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NAS-Bench-201 Overview
The NAS-Bench-201 search space is comprised of a macro skeleton and a searched cell. An overview
is shown in Figure Al.

The first layer of the macro skeleton is a 3 X 3 convolutional layer with F = 16 filters followed
by a batch normalization layer. This is followed by a stack of five searched cells (F = 16). A basic
residual block (F = 32) with a stride of two proceeds the stacked cell block. The shortcut connection
is a 2 X 2 2D average pooling layer followed by a 1 X 1 convolutional layer. These blocks are
alternated, cutting the image dimensions in half and doubling the filters for each set of blocks.
The end of the network is a 2D global average pooling layer followed by a fully-connected (dense)
classification layer with a softmax activation.

The searched cell can be expressed as a directed acyclic graph where nodes represent data
and edges represent operations. The set of operations consists of 3 X 3 convolutional blocks, 1 X 1
convolutional blocks, 3 X 3 average pooling, “zeroize” (equivalent to dropping the edge), and “skip-
connect” (equivalent to the identity operator). Note that each convolutional block is comprised of
convolution, a rectified linear (ReLU) activation, and batch normalization. All of the convolutions
and pooling layers use SAME padding. To prevent cycles, each node is assigned a rank and can only
connect to higher-rank nodes. Since there are V = 4 nodes in a cell and five operation candidates
in the operation set, the total size of the search space is S(Zzy:_01 i) = 15, 625 architectures. There are
two issues with the search space definition, which the NAS-Bench-201 authors also point out. First,
different architecture encodings can result in the same graph. Like the authors, we do not consider
isomorphism in the evaluation of architectures!. Second, architectures can be disconnected due to
the zeroize operation. In this case, the mating operations are reapplied to produce valid offspring.

We represent an architecture in the search space as x;, a fixed-size list of integers of size

Y:Bl i = 6 with each element in the range [1..V]. Each element of this encoding represents (i) a
specific operator or operators, such as a convolutional or max pooling layer with specific parameters
(e.g. kernel size, strides, etc.), or the lack of an operator (identity) and (ii) how that operator is
connected to additional operators in the computational graph.

Reproducibility: Experiment Setup and Hyperparameters

Setup. We use a cosine annealing Loshchilov and Hutter (2017) learning rate schedule to decay
the learning rate from 0.1 to 0 at the end of the last epoch. We also take half an epoch to warm
up the learning rate from 0 to 0.1 at midway through the first epoch. Multiple seeds are set for
reproducibility — see the code for the NumPy and TensorFlow seed-setting procedure. The seed for
each run is stored in each raw result.

Data preprocessing. Recall that each raw image &; has a height of H pixels, width of W pixels,
and C color channels. We first scale the image by 255 to map the input domain from [0..255] C N,
to [0,1] C R. Then, z-score normalization is applied, i.e. the channel-wise mean of the full dataset
& is subtracted from each &; and the result of which is divided by the channel-wise standard
deviation of &. The resulting data has channel-wise means of zero and standard deviations of one.

IThe NAS-Bench-201 authors remark that there are 6,466 architectures with unique topology in the search space due
to isomorphisms brought about by the “skip-connect” and “zeroize” operations.
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Figure Al: Visualization of the architectures generated by the search space. Note that the first con-
volutional layer in the main path and the average pooling layer in the shortcut path of
each residual block has a stride of 2. conv: 2D convolutional layer. bn: batch normalization.
relu: rectified linear (ReLU) activation layer. avg: 2D average pooling layer. F: the number
of convolutional filters within each layer of a block.

Data augmentation. We zero-pad the left and right of each image with [H/8] pixels and the top
and bottom of each image with [W/8] pixels. Then, each image is randomly cropped following
a uniform distribution back to shape H X W x C. Next, the image is flipped horizontally with a
probability of 0.5. The final augmentation applied is cutout Devries and Taylor (2017). Randomly
centered rectangular windows with height 2[H /8] and width 2[W /8] are selected to be filled with
zeros within the bounds of each image.

