Supplementary Material

A Signed permutation representations

A.1 Classification up to conjugacy

Let {e1,...,e,} be the standard orthonormal basis set on R”. For each ¢ = 1,...,n, define
€_; = —¢;.

Forevery B € PZ(n), let g : PZ(n) — PZ(n) be the inner automorphism defined by 15 (A) =
B~'AB. Using this notation, two signed perm-reps p, p’ are conjugate if there exists A € PZ(n)
such that p’ = 14 0 p.

The following proposition states that the property of irreducibility is invariant under conjugation, and
it thus makes sense to speak of the irreducibility of an entire conjugacy class pF'Z.

Proposition 7. Let p be an irreducible signed perm-rep. Then every signed perm-rep p' conjugate to
p is also irreducible.

Proof. Let A € PZ(n) such that p'(g) = A~'p(g)AVg € G. Note that for eachi = 1,...,n,
Ae; € {e41,...,exn}. Thus, forevery i,j = 1,...,n, there exists g € G such that

p(g)Ae; = £Ae;
A7 p(g)Ae; = e
p'(g)e; = *e;.
O

We next prove a fundamental lemma that establishes a correspondence between irreducible signed
perm-reps and the action of G on certain coset spaces. This is a generalization of the correspondence
between ordinary unsigned permutation representations and the action of G on its coset spaces, which
is often formalized in terms of the so-called “Burnside ring” [Burnsidel [1911}, [Bouc,, [2000]. This
lemma is also the basis for the type 1 vs. type 2 dichotomy of irreducible signed perm-reps mentioned

in Sec.2.3

We require two new definitions first. An unsigned permutation representation (unsigned perm-rep) is
a signed perm-rep p such that p(g) € P(n)Vg € G. A signed perm-rep p is said to be transitive on a
set S C R™ if for every v, w € S, there exists g € G such that p(g)v = w.

Lemma 8. Let p be an irreducible signed perm-rep. Define K < H < G and U € Z(n),
U = diag(uq,...,uy,), by

H={geG:plg)er = *e1}

K={geG:p(g)es =e1}

uo JL 39 e Glpgler = e
! —1, otherwise.

Let {q1,...,9n} be a transversal of G/H such that Up(g;)Ue; = e;. For eachi =1, ..., n, define
g—i = gih forsome h € H\ Kif|[H : K| =2and h =1if|H : K| = 1. Then:

(a) |H: K| <2

(b) If |H : K| =1, then Up(g)Ue; = e; iff g9: K = g; K. Moreover, g — Up(g)U is an
unsigned perm-rep and is transitive on {e1, ..., e, }.

(c) If |H : K| = 2, then p(g)e; = e iff g9: K = g; K. Moreover, U = I,, and p is transitive
on{tey,...,te,}.



Proof. (a) If there is no h € G such that p(h)e; = —ey, then H = K, and hence |H : K| = 1. On
the other hand, suppose there exists h € G such that p(h)e; = —e;. Then we have
H={ge€G:plg)er = +e1}
={9€G:plg)es =e1}U{g e G:plg)er = —ex}
=KU{geG:ph Hplg)er = —p(h™ )er}
=KU{geG:p(h tg)e; =e1}
= K UMK,
and hence |H : K| = 2.

(b) Suppose |H : K| = 1. Let4,j € {£1,...,+n}, and suppose there exists g € G such that
Up(g9)Ue; = e;. We have
Up(g)Ue; = e,
Up(9)UUp(g:)Uer = Up(g;)Ue:
p(g)p(gi)urer = p(g;)urer
plg; 'ggi)er = ex
9;'99: € K
99i K = g; K.
This sequence of inferences holds in reverse as well, thus establishing the first part of the claim.
Since |H : K| =1, then g_; = ¢;Vi € {1,...,n}, and hence the above states that g — Up(g)U
is equivalent to the action of G on {¢1 K, ..., g, K}, which is exactly the coset space G/K since

K = H. By the established equivalence, g — Up(g)U acts transitively on {ey,...,e,}. That
g — Up(g)U is an unsigned perm-rep immediately follows from this transitivity.

(c) Suppose |H : K| = 2. By the same reasoning as in (b), we can establish that Up(g)Ue; = e,
iff gg; K = g; K. Since |H : K| = 2, then clearly G/K = {g9+1K, ..., g+ K}. We thus have that
g — Up(g)U is equivalent to the action of G on G/K. By this equivalence, g — Up(g)U acts
transitively on {+eq, ..., e, }. That U = I,, immediately follows from this transitivity, and this in
turn implies that p(g)e; = e; iff gg; K = ¢, K and that p acts transitively on {+e, ..., xe,}. O

Remark 9. In LemmalS| the irreducibility of the signed perm-rep p is necessary to guarantee the
existence of g; € G such that Up(g;)Uey = e; foreachi=1,... n.

Remark 10. In Lemma the signed perm-rep p is said to be of type 1 (resp. type 2) if |H : K| =1
(resp. |H : K| = 2).

We now prove Thm. [T}

Proof of Thm.[I] (a) Recall by definition of CS,, either |[H : K| = lor |H : K| = 2. Let
i,j € {1,...,n}. Since G acts transitively on G/ H, then there exists g € G such that gg, H = g; H.
If |H : K| = 1, then this is equivalently gg; /X = ¢; K so that ppx(g)e; = e;; the rep prx is thus
irreducible. If instead |H : K| = 2, then we have either gg; K = g, K or g¢; K = g;hK = g_; K,
so that ppx (9)e; = ex; = *te;; the rep pr i is still irreducible.

(b) Let p’ be an irreducible signed perm-rep. We handle type 1 and type 2 as separate cases.

(Case 1) Suppose p’ is type 1. Then by Lemma o’ is conjugate to an unsigned perm-rep. We
can therefore assume, without loss of generality, that p’ is an unsigned perm-rep and thus corresponds
to the action of G on G/H' for some H' < G. Let (H, H)“ € CZ, be the unique conjugacy class

such that H is conjugate to H’. Note that pg g is also an unsigned perm-rep and is clearly conjugate
to p’, thus completing the proof for the type 1 case.

(Case 2) Suppose p’ is type 2, and define
H' ={geG:p'(g)er = *e1}
K'={geG:p'(9)er=e1}
gK' ={9€G:p(g)e1=¢e;}Vi=1,...,n.



Then there exists a unique (H, K)¢ € CZ, and g. € G such that

H' =g.Hg,'
K' =g.Kg,".
Note that since p’ is type 2, then |H : K| = |H' : K'| = 2; thus, G/K = {911 K,...,9:.K}.

Define o : G — {g+1,...,9+n} suchthat g € o(g)K, and define a permutation 7 on {£1,...,+n}
such that

Ir(iy = 0(9ig+)-
Let A € PZ(n) such that Ae; = e ;) for each 7. Then we claim p’ = 14 o pyx. Forany g € G
andi € {£1,...,+n},letj € {£1,...,4n} such that p’(g)e; = ¢;. Using Lemma|[8](c)} we have
p'(g)ei = €;
99;K' = ¢;K'
99i9-Kg. ' = gjg.Kg.
99i9- K = gi9. K
90(9:9:) K = o(g59.) K
99x) K = gn () K
PHEK(9)€x(i) = €x(j)
prK(9)Ae; = Ae;
A prc(g)Ae; = e;
(Yaopur)(g)e = e;.

