the manually labeled NSDGeneral data. Compared to the whole brain, the NSDGeneral regions
show significant variations across different subjects.

3.2 LEARNING PARADIGM

Prior studies are typically focused on decoding brain activity of individuals, while little work has
been done on exploring the model generalization capability to unseen subjects. With our consoli-
dated dataset in Sec. 3.1, we propose a learning paradigm to investigate the generalizability of visual
brain decoding based on three core principles: (1) utilization of whole-brain data; (2) simple and
flexible pipeline; (3) applicability to a large number of diverse subjects.

Utilization of the Whole-Brain Data. As shown in Tab. 1, most recent visual brain decoding
studies rely on the NSD dataset, which provides two types of training data: NSDGeneral data and
whole-brain data. As illustrated in Fig. 3, the whole-brain data contain the fMRI voxels (about
800K elements) of the entire brain, while the NSDGeneral data comprise 1D vectors (flattened
voxels) of only 10k–20k elements, which are manually labeled as vision-related brain regions, called
NSDGeneral regions (see the highlighted areas). Since NSDGeneral data are directly related to brain
regions in charge of visual processing, they often result in better visual decoding performance in the
studies focused on single subjects. However, for research investigating the generalization capability
across multiple subjects, we believe whole-brain data are more appropriate. First, the NSDGeneral
data require manual segmentation, and hence they are difficult to scale across a large number of
subjects, limiting their suitability for generalization studies. Note that most datasets, such as the
HCP dataset, only provide whole-brain data. Second, as can be seen in Fig. 3, the manually labeled
NSDGeneral regions show significant variations across different subjects, while the whole brain
data (all the shown regions) show much less variation in shape. It is thus more difficult to train a
common model for multiple subjects using the NSDGeneral data than the whole-brain data (See Sec.
4.5). Third, the NSDGeneral data exclude other brain regions, such as those in charge of memory,
language, or contextual understanding. Ignoring those regions may prevent a more comprehensive
decoding of brain activities (Zhou et al., 2024; Xu et al., 2021). Therefore, we advocate for using
whole-brain data in the study of on model generalization, rather than data limited to specific brain
regions.

Simple and Flexible Pipeline. A simple and flexible learning pipeline is preferred to verify
whether generalizability is a fundamental property of visual brain decoding, minimizing the fac-
tors brought by complex network designs. Our learning pipeline is shown in the left part of Fig.
4. The core idea is to project the paired stimulus-image I and fMRI-voxel V into the same feature
space, where they could be as similar as possible. Following (Scotti et al., 2024a; Xia et al., 2024),
we use the CLIP ViT-L/14 model to encode the images into features FI , while the visual brain de-
coding network is trained to map fMRI-voxels to FV in the same feature space. The feature size of
the CLIP embedding space is 257 × 1024, which retains detailed image information compared to
the high-level semantic content of the final CLS token in CLIP. Contrastive learning is employed to
align FI with FV using the CLIP Loss:

L =
1

2N

(
N∑
i=1

− log
exp(sim(F i

I , F
i
V )/τ)∑N

j=1 exp(sim(F i
I , F

j
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+
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− log
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Figure 4: The overview of our learning pipeline (left) and visual brain decoding network (right).

where F i
I and F i

V are the embeddings of the ith image and fMRI voxel, τ is the temperature param-
eter, and sim(x, y) represents the cosine similarity between x and y:

sim(x, y) =
x · y

∥x∥∥y∥
. (2)

During inference, retrieval is performed by calculating the cosine similarity and taking the most
similar pairs. We use MLP as the decoding network in most of our experiments, while the network
architecture can be changed to CNN and Transformer (See Sec. 4.3), and the model performance
can be further improved with additional strategies (See Appendix).

Applicability to Many Diverse Subjects. Previous studies are mostly focused on a small number
of participants, and they use separate heads or tokenizers for different subjects to improve per-
formance. While being effective in small-scale studies, these approaches become impractical and
cannot scale up as the number of subjects increases. To explore model generalizability, we employ
the same decoding network (see the right part of Fig. 4) to accommodate a large number of subjects
without requiring specific adaptations for each individual. Due to the structural differences in brain
anatomy, the size of fMRI voxels, even for the same brain activity, can vary across subjects, which
cannot be directly batched for network training. To solve this issue, we apply simple upsampling to
resize the voxels to a standardized larger size. This method is simple and straightforward and can be
done in the processing of the dataset. Experimental results show that this unified approach does not
compromise performance in whole-brain decoding and can even enhance performance across mul-
tiple subjects (See Sec. 4.5). As shown in the right of Fig. 4, our final network design involves an
upsample layer to normalize voxel sizes for all subjects, followed by feeding the data into a unified
network without requiring any subject-specific adaptations.