We do not allow offspring that have the same architecture as another offspring or a previously
evaluated architecture. There are 6 integer variables in the optimization problem, so we set the
probability of polynomial mutation per variable to 1/6. Table B1 contains the summary of all
hyperparameters used across the experiments.
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Hyperparameter Value

Loss Cross Entropy
Optimizer SGD
Learning Rate (LR) 0.1
o0 LR Schedule Cosine Decay
:g Nesterov Yes
& Momentum 0.9
:g Weight Decay 0.0005
b= Batch Size 512
Epochs 5%, 127, 200%
Data Normalization Z-Score (Channel-Wise)
Data Augmentation See Text
_ Population Size 64
2 Sampling Uniform Random
3 Crossover Simulated Binary p = 0.9, 7 = 3
“ Mutation Polynomial p =1/6,n =3

Table B1: Summary of hyperparameters used across each experiment. *MNIST; TCIFAR-10; *ImageNet-
16-120

ImageNet-16-120. The ImageNet-16-120 dataset, originally introduced in Chrabaszcz et al. (2017)
and adapted by the NAS-Bench-201 benchmark Dong and Yang (2020), is a downsampled version of
the ImageNet dataset. The dataset facilitates substantially faster experimentation while permitting
satisfactory classification results — performance on ImageNet-16-120 has been shown to be indicative
of performance across all of ImageNet. Each image in the dataset is resized to 16 X 16 pixels and
only the data for the first 120 classes are retained.

Introspectability Regularizer. Introspectability can be used as a regularization term as it is differen-
tiable. We add this as an auxiliary loss term and naively balance the term with cross entropy with a
regularizer weight of 0.5 — this bounds introspectability to the range [0, 1]. Because we want to
maximize introspectability, we take the cosine similarity instead of the distance. To accumulate ac-
tivations grouped by classes in TensorFlow, the tf.scatter_nd operator is used in implementation.
The remaining implementation is straightforward.

Additional Activation Heat Maps

To gain a better qualitative understanding of the introspectability metric, we visualize the activations
of the Pareto-optimal solutions of each task. In Figure C2, the solutions of the highest and lowest
introspectability are shown for MNIST and ImageNet-16-120 (see main text for CIFAR-10). Within
each layer, the activations are normalized using z-score normalization. The activations within each
block per class are then averaged for the purpose of visualization. The differences between the
highest- and lowest-scoring models are quite apparent; the activation patterns for each class in
higher-scoring models have notable variance, whereas they are quite constant in lower-scoring
models. The heat maps are best viewed digitally.

Additional PCA Visualizations

The remaining 2D PCA activation visualizations are shown for the MNIST and CIFAR-10 tasks in
Figure D1 and Figure D2, respectively. For MNIST, there is little discernible difference between the
models with highest and lowest introspectability — this is expected as the difference between these
introspectability scores is small (see the main text). For CIFAR-10, an apparent difference between
the two models can be observed; the spread of points about the origin is more Gaussian with the
higher-scoring model, which, empirically, should indicate a greater mean cosine distance between
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Figure C1: Mean activations heatmap of the models with (a) highest and (b) lowest introspectability
on the MNIST task.
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Figure C2: Mean activations heatmap of the model with highest introspectability on the ImageNet-16-
120 task.

class representations. It is important to recall that the PCA projection eliminates thousands of
dimensions used to represent activations. Naturally, this causes small changes in introspectability
to be less apparent in visualizations.

Analysis of Operator Selection

We show the operator-level normalized frequencies selected in the Pareto-optimal solutions of each
task in Tables E1-E3. The 3x3 convolutions are most popular across all tasks, followed by either 3x3
average pooling or “zeroize” operators. The skip-connect and 1x1 convolutions are least frequent
among these solutions.