This sequence of inferences holds in the reverse direction as well, and hence p’ = 14 o pgk as

claimed. O
Remark 11. The transversal {g1, ..., gn} of G/H used in the definition of py x can be recovered
from the latter up to K. Let {g1, ..., g,,} be another transversal of G/ H such that pg i (g})e1 = e;.

By definition of pr i, g1 K = ¢, K. Since g1 € K, then ;K = g; K.

A.2 Some useful properties

For every z € {—1,1}", define the signed perm-rep
prK::(9) = diag(z)pu K (9) diag(z)Vg € G.

The following proposition and subsequent corollary list some useful properties of the pg .. Note

that pgx = prK,, With z = I, and hence the statements below hold in particular for the prx as
well.

Proposition 12. Let p = pp., be an irreducible signed perm-rep. Let Z = diag(z). Then the
following statements are true:

(a) The subgroups H and K satisfy

H={g€G:p(g)er = £er}
K={geG:p(g)e1 =e1},
and p is of type |H : K|.

(b) If pistype 1 (|H : K| = 1), then pui(g) = Zp(g)Z is an unsigned perm-rep that acts
transitively on {e1, ..., e, }.

(c) Ifpistype 2 (|H : K| = 2), then p acts transitively on {te1, ..., e, }.

Proof. (a) Define the subgroups

H ={geG:plg)ey = ter}
K'={g€eG:p(g)er =e1}.



We then have
H ={g€G: Zpur(g)Zer = +e1}
={9€G:pux(9)Zer = £Ze1}
={g € G:puk(g)zre1 = tzi1e1}
={g€G:puk(g)er = e}
By definition of p i in Thm. [T} we have
H ={9€G: 9K =g K}
={g9€G:gK =KorgK =hK}
= KUK
=H.
?Ve can|simi1arly show that K’ = K. By definition of type in Remark[10] p is of type |H' : K'| =
H: K|

(b) Suppose p is type 1 so that |H : K| = 1 and hence H = K. Then pyx(g)e; = e; iff
99:K = g; K, where {g1, ..., g, } is the transversal of G/H used in the definition of p g in Thm.
Since H = K, however, {g1, ..., g,} is equivalently a transversal of G/ K, and hence we see that
the action of ppx is equivalent to the action of G on G/K. As in the proof of Lemma this
implies the claim.

(c) Suppose p is type 2. Then the claim immediately follows by Lemma g][(c)] O

The following corollary results from the combination of Lemma [8]and Prop. 2]
Corollary 13. Let p be an irreducible signed perm-rep. Define K < H < G and z € {—1,1}" by

H={geG:p(g)er =*e1}
K={g9€G:plg)er =e1}

_ {1, if3g e G |p(gler =e;
Z; = 1

otherwise.

Then p = pr ... Moreover, if pis type 2 (|H : K| = 2), then z = I so that p = prK.

Proof. 1f p is type 2, then by Lemma p is transitive on {+ey, ..., +e, } sothat z; = 1 for each
i=1,...,n. Now let p.(g) = diag(z)p(g) diag(z)Vg € G. Then again by Lemma p-(9)e; =€
iff gg; K = g;K; however, recalling Thm. |I|, this is identical to the definition of pgx. Hence,
P = PHK, or equivalently p = prk,.. O

A.3 Group cohomology

For every signed perm-rep pyx, let 7y : G — P(n) and wy i : G — Z(n) be the unique functions
satisfying pprx (9) = wirk (9)7r(g)Vg € GE The following proposition justifies the notation 7 g;
i.e., mg does not depend on the choice of K and z.

Proposition 14. Let ppx be an irreducible signed perm-rep of G, and let my i : G — P(n) and
Caxr : G — Z(n) be the unique functions satisfying pux(9) = 7ur(9)Cukx(9)Vg € G. Then
T i s independent of K.

Proof. As in Remark let {g1,...,gn} be a transversal of G/H such that pyx(g;)e1 = e; for
i =1,...,n. In general, g; € K; however, without loss of generality, assume g; = 1 so that it is
independent of K. If g € G and ¢,j € {£1,...,£n} such that prx(g)e; = e;, then define 7 x
and (g gk such that

Tk (g)ei = €|

Cax(g)e; = sign(j).

2By uniqueness of factorization in a semidirect product, there exist unique functions 7 : G~ P(n) and
(,w: G — Z(n) such that p(g) = 7(g9)¢(9) = w(g)m(9)Vg € G.



It is then easy to verify that pyx (9) = T"uk(9)Cuk(9)¥g € G; hence by uniqueness, these are

the correct definitions of 7y k and (g . By these definitions, for g € G and ¢,j € {1,...,n},
Tk (9)e; = e; iff gg; K = g+; K, which in turn holds iff gg; H = g; H. This reveals that 7
does not depend on K but only H. O

The following proposition relates the structure of irreducible signed perm-reps of G to its cohomology.

Proposition 15. For every conjugacy class ptf. of irreducible signed perm- reps, define the G-module
My = ({0,1}" 7rH) under addition modulo 2 where n = |G|/|H|. Define O : G — My such
that O (9) = 5[ — diag(wrk (9))]- Then:

(a) The first cohomology group of G with coefficients in My is given byE|

where [Wp k] is the set of all cocycles cohomologous to wy i, and where the addition
operation satisfies

Wnk] =Wk, + [Onk,] & K = KiN K U((H\ K1) N (H \ K2)).
(b) The partition of the first cohomology group into orbits under the action of the G-module
automorphism group aut(Mp) is given by

HY(G,Mpg)/auwt(Mp) = {{[0ux] : (H,K') € (H,K)°} : (H,K)® € C5,}.
(c) puk is type 1 if and only if Wy k is in the zero cohomology class.

Proof of Prop.[I3] (a) We first show that every &y i is a 1-cocycle by verifying the cocycle condition.
For g1, g2 € G, we have

wrrk(9192)7H(9192) = prK(9192)
(

Equating the factors contained in Z(n), we have

wik (9192) = Wik (91) 7 (91)wak (92)7m (1) "

Writing this in terms of vectors in M, we obtain the 1-cocycle condition:

Ok (9192) = @rr(91) + T (91) 0K (92),
and hence wp i is a 1-cocycle.

Next, before proving the main claim, we characterize all cocycles cohomologous to Wy . For
every z € {—1,1}", define the signed perm-rep pyk..(g) = diag(z)pux (g) diag(z)vg € G, and
let 7., : G — P(n) and wpk., : G — Z(n) be the unique functions satisfying prx..(g) =
WHK:2(9)TH,2(9)Vg € G. We have forall g € G,

prk;=(g) = diag(2)prk (9) diag(z)
w2 (9)Th:z(9) = diag(2)wn k (9)7u (g) diag(2)
= diag(2)wrx (9)7r (9) diag(2)mr(9) "7a (g)-
Equating factors in P(n) and equating factors in Z(n), we obtain
T:2(9) = 7r(9)
wirk::(9) = diag(=)wrx (9)7r (9) diag(2)mr (9)

3We use the notation {. ..}z to emphasize that, during the construction of the set, the enumerated elements
are distinct.



