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A Lightweight Anchor-Based Incremental Framework for
Multi-view Clustering

Anonymous

ABSTRACT
The rapid development of multi-media techniques boosts the emer-
gence of multi-view data, and how to uncover its intrinsic structure
and utilize it to conduct the subsequent downstream tasks is crucial
in data analysis. Multi-view clustering is representative of handling
multi-view data. The anchor-basedmethod has received widespread
attention for excellent performance and low time complexity. How-
ever, existing methods encounter two drawbacks, cutting down
their performance, i.e., the assumption of the availability of all
views and limited interaction of anchor generation among views.
In some scenes, views arrive sequentially, and storing them is chal-
lenging owing to the limited space/privacy considerations, and
the existing anchor-based MVC is unsuitable for this. Addition-
ally, recent works fail to generate anchors with the guidance of
other views, and it is tough to align the anchor graphs. To this
end, we propose A Lightweight Anchor-Based Incremental Frame-
work for Multi-view Clustering. Specifically, we first initialize an
anchor graph with the assistance of 𝑘-means when a new view
arrives. Then, the consensus one of the anchor graph is updated
by the newly collected view with a permutation matrix. Our pro-
posed method is more capable of anchor alignment because, in
incremental MVC, the anchor graphs of previous views could be
listed as a reference to guide the generation of anchor graphs of
the coming view. Furthermore, we design a three-step iterative
and convergent algorithm to address the resultant problem. No-
tably, the proposed algorithm shows outstanding effectiveness and
time/space efficiency in extensive experiments.

CCS CONCEPTS
• Theory of computation→ Unsupervised learning and clus-
tering; • Computing methodologies→ Cluster analysis.

KEYWORDS
multi-view clustering, incremental learning, anchor-based method

1 INTRODUCTION
Cluster analysis, a fundamental scientific problem in machine learn-
ing, is widely used in data mining. The rapid development of multi-
media techniques boosts the emergence of multi-view data, and
multi-view clustering (MVC) is a representative of handling multi-
view data by uncovering its intrinsic structure and discovering
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Figure 1: Overview of the proposed LAIMVC. We store and
up date a consensus anchor graph to avoid fusing the anchor
graphs repeatedly. After the arrival of a new view, we first
perform feature extraction on X𝑡 to obtain lightweight data
X̄𝑡 . Then we update the anchor graph with the assistance of
a rotation matrix.

proper clusters. The core of MVC is to integrate and reconcile the
information from different views to reveal more comprehensive
insights than a single view alone [2, 7, 15, 16, 27].

As MVC approaches achieving great success in clustering theory,
existing research in MVC can be roughly classified into four cate-
gories, i.e., multi-view subspace clustering (MVSC), multiple kernel
clustering (MKC), multi-view graph clustering (MVGC), and multi-
view clustering based onmatrix factorization (MVCMF). Specifically,
MVSC generates the inherent consistency and complementarity of
the data into consistent low-dimensional subspace and performs
eigen-decomposition on the corresponding subspace [4, 25, 29–31].
MKC learns a consensus kernel by following a multi-kernel learning
framework in which the individual kernels of each view are com-
bined and conduct clustering on the consensus kernel[11, 13, 23, 34].
Most MVGC algorithms construct the similarity graph for each view
and perform graph fusion and spectral clustering to obtain optimal
unified graph and clustering results [10, 22]. As described in [5],
MVCMF transforms multi-view data into data matrices and reveals
their underlying consensus structure through matrix techniques
such as feature decomposition of the data matrices, getting the final
result on the consensus matrix subsequently[3, 9, 32].

Nevertheless, the prominent drawback of the above methods is
the high time complexity consumption, such as cubic complexity
in subspace/graph construction and the spectral clustering process,
which hinders their application to large-scale scenarios. To handle
this handicap, anchor-based MVC has been proposed to alleviate
the high complexity of traditional methods [6, 17, 19]. Specifically, it

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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builds a consensus graph by sampling anchors to capture consistent
spatial structure across multiple views. The time complexity of it is
reduced to linear concerning sample number per iteration. However,
existing anchor-based methods encounter two drawbacks, which
are the assumption of the availability of all views and the limited
interaction of anchor generation among views, leading to their
performance decreasing. In some scenes, views arrive sequentially,
and storing them is challenging owing to privacy considerations/the
limited space, such as the multi-angle videos allowed to be obtained
within a specific time range, thus the existing anchor-based MVC is
unsuitable. Additionally, recent works fail to generate anchors with
the guidance of other views, causing difficulty in the alignment of
the unified anchor graph.