Frequentist Analysis of Motifs

We conduct analysis of the most common motifs across the Pareto-optimal solutions of each task,
as shown in Tables F1-F3. Recall that the integer-coded cells are encoded as follows:

e 0: 3x3 Conv2D
e 1: 1x1 Conv2D

+ 2: 3x3 AvgPool2D
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Highest Introspectability (MNIST) Lowest Introspectability (MNIST)
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Figure D1: 2D PCA of the mean activations per class from the non-dominated models with highest
and lowest introspectability on MNIST.
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Figure D2: 2D PCA of the mean activations per class from the non-dominated models with highest
and lowest introspectability on CIFAR-10.

» 3: Zeroize
« 4: Skip-Connect

We also use an asterisk (*) to match any operator. Within each table, the encodings of sizes 1
through 5 are shown alongside its normalized frequency of that size. Motifs of size 6 are not
shown as we do not evaluate duplicate architectures (other than isomorphisms). The most common
motifs reflect the operator frequencies discussed in the previous section. Interestingly, >67% of the
Pareto-optimal solutions of each task all have a common motif of size 1, and >45% a common motif
of size 2. This suggests that certain cell topologies exhibit inductive biases specific to the task.

Comparing Motifs Across the Pareto Front
Motif Discovery.

1. Assemble the following data into a tabular structure: architecture encoding, accuracy, and
introspectability for the Pareto front of the solutions

2. Sort the data by accuracy and then introspectability which results in data with ascending
accuracy and descending introspectability

3. Record the count of each block for each architecture encoding

4. For each architecture encoding in the sorted data, enumerate all applicable motifs of size 1 to 5
(motifs of size 6 cannot exist as architectures are not evaluated multiple times). For example, some
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. Normalized
Operation

Frequency
3x3 Conv2D 0.51515
3x3 AvgPool2D 0.16667
Zeroize 0.16667
1x1 Conv2D 0.09091
Skip-Connect 0.06061

Table E1: Frequency of operations of solutions in the Pareto front (normalized by total cell operations
across the Pareto front models) on the MNIST task

. Normalized
Operation
Frequency
3x3 Conv2D 0.44444
Zeroize 0.24306
3x3 AvgPool2D 0.19097
Skip-Connect 0.06250
1x1 Conv2D 0.05903

Table E2: Frequency of operations of solutions in the Pareto front (normalized by total cell operations
across the Pareto front models) on the CIFAR-10 task

architecture encoding [a, b, c,d, e, f] has 22:1 (Z) motifs, e.g. [a, %, %, %, e,%]| and [*, b, c, %, *, f]
but not, say, [*, b, c, *, *, e]. This is nearly equivalent to its power set minus () and the original
sequence. An asterisk here implies a match with any other operator, and thus allows for the
comparison of motifs between different architectures

5. For each motif, compute the absolute value of the Spearman rank correlation coefficient between
the ranks of the solutions in the sorted data and whether each solution has the motif. If applicable,
the count of the operator is used instead of a simple indicator flag. The intuition here is that we
discover interesting architectures that demonstrably are favored more in one part of the Pareto
front than another, e.g. the high-accuracy vs. high-introspectability regions

6. In addition to each motif having a correlation score, we also record the support (the number of
solutions with the motif) and the motif size

7. Compute the Pareto front of the scored motifs (the costs being the correlation score, the support
and the motif size) to identify the most salient motifs. We heuristically eliminate motifs that
have support less than 3 or correlation less than 0.2

All figures from this discovery are present at the end of the appendices for the sake of space.

