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1 SUPPLEMENTARY MATERIAL OVERVIEW
In the following supplementary material, we first provide the de-
tailed network architectures of our proposed approach (Sec. 2).
Then we describe the details of benchmarking datasets and ablation
studies (Sec. 3). Finally, we provide additional experiments and
ablation analysis (Sec. 4).

2 DETAILED NETWORK ARCHITECTURE
2.1 Architecture: Illumination Regulator
As shown in Fig. 1, the network architecture of our illumination
regulator 𝑵 𝒊𝒓 (𝝎𝒊) is based on a shallow U-net structure, compris-
ing three encoding layers with max pooling for downsampling, and
three decoding layers with bilinear interpolation for upsampling.
This strategic design integrates three distinct encoding layers em-
ploying max pooling to efficiently reduce the spatial dimensions
for downsampling, capturing the essential low-level features while
progressively diminishing computational complexity. Conversely,
the architecture boasts three symmetric decoding layers, utiliz-
ing bilinear interpolation for upsampling, effectively restoring the
resolution of the processed features. These layers are adept at recon-
structing the intricate spatial hierarchies of illumination attributes.
We extract illumination features (i.e., 𝒇 [𝒐 ]

𝒊 ) from the final three
decoding layers to prepare for modulation of the reflectance map V
in the subsequent stage. In the last layer, we introduce an activation
function with Sigmoid to obtain the modulation factors (i.e.,𝜶 and
𝜷 ). This is then used in a weighted operation, followed by a point-
wise division with the input image. Finally, a clamping operation is
performed to obtain the reflectance map V. This deliberate choice
facilitates a nuanced adjustment of the incoming features, allowing
for a refined weighting operation that precedes a methodical point-
wise division with the original input image. This division operation
is key to disentangling the reflectance components from the raw
captured data. Our illumination regulator is thus a testament to a
harmonious fusion of structural ingenuity and functional precision,
crafted to empower the subsequent stages of our computational
framework with refined and contextually informed illumination
features for superior image enhancement results.

2.2 Architecture: Feature Refinement Network
As depicted in Fig. 2, the network architecture for our feature refine-
ment 𝑵 𝒇 𝒔 (𝝎𝒔) is built upon a shallow U-net framework. It consists
of three encoder layers incorporating transformer-based Encoder
Blocks [6, 12] and max pooling for downsampling, complemented
by three decoder layers that utilize IHEM modules and bilinear
interpolation for upsampling. In the last three layers of the decoder,
the IHEM modules receive illumination prior features from the
previous stage and multi-layer semantic hint features from frozen
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Figure 1: Network architecture of our illumination regulator.

SAM [5, 14] of the general semantic model. The architecture’s syn-
ergy is encapsulated in the blue and pink box annotations within
the figure, symbolizing the dual modulation strategy that enables
the adaptive recalibration and finessing of reflectance characteris-
tics. This process is pivotal for the elucidation of intricate feature
details in the reconstructed image. The final layer introduces a
dynamic up-sampling module [3] that yields the super-resolved
output. In the nuanced construction of the FFN (Feed-Forward Net-
work) within the encoder transformer and the IHEM, we opt for
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a novel dual-pathway design. Each path undergoes a linear trans-
formation, with one being subjected to the GELU (Gaussian Error
Linear Unit) non-linearity [4], fostering a fusion of feature maps
with diversified receptive fields. Depth-wise convolution ingrains
the positional relevance of adjacent pixels within the information-
rich feature space, thereby accentuating the enrichment of features
with pertinent contextual data. This strategic formulation is instru-
mental in the network’s capability to discern and harness local
image structures pivotal for the restoration task at hand. This re-
fined network architecture, therefore, is not merely a series of layers
but a thoughtful orchestration of feature flow and refinement, tai-
lored to learn and enhance the salient structural components of
images for high-fidelity restoration.