To address aforementioned issues, we propose a novel algorithm
termed A Lightweight Anchor-Based Incremental Framework to
Multi-viewClustering (LAIMVC). It combines incremental learning
and the anchor-based method into a unified framework. The illus-
tration of our framework is shown in Fig. 1. Specifically, LAIMVC
effectively harmonizes distinct views by reducing dimensions via
Principal Component Analysis (PCA) to facilitate the subsequent
anchor graph fusion. We generate the anchor graph of the first view
by conducting 𝑘-means on it. Then, the consensus one of the anchor
graphs is updated by the newly collected view with a permutation
matrix, which not only avoids the repetitive computation of sam-
pling anchors but enhances the interaction of anchor generation
among views. Especially, the algorithm not only has linear time
complexity for large-scale multi-view data, but it can cope well with
view-sequential data costing only linear space complexity. What’s
more, our proposed method is more capable of anchor alignment
because, in incremental MVC, the anchor graphs of previous views
could be listed as a reference to guide the generation of anchor
graphs of the coming view. Admittedly, a three-step alternative
strategy is proposed to solve the optimization problem and the
convergence can be guaranteed. Experimental results on seven
multiple datasets show that the method can obtain comparable or
better performance.

The main contributions of our proposed framework can be listed
as follows,

(1) LAIMVC is a creative attempt to extend anchor-based MVC
to an incremental framework. By merely retaining the con-
sensus anchor matrix and graph pertaining to all prior views,
it iteratively integrates views individually until no further
novel views come, making it applicable to sequential-view
data scenarios.

(2) Different from existing methods that align anchor graphs
trickly, LAIMVC alleviates this problem owing to the guid-
ance of the previous consensus anchor graph. Thus it in-
creases the clustering performance and efficiency of the
learned anchor graph structure.

(3) An alternate optimization method with proven convergence
is developed to address the resulting issue. LAIMVC shows
clearly superior clustering performance and significantly less
running time/storing space compared with state-of-the-art
methods, so it is critical for large-scale and sequential-view
datasets, especially with limited computing sources.

2 RELATEDWORK
In this section, we will introduce some related researches, includ-
ing continual multi-view clustering and multi-view anchor graph
clustering.

2.1 Continual Multi-view Clustering
Continual Multi-view Clustering (CMVC), proposed by Wan et
al. [21], combines continual learning with the late fusion method.
CMVCmaintains a consensus partitionmatrix and further enhances
it by accumulating new views. The base partition matrix utilizes a
permutation matrix to align old and new information appropriately.
Additionally, it introduces a regularization parameter to balance
the weights of two sets of information effectively.

When the 𝑡-view arrives, with H𝑡 as the base partition and the
consensus partition matrix H∗𝑡−1 maintained, the optimal permu-
tation matrix can be computed by maximizing the objective formu-
lation in Eq. (1).

max
H̃𝑡 ,W𝑡

Tr
(
H̃⊤𝑡 H𝑡W𝑡

)
+ 𝜆 Tr

(
H̃⊤𝑡 H∗

𝑡−1

)
,

s.t. H̃⊤𝑡 H̃𝑡 = I𝑘 ,W⊤𝑡 W𝑡 = I𝑘 .
(1)

As indicated in Eq.(1), the update process only requires two ma-
trices, making it more adaptable and time-saving. Maintaining the
consensus partition matrix instead of individual base partition ma-
trices reduces the storage space needed for previous views. Overall,
the CMVC approach is more flexible and cost-effective in terms of
both time and space.

2.2 Multi-view Anchor Graph Clustering
Multi-view anchor graph clustering has been proposed to make
multi-view clustering methods suitable for large-scale data. Usu-
ally, traditional graph clustering approaches attach O(𝑣𝑛2) space
and O(𝑛3) time complexity to instance numbers [18], while multi-
view anchor graph clustering can effectively reduce the time and
space consumption to O(𝑣𝑛𝑚) and O(𝑛𝑚2) by constructing anchor
graphs on 𝑣 views and𝑚 anchors instead of the all 𝑛 instances.

Constructing the anchor graph of each view is the first step in
the multi-view anchor graph clustering. The following equation
can implement this process,

min
Z𝑖

∥X𝑖 − Z𝑖A𝑖 ∥2F + 𝛽 ∥Z𝑖 ∥2F , s.t. Z𝑖 ≥ 0,Z𝑖1𝑚 = 1𝑛 . (2)

The matrix A𝑖 ∈ R𝑚×𝑑𝑖 serves as the anchor matrix for the 𝑖-th
view. The matrix Z𝑖 ∈ R𝑛×𝑚 represents the anchor graph for the
𝑖-th view, and the equation Z𝑖1𝑚 = 1𝑛 ensures that the similarity of
each instance to all anchors is standardized. It should be noted that
the quality of anchors significantly impacts clustering effectiveness,
along with some literature on anchor sampling methods.