The first of these equations tells us that 7., is independent of z, and we will thus omit the subscript
zin ., henceforth. Writing the second of these equations in terms of vectors in My, we have
Onk:(9) =2+ 0ur(g) + ma(9)Z
= (mu(9)2 — 2) + @k (9),

where we used the fact that 2 = —2 (mod 2). Since g — 7(g)2 — Z is a coboundary, then &y k. is
cohomologous to wr i ; from the above, the converse is also easily verified.

We thus have

[(ZJHK] = {L:-JHK;Z 1z e {*1, l}n},
where distinct z do not necessarily imply distinct W g, .
We now prove the main claim. We first prove that the cohomology classes [y k] enumerated
overall K < H | |H : K| < 2 are distinct. Suppose [0pk,| = [OnK,]; 1., Ok, and Opk,
are cohomologous. We will show K; = K5. By the above, there exists z € {—1, 1}" such that

WHK, = WHK,;z; Converting this back in terms of diagonal matrices and multiplying the resulting
equation from the right by 7y, we obtain pr g, = prK, ;.. By definition of pr k., we have

{g c G pHKQ(g)el = 61} = KQ.
On the other hand,

{9€G puK,(9)er =er} ={g9€G:

PHEK,:z(g)e1 = e1}

={g € G : diag(z)pu Kk, (g9) diag(z)e; = e1}
= {9 € G: puk, (9) diag(z)er = diag(2)e1 }
={9€G:puk,(9)z1e1 = z1€1}
={9€G:prk, (9)e1 =e1}

— K.

Ergo, K1 = Ko.

We next prove that every 1-cocycle is contained in one of the cohomology classes [Wpk]. Let

@ : G+~ Mg be al-cocycle. Then p(g) = w(g)wg(g)Vg € G defines an irreducible signed perm

rep. It is easy to verify that
H={geG:plg)er = *e1},

and define
K ={g€G:plgler =er}.
Then by Cor.|13| p = pr k., for some z € {—1,1}", and hence & = Wy ., so that & € [Wpyk.

All that is left for (a) is to prove the claimed identity for the addition operation. First, however, given
a cocycle W .., note that by Prop. [T2](a)} we have

K={9€G:pur..(9)e1 =er}
={9€ G :wnuk;:(9)mu(g)er = e1}
={g9€ H :wyk.(g9)e1 = e1}
={9€eH wyk..(9)11 = 1}
= {g € HZ&)HK;Z( )1 = 0}

Now consider the sum of two cohomology classes [Wr i, | and [V i, ]- Since we have established all
elements of the cohomology group, then we know that there exists K < H | |H : K| < 2 such that

Wrk| = [OrK,] + [WHK,]-
Thus, there exists z € {—1,1}" such that
WHK:z = WHK, + WHK,-
Now by the above, we have
K= {g € H: ot)HK,z(g)l = 0}
={g9 € H :wnK, (91 +Wrk,(9)1 = 0}

= {g € H: ‘DHKl(g)l = @HK2(9)1 = 0} @] {g € H: a)HK1(g)1 = @HKQ(Q)l = 1}
=K NKyU((H\Ky)N(H\ K»)),



thereby establishing the claim.

(b) Let [Unk,] and [Wy K, | be two cohomology classes. We must show (H, K1) is conjugate to
(H, K3) if and only if there exists P € P(n) such that [P, w(g)] = 0Vg € G and [Pop i, ] = [0 K,]-
Suppose (H, K1) and (H, K5) are conjugate. Then by Thm. |1} py k, and py k, are conjugate, so
that there exist P € P(n) and Z € Z(n), Z = diag(z), such that for all g € G,

(9) = ZPpuk,(9)(ZP)"!
puK,(9) = ZPpuk, (9)P" Z
pHK;2(9) = Ppir, (9)P
Wi Kz (9)7H (9) = Ponr, (9)mu(9)PT
wHK,:=(9)TH(9) = Pwrk, (9)P Pru(g)P'.
Equating the factors in P(n) and the factors in Z(n), we obtain
mr(g) = Pru(g)P"
Wi Ky(9) = Pwrk, (9) P
The first of these equations establishes the commutation [P, 7r(g)] = 0. The second equation implies

PHK,\Y

WHEK,:2(9) = POrKk, (9)
[WrK,] = [POrK,]-
The above steps can be reversed to prove the converse.
(c) Forevery K < H | |H : K| < 2, observe that
KNHU((H\K)Nn(H\ H)) =K.

By (a), [0u k], H = K, is thus the zero cohomology class. Therefore, pg .. is type 1 (|H : K| = 1,
or H = K) if and only if [0y k] is the zero cohomology class. O

The type 1 vs. type 2 dichotomy is thus rooted in whether a signed perm-rep “twists” over G/H.
Proposition [I3]also lets us interpret the notation pg x: The subgroup H determines the coefficient
module My and hence the cohomology ring, and the subgroup K determines the cohomology class
in HY(G, My).

B Classification of G-SNNs

B.1 Canonical parameterization
Let f : R™ — R be a continuous piecewise-affine function. An affine region X C R™ of fisa
maximal polytope over which f is affine.

Let f : R™ +— R be an SNN of the form in Eq. |1} and note that f is a continuous piecewise-affine
function. Then the signature r of an affine region X C R™ is the binary vector r = H(Wx + b), for
any arbitrary choice of z in the interior of X and where H is the Heaviside step function (where we
set H(0) = 0).

The following small proposition establishes the identity given in Eq. 2]
Proposition 16. Forallz € Rand z € {—1,1},
ReLU(z) — ReLU(zz) = H(—2)x.

Proof. Ttis easy to verify that ReLU(x) — ReLU(—x) = x for all z. Now we have two cases:
Case 1 (z = —1) We have
ReLU(z) — ReLU(zz) = ReLU(z) — ReLU(—x)

— H[-(-1)e
= H(—2)x.



Case 2 (z = 1) We have
ReLU(x) — ReLU(zx)
ReLU(z) — ReLU(x)

We now prove Lemma 2]

Proof of Lemmal2] Given access to the data D = {(z, f(z)) : « € R™}, we will show that we
can in principle determine [W, | b.], ax, c«, d. uniquely. Since f admits the form in Eq. |1} the set
of points at which f is not differentiable is a union of n, distinct affine spaces each of dimension
m — 1, for a unique n, < n. From the data D, we can in principle determine the equation of each
affine space; let w*Tlx + b.; = 0 be the equation defining the ith affine space, where ||w.;|| = 1. Let
W, € R™X™ with ith row w*Tl and b, € R™ with elements b..;. Note that no two rows of [W, | b]
are parallel, as parallel rows would correspond to the same affine space. Thus, [W, | b.] € ©,,,. Note
that the action of any element in PZ(n.) on [W, | b,] leaves the corresponding set of affine spaces
invariant; we thus assume, without loss of generality, that [W, | b,] € §,,,, thereby establishing the
uniqueness of [W,. | b.]. The function f now admits the form

f(z) = a] ReLU[Z(W.x + b.)] + f(a),

for some a, € R™, Z € Z(n,), and some differentiable piecewise affine function f(x) : R™ — R.
Note that a,; # 0 foreach i = 1,.. ., n,; otherwise, we could simply delete the ith row of [W, | b.].