3.3 GENERALIZATION PERFORMANCE VS. SUBJECT SIMILARITY

During experiments, we notice some performance biases of models trained on different gender
groups, which represent one of the most easily identifiable similarity categories. It inspires us to
hypothesize that the degree of similarity among subjects might impact the model generalization per-
formance. To test this hypothesis, we need to identify which subjects are more similar to the given
subjects. For a target subject St, given a set of images I viewed by N different subjects SN , for each
image i, we can calculate the cosine similarity (refer to Eq. 2) between the fMRI voxel vi,St

of target
subject and the voxel vi,Sn

of subject Sn ∈ SN as follow: Sim scorei,St,Sn
= sim(vi,St

, vi,Sn
).

The similarity score reflects the likeness between the two subjects (St and Sn) based on a given
image i. The overall similarity score of the two subjects can be obtained by averaging over all im-
ages I . However, the outlier images can make the averaged score less robust. Therefore, we use a
rank-based method. For each image i, we calculate Sim scorei,St,Sn

and rank the N scores from
highest to lowest. Then, we select the top 10 subjects based on their ranks and award them one

6



Table 2: Results of models trained on our consolidated HCP dataset with different number of training
subjects. TOP1 Acc. and TOP3 Acc. are averaged over the unseen subjects (Subjs 1-10). TOP1
Acc. (seen) is averaged over all seen subjects participated in training.

Training Subjects No. of Training Subjects TOP1 Acc. TOP3 Acc. TOP1 Acc. (seen)
Subj 11 1 2% 5% 79%

Subjs 11-12 2 2% 6% 84%
Subjs 11-30 20 15% 29% 83%
Subjs 11-60 50 29% 43% 83%
Subjs 11-110 100 37% 52% 82%
Subjs 11-177 167 45% 61% 82%

rank credit. After repeating this process for all images, subjects with higher total rank credits are
considered more similar to the target subject St. The process to calculate the rank credit of Sn for
St can be formulated as:

Rank Credit(St, Sn) =
∑I

i=1
1(Sn ∈ top 10 rank(Sim scorei,St,Sj for j = 1, 2 . . . , N)), (3)

where 1(·) is an indication function that assigns 1 if Sn is among the top 10 most similar subjects
to St based on image i, otherwise 0. Finally, we use models trained on both similar and dissimilar
subjects to explore how subject similarity influences the generalization performance. The results are
shown in Sec. 4.4.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We implement all models using PyTorch (Paszke et al., 2017). Except specifically indicated, we
employ MLP and 3D CNN as the backbone for feature extraction when using whole-brain data.
The detailed network structure can be found in Appendix. During training, we employ the CLIP
loss (Radford et al., 2021) and the AdamW optimizer (Loshchilov & Hutter, 2017) to optimize the
models (β1 = 0.9, β2 = 0.999). We set the batch size to 300, and apply the OneCycleLR strategy
with a warm-up phase to adjust the learning rate, with a maximum learning rate of 1 × 10−4. The
HCP dataset we consolidated includes 177 subjects, each subject having 3,127 image-fMRI pairs.
We randomly choose 100 images and the corresponding fMRI voxels as the test pairs, and use the
rest as the training pairs. Note that the test pairs of all subjects are from the same 100 images. Subjs
1-10 are designated as unseen subjects, with the remaining 167 subjects as seen subjects.

In our experiments, several models will be trained on different numbers of subjects. For convenience
of expression, we define one training epoch based on the number of image-fMRI pairs of a single
subject; that is, one epoch contains 3,027 image-fMRI pairs. The numbers of epochs to train models
on 1, 2, 20, 50, 100, and 167 seen subjects are 200, 200, 400, 600, 800, and 1,000, respectively. For
the experiment on the NSD dataset, which includes 8 subjects, we follow the standard train/test split
with 1,000 test images (Allen et al., 2022), and select Subj 2 and Subj 5 as unseen subjects. We train
the models with 1 and 6 seen subjects for 120 and 360 epochs, respectively, and each epoch includes
9,000 image-fMRI pairs.