Comparing Evolution of Single- and Multi-Objective Search

We illustrate the evolution of accuracy and introspectability of the models on the Pareto front over
each generation in Figure H1-Figure H3. Each figure contrasts single-objective with multi-objective
optimization to better understand the benefit of NSGA-II in our framework. Note that we do
not expect a strict increase in each objective at each generation, which would be expected for
population-level statistics, as opposed to statistics within the Pareto front. With single-objective
optimization, we can observe that solutions with higher introspectability tend to lie beyond the
95% confidence interval. This indicates fluke solutions, whereas multi-objective more confidently
produces higher-introspectability solutions.
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. Normalized
Operation

Frequency
3x3 Conv2D 0.48039
3x3 AvgPool2D 0.21078
Zeroize 0.10784
Skip-Connect 0.10784
1x1 Conv2D 0.09314

Table E3: Frequency of operations of solutions in the Pareto front (normalized by total cell operations
across the Pareto front models) on the ImageNet-16-120 task

Normalized

Siz Frequency Encoding
1 0.81818 [0**** %]
2 0.45455 [0***3%]
2 0.45455 [0%0***]
2 0.45455 [0****0]
2 0.45455 [**0**0]
3 036364  [0*0**0]
4 0.27273 [0*04%0]
5 0.18182  [0004*0]
5 0.18182  [0*0430]

Table F1: Frequency of encodings of solutions in the Pareto front (normalized by the number of Pareto-
optimal solutions) on the MNIST task. The top motif (motifs if tied frequency) for each size
is shown only

I Comparing XNAS Accuracy with Related NAS Methods 136

We compare XNAS to other multi-objective approaches on the CIFAR-10 task. Building on the 1
collected results and approach from Lu et al. (2019), we take the architecture with the best accuracy s
and increase the number of filters by a factor of four. We then perform full training on the CIFAR-10 1%
dataset for 200 epochs. The comparison of results and methods is shown in Table I1. While XNAS 1o
does not achieve the best accuracy (nor was this the objective of this research), the result is still 1
competitive, especially considering the trade-off between accuracy and introspectability. 142

J Additional Ablation Studies 143

We perform additional studies to understand the relationships between the objectives, accuracy 1
and introspectability, and the generalization error, number of parameters, and training speed s
of architectures. Figure J1 demonstrates that introspectability and accuracy have an inverse s
relationship on the generalization error - this error increases with high-accuracy models and 1w
decreases with high-introspectability models. Likewise, the trend can be observed with the number s
of parameters and training speed as shown in Figures J2 and J3, respectively. These figures follow 14
a similar trend as the number of parameters correlates with the number of FLOPs and thus the 1o
training time. As discussed in Section 4.4 of the main text, high-introspectability networks tend to 1
have a more pooling layers whereas high-accuracy networks have more convolutional layers. This 1
helps to explain the trends observed in the number of parameters. A takeaway from this analysisis 1
that the trade-off between accuracy and introspectability also implies a trade-off in parameters 15
(and FLOPs), training time, and generalization error. 155



Normalized

Size Frequency Encoding
1 0.70833 [****3%]
2 0.50000 [****30]
3 0.29167 [0%0*3%]
3 0.29167 [**0*30]
4 0.18750 [0%0*30]
5 0.08333 [0%0130]

Table F2: Frequency of encodings of solutions in the Pareto front (normalized by the number of Pareto-
optimal solutions) on the CIFAR-10 task. The top motif (motifs if tied frequency) for each
size is shown only

Normalized

Size Frequency Encoding
1 0.67647 [*0****
2 0.47059 [*0***0]
3 0.23529 [*0*0*0]
4 0.11765 [20*1*0]
4 0.11765 [*0*000]
4 0.11765 [00**00]
4 0.11765 [00%0%0]
4 0.11765 [0*%000]
5 0.05882  [3022*3]
5 0.05882 [2011*0]
5 0.05882 [20%140]
5 0.05882 [20400%]
5 0.05882  [20*000]

Table F3: Frequency of encodings of solutions in the Pareto front (normalized by the number of Pareto-
optimal solutions) on the ImageNet-16-120 task. The top motif (motifs if tied frequency, up
to 5) for each size is shown only