After constructing the view-specific anchor graphs {Z𝑖 }𝑣𝑖=1 , the
final anchor graph G ∈ R𝑛×𝑚 can be fused as follows,

min
𝜶 ,G

 𝑣∑︁
𝑖=1

𝛼𝑖Z𝑖 − G

2
F

, s.t. G1𝑚 = 1𝑛,𝜶⊤1𝑣 = 1,𝜶 ≥ 0. (3)

The weight coefficient 𝜶 ∈ R𝑣 measures the different impact of
each view, and the constraint 𝜶⊤1𝑣 = 1 ensures that G1𝑚 = 1𝑛 .
The optimization process alternates between the weight coefficient
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𝜶 and fused graph G within a unified framework. In a follow-up
study, the assumptions of equal weights for all views and the rank
constraints on the fusion anchor graph are proposed to ensure a
non-trivial solution [6, 8]. After obtaining the fusion graph, k-means
clustering is applied to its left singular vectors for final clustering.

3 METHOD
In this section, we present the formulation of LAIMVC and then
propose a three-step alternate optimization approach to address
the issue. Following that, we provide its convergence, complexity,
and potential expansion.

3.1 Formulation
In light of challenges faced by prevailing anchor-based multi-view
clustering (MVC) methods when dealing with sequentially arriv-
ing or storage-restricted views, we propose LAIMVC to creatively
extend anchor-based MVC into an incremental framework. Un-
like prior works that struggle with generating anchors without
cross-view guidance and encounter difficulties in aligning a unified
anchor graph, LAIMVC addresses these limitations effectively.

Given a multi-view data matrix X𝑡 of the 𝑡-th view with 𝑛 sam-
ples, 𝑑𝑡 denotes its feature dimension. Considering that the incon-
sistent of dimensions among views might lead to the difficulty in
anchor graph integration, we first conduct PCA on the feature ma-
trix to a unified dimension 𝑑 as X̃𝑡 when the 𝑡-th view is collected.
And the consensus anchor graph Z𝑡 ∈ R𝑛×𝑚 of previous views
has already been attained, under its guidance, we update the con-
sistent anchor graph in an incremental framework to avoid the
alignment of anchor graphs among views in the literature. Ω is a
regularization term. We formulate it as follows,

min
Z𝑡 ,B𝑡

X̃𝑡 − Z𝑡B𝑡

2
F + Ω(Z𝑡 ,Z𝑡−1,B𝑡 ,B𝑡−1),

s.t. Z⊤𝑡 Z𝑡 = I𝑚,B⊤𝑡 B𝑡 = I𝑑 .
(4)

A small trick is that a permutationmatrixH𝑡 ∈ R𝑚×𝑚 is imposed
to allow the change of the anchor graph from a certain degree. As
shown in Eq.(5), the permutation matrix ensures the sustainability
of data decomposition while performing data alignment. When
H𝑡H⊤𝑡 = I𝑚 is satisfied, we have

X̃𝑡−1 = Z𝑡−1B𝑡−1 = Z𝑡−1H𝑡H⊤𝑡 B𝑡−1 . (5)

By imposing the square of the Frobenius norm as regularization
with the trick in Eq.(5), we can achieve the optimal anchor graph
by minimizing the specific objective formulation as,

min
Z𝑡 ,B𝑡 ,H𝑡

X̃𝑡 − Z𝑡B𝑡

2
F + ∥Z𝑡 − Z𝑡−1H𝑡 ∥2F +

B𝑡 − H⊤𝑡 B𝑡−1
2

F ,

s.t. Z⊤𝑡 Z𝑡 = I𝑚,B⊤𝑡 B𝑡 = I𝑑 ,H⊤𝑡 H𝑡 = I𝑚 .

(6)
As shown in Eq.(6), LAIMVC merely retains the consensus an-

chor matrix and associated anchor graph pertaining to all prior
views, eschewing the save of base matrices or anchor graphs spe-
cific to each view. Besides, upon acquisition of a new view, the
consensus anchors and graph are jointly refined with a permuta-
tion matrix, which fosters interaction in graph generation across
views. It iteratively integrates views individually until all views are

attained, we ultimately derive the final clustering results through
𝑘-means on the last consensus graph Z𝑣 .

3.2 Alternate Optimization
Eq.(6) comprises three distinct variables requiring optimization, a
task that can prove arduous when performed concurrently. So we
develop a three-step alternate optimization, optimizing one variable
while the rest remain fixed. The formula detailed derivation is given
in the appendix.