Since f is both piecewise-affine and differentiable, then it is necessarily affine; hence there exist
¢« € R™and d, € Rsuchthat f(z) = ¢l + d, and thus
f(z) = a] ReLU[Z(W,x + b,)] + &, z + d,.
Now applying Prop.[I6] we have
f(z) = a] ReLU(W,z +b,) — a] H(=Z)(W,z +b,) + ¢,z + d,
= a, ReLU(W,z + b,) + .z + d.,

where we define

¢ =& —al H=2)W,

do = d. —a] H(—Z)b..
All that remains is to show a., c,, and d, are unique. We start by showing a, is unique. Consider
two adjacent affine regions X, X’ C R™ of f, where the shared boundary is defined by the ith affine

space. Let r and 1’ be the signatures of X and X'. Letting « and z’ be two arbitrary points from the
interiors of X and X’ respectively, we have the following difference of gradients with respect to x:

Vi) = Vf(x) =W, diag(r)a, — W, diag(r)as
=W, diag(+' — 7)a,.

Since X and X’ differ only across the ith affine space, then all entries of 7’ — 7 are zero except the
ith entry. We therefore have

Vi(x') = Vf(x) = awlr, — ri)ws.

Since 7’ — r and wy; are nonzero and unique, then we can in principle solve this equation to determine
a unique value for a.;.

To show c, is unique, we recall the gradient of f evaluated at the point of differentiability x € X:
Vi(z) =W, diag(r)a. + c..

Since a, and W, have been determined, then we can in principle solve this equation to determine a
unique value for c,. Once this is done, we can then evaluate f at x and solve for the only remaining
unknown d,, thereby determining a unique value for d, as well. O



Remark 17. Suppose f : R™ — R admits the form in Eq.|l| Then it is possible for there to exist i
and j such that a; = —a;, w; = —wj, and b; = —b;. In this case, we have

a; ReLU(w;  + b;) + a; ReLU(w] 2 + b;) = a; ReLU(w; @ + b;) — a; ReLU[— (w; @ + b;)]
=a;(w] =+ b;),

which follows from Prop. - [16] Such affine and differentiable terms can thus arise, which is why we
include the c.x + d, term in Lemma2| Moreover, observe that because [W. | b,] € ©,,_ in Lemmal2]
no two rows of [W, | b,] are equal or opposites of one another, and thus no two hidden neurons can
be combined to yield an affine term; all affine terms are thus collected in the c.x + d. term, which
helps to make the canonical form of f unique.

In general, given a group action on a set, the existence of a fundamental domain is not guaranteed.
The next proposition guarantees the existence of a fundamental domain in ©,, under the action of
PZ(n) by way of a constructive example.

Proposition 18. Let <, be a total order on R™ L. Let Q) be the set of all [W | b] € ©,, such that the
first nonzero entry of each row of W is positive and the rows of [W | b] are sorted in ascending order
under <. Then § is a fundamental domain.

Proof. We will show that {AQ) : A € PZ(n)} is a partition of ©,,. First, however, let [IW | b] € Q.
Since the rows of [W | b] are nonzero (since the rows of W have unit norm), then the action of any
non-identity Z € Z(n) sends [W | b] out of . Similarly, since the rows of [W | b] are pairwise
nonparallel and in particular distinct, then any non-identity P € P(n) breaks the ascending order
of the rows of [W | b] and sends it out of 2. Finally, since no two rows of [W | b] are opposites,
then the actions of P and Z cannot cancel one another. It thus follows that every A € PZ(n) sends

[W | b] out of .

We now proceed to show the elements in the claimed partition are disjoint. Let A, B € PZ(n), and
suppose AQ N BQ £ (. So, let [W | b] € AQ N BQ. Thus, A~*[W | b] and B~[W | b] are both
in Q. We also note (B~1A)A~1[W | b] = B7Y[W | b]. If B~ A is not the identity, then by the
above, it sends A~1[W | b] out of €, so that B—1[W | b] ¢ €. Since, however, B~[W | b] € Q,
then B~1A = I so that A = B.

We next show that every [W | b] € ©,, belongs to some element of the claimed partition. Clearly,
there exists A € PZ(n) such that A[W | b] € Q, so that [W | b] € A~1Q. O

B.2 (-SNNs and signed perm-reps

We prove Lemma 3]

Proof of Lemma|3] We only prove the forward implication; the converse is then straightforward to
verify. We write f in its canonical form:

flz) = a*T ReLU(W,.x + b)) + CIIE +d,.

Let g € G. Since g is orthogonal and each row of W, has unit norm, then so does each row of W,.g.
Moreover, since the transformation [W, | b.] — [W.g | b.] is invertible and no two rows of [W, | b.]
are parallel, then the same is true for the rows of [W.g | b.]. Thus, [W,g | b.] € O,,., and hence
there exists a unique matrix p(g) € PZ(n.) such that [W.g | b.] € p(g)Q2n.. Let w(g) € P(n.) and
¢(g) € Z(n.) such that p(g) = 7(g)¢(g). We have

f(9z) = a] ReLU(W, gz +b,) + ¢, gz + d,
= a, ReLU[p(9)(p(9) ' Wagz + p(g9)~"b.)] + ¢ gz + d.
= a, ReLU[r(9)¢(9)(p(9) " Wagz + p(g)~"0.)] + ¢/ gz + d.
= a, 7(9) ReLU[C(9)(p(9) "' Wagz + p(g)'ba)] + ¢ g + d..
Using Prop. [16] this is

flgz) = a]m(g) ReLU(p(g) "' Wagz + p(g)~"b.) — al H(—C(9))(p(g) " Wz + p(g)~"b.) + ¢ gz + d.
= a/ 7(9) ReLU(p(g) "' Wigz + p(9) " 'b.) + [c] g — a] H(=C(9))p(9) "' Wiz + [di — a] H(=((9))p(g) ™ "b.].



Note that p(g) ' [W, | bi] € Q,,. Since f is G-invariant, then f(gz) = f(z)Vz € R™. By
uniqueness of canonical parameters with respect to the fundamental domain 2,,, (Lemma [2), the
canonical parameters of the SNNs f and f o g must be equal. We thus obtain the constraints

W, = p(g)"' W.g
al =a/7(g)
b = p(g) .
¢l =clg—alH(—((9))p(9) ' Wy
d. = d. —a] H(—((9))p(g) " bs.

The first three constraints are clearly equivalent to the ones on W, a,, and b, claimed in the lemma
statement; we thus take these as established. By the established W, and b, constraints, the ¢, and d.
constraints simplify to

¢l =clg—alH(=((9)W.
d. = d. — a; H(~((9))bs.
Now since ((g) is a diagonal matrix with &1 along its diagonal, then we have
1
H(=¢(9)) = 5(I = ¢(g))-

Using the established a, constraint, we have

ol H(=¢(g)) = =al (I - C(9))

2
= 0l (T - x(9)¢(9))
= 20l (I~ pl9))

By the established b, constraint, we have (I — p(g))b. = b, — b, = 0; we thus see that the above
constraint on d, is trivially satisfied. By the established W, constraint, the constraint on c, becomes

1

¢, =clg— §aI(I — plg))W.
1

=clg— §a*TW*(I -9)

1
gl =co+ 5([ —g"W,] a,.
Since this holds for all g € G, then we may substitute g with g to establish the claimed constraint

on ¢,.