4.2 MAIN RESULTS ON GENERALIZATION PERFORMANCE

As describe in Sec. 4.1, we train models on 1, 2, 20, 50, 100 and 167 subjects and evaluate them
on 10 unseen subjects (Subjs 1-10). The results are shown in Tab. 2. We can clearly see that as
the number of training subjects increases, the model’s generalization capability on unseen subjects
improves. When only one or two subjects are used in training, the generalization capability is weak.
When the number of training subjects reaches 167, the TOP1 and TOP3 accuracies improve to
45% and 61%, respectively. (TOP1 and TOP3 accuracies indicate the probability that the correct
sample is included among the top 1 or top 3 most relevant retrieval results returned by the network.)
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Backbones TOP1 Acc. TOP3 Acc. TOP1 Acc. (seen)
MLP 45% 61% 82%

1D CNN 42% 58% 80%
3D CNN 40% 57% 80%

Transformer 34% 52% 77%

Table 3: Results of models with differ-
ent backbones trained on 167 subjects.
TOP1 Acc. and TOP3 Acc. are aver-
aged over ten unseen subjects (Subjs 1-
10). TOP1 Acc. (seen) is averaged over
all seen subjects.

Considering that our test set contains 100 image-fMRI pairs, such a generalization performance is
highly encouraging. Fig. 1 plots the curve of TOP1 accuracy vs. the number of training subjects. We
observe that the generalization performance continues to improve steadily. Even with 167 subjects,
it does not reach a plateau. This suggests that the models hold potential for further improvement if
more subjects can be introduced for training.

We also provide in Tab. 2 the results of our model on seen subjects for reference. The test pairs are
from the subjects involved in the training process. We can see that the TOP1 accuracies are very
close for different number of training subjects. This is reasonable because the testing data share
similar distribution with the training data, regardless of whether 1 or 167 subjects are involved, and
the network is able to fit the distribution via sufficient training.

4.3 THE GENERALIZATION PERFORMANCE WITH DIFFERENT BACKBONES

In Sec. 4.2, we used MLP as the backbone and validated the generalization capability of our models
trained on more subjects. Here, we validate whether this conclusion holds for other popular network
architectures, such as CNN and Transformer networks. The details of the employed network archi-
tectures can be found in Appendix. The results are shown in Tab. 3, which demonstrates that while
there are some differences in performance, the generalization capability is consistently achieved
across different network architectures. Specifically, the MLP achieves the best generalization per-
formance, with 45% TOP1 accuracy on unseen subjects and 82% on seen subjects, followed closely
by 1D CNN and 3D CNN, which yield comparable results. The Transformer network exhibits the
lowest performance, which may be attributed to the fact that Transformer typically needs larger
training datasets to exhibit its superiority, whereas our current dataset for visual brain decoding is
relatively small, making CNNs and MLPs more effective in this case.

4.4 GENERALIZATION VS. SUBJECT SIMILARITY

From the experiments in previous sections, we have seen that the network could exhibit obvious
generalization capability when enough subjects are used in training. During our experiments, inter-
estingly, we notice some performance biases of models trained on different gender groups. Gender
is one of the most commonly observed characteristics of sample similarity, suggesting that the sim-
ilarity among subjects might impact the model generalization performance. To be specific, we train
three models using data from 50 male subjects, 50 female subjects, and a mixed group of 25 male
and 25 female subjects, respectively. Then, we evaluate these models on unseen male Subj 1 and
female Subj 2, and the results are shown in Tab. 4. One can see that the model trained on male sub-
jects achieves the best retrieval performance on the unseen male subject (Subj 1) with 36% TOP1
accuracy and 60% TOP3 accuracy, but it performs the worst on the unseen female subject (Subj 2)
with 25% TOP1 accuracy and 37% TOP3 accuracy. In contrast, the model trained on female sub-
jects shows the opposite behaviour, performing better on Subj 2 and worse on Subj 1. Meanwhile,
the model trained on the mixed group always obtain the intermediate result on the unseen subjects.
Such results suggest that the generalization capability is related to the similarity among subjects.

Therefore, we further explore this phenomenon by finding similar and dissimilar subjects to Subj
1 and Subj 2. Utilizing the method described in Sec. 3.3, we identify 20 most similar subjects
and 20 least similar subjects to Subj 1, as well as 20 most similar and least similar subjects to
Subj 2. As shown in Tab. 4, the model trained on the 20 subjects most similar to Subj 1 achieves
the best performance on Subj 1, with a TOP1 accuracy of 21% and a TOP3 accuracy of 36%. In
contrast, the model trained on the 20 most dissimilar subjects performs significantly worse, with a
TOP1 accuracy of 8% and a TOP3 accuracy of 14%. A similar trend can be observed for Subj 2,
where the model trained on the 20 most similar / dissimilar subjects achieves the highest / lowest
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Table 4: Results of models trained on subjects that have different gender or similarity. All the
training subjects are from Subj 3-167. Best and worst results are marked by red and blue.