Updating Z𝑡 . Fixing B𝑡 and H𝑡 , the optimization in Eq.(6) w.r.t
Z𝑡 can be reduced to

max
Z𝑡

Tr
(
Z⊤𝑡 A

)
, s.t. Z⊤𝑡 Z𝑡 = I𝑚, (7)

where A = X̃𝑡B⊤𝑡 + Z𝑡−1H𝑡 . The optimum of Z𝑡 can be analytically
obtained with rank𝑚 truncated the singular value decomposition
(SVD) by [24]. Specifically, if the SVD form is A = SΣV⊤, the closed-
form solution in Eq.(7) is as follows

Z𝑡 = SV⊤ . (8)

Updating B𝑡 . Fixing Z𝑡 and H𝑡 , the optimization w.r.t B𝑡 can be
reduced to

max
B𝑡

Tr
(
B⊤𝑡 C

)
, s.t. B⊤𝑡 B𝑡 = I𝑑 , (9)

where C = Z⊤𝑡 X̃𝑡 +H⊤𝑡 B𝑡−1. Similar to Eq.(7) and suppose the SVD
form is C = S

′
ΣV

′⊤, the closed-form solution in 9 is as follows

B𝑡 = S
′
V
′⊤ . (10)

Updating H𝑡 . Fixing Z𝑡 and B𝑡 , the optimization w.r.t H𝑡 can
be reduced to

max
H𝑡

Tr
(
H⊤𝑡 D

)
, s.t. H⊤𝑡 H𝑡 = I𝑚, (11)

where D = Z⊤
𝑡−1Z𝑡 +B𝑡−1B𝑡 . Similar to Eq.(7) and suppose the SVD

form is D = S
′′

ΣV
′′⊤, the closed-form solution in 11 is as follows

H𝑡 = S
′′

V
′′⊤ . (12)

The optimization process of the LAIMVC is outlined inAlgorithm
1. It can be seen that the views arrive sequentially so the X̃𝑡 and
Z𝑡
𝑡 are generated when 𝑡-th view is obtained. The convergence of

LAIMVC in theory and its time/space complexity and potential
expansion will be argued in the following part.

3.3 Discussion
3.3.1 Convergence. In this section, we give the theoretical proof of
the convergence of the proposed LAIMVC, which is the important
support for the solvability of the optimization algorithm.

In Eq.(6), every square term is not less than 0. Therefore, the
objective function has a lower bound.Wewill verify in the following
part the objective value of Eq.(6) monotonically decreases along
with iterations. For ease of expression, we simplify the objective
formula as,

min
Z𝑡 ,B𝑡 ,H𝑡

Γ(Z𝑡 ,B𝑡 ,H𝑡 ) . (13)

As demonstrated in Algorithm 1, the optimization process consists
of three iterative parts every iteration, i.e. Z𝑡 subproblem,B𝑡 sub-
problem and H𝑡 subproblem. Suppose the superscript 𝑖 indicate the
optimization process at 𝑖-th round. The convergence analysis is
given as follows.
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Algorithm 1 A Lightweight Anchor-Based Incremental Frame-
work forMulti-View Clustering

Input: {X𝑡 }𝑣𝑡=1, 𝑑 ,𝑚 , cluster number 𝑘 and 𝜀0.
Output: Z𝑣 .
1: for 𝑡 = 1 to 𝑣 do
2: Preprocessing: X𝑡 to X̃𝑡 by PCA.
3: if 𝑡 = 1 then
4: Initialization: X̃1 = Z1B1 by 𝑘-means and H1 = I𝑚 .
5: else
6: 𝑖 = 1
7: while not converged do
8: Update Z𝑡 by solving Eq.(7).
9: Update B𝑡 by solving Eq.(9).
10: Update H𝑡 by solving Eq.(11).
11: 𝑖 ← 𝑖 + 1
12: end while

(
𝑜𝑏 𝑗𝑖−1 − 𝑜𝑏 𝑗𝑖

)
/𝑜𝑏 𝑗𝑖 ≤ 𝜀0

13: end if
14: end for

1) Z𝑡 -subproblem: Given B(𝑖 )𝑡 and H(𝑖 )𝑡 , Z(𝑖+1)𝑡 can be updated via
Eq.(7), so

Γ(Z(𝑖+1)𝑡 ,B(𝑖 )𝑡 ,H(𝑖 )𝑡 ) ≤ Γ(Z(𝑖 )𝑡 ,B(𝑖 )𝑡 ,H(𝑖 )𝑡 ). (14)

2) B𝑡 -subproblem: Given Z(𝑖+1)𝑡 and H(𝑖 )𝑡 , B(𝑖+1)𝑡 can be updated
via Eq.(9), so