Finally, we prove that p : G — PZ(n,) is a homomorphism. Let g1, g2 € G. By the established
constraint on W, we have
p(g1)p(g2) W | ba] = p(91)[Wega | b.]
= [Wig192 | bal.
On the other hand, by definition of p, we have p(g192)[Wi | bs] = [Wig192 | bs]. Thus, [W.g192 |
b,] is thus an element of both p(g1g2) "' Q. and of [p(g1)p(g2)] "' Qn«, Which in turn implies
p(g192) = p(g1)p(g2)- O

The next proposition states that every G-SNN can be written as a sum of irreducible G-SNNis, thereby
simplifying the classification problem of G-SNNss to that only of irreducible G-SNNs. Recall the
notation introduced in Sec.

Proposition 19. Every G-SNN admits a decomposition into a sum of irreducible G-SNNs.

Proof. Let f € SNN(G), and let p € F(f). Let n, be the degree of p; i.e., the number of rows of
the canonical weight matrix of f. Then partition {eq, . .., e, } into orbits such that e; and e; belong

10



to the same orbit if and only if there exists g € G such that p(g)e; = +e;. Without loss of generality,
select p € F(f) such that each orbit consists of consecutive elements (this is done by an appropriate
conjugation of p); i.e., each orbit has the form {e;, e;11,...,€e;4;}. Now write f in canonical form
such that the corresponding signed perm-rep by Lemma [3]is p:

f(z) = a] ReLUW,z + b,) + ¢z + d..
Foreachi = 1,..., k, where we have k orbits, define the G-SNN f; by taking only the elements
a4j of a,, rows w*Tj of W,, and elements b..; of b, such that e; belongs to the ith orbit; include the

affine term ¢ x + d, only in f;. Then clearly f = f1 + ... fi, where each f; is G-invariant and
irreducible. O

B.3 The classification theorem

This section gives a proof for Thm. 4] Recall the following notation introduced in Sec.[3.3} If A is a
linear operator (resp. set of linear operators), then let P4 be the orthogonal projection operator onto
the vector subspace that is pointwise-invariant under the action of A (resp. all elements of A). Note
that if A is a finite orthogonal group, then [Serrel [1977] sec. 2.6]

In addition, if P;, P, are two orthogonal projection operators, then let P; N P» be the orthogonal
projection operator onto ran(P;) N ran(Ps).
Before proving Thm.[4} we need to state and prove two lemmas. The first of these appears next.

Lemma 20. Ler K < H < O(m) be two finite orthogonal groups such that |H : K| = 2. Let
h e H\K Then Py mP2[+}L = P — Pyg.

Proof. Since |H : K| = 2, then K < H, and hence H/K = {K, hK} is a bona fide group. Thus,
there exists an isomorphism 7 : H/K > Zo, where we define Zo = {—1, 1} under multiplication.
Since we require ker(w) = K, then we have

1 ifhe K
h)y=4"
m(h) {—17 otherwise.

Now let

V =ran(Px N Poryp) = {v € R™ : Kv =v,hKv = —v}.
We thus see that (7, V') is a representation of H, and since 7 is scalar-valued, then (7, V') is a direct
sum of copies of a single complex-irreducible representation (irrep) of H. Noting that 7 is its own
complex-irreducible character, we have the orthogonal projection

1
P N Paryp = ] > w(h)h

heH
1 1
—HZW(Q)H@ > w(9)g
geK geEhRK
1 1
S22
geEK geEhK
1 1
s PO PR
|H| |H|
geEK geEH geEK
2 1
= 1 29 T 29
geK geEH
1 1
f@Zg—@Zg
geK geEH
= Pg — Pp.
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The second lemma, appearing below, will be used to characterize the condition [W, | b.] € O,,,
appearing in Lemma 2]

Lemma 21. Let J < G and {g1, ..., gn} atransversal of G/J with g1 € J. Let V < ran(Pj) be a
vector subspace, and let Py be the orthogonal projection operator onto V. Then there exists w € V
such that grw, . .., gow are distinct vectors if and only if st (Py) = J.

Proof. First we note that if w € V, then gyw, . .., g,w are distinct iff g;w # wVi € {2,...,n}; to
see this, we prove the equivalent statement that g;w, . . ., g,w are not distinct iff g;w = w for some
1 € {2,...,n}. For the reverse implication, g;w = w is equivalently g;w = gjw, since g; € J and
w € ran(Py); gyw and g;w are thus not distinct. For the forward implication, suppose g;w = g;w for
some distinct ¢, j € {1,...,n}. Then there exists k € {2,...,n} and g € J such that gpg = gj_lgl-.
We then have

GiW = g;w
g7 'giw = w
grgw = w
grw = w.

We now prove the stated lemma. Define the vector subspaces
Vi={veV:gv=uv}Vie{2,...,n}.
We have
JweV]|gw#wvie{2,....,n}eJweV|we¢VVie{2,...,n}

eIweV\ YW

1=2
<V, <VVie{2,...,n}
&g ¢ st(Py)Vie{2,...,n}
@St(Pv):J.

We now prove Thm. 4]

Proof of Thm. 4] (b) Suppose pEIZK € ran(F). We first prove the forward implication. Suppose
feFr Y pPZ ). Then the canonical parameters of f satisfy Egs. @ where the signed perm-rep
p in Lemma 3| satisfies p € p%4.. By an appropriate choice of fundamental domain €2,,,, we can
assume without loss of generality that p = pg . We proceed to prove the claimed expressions for
the canonical parameters of f.

Expression for a.: Regardless of its type, p is transitive on {ej, ..., e,, }, and thus so is 7. Hence,
by Eq.H] a. is a constant vector. That a # 0 follows from the definition of the canonical parameter
a in Lemma 2}

Expression for b,: If pis type 1, then it is an irreducible unsigned perm-rep and is transitive on
{e1,...,€en,}. Thus, by Eq. b. is a constant vector. On the other hand, if p is type 2, then it is
transitive on {*ey, ..., te,, }. In particular, for every ¢ = 1,. .., n,, there exists g € G such that
p(g)e; = —e;. Hence, b.; = —b,; for every 1, so that b, = 0.

Expression for W,.: By Prop. the subgroup K satisfies
K={g€G:plgler =e1}.

Thus, by Eq[3} the first row w T of W, satisfies w' = w' g¥g € K, or equivalently gw = w¥g € K.
Thus, w € ran(Pk).

12



In addition, if p is type 2, then by Prop.[12h, we have hw = —wVh € H \ K. Given any choice of
h e H\ K,wehave hK = H \ K. We thus have

hKw = —w
hw = —w
(2I + h)w = w.