3 BENCHMARKING DETAILS
Data Preparation.We evaluated the benchmark performance of all
compared methods across four widely recognized datasets: 1) REL-
LISUR1, 2) DarkFace [11]2, 3) Dark-Zurich [10], and 4) Cityscapes [2].
We commenced our experimentation using the authentic RELLISUR
dataset as our primary training set, with an input dimension of
624x624 pixels. This dataset encompasses 1045 image pairs spanning
three different resolution scales (× 1, × 2, and × 4) and five distinct
low-light levels (ranging from -2.5EV to -5.0EV), consisting of low-
resolution, low-illumination images alongside their high-resolution,
normal-light counterparts. To broadly assess the real-world perfor-
mance of our proposed method under various authentic low-light
open scenes and different exposure conditions, the remaining three
datasets were employed as extensive validation sets. Specifically,
the DarkFace dataset, comprising 1000 images with dimensions of
1024x720, was utilized to further gauge the generalization capabil-
ity of our method in real-world nighttime scenarios. Additionally,
we selected a subset of 151 nighttime autonomous driving scenes
from the Dark-Zurich open dataset, with dimensions downscaled
to 480x270, to serve as a test set. Lastly, data from the Cityscapes
dataset pertaining to the Strasbourg location during nighttime were
chosen and subjected to a darkening process, adopting a day-to-
night domain transfer simulation scheme [7], with dimensions set to
1024x512. These diverse datasets facilitated a comprehensive eval-
uation of our approach across a variety of challenging low-light
conditions.

Implementation Details.We adhere to the tri-level learning
strategy as outlined in Alg. 1 for our network training, with the
total number of iterations set to 150,000. We utilize the Adam opti-
mizer with beta values configured at [0.9, 0.999]. The initial learning
rates for the upper and lower layers of the two stages are set to
𝜸𝒖 = 1𝑒−4, 𝜸𝒍 = 2𝑒−4, 𝒐𝒖 = 1𝑒−4 and 𝒐𝒍 = 1𝑒−4, respectively. A
cosine annealing restart strategy is implemented for cyclic learning
rate scheduling. The dataset {D} is partitioned into {D𝑢𝑙 } ∪ {D𝑙𝑙 }
and at a distribution ratio of 1 : 5. Experiments are conducted
using PyTorch version 2.0.1, which supports CUDA 11.7, on a sin-
gle NVIDIA RTX A6000 GPU with 48GB of RAM. A curriculum
progressive training process is introduced, where the size of input
image patches and the batch size are progressively adjusted in accor-
dance with the training progress. In the initial stages, smaller image

1https://vap.aau.dk/rellisur/
2https://flyywh.github.io/CVPRW2019LowLight/
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Figure 2: Network architecture of our feature refinement
network.

patches and larger batch sizes are used, while in later stages, the
sizes of the image patches increase and batch sizes decrease. Three
data augmentation operations are incorporated: random cropping,
random rotation, and random flipping.

4 ADDITIONAL EXPERIMENTS
4.1 Results on DarkFace Dataset
The comparative visualization presented in Fig. 3 demonstrates
the performance of various methods on the challenging DarkFace
dataset, incluing PAN [15], SwinIR [6], MIRNet [13], Restormer [12],
SRFormer [16], and HAT [1]. The input images, characterized by
their low-light conditions, pose significant difficulty for feature dis-
cernment, color fidelity, and texture preservation. The PAN method
appears to over-enhance the scene, leading to unnatural color satu-
ration and loss of detail in brighter areas. MIRNet’s output shows
improved visibility; however, it introduces a red tint across the im-
age, potentially compromising natural color representation. SwinIR
delivers better color balance but still struggles with artifact preser-
vation around light sources. Restormer offers a notable improve-
ment in terms of color accuracy and detail enhancement, yet some
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Figure 3: Qualitative segmentation results on the DarkFace [11] dataset.

regions remain underexposed, affecting the visibility of finer de-
tails. SRFormer, while adept at illumination enhancement, seems
to smooth out some of the textures, leading to a loss of detail in
certain areas. The HAT method provides a balanced enhancement,
although some parts of the image appear slightly washed out, indi-
cating a potential compromise in dynamic range and contrast. Our
proposed solution, in contrast, stands out for its ability to maintain
a natural appearance while significantly improving overall visibil-
ity. It demonstrates superior texture clarity and color rendering,
preserving both the integrity of the scene and the details necessary
for accurate perception and analysis. Overall, our approach yields
a comprehensive improvement in image quality, addressing the

intrinsic complexities of low-light image processing with greater
efficacy than other methods showcased.