Γ(Z(𝑖+1)𝑡 ,B(𝑖+1)𝑡 ,H(𝑖 )𝑡 ) ≤ Γ(Z(𝑖+1)𝑡 ,B(𝑖 )𝑡 ,H(𝑖 )𝑡 ) . (15)

3) H𝑡 -subproblem: Given Z(𝑖+1)𝑡 and B(𝑖+1)𝑡 , H(𝑖+1)𝑡 can be updated
via Eq.(11), so

Γ(Z(𝑖+1)𝑡 ,B(𝑖+1)𝑡 ,H(𝑖+1)𝑡 ) ≤ Γ(Z(𝑖+1)𝑡 ,B(𝑖+1)𝑡 ,H(𝑖 )𝑡 ) . (16)

Combining Eq.(14), Eq.(15) and Eq.(16), we know,

Γ(Z(𝑖+1)𝑡 ,B(𝑖+1)𝑡 ,H(𝑖+1)𝑡 ) ≤ Γ(Z(𝑖 )𝑡 ,B(𝑖 )𝑡 ,H(𝑖 )𝑡 ), (17)

which illustrates that the objective value monotonically decreases
with iterations. Together with the objective function existing in a
lower bound, the algorithm is theoretically convergent. Further-
more, we will verify the convergence of it in the experiment.

3.3.2 Complexity Analysis. In this part, we will analyze the space
and time complexity of our algorithm.

Space Complexity: In our paper, the major memory costs of
LAIMVC are matrices Z𝑡 and B𝑡 . Thus the space complexity of
our LAIMVC is O(𝑛𝑚 +𝑚𝑑). In our algorithm,𝑚 ≪ 𝑛 and 𝑑 ≪ 𝑛.
Therefore, the space complexity is O(𝑛).

Time Complexity: The computational complexity of LAIMVC
is composed of three steps as mentioned before. Preprocessing
costs O(𝑛𝑑2 + 𝑑3). When updating Z𝑡 , B𝑡 and H𝑡 for one iteration,
it costs O(𝑛𝑚2 +𝑚𝑘2 +𝑚3). Let𝑇 denote the maximum number of
iterations and𝑉 represent the number of views, the time complexity
of LAIMVC is O(𝑛𝑑2 + 𝑑3 +𝑇𝑉 (𝑛𝑚2 +𝑚𝑘2 +𝑚3)), which is linear
complexity with respect to 𝑛.

In conclusion, LAIMVC achieves MVC with both linear space
and time complexity, which demonstrates efficiency.

3.3.3 Potential Expansion. To the best of our knowledge, LAIMVC
combines incremental learning and anchor graph clustering for
the first time, which expands application to sequential scenarios
and will provide inspiration for future research. Furthermore, the
proposed LAIMVC is more flexible and efficient by incremental
learning of anchor points and graphs than the traditional anchor-
based methods. The proposed framework has the potential to be
used in more complicated data scenarios or extended to other MVC
paradigms due to its simple operation and scalability.

Table 1: Information of the datasets in our experiments.

Dataset Samples Views Clusters
Dermatology 358 2 6
Flower17 1360 7 17
Cora 2708 4 7

AWA10 5814 6 10
ALOI 10800 4 100

YouTubeFace10 38654 4 10
YouTubeFace100 195537 4 100

4 EXPERIMENTS
In this section, we conduct experiments to compare LAIMVC with
several state-of-the-art multi-view clustering methods, including
three incremental, three anchor-based, and two other methods
on several representative datasets. After that, intrinsic structure,
running time and complexity comparison, view-fusion performance,
parameter sensitivity, and convergence are discussed.

4.1 Experimental Settings
4.1.1 Datasets. Seven benchmark datasets of different categories
are tested to prove the effectiveness of LAIMVC, including Der-
matology1, Flower172, Cora3, AWA104, ALOI5, YouTubuFace106,
YouTubeFace1007. The brief information on each dataset is summa-
rized in Table 1 and the details are given in the appendix. The first
four datasets are regular datasets and the last three are large-scale
datasets.

4.1.2 Compared Algorithms and Experimental Setup.

(1) OPLFMVC[14] is a pattern of late fusion multi-view cluster-
ing using the one-pass method to attain a discrete partition
matrix.

(2) OPMC[12] is a one-pass algorithm that successfully unifies
the multi-view matrix factorization with partition genera-
tion.

(3) LMVSC[6] implements spectral clustering on the final an-
chor graph learned by the anchor graph for each view, which
handles large-scale data with linear complexity.