Training Subjects TOP1 Acc. on
Subj 1 (male)

TOP3 Acc. on
Subj 1 (male)

TOP1 Acc. on
Subj 2 (female)

TOP3 Acc. on
Subj 2 (female)

50 male 36% 60% 25% 37%
50 female 27% 40% 30% 42%

25 male + 25 female 32% 49% 27% 40%
20 similar to Subj 1 21% 36% - -

20 dissimilar to Subj 1 8% 14% - -
20 similar to Subj 2 - - 21% 31%

20 dissimilar to Subj 2 - - 2% 7%
Subjs 11-30 (20) 17% 31% 18% 23%

20 similar + 20 dissimilar to Subj 1 21% 30% - -
20 similar + 20 dissimilar to Subj 2 - - 20% 28%

Table 5: Results of models trained on NSD dataset. As in previous works, we randomly extracted
300 pairs from 1,000 pairs of the test set to perform the testing, and run 30 times the experiments to
take the average. ‘MindEye1’ means our implemented model of MindEye1 (Scotti et al., 2024a).

NSDGeneral Data NSD Whole-brain Data
Models Training Subjects Testing Subjects Data Format TOP1 Acc. Data Format TOP1 Acc.

MindEye1 Subj 1 Subj 1 1 × 15,724 85% 83 × 104 × 81 35%
Ours Subj 1 Subj 1 1 × 18,000 86% 113 × 136 × 113 46%

MindEye1 Subj 7 Subj 7 1 × 12,682 70% 81 × 95 × 78 23%
Ours Subj 7 Subj 7 1 × 18,000 70% 113 × 136 × 113 29%
Ours Subjs 1,3,4,6,7,8 Subj 1 1 × 18,000 83% 113 × 136 × 113 49%
Ours Subjs 1,3,4,6,7,8 Subj 7 1 × 18,000 69% 113 × 136 × 113 35%
Ours Subjs 1,3,4,6,7,8 Subjs 2,5 1 × 18,000 1% 113 × 136 × 113 1%

performance. Additionally, the model trained on Subjs 11-30, as a reference for randomly selected
20 subjects, yields moderate performance on both Subj 1 and Subj 2. This demonstrates that the
similarity between subjects can largely affect the generalization performance. Even with 20 subjects
in training, if the subjects are not similar, the model can achieve little generalization capability, such
as 2% TOP1 Acc. on Subj 2. We also train models on a mixed set of 20 similar and 20 dissimilar
subjects for Subj 1 and Subj 2. The results closely match the performance of models trained on the
20 similar subjects alone.

The above experimental results show that when the subjects are similar, the models achieve better
generalization performance, and vice versa. On the other hand, when a mix of similar and dissimilar
subjects are used for training, generalization remains stable, with performance approaching to the
models trained on similar subjects. This suggests that generalization capability depends on learning
inherent commonalities among human brains, with substantial tolerance for dissimilarities. It also
explains why increasing the number of subjects enhances generalization — a larger dataset is more
likely to include subjects with higher similarities.

4.5 EXPERIMENTAL RESULTS ON THE NSD DATASET

To demonstrate the flexibility of our pipeline, we also train the model on the NSD dataset, including
both NSDGeneral and whole-brain data. The results are shown in Tab. 5. We see that the models
trained on Subj 1 using NSDGeneral data with both the original data format (i.e., 1 × 15,724 in
MindEye1) and our normalized data format (i.e., 1 × 18,000) achieve similar TOP1 accuracy, i.e.,
85% and 86%, respectively. (The TOP1 accuracy reported in the original paper of MindEye1 (Scotti
et al., 2024a) is 84%.) The results on Subj 7 can yield similar conclusion. This demonstrates that our
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pipeline can be well applied to the individual-specific scenario using NSDGeneral data. However,
by using simple interpolation based upsampling to normalize the data format as a 1 × 18,000 vector,
we can train models on multiple subjects with different original NSDGeneral data sizes. As shown
in the bottom three rows of Tab. 5, by training on subjs 1,3,4,6,7,8 and testing on subj 1 or subj 7,
83% and 69% TOP1 accuracy can still be obtained since subj 1 or subj 7 are included in the training
data. However, when testing on the unseen subjs 2 and 5, only 1% TOP1 accuracy is obtained. This
is expected, as the NSD dataset consists of only 8 subjects, which is too limited to ensure robust
model generalization performance.