Combining this with w € ran(Px), we have w € ran(Px N Pyryp). By Lemma 20, we obtain
w € ran(Px — Py ). Combining the results for both types 1 and 2, we establish w € ran(Px — 7Py ).
That ||w|| = 1 follows from the definition of the canonical parameter W, in Lemmal[2]

Now letwy ,...,w, be the rows of W,. Since G and p(G) are both orthogonal, then p(g;" Je; = e,
and hence the first row of p(g;" )W, is w," . By Eq.[3] the first row of W, g," is w," as well; thus, since
wy = w, then ngiT = wiT, or equivalently w; = g;w.
Expression for c,: We rewrite Eq. [6]as
(I —g)e. =3I —gW.lvg € G,
where we have used Eq.[8] This is equivalently expressed as
(I - Pg)e, = —%(I — Po)W.T.

We focus on the term .

(I—Pe)Wl=(I-Pg)gi+...+ gn)w.
Since Py is an average over all g € G, then Pgg; = PgVi € {1,...,n}. We thus have

(I — Pa)W,1=(g1+...+gn)w—nPgw.
If p is type 1 so that w € ran(Pg) = ran(Pp), then

(14 +gn)w=(91+...+gn)Prw
= nPgw,

so that (I — Pg)W*f = 0. On the other hand, if p is type 2, then hw = —wVh € H \ K; thus, w
cannot be fixed under all of GG, so that Pqw = 0 and hence

(I = Pe)Wol = (g1 + ...+ gn)w =W,
Combining the results for both types 1 and 2, we have (I — PG)W*T = 7W;1 and thus

1 o
(I —Pg)ex = _iaTW*l'

Since we already know the right-hand side is in ran(I — P ), then we obtain the expression for ¢, as
claimed.

For the reverse implication, let f be a G-SNN whose canonical parameters satisfy Eqs. Then
it is easy to see that the canonical parameters of f also satisfy Egs. Lemma 3] thus implies
F(f) = Pt

(a) By part (b) of this theorem, pt%, € ran(F) iff there exists a G-SNN f whose canonical
parameters satisfy Eqs. Without loss of generality, we assume a = 1 in Eq.[§]and ¢ = 0 in
Eq. Then ptZ. € ran(F) iff there exists [W. | by] € ©,,, such that W, satisfies Eq. and b.
satisfies Eq.[9] We now have two separate cases depending on the type of pr k.

Case 1: Suppose py is type 1. Without loss of generality, we assume b # 0 in Eq.[9] Then
[W. | b.] has pairwise nonparallel rows iff W, has distinct rows. By Eq.[7} p524. € ran(F) iff there
exists w € ran(Pg), such that gjw, ..., gpw are distinct; note this w is necessarily nonzero, and
hence without loss of generality, we assume ||w|| = 1. Noting that H = K since pyx is type 1, and
invoking Lemma1]with J = K and V = ran(Px ), we establish the claim.

Case 2: Suppose pp is type 2. Then b = 0 in Eq.[9} and [W, | b.] has pairwise nonparallel
rows iff so does W.. Thus, by Eq.[7} pFZ, € ran(F) iff there exists w € ran(Px — Py) such that
giw, . .., gyw are pairwise nonparallel; note this w is necessarily nonzero, and hence without loss
of generality we can assume ||w|| = 1. Forany h € H \ K, we have —g;w = g;hw = g_;wVi €
{1,...,n}. Moreover, {g41, ..., g+n} is a transversal of G/K. Invoking Lemma1]with J = K
and V = ran(Px — Py ), we thus establish the claim. O
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Table 1: Ratio of the number of irreducible G-SNN architectures to the number of irreducible signed
perm-reps of each type (1 vs. 2) for every group G, |G| < 8, up to isomorphism. The particular
representations used for each group are described in the main text.

G Typel Type2| G Type 1  Type 2

Cy 212 1/1 {e} 1/1 0/0
Cs 212 0/0 Cs 415 3/6
Cy 33 22 c3 8/16 135
Cs 22 00 | CoxCy 68 511
Ce 414 22 Ds 3/4 12
Cr 22 0/0 D, 58 13
Cs 414 33 Qs 6/6 17

C Examples

C.1 Irreducible architecture count

Using our code implementation, we enumerated all irreducible G-SNN architectures for every group
G, |G| < 8, up to isomorphism. For each group, we consider only one particular permutation
representation defined as follows: First, let [i1, . . ., 4,] denote the permutation on the orthonormal
basis {e1,...,e,} where e; — e;,. We then represent the cyclic group C,, by the set of cyclic
permutations generated by [2,...,n,1], and we represent the dihedral group D, as the group
generated by C,, together with the reversing permutation [n,n — 1, ..., 1]. We represent the direct
product of groups by the direct sum of the factor groups; e.g., if G; actson [1,...,n1] and G2 acts
on[l,...,no|,then Gy x Gy actson [1,...,n; + ny] with G acting on the first n; elements and
G acting on the last no elements. Finally, we represent the quaternian group (Jg in terms of the
following generators:

i=1[3,4,2,1,7,8,6,5]
j=1[5,6,8,721,3,4]
k=1[7,8,5,6,4,3,21].

For each group GG, we report the ratio of the number of irreducible G-SNN architectures of each
type to the number of irreducible signed perm reps of the respective type (Table[I). We see that
there are generally fewer type 2 architectures—which are the topologically nontrivial ones—than
type 1 architectures, although the number of type 2 architectures is not negligible. We also observe
that—especially for the direct products of groups—there is a large number of irreducible signed perm
reps that do not satisfy the condition in Thm. f][(a)} this is likely because in the rejected architectures,
some of the weight vectors are constrained such that the architecture is equivalent to a smaller
architecture already enumerated. This trend also motivates the need for more intuition about the
condition in Thm. @][(a)]

C.2 The dihedral permutation group

Consider the dihedral group G = Dg of permutations generated by
r=12,3,4,5,6,1] an
t=1[6,5,4,3,2,1]. (12)

There are 14 irreducible G-SNN architectures— 7 of each type. We visualize their canonical weight
matrices and corresponding cohomology classes in Figs.[4}{6] Each architecture is named “i.j” where
i and j index the subgroups H and K that are used to construct the architecture (see Thm. [d)); Table 2]
lists these subgroups for each architecture.

In contrast to the cyclic permutation group (Sec. d.T)), the cohomology class illustrations for G = Ds
have arcs of two colors; red (resp. blue) arcs represent the action of the generator r (resp. t).
The existence of any loops with an odd number of dashed arcs indicates a nontrivial topology.
For example, the four architectures 4.j with three hidden neurons correspond to the classes in
Hl(G, MH4) = 02 X 02.
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Table 2:  Subgroups K; < H; < G of the dihedral permutation group G = Dg such that the
irreducible signed perm rep pp, k; admits a corresponding irreducible G-SNN architecture named
“ij” in Figs.l-‘ 6 In each row, |H; : Ko| = 1and |H; : K;| = 2 for j > 1. The generators r and ¢ are
defined in Egs. [ 1H12

Ky K Ky, K3

Hy  (e)

Hy  (r®) (e)

Hy (1) (e)

Hs  (r’t) (e)

Hy (r*,t)  (r°) () (1)
Hs (r?,rt)

H6 D6 <’I"2, t>

Architecture 0.0

Architecture 5.0

O 0w N o U B~ W N

e
N R O

Figure 4: Constraint patterns of the weight matrices and illustrations of the cohomology classes of
two irreducible G-SNN architectures for the dihedral permutation group G = Dg. These are the only
two architectures with no partnering type 2 architectures. Interpretation is the same as in Fig.[I] Red
(resp. blue) arcs represent the action of the generator r (resp. t) of Dg (see Eqs.[TTHI2). See Table 2]
to interpret the names “architecture i.j”.