1https://www.kaggle.com/datasets/syslogg/dermatology-dataset/data
2https://www.robots.ox.ac.uk/Ëœvgg/data/flowers/17/
3https://relational.fit.cvut.cz/dataset/CORA
4https://cvml.ista.ac.at/AwA2/
5https://www.kaggle.com/alvations/aloi-dataset
6https://www.cs.tau.ac.il/Ëœwolf/ytfaces/
7https://www.cs.tau.ac.il/Ëœwolf/ytfaces/

https://www.kaggle.com/datasets/syslogg/dermatology-dataset/data
https://www.robots.ox.ac.uk/˜vgg/data/flowers/17/
https://relational.fit.cvut.cz/dataset/CORA
https://cvml.ista.ac.at/AwA2/
https://www.kaggle.com/alvations/aloi-dataset
https://www.cs.tau.ac.il/˜wolf/ytfaces/
https://www.cs.tau.ac.il/˜wolf/ytfaces/
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Table 2: Empirical evaluation and comparison of LAIMVC with eight baseline methods on seven benchmark datasets in terms
of clustering accuracy (ACC), normalized mutual information (NMI), and Purity, individually. Noting that ’OM’ means out of
the CPU memory.

Datasets OPLF-MVC OPMC LMVSC FPMVS-CAG SMVSC IMSC SCGL CMVC Proposed
ACC(%)

Dermatology 74.30 92.46 78.33 78.10 79.85 45.81 89.21 70.39 96.65
Flower17 30.74 33.09 34.95 26.03 28.36 34.85 29.19 36.10 39.56
Cora 30.98 40.51 40.02 39.72 41.88 33.97 37.11 34.45 56.68

AWA10 24.70 25.56 24.17 24.35 25.83 22.14 24.70 20.88 26.47
ALOI 1.20 61.04 51.11 31.87 33.35 49.49 46.71 5.67 72.35

YouTubeFace10 70.30 85.95 73.89 67.15 66.91 61.18 OM 82.29 93.60
YouTubeFace100 OM 59.68 63.52 49.12 56.79 OM OM 62.64 66.48

NMI(%)
Dermatology 75.09 90.06 69.58 81.71 74.52 62.70 80.97 61.00 92.15
Flower17 30.26 31.50 31.70 26.03 27.75 32.04 29.46 25.29 35.50
Cora 18.00 15.78 23.15 19.64 21.96 10.65 30.95 16.29 32.51

AWA10 10.21 11.83 9.61 10.40 11.30 5.72 9.40 6.13 10.55
ALOI 2.07 78.94 66.70 63.56 60.12 69.78 38.40 15.77 83.18

YouTubeFace10 77.20 83.37 76.66 73.27 74.35 65.16 OM 83.88 88.26
YouTubeFace100 OM 82.23 81.38 72.82 78.81 OM OM 74.17 82.70

Purity(%)
Dermatology 81.01 94.69 80.51 79.34 82.26 67.32 99.31 76.54 96.65
Flower17 31.54 34.93 33.74 27.42 29.11 39.34 30.29 29.41 39.56
Cora 38.81 41.14 46.42 44.93 43.66 39.29 52.95 41.03 59.68

AWA10 26.63 29.00 27.03 27.06 28.46 24.01 26.63 23.82 30.75
ALOI 1.92 62.69 52.29 32.46 34.43 55.68 59.98 6.27 73.91

YouTubeFace10 77.48 86.95 76.74 69.99 68.81 64.65 OM 86.37 93.60
YouTubeFace100 OM 73.28 70.03 50.32 58.60 OM OM 67.25 74.59

Table 3: Running time in seconds of different algorithms on seven benchmark datasets. ’OM’ means the time is not measured
because of out of the CPU memory.

Datasets OPLF-MVC OPMC LMVSC FPMVS-CAG SMVSC IMSC SCGL CMVC Proposed
Dermatology 0.1042 0.0095 0.7964 3.2699 2.5809 0.1546 0.1661 0.0111 0.0078
Flower17 0.5152 26.7161 8.9177 68.7341 75.3058 0.1655 11.4447 0.0026 0.0061
Cora 0.4409 19.2164 12.1254 44.3189 29.7203 0.5272 14.8226 0.0427 0.0105

AWA-10 3.2870 31.6476 55.6577 109.9325 138.9711 1.3385 149.5615 0.0909 0.0083
ALOI 81.4702 3.6072 103.5729 131.382 743.2308 16.7888 611.6307 0.3328 0.0632

YouTubeFace10 47.7445 14.4631 378.2295 520.4237 572.0479 341.231 OM 0.3920 1.5629
YouTubeFace100 OM 348.7288 8758.3464 11073.1700 17372.6258 OM OM 61.0345 12.0038

(4) FPMVS-CAG[26] proposes a subspace clustering method
that jointly conducts anchor selection and subspace graph
construction without any extra hyper-parameters.

