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In this Appendix, we first provide the details of the networks used in the main paper. Second, we
outline the details of the BiMixCo+SoftCLIP training strategy used in Sec. 4.5 of the main paper.
Finally, we present the visualization of the image retrieval results.

1 THE DETAILS OF ARCHITECTURES

In the main paper, we validated the generalization capability of visual brain decoding models on
unseen subjects across popular network architectures, including MLP, CNN and Transformer. We
show the detailed network structures in this section. The input to the networks is fMRI voxels of
size 113 × 136 × 113.

Table 1: Detailed architecture of our MLP network.

Layer Type Input Size Output Size Kernel/Linear
Size Stride/Padding

Conv3D (conv1) 1× 113× 136× 113 32× 38× 46× 38 9× 9× 9
Stride 3,

Padding 4
BatchNorm3D (bn1) 32× 38× 46× 38 32× 38× 46× 38 - -

Conv3D (conv2) 32× 38× 46× 38 48× 19× 23× 19 7× 7× 7
Stride 2,

Padding 3
BatchNorm3D (bn2) 48× 19× 23× 19 48× 19× 23× 19 - -

Conv3D (conv3) 48× 19× 23× 19 64× 10× 12× 10 5× 5× 5
Stride 2,

Padding 2
BatchNorm3D (bn3) 64× 10× 12× 10 64× 10× 12× 10 - -

ReLU (activation) 64× 10× 12× 10 64× 10× 12× 10 - -
Flatten 64× 10× 12× 10 76800 - -

Linear (lin0) 76800 4096 - -
MLP (4 layers) 4096 4096 - -

Linear (lin1) 4096 257× 1024 - -

MLP. Tab. 1 presents the architecture of our MLP network. We first employ a 3-layer 3D CNN for
feature extraction, followed by a fully connected layer to reduces the feature to a 1D vector of 4096
elements. Similar to MindEye1 (Scotti et al., 2024a), we apply the MLP backbone in this feature
space with the vector length of 4096. Finally, we utilize a fully connected layer to expand the feature
from 4096 to 257 × 1024, which is used for loss calculation.

1D CNN. As shown in Tab. 2, similar to our MLP network, our 1D CNN network first reduces
the feature to a vector of length 4096. Then we use several separate 1D CNN layers and eight
1D ResBlock layers for feature mapping, which constitute our 1D CNN backbone. Finally, a fully
connected layer is used to produce the output with size of 257 × 1024.

3D CNN. Different from the above MLP and 1D CNN networks, as shown in Tab. 3, our 3D
CNN network uses 3D CNN layers and 3D ResBlock layers to process the input. After the main
processing, a fully connected layer is used to produce the final output with size of 257 × 1024.
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Table 2: Detailed architecture of our 1D CNN network.

Layer Type Input Size Output Size Kernel/Linear
Size Stride/Padding

Conv3D (conv1) 1× 113× 136× 113 32× 38× 46× 38 9× 9× 9
Stride 3,

Padding 4
BatchNorm3D (bn1) 32× 38× 46× 38 32× 38× 46× 38 - -

Conv3D (conv2) 32× 38× 46× 38 48× 19× 23× 19 7× 7× 7
Stride 2,

Padding 3
BatchNorm3D (bn2) 48× 19× 23× 19 48× 19× 23× 19 - -

Conv3D (conv3) 48× 19× 23× 19 64× 10× 12× 10 5× 5× 5
Stride 2,

Padding 2
BatchNorm3D (bn3) 64× 10× 12× 10 64× 10× 12× 10 - -

ReLU (activation) 64× 10× 12× 10 64× 10× 12× 10 - -
Flatten 64× 10× 12× 10 76800 - -

Linear (lin0) 76800 4096 - -
Reshape 4096 1× 4096 - -

Conv1D (conv01) 1× 4096 64× 680 Kernel 13 Stride 6
BatchNorm1D (bn01) 64× 680 64× 680 - -

Conv1D (conv02) 64× 680 128× 134 Kernel 11 Stride 5
BatchNorm1D (bn02) 128× 134 128× 134 - -

Conv1D (conv03) 128× 134 256× 32 Kernel 9 Stride 4
BatchNorm1D (bn03) 256× 32 256× 32 - -

Conv1D (conv04) 256× 32 512× 9 Kernel 7 Stride 3
BatchNorm1D (bn04) 512× 9 512× 9 - -

ResBlock1D (x8) 512× 9 512× 9 - -
Flatten 512× 9 4608 - -

Linear (lin1) 4608 257× 1024 - -

Table 3: Detailed architecture of our 3D CNN network.