An important remark is that while there are only two architectures 6.j corresponding to the subgroup
Hg, the corresponding cohomology group is H!(G, Mp,) = Cy x Cy. Thus, there are two cohomol-
ogy classes for which the corresponding signed perm reps failed the condition in Thm. f][(a)] It is
thus not necessary for an irreducible architecture to exist for every cohomology class.

We also draw the network morphisms given by asymptotic inclusions between the irreducible
architectures, as well as the shortcuts due to topological tunneling (Fig.[7); see Sec. [5|for exposition
on these concepts. As with Fig.[3] we determined the asymptotic inclusions manually by looking at
the first rows of the weight matrices depicted in Figs. }[j6]and observing how they nest. We obtain a
4-partite topology on the architecture space, plus some topological “tunnels” between architectures
belonging to a common cohomology ring.

C.3 The dihedral rotation group

As our final example, we consider a 2D orthogonal representation of the dihedral group G = Dk.
In this representation, the generator r is a 60° counterclockwise rotation, and the generator ¢ is a
reflection about the line y = tan(15°)x; we choose this line of reflection solely because it makes the
example interesting. There are six irreducible G-SNN architectures for this group—three of each
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Architecture 1.0 Architecture 1.1

Architecture 2.0 Architecture 2.1

A

Architecture 3.0

Figure 5: Constraint patterns of the weight matrices and illustrations of the cohomology classes of
the six-hidden-neuron irreducible G-SNN architectures for the dihedral permutation group G = Ds.
Interpretation is the same as in Fig. [I] Weights colored white are constrained to equal zero. See
Table2]to interpret the names “architecture i.j”.

type—and we visualize there contour plots (Fig.[8). The level curves are clearly invariant under 60°
rotations and are symmetric about y = tan(15°)x. The architecture names are still based on Table
but the generators r and ¢ are now 2D orthogonal transformations instead of permutations. Note
that for architectures 0.0 and 1.1, the corresponding subgroup K appearing in Thm. |4|is K = (e);
for architectures 2.0 and 4.2, K = (t); and for architectures 3.0 and 4.3, K = <r3t , whence the
columns in Fig.[§]

Each type 2 architecture in the second row of Fig. [§] is asymptotically included in the type 1
architecture depicted above it. This is the same situation as with the cyclic rotation group in Sec. .2}
each type 1 architecture approaches the corresponding type 2 architecture below it as its bias parameter
b, tends to zero. In contrast to the cyclic rotation group, however, there are other architectures that
are effectively confined from one another. The weight vectors of architecture 2.0 are orthogonal to
those of architecture 3.0, and hence one architecture can reach the other only if it passes through a
degenerate network with zero-valued weight vectors. By the same token, architectures 4.2 and 4.3
are topologically confined from one another, just as Prop. [f] states.

Finally, we note that while we have architecture 1.1, there is no architecture 1.0; similarly, we have
architectures 4.2 and 4.3 but not 4.0 and 4.1. This example thus demonstrates that the cohomology
classes in a given cohomology ring for which the corresponding G-SNN architecture exists (i.e.,
satisfies the condition in Thm. @][(a)) need not form a subgroup, and this raises the question: Are there
any discernible patterns in the set of irreducible G-SNN architectures (which satisfy Thm. @) as
we vary G? We will investigate this further as part of future work.
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Architecture 4.0

Architecture 4.1

/N

Architecture 4.3

%7
Z

1

Architecture 6.0

Architecture 6.1

- B

Figure 6: Constraint patterns of the weight matrices and illustrations of the cohomology classes of
the three-hidden-neuron and single-hidden-neuron irreducible G-SNN architectures for the dihedral
permutation group G = Dg. Interpretation is the same as in Fig.[I} See Table[2]to interpret the names
“architecture i.j”.

Figure 7: Network morphisms between irreducible G-SNN architectures for the dihedral permutation
group G = Dg. Every direct path in black represents an asymptotic inclusion. Red doubled-arrowed
arcs represent the feasibility of topological tunneling.
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Architecture 0.0 Architecture 2.0 Architecture 3.0
— — — ¥ —

Type 1

—20 -1 Y ¥ —20 -1s -lo -05 00

Architecture 4.3

2.0

2.0

—20 -1s -lo -05 00 o5 10

2.0

Figure 8: Contour plots of the six irreducible G-SNN architectures for the 2D orthogonal representa-
tion of G = Dg. The architecture names are still based on Table[2] but the generator r is now a 60°
rotation and ¢ is a reflection about the dashed black line. In architectures 0.0 and 1.1, weight vector 1
is unconstrained and was chosen arbitrarily for visualization. in the other four architectures, however,
weight vector 1 is constrained to a 1D subspace as depicted. Interpretation of these plots is the same

as in Fig.[2]

D Remarks

D.1 Asymptotic inclusion

Let SNN;,,(G) be the space of all irreducible G-SNNs equipped with the topology of uniform
convergence on compact sets. Let ST*I denote a hemisphere of the (m — 1)-dimensional unit sphere
such that it has no antipodal pairs of points. Choose an ordering on G so it has elements g1, . . ., g|g|
with g1 = 1, and define the map ¢ : R7% x S7~' x R x ran(Pg) x R = SNNj,(G) by

[p(a,w,b,c,d)](z) = alIGI ReLU(Wzx + bﬂg‘) +c'x+dvr € R™,

where the |G| x m weight matrix TV is defined as

|G|

W = Z ei(giw) "

=1

We call this the unraveled parameterization of G-SNNs, and it has the advantage that it has |G| hidden
neurons regardless of the associated signed perm-rep. We can easily transform it into the canonical
parameterization as follows: Let K’ < H < G be the largest subgroups such that |H : K| < 2
and w € Px — 7Py where 7 = |H : K| — 1; replace the parameter a with a|H |; and finally, use
(a|H|,w,b,c,d) and Thm. |(_?r )| to construct the canonical form. This is “rolling up” the G-SNN
so that only \G| /|H| of the |G| hidden neurons remain. Note that this procedure can be reversed,
so that we can move back-and-forth between the unraveled and canonical parameterizations. As a
consequence, it immediately follows that ¢ is a well-defined function, in the sense that it outputs a
G-SNN that is indeed irreducible, and is surjective.

Let ) be a fundamental domain in S_T_l under the action of G (note that Sf_l C R™), and let ¢ |

denote the restriction of ¢ to R”? x Q x R x ran(Pg) x R. Then ¢ |q is injective as well and thus a
bijection; indeed, without this restriction, w and gw for any g € G would both generate the same
weight matrix W in the unraveled parameterization up to the order of its rows, and the restriction to a
fundamental domain breaks this redundancy.

The following lemma will help us prove Thm.[5]
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Lemma 22. We have:

(a) @ is a continuous function.