K Model Debugging Experiments 156

Here, we study the ability of our activations calibration approach to correct bugs in models. We first 157
demonstrate that there is a strong connection between the pairwise activation distances used in the s
formulation of introspectability and the ground truth confusion matrix. To make this comparison, 15
the pairwise distances are negated as disentanglement (separation) between class representations is 1o
posited to correlate with confounding. Since the distance between the activations of a class and itself 1
is 0, ideally, the distance between such and the activations of other classes is maximized. There is 1
no information about ground truth available in computing pairwise distances, i.e. the computation 1
is symmetrical and unconditioned. In turn, we compare this information to a confusion matrix e
folded along the diagonal. This means that element x; j, i # j in the folded confusion matrix is s
equivalent to the sum x; ; +x;; in the original confusion matrix. On a higher level, each element x; ; 1
is either the number of true positives for a class (when considering the diagonal), or the support of 1
class i being predicted when class j were true and the support of the converse. To support this, we 16
measure the correlation between the negated pairwise activation distances and the folded ground 1
truth confusion matrix across Pareto optimal models trained on CIFAR-10. High-introspectability 17
models achieve a correlation of p = 0.85 while low-introspectability models achieve a correlation 1
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Figure H1: The mean accuracy (blue) and introspectability (green) of the Pareto front solutions each
generation on the MNIST task. (a) single-objective; (b) multi-objective. The shaded region
indicates the 95% confidence interval of solutions at each generation.
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Figure H2: The mean accuracy (blue) and introspectability (green) of the Pareto front solutions each
generation on the CIFAR-10 task. (a) single-objective; (b) multi-objective. The shaded
region indicates the 95% confidence interval of solutions at each generation.

of p = 0.59. With this motivation, we demonstrate how model bugs can be identified and corrected
in the following case study.

Case Study: Bug Identification and Correction. Figure K1 demonstrates for a random higher-
introspectability model trained on CIFAR-10 that there is strong correlation between the negated
pairwise activation distances and the ground truth confusion matrix folded along the diagonal
(p = 0.81). Noticeably, the model confounds the classes 3 and 5, which is reflected in the pairwise
activations as the smallest distance (largest negated distance).

With the bug in the model identified, we formulate a strategy to mitigate the issue. The key
of our approach is to push the representations of classes 3 and 5 apart in order to reduce the
confounding of one another. We accomplish this by using the introspectability regularizer approach
with pairwise coefficients. The generalization of this to arbitrary pairs is formalized in Eq. (1).

_1 Mo Ne
Introspectablhtyreg(/\/l, xX) = W Z Z D(®, &%)y x Wi (1)
2 ) c=1 k=c+1
where w; j is a weight for each class pair (i, j). With every w;; = 1 this is equivalent to the
untargeted introspectability regularizer. If the aim is to target all confounded predictions, one
can set all w; ; proportionally to the pairwise activation distances (or folded confusion matrix).
However, we target a single pair in this case study. In our experiment, the model is trained with
the regularization term for an additional 5 epochs, a learning rate of 0.001, w35 = 25, and all other
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Figure H3: The mean accuracy (blue) and introspectability (green) of the Pareto front solutions each
generation on the ImageNet-16-120 task. (a) single-objective; (b) multi-objective. The
shaded region indicates the 95% confidence interval of solutions at each generation.

Method Error  Other Objective Compute
PPP-Net FLOPs, # .
4.36% parameters, or Nvidia Titan X
Dong et al. (2018) . .
inference time
MONAS 1 .
Hsu et al. (2018) 4.34% Power Nvidia 1080 Ti
NSGA-Net Nvidia 1080 Ti
Lu et al. (2019) 3.85% FLOPs 8 GPU Days
. Nvidia Tesla P100
XNAS 4.45% Introspectability 6 GPU Days

Table I1: Multi-objective methods for CIFAR-10 (best accuracy for each method). Table adapted from Lu
et al. (2019)

w;,j = 1. The results are visualized in Figure K2. The approach is stronger in identifying bugs than
mitigating them, although there is improvement without significant degradation of accuracy (+0.6%
across 10 trials). We leave the tuning of hyperparameters and alternative weighting schemes to
future exploration.