4.2 Results on Darken Cityscapes Dataset
Fig. 4 showcases a side-by-side comparison of enhancement meth-
ods applied to the Darken Cityscapes Dataset, which is charac-
terized by its challenging low-light conditions. The ’Raw’ images
serve as our baseline, depicting urban scenes with underexposed
areas that obscure critical details. When artificially darkened, these
’Darken’ images further accentuate the challenge, with essential
features becoming nearly indiscernible. The ’Restormer’ method
makes notable improvements in brightness and contrast, yet it
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Figure 4: Qualitative segmentation results on the darken Cityscapes [2] dataset.

tends to introduce a slight yellow bias, which can be observed in
the over-saturation of the yellow car and the building façades. The
’SRFormer’ algorithm, while it enhances overall luminance, appears
to struggle with noise, particularly in the darker regions, leading to
a grainy texture. ’HAT’ provides a more balanced enhancement, cor-
recting the exposure with fewer color shifts. However, it falls short
in recovering finer details, as evidenced by the somewhat blurred
appearance of architectural elements and street surfaces. The ’LL-
Former⇒ HAT’ combination displays a marked improvement in
color accuracy and detail preservation. Nonetheless, it exhibits some

oversmoothing, particularly in areas requiring subtle texture differ-
entiation. Our method, in contrast, achieves a harmonious balance,
significantly enhancing visibility without compromising natural
color tones or introducing undue artifacts. It adeptly restores the
vibrancy of the scene, including the clarity of line markings on
the road and the intricate brickwork of the buildings, which are
now distinct and sharp. The enhancement effectively illuminates
the scene, bringing forth details that were previously lost in the
shadows while maintaining the integrity of the original colors and
textures. Overall, our approach stands out for its ability to deliver
a clear and authentic representation of the nighttime cityscape,
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Figure 5: Quantitative results on three metrics for darken
Cityscapes [2] dataset.

offering an improved visual experience that is closest to what one
would expect in naturally lit conditions.

Fig. 5 illustrates the quantitative performance of enhancement
techniques in terms of Natural Image Quality Evaluator (NIQE) [9],
Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [8]
and MetaIQA [17]. Our method registers a BRISQUE score im-
provement of approximately 1% over the second-best, Restormer,
suggesting marginally enhanced naturalness in image quality. In
the NIQE assessment, our score improves by roughly 3% compared
to the HAT method, indicating a closer resemblance to natural
image statistics. Notably, our method achieves a MetaIQA score
that is about 16% higher than LLFormer⇒ HAT, the next closest
competitor, highlighting a significant leap in perceived image qual-
ity. These metrics collectively affirm the superior performance of
our approach in rendering high-fidelity images from the Darken
Cityscapes dataset.

4.3 Ablation Studies
In Tab. 1, we dissect the impact of the LII module and the L𝑠𝑟𝑙

loss on our model’s performance. These studies were conducted
on the RELLISUR dataset for the 2 × upscaling task, with findings
quantified across three metrics: PSNR, SSIM, and LPIPS. The full
model, encapsulating all designed features and loss functions, sets
a high bar with a PSNR of 22.456, an SSIM score of 0.744, and an
LPIPS value of 0.304, illustrating a robust enhancement capacity.
When the LII module is excluded (w/o LII), there’s a noticeable dip
in performance across all metrics: PSNR drops by approximately
2%, SSIM by around 4%, and LPIPS increases by roughly 28%, which
correlates to a decrease in image quality and structural accuracy.
Moreover, the variant without the L𝑠𝑟𝑙 loss (w/ LII (w/o L𝑠𝑟𝑙 )) also
displays a performance reduction, with a PSNR decrease by nearly
1% and SSIM by about 3%, but a less pronounced increase in LPIPS
by approximately 23%. These results underline the significance of
the L𝑠𝑟𝑙 loss in fine-tuning the perceptual details and achieving
closer alignment with human visual perception. The ablation study
clearly demonstrates the integral roles that both the LII module and
L𝑠𝑟𝑙 loss play in our model’s superior performance. The LII mod-
ule’s impact is particularly noteworthy in maintaining structural
integrity and perceptual quality, which are critical for real-world
applications of super-resolution.

Table 1: Ablation studies for LII module and L𝑠𝑟𝑙 loss. We
report quantitative results on three metrics on the 2 × task
based on RELLISUR dataset.

NO Model PSNR↑ SSIM↑ LPIPS↓

1. Ours (Full model) 22.456 0.744 0.304

2. w/o LII 21.969↓0.487 0.710↓0.034 0.390↑0.086

3. w/ LII (w/o L𝑠𝑟𝑙 ) 22.04↓0.416 0.712↓0.032 0.396↑0.092
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