Finally, we evaluate the models trained with whole-brain data. The top right panel of Tab. 5 shows
the results on Subj 1 and Subj 7 by MindEye1, which uses the original whole-brain data format, and
our model, which uses the normalized data format (i.e., 113 × 136 × 113). We see that in the case
of whole-brain data, the simple normalization of data size can improve much the TOP1 accuracy
from 35% to 46% for subj 1 and from 23% to 29% for subj 7. The accuracy is lower than that on
NSDGeneral data because the NSDGeneral data are manually labeled brain visual regions. Again,
the normalized data size enables us to train models on multiple subjects with different original
data sizes, which cannot be done by MindEye1. As shown in the bottom right panel of Tab. 5,
our model trained on six subjects achieves 49% TOP1 accuracy on Subj 1 and 35% on Subj 7,
outperforming single-subject models trained on Subj 1 (46%) and Subj 7 (29%), respectively. In
contrast, on NSDGeneral data, the multiple-subject models perform slightly worse than their single-
subject counterparts. This discrepancy highlights the individual-specific nature of NSDGeneral data,
as discussed in Sec. 3.1 (see also Fig. 3). We also report the generalization performance of models
trained on 6 subjects on unseen Subjs 2 and 5. Again, the model shows weak generalization ability
due to the small number of training subjects in NSD dataset.

5 DISCUSSION: THE SOURCE OF GENERALIZATION ABILITY

Based on the experimental results, we observe that when a sufficient number of subjects are included
during training, various networks can exhibit generalization capabilities on unseen subjects. In this
section, we discuss the potential causes underlying this generalization ability. Firstly, we assert that
generalization does not arise from a sophisticated upsampling (alignment) module or any other sim-
ilar mechanism. Instead, we argue that it originates from “involving” rather than merely “aligning”
the patterns across different subjects. In other words, the reason why our method performs well on
unseen subjects is that the training data likely encompass the feature-mapping patterns of unseen
subjects. This hypothesis is supported by our following experimental findings. (1) Increasing Train-
ing Subjects in in Sec. 4.2: As the number of training subjects increases, generalization improves. It
is likely because that the training set tends to include representative patterns of unseen subjects. (2)
Subject Similarity in Sec. 4.4: When the number of training subjects is fixed, training groups that
share greater similarity with the testing subjects (e.g., in terms of gender) tend to result in better gen-
eralization performance. Our main contribution is to highlight this novel perspective: generalization
ability can be obtained from “involving” a sufficiently diverse set of subjects, rather than relying on
alignment or fine-tuning mechanisms; and generalization also depends on subject similarities.

6 CONCLUSION

Previous visual brain decoding studies typically focus on individual subjects, or training with
multiple-subjects but decoding on seen subjects, while little work has been done to explore the
possibility of generalizing visual brain decoding on unseen subjects. We attempt to fill this gap by
leveraging a large dataset from the Human Connectome Project (HCP), constructing 177 × 3,127
image-fMRI pairs from 177 subjects. Using this dataset, we proposed a learning paradigm, which
utilized whole-brain data and a simple and uniform pipeline for processing all subjects, without
requiring individual-specific adaptations. Via detailed experiments, we found that the model gener-
alization capability emerged with the increase of training subjects, and such generalization capability
hold across different network architectures. In addition, the similarity between subjects also played
a role in improving the generalization capability. These findings reveal the inherent similarity in
brain activities across individuals, which has significant implications for future studies. As larger
and more diverse datasets may become available, this work can provide a basis for training a brain
encoding foundation model for the future.
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Appendix

In this Appendix, we first provide the details of the networks used in the main paper. Second, we
outline the details of the BiMixCo+SoftCLIP training strategy used in Sec. 4.5 of the main paper.
Finally, we present the visualization of the image retrieval results.

A THE DETAILS OF ARCHITECTURES

In the main paper, we validated the generalization capability of visual brain decoding models on
unseen subjects across popular network architectures, including MLP, CNN and Transformer. We
show the detailed network structures in this section. The input to the networks is fMRI voxels of
size 113 × 136 × 113.

Table A.1: Detailed architecture of our MLP network.