(b) Let {fn € SNNi(G)}22, be a sequence such that f,, — f € SNNi..(G) in the topology

0f SNNiy: (G). Let (a, wn, by Cnydi) = (6 o)~ (fn) for each n and similar for f. Then
there exists g € G such that (gwy, by) — £(w,b).

Proof. (a) Let {0,, € dom(¢)}52 be a convergent sequence with limit § € dom(¢). For each n, let
fn = ¢(0yn), and let f = ¢(0). For each z € R™, the function ¢(-)(x) : dom(¢) — R is continuous
and hence f,, — f pointwise over the entire domain R™.

Now since G-SNNis are piecewise-linear functions and {6, }°° ; has a finite limit 6, then clearly
the derivatives of the f, are uniformly bounded, so that in particular {f,,}52, is a sequence of
equicontinuous functions. By the Arzela-Ascoli Theorem, f,, — f uniformly on every compact set;
i.e., f,, = f in the topology of SNNj,,(G), thus establishing the continuity of ¢.

(b) Since a # 0, then f is nonlinear. For f, to converge to a nonlinear function, at least one
hyperplane on which f,, is non-differentiable must converge to a hyperplane on which f is non-
differentiable. Thus, there exist g1, g2 € G such that (gwy,, b,) = +(gow, b). Equivalently, there
exists g € G such that (gw,, b,) — £(w,b). O

We now prove Thm. [3]

Proof of Thm. 5] For the forward implication, suppose f3% — ff'%. Letw € ran(Pk, — 72 Pp,)
where 7o = |Hs : Ks| — 1. Then there exists g € G such that £gow € ran(Pk, — 72 Pr,) N Q;
without loss of generality, we assume gow € ran(Pg, — 72Pp,) N Q. Now, there exists f €

PZ with top weight vector gow. Since fi% — fFZ  then there exists {f, € fF%}°, such
that f,, — f in the topology of SNN;,.(G). By Lemma there exists ¢; € G such that
(g1wn,b,) — *(gow,b), where w,, and b,, are the weight and bias parameters of f,, and b is
the bias parameter of f respectively. Thus, there exists ¢ € G such that £gw, — w. Since
wy, € ran(Pg, — 71 Py, ) where 71 = |H; : K| — 1, then +gw,, € ran(gPy,g ' — 119Pu, g7 }).
Letting (H, K) = g(Hy, K1)g~*, we have w,, € ran(Px — 7Pg) where 7 = |H : K| — 1. We thus
establish that ran(Py, — 72 Pp,) C ran(Px — 7Pp).

The space ran( Py, — 72 Pp, ) is thus in particular fixed pointwise by every element of K, so that
K< stg(lfK2 72 Py, ). By Thm. ()] however, st (Px, — 72Pp,) = K3, so that K < K,. In
the case type 1, wehave H = K < K5 < Hy and thus H N K5 = K, and hence we are done.
Suppose 1nstead fF% is type 2. Then 3% must be type 2 as well; if it were type 1, then we could set
its bias parameter b to be nonzero, and flP Z would be unable to reach it asymptotically as its own bias
is constrained to b = 0. With both fF'% and ' type 2, we have ran(Pg, — Py,) C ran(Px — Pp).
In particular, for any h € H \ K, we must have

h(PKz - PHz) = _(PKz - PH2)'

However, for the rows of the canonical weight matrix of any f € fI'? to be pairwise nonparallel, we
must have g(Pg, — Py,) = —(Pk, — Pn,) implies g € Hy. Hence, H \ K C H,. Combining this
with K < Ky < Hs, we obtain H < H,. Finally, since ran(Pg, — Py, ) must be fixed under each
element of K, but not fixed under each element of H \ K, then we must have (H \ K) N Ky = 0,
from which we conclude H N K, = K.

For the reverse implication, suppose there exists (H, K) € (Hy, K 1)G such that H < Hy, K <
Ks, and H N Ky = K. Without loss of generality, let (H,K) = (Hy, K;). Let f € f§%
(a,w,b, c d) = (¢ |o)~" (f). Define the sequence {f,, € fF%}°2, and (an, wn, by, cn,dy) =
(¢ |0) " (fn), where we set a,, = a, ¢, = ¢, and d,, = d for all n. We want to show the existence of
w,, and b,, such that w,, — w and b,, — b; Lemma 22] .- (a)| will then give us the desired result.

Suppose fQPZ is type 1. Since K; < K9 = Hy and Hy < Hy, then K1 < H; < K> and hence
HiN Ky = H,. On the other hand, since H; N K> = K, then H; = K so that fI'Z is type 1 as well.
In this case, we set b, = b for all n, and we have w,, € ran(Pg,) and w € ran(P,) C ran(Pg, ),
thus establishing the existence of a sequence w,, — w. On the other hand, suppose f1? is type 2.
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Then b = 0, and we set b,, = 0 for all n if f{% is type 2 or b, — 0if fF'% is type 1. From the
hypotheses, it is easy to verify that

ran(Pk, — Pg,) C ran(Pk, — Py,) C ran(Pg, ).

It follows that regardless of the type of f{'%, a sequence w,, — w exists, thereby establishing the
claim. O

D.2 Topological confinement

We prove Prop. [f] which states that non-cohomologous irreducible G-SNN architectures are in a
sense orthogonal.

Proof of Prop.[6] Fori = 1,2, let; = |H : K;|. Then by Eq.[7, we have the constraints w; €
ran(Py, — 7;Py). If one of the K; equals H, say K; = H, then in particular we have the constraints
Prwy = w; and (Pk, — Py )ws = wy. We thus have
wlng = U)IP;(PKZ — PH)U)2

= 'w;r.PH(IDK2 — PH)w2

= wlT(PHPKz —PH)U]Q

= 07
where the last step holds because K> < H and hence Py Px, = Py.
On the other hand, suppose K and K5 are both proper subgroups of H. Since Py, w; = w;, then

wy wy = wirPI—(ZPKQwQ.

Let K = K1 N Ko. Itis well-known that because K and K are distinct index-2 subgroups of H,
then K is an index-4 subgroup of H and

H/K = {K, k1 K, ks K, hK},
where k; € K; \ K fori =1,2and h € H \ (K; U K3). We thus have

i) (539

ke K, keK,

1 T
:|K|2 <Zk+k12k> (Zk+k22k>

W \ker keK keK keK

2
— |K1||2 (Px + k1Pg) " (Pg + ko Pr)
1 1

= ZP}(IMI)(H@)PK = 1p}(1+kf+k2+kfk2)PK.

Since Pxw; = w; for both ¢ = 1, 2, then we have

1
wlTw2 = *UJIP}I(I + k‘ir + ko + kaQ)PKwQ

4
1
= wa(l + k| + ko + k| ky)ws.
Since k1 € Kj, then kiyw; = w;, and hence wlTlewQ = wlng. On the other hand, since
k] € H\ K, then k] wy = —ws so that w] k] wy = —w; wa, thus implying w{ k{ wy = 0. We

can similarly show that w{ kawo = 0. This leaves

1

wa([ + ki ko )ws
1

(w] wy + w{ w)

U)II—’LUQ =

4

1
T
= §w1 wa,

implying w; wy = 0. O
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