(5) SMVSC[20] proposes a scalable multi-view subspace clus-
tering with unified anchor points, which combines anchor
learning and graph construction into a unified framework.

(6) IMSC[33] implements multi-view spectral clustering by stor-
ing several consensus graphs of previous views and updating
them when a new view is collected.

(7) SCGL[28] proposes an efficient incremental multi-view clus-
tering method by seeking a consensus sparse and connected
graph.

(8) CMVC[21] combines continual learning and late fusion into
a unified framework, whose time complexity is linear con-
cerning sample number.

We obtained the public code for all the algorithms mentioned
above from their original websites. The parameters for the compar-
ison methods were set based on recommendations from the rele-
vant literature. In the experiment, the number of anchor points in
LAIMVC is chosen within [𝑘, 5𝑘]. It is assumed that for all datasets,
the true number of clusters is known and set to be equal to the true
number of classes.

The clustering performance is evaluated using commonly used
metrics including clustering accuracy (ACC), normalized mutual
information (NMI), and Purity. To mitigate the impact of random-
ness caused by 𝑘-means, each experiment is repeated 20 times
with random initialization, and the average result is reported for
all algorithms. Our experiments are conducted on a PC with In-
tel(R) Core(TM)-i7-6800K 3.4GHz CPU and 96G RAM environment.
Moreover, the code of LAIMVC will be available on GitHub after
acceptance.
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Figure 2: The complete graphs display with 4 views incrementally on YouTubeFace10. It verifies the effectiveness of the LAIMVC
in capturing the intrinsic structure of the multi-view dataset.

Figure 3: The running time comparison of our proposed algorithm and the competitors on seven benchmark datasets. Noting
that missing bars indicate that the methods encounter the out-of-memory error on our experimental platform under this
dataset.

4.2 Clustering Performance Comparison
Table 2 compares the ACC, NMI, and Purity of the aforementioned
clustering methods. The notation "OM" signifies that certain algo-
rithms could not produce results due to memory constraints. For
instance, when applied to datasets containing over 30,000 samples,
SCGL consumes tens of thousands of computational units per pa-
rameter tuning and subsequently encounters the issue. And we can
illustrate the following conclusions:

(1) On four small-scale datasets with fewer than 10,000 samples,
LAIMVC achieves top scores on three evaluation metrics
in the majority of cases. Taking the results on Cora as an
instance and comparing to the algorithm with the second-
best results, LAIMVC outperforms the SMVSC by 14.8% in
ACC and exceeds the SCGL by 1.56% for NMI and 6.73% for
Purity.

(2) For the remaining three large-scale datasets exceeding 10,000
samples, LAIMVC displays a remarkable edge. During the ex-
periments, the regular incremental MVC algorithms, except
for the CMVC that solves large-scale data, suffer directly
from the "out-of-memory" problem. Our proposed LAIMVC
even performs better on these large datasets, more than the
second method by 11.31%, 4.24%, and 11.22% on ACC, NMI,
and Purity, respectively on ALOI.

In summary, as an incremental multi-view clustering technique,
LAIMVC can handle scenarios where the number of views is vari-
able, significantly enhancing the performance over anchor-based
counterparts. overall, the proposed method can nearly achieve the
best clustering performance on listed metrics among the compared
algorithms.
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Figure 4: The comparison of clustering performance between representation by view-fusion of LAIMVC and each view without
other information.

Figure 5: The view-fusion performance in ACC with views collected in order on three datasets of LAIMVC and other three
incremental multi-view clustering methods.

4.3 Intrinsic Structure
Since the anchor graph Z𝑡 of each view in LAIMVC is learned with
the new view coming, we construct the corresponding complete
graphs by Z𝑡Z⊤𝑡 . The complete graphs can be used to show the
relationships between pairs of samples and the existing intrinsic
structure on a certain dataset.

In LAIMVC, the anchor graph for previous views is continuously
updated upon introducing new views, we accordingly reconstruct
the associated complete graphs. For instance, we plot complete
graphs of YouTubuFace10 in Fig. 2. As the number of views in-
creases, the complete graph shows a clearer block structure with an
improved clustering result, demonstrating the incremental learning
capability of our proposed method in capturing the intrinsic struc-
ture and illustrating it as suitable for sequential-view scenarios and
a good blend of integrating knowledge among different views.