Layer Type Input Size Output Size Kernel/Linear
Size Stride/Padding

Conv3D (conv1) 1× 113× 136× 113 32× 38× 46× 38 9× 9× 9
Stride 3,

Padding 4
BatchNorm3D (bn1) 32× 38× 46× 38 32× 38× 46× 38 - -

Conv3D (conv2) 32× 38× 46× 38 48× 19× 23× 19 7× 7× 7
Stride 2,

Padding 3
BatchNorm3D (bn2) 48× 19× 23× 19 48× 19× 23× 19 - -

Conv3D (conv3) 48× 19× 23× 19 64× 10× 12× 10 5× 5× 5
Stride 2,

Padding 2
BatchNorm3D (bn3) 64× 10× 12× 10 64× 10× 12× 10 - -

ReLU (activation) 64× 10× 12× 10 64× 10× 12× 10 - -
Flatten 64× 10× 12× 10 76800 - -

Linear (lin0) 76800 4096 - -
MLP (4 layers) 4096 4096 - -

Linear (lin1) 4096 257× 1024 - -

MLP. Tab. A.1 presents the architecture of our MLP network. We first employ a 3-layer 3D CNN
for feature extraction, followed by a fully connected layer to reduces the feature to a 1D vector of
4096 elements. Similar to MindEye1 (Scotti et al., 2024a), we apply the MLP backbone in this
feature space with the vector length of 4096. Finally, we utilize a fully connected layer to expand
the feature from 4096 to 257 × 1024, which is used for loss calculation.

1D CNN. As shown in Tab. A.2, similar to our MLP network, our 1D CNN network first reduces
the feature to a vector of length 4096. Then we use several separate 1D CNN layers and eight
1D ResBlock layers for feature mapping, which constitute our 1D CNN backbone. Finally, a fully
connected layer is used to produce the output with size of 257 × 1024.

3D CNN. Different from the above MLP and 1D CNN networks, as shown in Tab. A.3, our 3D
CNN network uses 3D CNN layers and 3D ResBlock layers to process the input. After the main
processing, a fully connected layer is used to produce the final output with size of 257 × 1024.

Transformer. The details of our Transformer network are shown in Tab. A.4. Similar to our MLP
and 1D CNN networks, our Transformer network first reduces the feature to a 4096 sized vector.
Then we reshape the feature to 16 × 256, which is then sent to the Transformer backbone with 24
Transformer block layers. After that, we reshape the output of Transformer backbone back to 4096
and employ a fully connected layer to produce the final output with size of 257 × 1024.

B TRAINING STRATEGY

Results. In our main experiments, in order to prove that the generalization capability does not
come from some specific strategies, we use the simplest contrastive learning pipeline and the CLIP
loss to verify our approach on commonly used network architectures. In this section, we demonstrate
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Table A.2: Detailed architecture of our 1D CNN network.

Layer Type Input Size Output Size Kernel/Linear
Size Stride/Padding

Conv3D (conv1) 1× 113× 136× 113 32× 38× 46× 38 9× 9× 9
Stride 3,

Padding 4
BatchNorm3D (bn1) 32× 38× 46× 38 32× 38× 46× 38 - -

Conv3D (conv2) 32× 38× 46× 38 48× 19× 23× 19 7× 7× 7
Stride 2,

Padding 3
BatchNorm3D (bn2) 48× 19× 23× 19 48× 19× 23× 19 - -

Conv3D (conv3) 48× 19× 23× 19 64× 10× 12× 10 5× 5× 5
Stride 2,

Padding 2
BatchNorm3D (bn3) 64× 10× 12× 10 64× 10× 12× 10 - -

ReLU (activation) 64× 10× 12× 10 64× 10× 12× 10 - -
Flatten 64× 10× 12× 10 76800 - -

Linear (lin0) 76800 4096 - -
Reshape 4096 1× 4096 - -

Conv1D (conv01) 1× 4096 64× 680 Kernel 13 Stride 6
BatchNorm1D (bn01) 64× 680 64× 680 - -

Conv1D (conv02) 64× 680 128× 134 Kernel 11 Stride 5
BatchNorm1D (bn02) 128× 134 128× 134 - -

Conv1D (conv03) 128× 134 256× 32 Kernel 9 Stride 4
BatchNorm1D (bn03) 256× 32 256× 32 - -

Conv1D (conv04) 256× 32 512× 9 Kernel 7 Stride 3
BatchNorm1D (bn04) 512× 9 512× 9 - -

ResBlock1D (x8) 512× 9 512× 9 - -
Flatten 512× 9 4608 - -

Linear (lin1) 4608 257× 1024 - -

Table A.3: Detailed architecture of our 3D CNN network.