Extended Background

DNN Inspection within Explainable AI (XAI). The opaque nature of deep neural networks (DNNs)
has ultimately led to the sub-field of explainable AI (XAI) Gunning (2019), which was denominated
in 2016 by DARPA, although relevant work predates this by years. Relevant to the subject matter
of this work are XAI methods of DNN inspection. This suite of methods enables the debugging of
model behavior, the detection of dataset errors, and the development of adversarial attacks. The
authors of Koh and Liang (2017) scale influence functions, a robust statistics method, to DNNs
to understand the effect of training points on a prediction. DNN visualization tools have been
proposed to provide qualitative modes of analysis. Notably, Erhan et al. (2009); Yosinski et al. (2015)
provide tools for visualizations by gradient ascent, deconvolution for highlighting input images,
and discovering preferred input patterns for each class. Probing-based methods aim to qualify
the role of DNN internal elements (neurons, latent representations, etc.). In Kim et al. (2018); Bau
et al. (2020), methods are proposed to relate DNN internals to semantic concepts, such as textures,
shapes, colors, or even people. Another approach introduced in Ghorbani and Zou (2020) is to use
Shapley values from game theory to quantify the influence each neuron has on overall DNN error.
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Figure J1: The effect of introspectability and accuracy on generalization error across the tasks.

More related to our work are those related to disentanglement, i.e. the separation of concept- or
class-relevant information in a network. For instance, Zhang et al. (2018) proposes the learning of
interpretable CNN filters by coercing feature maps to resemble hand-crafted templates. Moreover,
the variational autoencoder (VAE) Kingma and Welling (2014) has been extended to produce a
disentangled latent space by regularizing the bottleneck layer Higgins et al. (2017). In contrast, we
optimize for DNNs with disentangled internal representations of classes without explicit constraints
on the loss, modifications to the architecture, or hand-crafted activation patterns. This also allows
for the use of non-differentiable objectives.

Extended Crossover and Mutation Details

Mating comprises two core operations: crossover and mutation. The crossover operator produces
offspring by combining the encodings of two parents. The operator combines the building blocks
between successful parents to exploit the implicit parallelism of population-based search (Holland,
1992). Due to the integer-based encoding that we employ in this work, we elect to use simulated
binary crossover (Deb et al., 2007), which uses a probability density function to simulate the single-
point crossover of binary-coded genetic algorithms. The mutation operator produces offspring
by modulating one or more of the variables of a single parent. We specifically select polynomial
mutation, which follows the same probability distribution as simulated binary crossover. Both
crossover and mutation also have a parameter p that controls the probability that the respective
operator is applied to a member of the population.
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Figure J2: The effect of introspectability and accuracy on the number of parameters across the tasks.

N Dataset Information 26

MNIST. The MNIST LeCun et al. (2010) dataset is available at https://yann.lecun.com/exdb/ 27
mnist/. Yann LeCun and Corinna Cortes hold the copyright of MNIST dataset, which is a derivative 2
work from the original NIST datasets. MNIST dataset is made available under the terms of the 2»
Creative Commons Attribution-Share Alike 3.0 license. The dataset does not contain personally 2
identifiable information or offensive content. oo

CIFAR-10. The CIFAR-10 Krizhevsky (2009) dataset is available at https://www.cs.toronto.edu/ 2
%7Ekriz/cifar.html. There is no license provided for the dataset. The dataset does not contain 2
personally identifiable information or offensive content. 234

ImageNet-16-120. The ImageNet-16-120 (Dong and Yang, 2020) dataset is a subset of ImageNet 2
which is available at https: //www. image-net.org/download. php. The terms of using the ImageNet 23
dataset are also outlined at https://www.image-net.org/download.php. ImageNet does not own
the copyright to the images, rather it compiles a list of web images per synset as described at https: 23
//www.image-net.org/about.php. The dataset is known to contain some personally identifiable 23
information and potentially offensive content — see Asano et al. (2021) for further details. 240