4.4 Running Time and Complexity Comparison
We conduct experiments to assess the time effectiveness of LAIMVC,
whose results are displayed in Table 3. It should be noted that the
execution time of LAIMVC is from initialization to the final fusion
of views, while other incremental algorithms exhibit similar calcu-
lations. Non-incremental algorithms record the time from the start
of processing to obtaining the final characteristic representation
of the data. We also plot the log-processed running time in Fig.
3 to make it intuitive. It can be concluded that LAIMVC, since it
combines the time advantages of anchor graph decomposition and
incremental method, has a much faster running time than other

algorithms in processing multi-view data, surpassing the current
mainstream rapid clustering One-Pass method.

The time complexity can be corresponded to the running time
written above. As for the space complexity, we compare the time
complexity and storage space required by our method with the
other methods, as detailed in the appendix. To summarise, LAIMVC
has the lowest time and space complexity, together with CMVC.
Especially when the number of views 𝑣 increases sharply, LAIMVC
will show significant advantages.

In conclusion, our LAIMVC algorithm has a lower computing
complexity handling data, realizes superior clustering performance
on most datasets, and can be used in situations where the number
of views can increase over time. We hope that the effectiveness
and excellent efficiency of LAIMVC make it a not-bad consider-
ation for applications in practical clustering scenarios and boost
improvement in clustering theory.

4.5 View-Fusion Performance
Over time, previous views may not be available due to privacy
concerns or memory restrictions. Most existing methods may be
disturbed which makes it difficult to utilize the consistent and com-
plementary information during view fusion, affecting the clustering
performance. To solve the problem of dynamic collection of data
views, the proposed incremental framework preserves a consensus
representation of all previously acquired data and uses it to guide
the view-fusion.
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Figure 6: The sensitivity analysis of LAIMVC with the variation of anchor number on Dermatology, AWA10, YouTubeFace10,
respectively.

To show the view-fusion performance, we carry out experiments
where the views are sequentially accumulated over time. We plot
the results of views integrated one by one in Fig. 4 and Fig. 5
across three distinct datasets, which are Dermatology, AWA10, and
YouTubeFace arranged in ascending order of sample number.

In Fig. 4, ’Each’ denotes the clustering performance on each
view without any other process. Generally speaking, all three met-
rics are appreciably improved proving that the attempt to utilize
previous information to guide the clustering process is vital. And,
our proposed method can reduce the influence of view quality on
clustering results to some extent.

In Fig. 5, we compare the view-fusion performance of our method
with existing incremental multi-view clustering methods. The re-
sults of the other two metrics are similar and given in the appendix.
With the increase in the number of views, our proposed method
maintains satisfactory clustering effects and shows excellent sus-
tainable learning ability. For instance, on AWA10 and YouTube-
Face10, the clustering performances of the compared methods show
downward trends when dealing with the last obtained views, while
LAIMVC still shows a gain effect. Meanwhile, our proposed method
remains a promising performance even though a view arrives with
poor clustering quality, such as on AWA10.

Through these visual representations, we demonstrate how our
method progressively improves the clustering performance as more
views are combined. The detailed experiments on the effect of the
preprocessing of LAIMVC on low-quality views are presented in
the appendix, which is omitted here due to space limitations.

4.6 Parameter Sensitivity
In our method, we tune the number of anchor points according to
the true number of classes 𝑘 . So we conduct a sensitivity experi-
ment about the anchor number to illustrate the impact of which
on performance. As shown in Fig. 6, when the anchor number
varies from 𝑘 to 5𝑘 , it is observed that the values of representative
metrics generally remain within a stable range. This indicates that
the clustering performance can remain stable when the number of
anchor points varies within a wide range, which also illustrates the
superior robustness of our proposed method.

4.7 Convergence
According to [1], our algorithm is theoretically guaranteed to con-
verge to a local minimum. The examples of the objective values
with iteration are shown in Fig. 7 on Dermatology and YouTube-
Face10 datasets (one regular dataset and one large-scale dataset).
The results on other datasets or other views are similar and omitted
due to space limits. It can be clearly verified that its objective value
decreases monotonically and the algorithm converges in less than
15 iterations.

Figure 7: The objective values of LAIMVC when fusing one
view. For the fixed dataset, the target value changes when a
new view is processed, and we randomly choose one proce-
dure to visualize, while the rest effects are similar.

5 CONCLUSION
In this paper, we propose a method to solve the clustering problem
for sequential-view data efficiently termed a lightweight anchor-
based incremental framework for multi-view clustering (LAIMVC).
On the one hand, the theoretical analysis of LAIMVC with incre-
mental learning and anchor graph theory is provided, including
the convergence and linear space and time complexity. On the
other hand, extensive experiments exhibit the superiority of our
proposed method, including the intrinsic structure, running time
and complexity comparison, view-fusion performance, parameter
sensitivity, and convergence. In the future, we intend to explore
the framework for the scenario of incremental sample numbers or
incomplete data, etc.
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