Layer Type Input Size Output Size Kernel/Linear
Size Stride/Padding

Conv3D (conv1) 1× 113× 136× 113 32× 38× 46× 38 9× 9× 9
Stride 3,

Padding 4
BatchNorm3D (bn1) 32× 38× 46× 38 32× 38× 46× 38 - -

Conv3D (conv2) 32× 38× 46× 38 48× 19× 23× 19 7× 7× 7
Stride 2,

Padding 3
BatchNorm3D (bn2) 48× 19× 23× 19 48× 19× 23× 19 - -

Conv3D (conv3) 48× 19× 23× 19 64× 10× 12× 10 5× 5× 5
Stride 2,

Padding 2
BatchNorm3D (bn3) 64× 10× 12× 10 64× 10× 12× 10 - -

Conv3D (conv4) 64× 10× 12× 10 90× 5× 6× 5 5× 5× 5
Stride 2,

Padding 2
BatchNorm3D (bn4) 90× 5× 6× 5 90× 5× 6× 5 - -

Conv3D (conv5) 90× 5× 6× 5 150× 3× 3× 3 5× 5× 5
Stride 2,

Padding 2
BatchNorm3D (bn5) 150× 3× 3× 3 150× 3× 3× 3 - -

ReLU (activation) 150× 3× 3× 3 150× 3× 3× 3 - -
ResBlock3D (x8) 150× 3× 3× 3 150× 3× 3× 3 - -

Flatten 150× 3× 3× 3 4050 - -
Linear (lin1) 4050 257× 1024 - -

that the model performance can be further enhanced if stronger training strategies can be employed.
In particular, we adopt the BiMixCo+SoftCLIP training strategy (using BiMixCo for one-third of
the training and employs SoftCLIP for the rest of training) from MindEye1 (Scotti et al., 2024a).
The BiMixCo+SoftCLIP strategy incorporates a data augmentation technique, extending the mixup
approach with the InfoNCE loss (He et al., 2020). It also replaces the CLIP loss with the SoftCLIP
loss, which leverages softmax probability distributions rather than hard labels.

As shown in Tab. B.5, the adoption of BiMixCo+SoftCLIP leads to a noticeable improvement in
generalization performance for both single-subject models (TOP1 accuracy improves from 2% to
6%) and multiple-subject models (TOP1 accuracy improves from 45% to 50%). This strategy also
enhances the retrieval accuracy on seen subjects. These results suggest that better learning strategies
can be designed to boost the model generalization capabilities, highlighting the potential of our
approach for visual brain decoding. Details of these methods can be found below:
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Table A.4: Detailed architecture of our Transformer network.

Layer Type Input Size Output Size Kernel/Linear
Size Stride/Padding

Conv3D (conv1) 1× 113× 136× 113 32× 38× 46× 38 9× 9× 9
Stride 3,

Padding 4
BatchNorm3D (bn1) 32× 38× 46× 38 32× 38× 46× 38 - -

Conv3D (conv2) 32× 38× 46× 38 48× 19× 23× 19 7× 7× 7
Stride 2,

Padding 3
BatchNorm3D (bn2) 48× 19× 23× 19 48× 19× 23× 19 - -

Conv3D (conv3) 48× 19× 23× 19 64× 10× 12× 10 5× 5× 5
Stride 2,

Padding 2
BatchNorm3D (bn3) 64× 10× 12× 10 64× 10× 12× 10 - -

ReLU (activation) 64× 10× 12× 10 64× 10× 12× 10 - -
Flatten 64× 10× 12× 10 76800 - -

Linear (lin0) 76800 4096 - -
Reshape 4096 16× 256 - -

Transformer (d=256, h=8)
(x24) 16× 256 16× 256 - -

Reshape 16× 256 4096 - -
Linear (lin1) 4096 257× 1024 - -

Table B.5: Results of models trained with different training strategies. TOP1 Acc. is averaged over
unseen subjects (Subjs 1-10). TOP1 Acc. (seen) is averaged over all seen subjects during training.