Layer Type Input Size Output Size Kernel/Linear
Size Stride/Padding

Conv3D (conv1) 1× 113× 136× 113 32× 38× 46× 38 9× 9× 9
Stride 3,

Padding 4
BatchNorm3D (bn1) 32× 38× 46× 38 32× 38× 46× 38 - -

Conv3D (conv2) 32× 38× 46× 38 48× 19× 23× 19 7× 7× 7
Stride 2,

Padding 3
BatchNorm3D (bn2) 48× 19× 23× 19 48× 19× 23× 19 - -

Conv3D (conv3) 48× 19× 23× 19 64× 10× 12× 10 5× 5× 5
Stride 2,

Padding 2
BatchNorm3D (bn3) 64× 10× 12× 10 64× 10× 12× 10 - -

Conv3D (conv4) 64× 10× 12× 10 90× 5× 6× 5 5× 5× 5
Stride 2,

Padding 2
BatchNorm3D (bn4) 90× 5× 6× 5 90× 5× 6× 5 - -

Conv3D (conv5) 90× 5× 6× 5 150× 3× 3× 3 5× 5× 5
Stride 2,

Padding 2
BatchNorm3D (bn5) 150× 3× 3× 3 150× 3× 3× 3 - -

ReLU (activation) 150× 3× 3× 3 150× 3× 3× 3 - -
ResBlock3D (x8) 150× 3× 3× 3 150× 3× 3× 3 - -

Flatten 150× 3× 3× 3 4050 - -
Linear (lin1) 4050 257× 1024 - -

Transformer. The details of our Transformer network are shown in Tab. 4. Similar to our MLP
and 1D CNN networks, our Transformer network first reduces the feature to a 4096 sized vector.
Then we reshape the feature to 16 × 256, which is then sent to the Transformer backbone with 24
Transformer block layers. After that, we reshape the output of Transformer backbone back to 4096
and employ a fully connected layer to produce the final output with size of 257 × 1024.

2 TRAINING STRATEGY

Results. In our main experiments, in order to prove that the generalization capability does not
come from some specific strategies, we use the simplest contrastive learning pipeline and the CLIP
loss to verify our approach on commonly used network architectures. In this section, we demonstrate
that the model performance can be further enhanced if stronger training strategies can be employed.
In particular, we adopt the BiMixCo+SoftCLIP training strategy (using BiMixCo for one-third of
the training and employs SoftCLIP for the rest of training) from MindEye1 (Scotti et al., 2024a).
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Table 4: Detailed architecture of our Transformer network.

Layer Type Input Size Output Size Kernel/Linear
Size Stride/Padding

Conv3D (conv1) 1× 113× 136× 113 32× 38× 46× 38 9× 9× 9
Stride 3,

Padding 4
BatchNorm3D (bn1) 32× 38× 46× 38 32× 38× 46× 38 - -

Conv3D (conv2) 32× 38× 46× 38 48× 19× 23× 19 7× 7× 7
Stride 2,

Padding 3
BatchNorm3D (bn2) 48× 19× 23× 19 48× 19× 23× 19 - -

Conv3D (conv3) 48× 19× 23× 19 64× 10× 12× 10 5× 5× 5
Stride 2,

Padding 2
BatchNorm3D (bn3) 64× 10× 12× 10 64× 10× 12× 10 - -

ReLU (activation) 64× 10× 12× 10 64× 10× 12× 10 - -
Flatten 64× 10× 12× 10 76800 - -

Linear (lin0) 76800 4096 - -
Reshape 4096 16× 256 - -

Transformer (d=256, h=8)
(x24) 16× 256 16× 256 - -

Reshape 16× 256 4096 - -
Linear (lin1) 4096 257× 1024 - -

Table 5: Results of models trained with different training strategies. TOP1 Acc. is averaged over
unseen subjects (Subjs 1-10). TOP1 Acc. (seen) is averaged over all seen subjects during training.

Trainging Subjects Subject Number Strategies TOP1 Acc. TOP1 Acc. (seen)
Subj 11 1 CLIP / BiMixCo+SoftCLIP 2% / 6% 79% / 83%

Subjs 11-177 167 CLIP / BiMixCo+SoftCLIP 45% / 50% 82% / 84%

The BiMixCo+SoftCLIP strategy incorporates a data augmentation technique, extending the mixup
approach with the InfoNCE loss (He et al., 2020). It also replaces the CLIP loss with the SoftCLIP
loss, which leverages softmax probability distributions rather than hard labels.

