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1. Introduction
Water’s transition to ice impacts life across many

scales, yet the structural motifs governing ice nu-
cleation remain poorly understood. These mo-
tifs are hypothesised to have short lifetimes and
span across multiple length scales, from Angstroms
to micrometres. Using MHz X-ray Free Electron
Laser (XFEL) serial imaging, supercooled water
droplets were probed near instantaneously, obtain-
ing time-resolved information from snapshots effec-
tively frozen in time. Up to 580million femtosecond-
resolved diffraction patterns (2.3 PB imaging data)
across different experimental configurations were
collected to identify and study these motifs: the
largest dataset collected thus far, to our knowledge,
to study structural motifs in water.
Inferring the unknown structural motifs in su-

percooled water is challenging for several reasons.
First, despite the bright XFEL pulses, each measure-
ment is still noisy because of water’s small scatter-
ing cross-section. Second, each droplet will contain
multiple structurally distinct motifs.
Third, eachof thesemotifs have random latent pa-

rameters(e.g. crystal orientation, size). These latent
parameters confound the classification of many po-
tential motifs by only their diffraction features (i.e.
two different features can arise either from distinct
motifs or the same motif presented differently).
Classifying these diverse structures is not only

computationally expensive but also especially chal-
lenging because they are neither large crystals with
well-defined structures nor structurally homoge-
neousparticles, forwhich extremely robustmethods
have been developed[1, 2].
Crystalline ice and liquid water have their own

distinct diffraction features arising from their struc-
ture. These signatures are highlighted in an ex-
emplary diffraction pattern in Figure 1. However,
many patterns exhibit a collection of expanded and
extruded blobs that represent small and repeating
molecular motifs, but are difficult to identify and
classify.
In total, 77%of the dataset was automatically clas-

sified in this manner, with only validation checks
needed on cluster averages per run.

2. Approach
Classifying these structuralmotifs requires a hier-

archical approach where we first classify the diffrac-
tion patterns that contain them into two categories:

Fig. 1: Schematic of the experimental setup. The
scattered beam arrives at the detector, resulting in
the diffraction pattern observed. Different struc-
tures form different diffraction features. Red ar-
rows indicate Bragg scattering, arising from crys-
talline ice. The diffuse ring indicated in orange
arises from the isotropic random distribution of
water molecules in the liquid state. Smears and
blobs, such as the one highlighted in pink, points
to more exotic arrangements of molecules.

those that contain structural motifs (hits), and those
that do not (blanks). However, this pattern classifica-
tion comprises three challenges: (1) the high dimen-
sionality of each pattern; (2) a large number of pat-
terns; (3) themyriad of possible andunknownmotifs
in each patternwith latent parameters. To overcome
the first two challenges, the dimensionality of each
pattern has to be reduced.
We found that a simple coarse-graining of scat-

tering signal in reciprocal (i.e., momentum) space
was effective in preserving keydiffraction features of
structural motifs of individual droplets. Two differ-
ent levels of coarse graining lead to either a 64-fold
(Xmed ∈ R16384) or 2048-fold reduction (Xlow ∈
R256) of the dimensionality of each raw measure-
ment (left columns of Figure 2).
The third challenge, further classifying hits ac-

cording to their structural motifs, is trickier. Stan-
dard diffraction peak-finding algorithms used in
crystallography fail here because each of our mea-
surement contains a large variety of complex struc-
tures with latent parameters. Manual labelling of
vector quantizing angular averages of individual pat-
terns was aambiguous,as these averages were insen-
sitive to weak and diffuse signals from the important
small crystals, leading to high false negative rates.
These coarse-grained feature vectors Xlow were

now small enough for efficient Principal Component
Analysis (PCA) to reveal which features were statisti-
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Fig. 2: Left column: Diffraction patterns at increas-
ing levels of coarse-graining. Top right: First
PCA basis (99.7% explained variance) of the entire
dataset at themaximum coarse-graining, showing
co-fluctuating detector regions. Middle right: Dis-
tribution of patterns in one run, re-parametrised
by PCA-informed detector maximum and sums.
Bottom right: Initial decision boundaries based on
structures in this re-parametrised space.