Trainging Subjects Subject Number Strategies TOP1 Acc. TOP1 Acc. (seen)
Subj 11 1 CLIP / BiMixCo+SoftCLIP 2% / 6% 79% / 83%

Subjs 11-177 167 CLIP / BiMixCo+SoftCLIP 45% / 50% 82% / 84%

BiMixCo. The BiMixCo combines MixCo (Kim et al., 2020) (an extension of mixup that uses
the InfoNCE loss) and the bidirectional CLIP loss. To be specific, as described in MindEye1 (Scotti
et al., 2024a), voxels are mixed by a factor λ sampled from the Beta distribution with α = β = 0.15:

xmixi,ki
= λi · xi + (1− λi) · xki , p∗i = f(xmixi,ki

), pi = f(xi), ti = CLIPImage(yi), (4)

where xi and yi represent the i-th fMRI voxel and image, respectively. ki ∈ [1, N ] is an arbitrary
mixing index for the i-th datapoint and f represents the decoding network. p∗, p and t are L2-
normalized. The CLIP loss with MixCo is defined as:

LBiMixCo = −
N∑
i=1

λi · log

 exp
(

p∗
i ·ti
τ

)
∑N

m=1 exp
(

p∗
i ·tm
τ

)
+ (1− λi) · log

 exp
(

p∗
i ·tki

τ

)
∑N

m=1 exp
(

p∗
i ·tm
τ

)


−
N∑
j=1

λj · log

 exp
(

p∗
j ·tj
τ

)
∑N

m=1 exp
(

p∗
m·tj
τ

)
+

∑
{l|kl=j}

(1− λl) · log

 exp
(

p∗
l ·tj
τ

)
∑N

m=1 exp
(

p∗
m·tj
τ

)
 ,

(5)

where τ is a temperature hyperparameter, and N is the batch size.

SoftCLIP. The soft contrastive loss (Scotti et al., 2024a) takes the dot product of CLIP image
embeddings within a batch to generate the soft labels. The loss (we omit the bidirectional component
for brevity) is calculated between CLIP-CLIP and Brain-CLIP matrices as:

LSoftCLIP = −
N∑
i=1

N∑
j=1

 exp
(

ti·tj
τ

)
∑N

m=1 exp
(
ti·tm
τ

) · log
 exp

(
pi·tj
τ

)
∑N

m=1 exp
(
pi·tm

τ

)
 . (6)

C PARAMETERS COMPARISON

In the main paper, we mention that most multiple-subjects methods (such as Mindeye2 (Scotti et al.,
2024b) and UMBRAE (Xia et al., 2024)) still require separate heads or tokenizers for each subject.
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Table C.6: Model parameters of UMBRAE (Xia et al., 2024) and our method with different subject
number. Both the methods use the same backbones of UMBRAE (Xia et al., 2024).

Number of Testing Subjects UMBRAE (Xia et al., 2024) Ours
1 112.63M 112.63M

10 213.43M 112.63M
100 1221.42M 112.63M

1000 11310.43M 112.63M

As the number of subjects increases, their training costs and model parameters grow linearly, making
this approach impractical for larger subject pools.

We use UMBRAE (Xia et al., 2024) as an example to show this linear growing of complexity. As
shown in Tab. C.6, each subject of UMBRAE (Xia et al., 2024) requires a tokenizer of 11.2M
parameters. As the number of subjects increases, the number of parameters grows linearly to a very
large size (e.g., up to 11,310M with 1000 subjects). In contrast, the number of parameters of our
method remains constant, regardless of the number of test subjects.

D THE VISUALIZED IMAGE RETRIEVAL RESULTS

Fig. D.1 depicts the image retrieval results of our visual brain decoding model, which is trained
on 167 subjects from our consolidated HCP dataset. The results are extracted from the testing of
Subject 1, which is an unseen subject to this model. We show the top three images that have the
highest retrieval similarities to the target image seen by Subject 1. We can see from Fig. D.1 that
the retrieved images exhibit significant visual similarity to the target image. For example, in the
first row, the target and retrieved images are all facial images, while the first retrieved image is
exactly the target image. In the fourth row, all the retrieved images have two persons, as in the
target image. In the last two rows, the retrieved images share similar colors and tones to the target
images. Nonetheless, in some cases, such as the second retrieved image in the fifth row and the third
retrieved image in the sixth row, the retrieval results are not satisfactory.
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Traget images Retrieved images Retrieved images Retrieved images
Figure D.1: The visualized image retrieval results. ‘Target images’ refer to those viewed by Subj 1
from the HCP dataset, while ‘Retrieved images’ represent the corresponding retrieval outputs from
the visual brain decoding model trained on 167 subjects. The retrieved images are ranked from left
to right based on retrieval similarity.
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