As shown in Tab. 5, the adoption of BiMixCo+SoftCLIP leads to a noticeable improvement in
generalization performance for both single-subject models (TOP1 accuracy improves from 2% to
6%) and multiple-subject models (TOP1 accuracy improves from 45% to 50%). This strategy also
enhances the retrieval accuracy on seen subjects. These results suggest that better learning strategies
can be designed to boost the model generalization capabilities, highlighting the potential of our
approach for visual brain decoding. Details of these methods can be found below:

BiMixCo. The BiMixCo combines MixCo (Kim et al., 2020) (an extension of mixup that uses
the InfoNCE loss) and the bidirectional CLIP loss. To be specific, as described in MindEye1 (Scotti
et al., 2024a), voxels are mixed by a factor λ sampled from the Beta distribution with α = β = 0.15:

xmixi,ki
= λi · xi + (1− λi) · xki , p∗i = f(xmixi,ki

), pi = f(xi), ti = CLIPImage(yi), (1)

where xi and yi represent the i-th fMRI voxel and image, respectively. ki ∈ [1, N ] is an arbitrary
mixing index for the i-th datapoint and f represents the decoding network. p∗, p and t are L2-
normalized. The CLIP loss with MixCo is defined as:

LBiMixCo = −
N∑
i=1

λi · log

 exp
(

p∗
i ·ti
τ

)
∑N

m=1 exp
(
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τ

)
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+
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m=1 exp
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)
 ,

(2)

where τ is a temperature hyperparameter, and N is the batch size.

SoftCLIP. The soft contrastive loss (Scotti et al., 2024a) takes the dot product of CLIP image
embeddings within a batch to generate the soft labels. The loss (we omit the bidirectional component
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Table 6: Model parameters of UMBRAE (Xia et al., 2024) and our method with different subject
number. Both the methods use the same backbones of UMBRAE (Xia et al., 2024).

Number of Testing Subjects UMBRAE (Xia et al., 2024) Ours
1 112.63M 112.63M

10 213.43M 112.63M
100 1221.42M 112.63M

1000 11310.43M 112.63M

for brevity) is calculated between CLIP-CLIP and Brain-CLIP matrices as:

LSoftCLIP = −
N∑
i=1

N∑
j=1

 exp
(

ti·tj
τ

)
∑N

m=1 exp
(
ti·tm
τ

) · log

 exp
(

pi·tj
τ

)
∑N

m=1 exp
(
pi·tm

τ

)
 . (3)

3 PARAMETERS COMPARISON

In the main paper, we mention that most multiple-subjects methods (such as Mindeye2 (Scotti et al.,
2024b) and UMBRAE (Xia et al., 2024)) still require separate heads or tokenizers for each subject.
As the number of subjects increases, their training costs and model parameters grow linearly, making
this approach impractical for larger subject pools.

We use UMBRAE (Xia et al., 2024) as an example to show this linear growing of complexity.
As shown in Tab. 6, each subject of UMBRAE (Xia et al., 2024) requires a tokenizer of 11.2M
parameters. As the number of subjects increases, the number of parameters grows linearly to a very
large size (e.g., up to 11,310M with 1000 subjects). In contrast, the number of parameters of our
method remains constant, regardless of the number of test subjects.

4 THE VISUALIZED IMAGE RETRIEVAL RESULTS

Fig. 1 depicts the image retrieval results of our visual brain decoding model, which is trained on 167
subjects from our consolidated HCP dataset. The results are extracted from the testing of Subject
1, which is an unseen subject to this model. We show the top three images that have the highest
retrieval similarities to the target image seen by Subject 1. We can see from Fig. 1 that the retrieved
images exhibit significant visual similarity to the target image. For example, in the first row, the
target and retrieved images are all facial images, while the first retrieved image is exactly the target
image. In the fourth row, all the retrieved images have two persons, as in the target image. In the
last two rows, the retrieved images share similar colors and tones to the target images. Nonetheless,
in some cases, such as the second retrieved image in the fifth row and the third retrieved image in
the sixth row, the retrieval results are not satisfactory.
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Traget images Retrieved images Retrieved images Retrieved images
Figure 1: The visualized image retrieval results. ‘Target images’ refer to those viewed by Subj 1
from the HCP dataset, while ‘Retrieved images’ represent the corresponding retrieval outputs from
the visual brain decoding model trained on 167 subjects. The retrieved images are ranked from left
to right based on retrieval similarity.
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