Fig. 3: Binary classification by MLP, trained on the
clusters found inUMAPspace. ThehighAMI score
indicates a sufficiently trained MLP that maps the
binary distinction on the UMAP space to coarse-
grained diffraction patterns. Overlapping clus-
ters in this 2D space highlights the actual decision
boundary being larger than 2 dimensions.

cally significant (top right panel in Figure 2). These
featureswere further summarized to reveal twonon-
linear feature vectors (yice-like and xliquid-like). In-
terpreting the PCA basis as an attention map for im-
portant ASICs, themaximumof sums andmaximum
of maximum features across these identified ASICs
were found to be sensitive to the categories of struc-
tural motifs (i.e., blanks, liquid water, ice, or ice and
liquid water) present in each measurement (right
middle and bottom panels in Figure 2).

3. Validation
These labels were first physically validated. In

the liquid-water label, the average radial profile for
different droplet temperatures were computed with
post-corrections. Patterns with this label correctly
reproduced the trend of signature q-peaks in super-
cooled liquid water [3](Figure A1), observed in ear-
lier experiments.
However, the classification does not generalise

well to different runs. Differences in experimen-
tal parameters shift the distribution of points in
the parametrised space, limiting the suitability of
fixed decision boundaries. A better classification
pipeline with more information is necessary to ac-
count for these variations. To encapsulate more in-
formation compactly, a non-linear dimensionality
reduction method, UMAP[4], was used. By embed-
ding the compact 256-dimensional coarse-grained
features into 2 dimensions, clearer class boundaries
can be identified, as shown in A2.
A binary classification, obtained by a density-

based clustering algorithmDBSCAN [5] on theUMAP
embedding, was used to train a multi-layer percep-
tron (MLP) to refine the hit-blank decision bound-
ary. The adjusted Mutual Information between the
DBSCAN clusters and MLP results was 0.9198. When
visualised, the new decision boundary was revealed
to be indistinguishable in 2 dimensions (Figure 3).

4. Conclusion
While coarse-grained features worked well for di-

mensionality reduction and early classification, they
were unable to resolve fine details of structural mo-
tifs. However, it allows us to focus our attention on
a subset of the data that is expected to contain the
motifs of interest. A complementary method to ex-
tract and classify motifs from their complex diffrac-
tion signatures will follow.
This work describes a coarse-graining framework

for classifying large numbers of diffraction patterns.
Although neural networks can classify pre-defined
categories of diffraction patterns[6], generalising for
unseen patterns is a challenge. The right approach
to further classifying motifs within diffraction hits
remains an open challenge.
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Appendix A. Validating and refining the decision
boundaries

The radial distribution of the scattering ring due
to liquid structures, in this case water, encodes
inter-molecular distance information. These in-
termolecular distances are expected to vary with
temperature, as the molecules pack closer or stay
further apart. In supercooled water, the shift-
ing of two peaks, indicative of the most likely
nearest-neighbour and next-nearest-neighbour dis-
tance, was the most significant observation in ear-
lier experiments. This trend was successfully recre-
ated here when the appropriate detector correc-
tions were applied on frames with the coarse label
4 (grey), which were images that corresponded to
the strongest liquid signature and weakest ice sig-
nature. By stratifying the statistics by the nozzle

Fig. A1: Radial profiles of average liquid water scat-
tering I(q), stratified by nozzle distance, which
controls droplet temperatures. The peak shifts
agree with earlier experiments.

distance, which in turn controls the temperature of
the droplet, this trend was re-created, validating our
physical interpretations.

Fig. A2: UMAP embeddings of reduced representa-
tions, coloured by the preliminary classification
labels obtained separately. A: All images from
a single run. B: UMAP distribution re-clustered
with DBSCAN. The bulk of the distribution were
set re-classified as blanks (blue), while the rest
were considered hits (red).

To refine the decision boundaries that were man-
ually drawn on the coarse-grained representation
space (liquid-like and ice-like), each diffraction pat-
tern, on account of its high compressibility from
PCA, was represented as PCA weights from both the
sum and maximum coarse-graining. This highly
compact representation (D = 10) enabled UMAP
across many measurements. This method was suit-
able for images within a single runN ≃ 106, but not
for the entire dataset.
To refine the decision boundaries, we exploited

the knowledge of the low hit-rates to identify the
clusterwith the largest population as blankswithDB-
SCAN (Figure A2 B). With a new set of binary clas-
sifications, a 5-layered MLP was trained to map im-
ages for hit classification. In thismanner, amore nu-
anced decision boundary can be obtained.
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