O Scaling Up XNAS 2

We scale XNAS to clusters comprising an arbitrary number of compute nodes using the distributed 2

framework, Ray (Moritz et al., 2018). Given a set of M nodes {ni}?il, np is treated as a head node 23
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Figure J3: The effect of introspectability and accuracy on the training speed across the tasks.

that is responsible for running the core NSGA-II optimization loop and the core Ray server. The
remaining nodes {n; } ~, are configured as workers available to train and evaluate architectures
on a dataset. When a new generation of architectures is created, each offspring is submitted for
fitness evaluation to a queue by the head node. Each job in the queue is offloaded to a free worker
until all workers complete their jobs and the queue is empty. The head node n; also is treated as an
additional worker if it has free resources. Each worker node can execute in parallel as many jobs as
it has GPUs.

FLOPs Analysis

Here, we show the relationship between FLOPs and the two objectives, accuracy and introspectabil-
ity. While fewer convolutional layers are preferred by the introspectability metric, there is not a
direct relationship between either objective and FLOPs. Figure P1 shows the relationship for the
MNIST, CIFAR-10, and ImageNet-16-120 datasets for the Pareto fronts discovered by multi-objective
XNAS.
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Figure K1: Heat maps of (left) the negated pairwise activation distances as part of the introspectability
computation, and (right) the ground truth confusion matrix folded along the diagonal. The
heat maps are shown for a random model trained on CIFAR-10. As can be seen, the model
confounds the classes 3 and 5, which is reflected in the distance between activations.

Pairwise Activation Distances Folded Confusion Matrix
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Figure K2: Heat maps after the correction procedure is run of (left) the negated pairwise activation
distances as part of the introspectability computation, and (right) the ground truth confusion
matrix folded along the diagonal. Note the difference in color scale from Figure K1.
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Figure P1: Relationship between FLOPs and the two objectives, accuracy and introspectability, on
the MNIST, CIFAR-10, and ImageNet-16-120 datasets for the Pareto fronts discovered by
multi-objective XNAS.
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Figure Q10: Discovered motifs of size 3 among the Pareto optimal solutions on the CIFAR-10 task. See
text for description of the motif discovery process. Each red solution indicates that its
architecture has the motif shown in the sub-plot title. The remaining solutions are shown
in blue. For the N/A plot, none of the discovered motifs apply to the architecture.
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Figure Q11: Discovered motifs of size 4 among the Pareto optimal solutions on the CIFAR-10 task. See
text for description of the motif discovery process. Each red solution indicates that its
architecture has the motif shown in the sub-plot title. The remaining solutions are shown
in blue. For the N/A plot, none of the discovered motifs apply to the architecture.
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Figure Q12: All discovered motifs among the Pareto optimal solutions on the ImageNet-16-120 task.

See text for description of the motif discovery process. Each red solution indicates that its
architecture has the motif shown in the sub-plot title. The remaining solutions are shown
in blue. For the N/A plot, none of the discovered motifs apply to the architecture.
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Figure Q13: Discovered motifs of size 2 among the Pareto optimal solutions on the ImageNet-16-120
task. See text for description of the motif discovery process. Each red solution indicates
that its architecture has the motif shown in the sub-plot title. The remaining solutions are
shown in blue. For the N/A plot, none of the discovered motifs apply to the architecture.
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Figure Q14: Discovered motifs of size 3 among the Pareto optimal solutions on the ImageNet-16-120
task. See text for description of the motif discovery process. Each red solution indicates
that its architecture has the motif shown in the sub-plot title. The remaining solutions are
shown in blue. For the N/A plot, none of the discovered motifs apply to the architecture.
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Figure Q15: Discovered motifs of size 4 among the Pareto optimal solutions on the ImageNet-16-120
task. See text for description of the motif discovery process. Each red solution indicates
that its architecture has the motif shown in the sub-plot title. The remaining solutions are
shown in blue. For the N/A plot, none of the discovered motifs apply to the architecture.
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