556

557
558
559
560
561

563
564
565
566

568
569
570

571

572

573
574

6 Limitations

Our results demonstrate that CrossFormer can match the performance of specialist policies trained
on only the most relevant data for a given embodiment, but they do not yet show significant positive
transfer across embodiments. We anticipate that as we train on larger robot datasets with more
embodiments, we will see greater positive transfer. Importantly, CrossFormer does not require any
additional engineering to add data from new embodiments with different observation or action types,
making scaling the training data straightforward. Another limitation is that our data mix uses hand-
picked sampling weights to avoid over-training on datasets with many repetitive episodes and under-
training on the data most relevant to our evaluation settings. In principle, as we scale model size, the
policy should have the capacity to fit all the data equally well without any data weighting. Finally,
given that we need large models to fit large multi-robot datasets, the model’s inference speed can
become a limiting factor. In this work we successfully applied our policy to a high-frequency, fine-
grained bimanual manipulation task, but as we scale the model’s size we may not be able to control
these higher frequency embodiments. Future hardware improvements will help to alleviate the issue,
but further research is needed on techniques for using large models to control high-frequency robots.

More information and videos can be found at our anonymized website: crossformer.github.io.

A Training Data

We list the sampling weights for each dataset in our data mixture in Table 1. We up-weight our
target datasets: Bridge, ALOHA-multi-task, GNM, Gol-walk, and Franka-wiping.

CrossFormer Dataset Mixture

Fractal [32] 17%
Kuka [28] 2.2%
BC-Z [57] 2.2%
Stanford Hydra Dataset [58] 0.015%
Language Table [59] 1.5%
Taco Play [60, 61] 1.2%
Furniture Bench Dataset [62] 0.83%
UTAustin Mutex [63] 0.76%
Austin Sailor Dataset [64] 0.74%
Roboturk [65] 0.79%
Toto [66] 0.68%
Austin Sirius Dataset [67] 0.59%
Berkeley Autolab URS5 [68] 0.41%
TAMLab CMU Pickup Insert [69] 0.31%
Viola [70] 0.32%
Berkeley Fanuc Manipulation [71] 0.26%
NYU Franka Play Dataset [72] 0.28%
Jaco Play [73] 1.6%
Berkeley Cable Routing [74] 0.089%
Austin Buds Dataset [75] 0.072%
CMU Stretch [76] 0.053%
DLR EDAN Shared Control [77] 0.019%
DROID [35] 0.022%
Bridge [37, 36] 17%
GNM [41] 17%
ALOHA-multi-task 17%
Gol-walk 8.5%
Franka-wiping 8.5%

Table 1: The CrossFormer training data mixture uses datasets from the Open X-Embodiment
dataset [5] and additional data collected for this project.

15

https://crossformer.github.io

575

576
577
578
579
580
581
582

583

585
586
587
588
589

590
591
592
593

595
596
597

598
599
600
601
602
603
604
605

Hyperparameter Value

Optimizer AdamW [52]
Learning Rate 3e-4
Warmup Steps 2000
LR Scheduler reciprocal square-root
Weight Decay 0.1

Gradient Clip Threshold 1

Batch Size 1024

Layers 12
Attention heads 8
Token embedding size 512
MLP dimension 2048
Context length 1890
Total training steps 300K

Table 2: Training hyperparameters for CrossFormer.

B Training Hyperparameters

In Table 2 we list the hyperparameters for the optimizer and policy architecture. In total, along with
the ResNet-26 image encoders and action heads, our model has 110M parameters. We initialize the
ResNet-26 encoders with ImageNet pre-trained weights. Training took 80 hours on a TPU V5e-256
pod. We apply color jitter and random resizing/cropping image augmentations. During training, we
use hindsight goal relabeling and sample future observations uniformly at random to use as goals
[54]. If a language instruction is available for a trajectory, we randomly mask either the language or
goal so that at test time we can condition our policy using either task specification [55].

C Evaluation Setups

Below we provide further details on our evaluation settings (see Fig. 4 for images):

WidowX Manipulation We use the Bridge setup from Walke et al. [36]. We use an over-the-
shoulder camera view and and sample actions from the single arm head of our policy. We evaluate
for 12 trials on the language-conditioned task of putting a spoon on a cloth and 12 trials on the
goal-conditioned task of putting a mushroom in a pot. Positions of the spoon, cloth, mushroom, and
pot are varied between trials.

Franka Manipulation We use the DROID setup from Khazatsky et al. [35]. We use an over-the-
shoulder camera view and sample actions from the single arm head of our policy. We evaluate for
nine trials on the language-conditioned task of using a sponge to sweep pinecones into a dustpan.
The position of the sponge, pinecones, and dustpan are varied between trials.

ALOHA Bimanual Manipulation We use the ALOHA setup from Zhao et al. [46]. We use three
camera views, one overhead and two wrist, and sample actions from the single arm head of our
policy. We perform 10 trials over one language-conditioned task of taking the cap off of a pen. The
position of the pen is varied between trials.

LoCoBot Navigation We use the LoCoBot setup from Shah et al. [42] which has one camera
view. We evaluate on suite of three skills: path-following, obstacle avoidance, and sharp corner-
turning. We sample actions from the navigation head of our policy. We combine our policy with the
graph-based planner and distance function from Shah et al. [42]. We first obtain a topological map
M of the environment by teleoperating the robot. Then, at every timestep we find the closest node
in M, search the graph for the shortest path from this node to the goal, and command the policy
with the most immediate subgoal in the path. We evaluate the success of a trajectory based on the
number of subgoals between the closest node at the end of the trajectory and the goal.

16

606
607
608
609
610

611
612
613
614

Gol Quadruped We evaluate on a Unitree Gol which uses proprioceptive observations o; €
R59. We sample actions from the quadruped head of our policy, and the task is to walk forward.
Importantly, unlike prior work [8], we directly control the quadruped’s joints rather than doing
higher level control with navigation waypoints. As our evaluation metric we report the percentage
of the reward achieved by the RL-trained expert policy that generated the data (see Section 3.1).

Tello Quadcopter Finally, we perform evaluation on a Tello quadcopter using the navigation head
of our policy. Since the navigation head outputs 2-D relative waypoints, we maintain a static height
throughout the trajectory [42, 41]. Notably, we do not train on quadcopter data so this setting
requires zero-shot generalization to a new embodiment.

17

	Limitations
	Training Data
	Training Hyperparameters
	Evaluation Setups

