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A NAS-Bench-201 Overview 5

The NAS-Bench-201 search space is comprised of a macro skeleton and a searched cell. An overview 6

is shown in Figure A1. 7

The first layer of the macro skeleton is a 3 × 3 convolutional layer with 𝐹 = 16 filters followed 8

by a batch normalization layer. This is followed by a stack of five searched cells (𝐹 = 16). A basic 9

residual block (𝐹 = 32) with a stride of two proceeds the stacked cell block. The shortcut connection 10

is a 2 × 2 2D average pooling layer followed by a 1 × 1 convolutional layer. These blocks are 11

alternated, cutting the image dimensions in half and doubling the filters for each set of blocks. 12

The end of the network is a 2D global average pooling layer followed by a fully-connected (dense) 13

classification layer with a softmax activation. 14

The searched cell can be expressed as a directed acyclic graph where nodes represent data 15

and edges represent operations. The set of operations consists of 3 × 3 convolutional blocks, 1 × 1 16

convolutional blocks, 3 × 3 average pooling, “zeroize” (equivalent to dropping the edge), and “skip- 17

connect” (equivalent to the identity operator). Note that each convolutional block is comprised of 18

convolution, a rectified linear (ReLU) activation, and batch normalization. All of the convolutions 19

and pooling layers use SAME padding. To prevent cycles, each node is assigned a rank and can only 20

connect to higher-rank nodes. Since there are 𝑉 = 4 nodes in a cell and five operation candidates 21

in the operation set, the total size of the search space is 5(∑𝑉−1
𝑖=0 𝑖) = 15, 625 architectures. There are 22

two issues with the search space definition, which the NAS-Bench-201 authors also point out. First, 23

different architecture encodings can result in the same graph. Like the authors, we do not consider 24

isomorphism in the evaluation of architectures1. Second, architectures can be disconnected due to 25

the zeroize operation. In this case, the mating operations are reapplied to produce valid offspring. 26

We represent an architecture in the search space as x𝑖 , a fixed-size list of integers of size 27∑𝑉−1
𝑖=0 𝑖 = 6 with each element in the range [1..𝑉 ]. Each element of this encoding represents (i) a 28

specific operator or operators, such as a convolutional or max pooling layer with specific parameters 29

(e.g. kernel size, strides, etc.), or the lack of an operator (identity) and (ii) how that operator is 30

connected to additional operators in the computational graph. 31

B Reproducibility: Experiment Setup and Hyperparameters 32

Setup.We use a cosine annealing Loshchilov and Hutter (2017) learning rate schedule to decay 33

the learning rate from 0.1 to 0 at the end of the last epoch. We also take half an epoch to warm 34

up the learning rate from 0 to 0.1 at midway through the first epoch. Multiple seeds are set for 35

reproducibility – see the code for the NumPy and TensorFlow seed-setting procedure. The seed for 36

each run is stored in each raw result. 37

Data preprocessing. Recall that each raw image X𝑖 has a height of 𝐻 pixels, width of𝑊 pixels, 38

and 𝐶 color channels. We first scale the image by 255 to map the input domain from [0..255] ⊂ N0 39

to [0, 1] ⊂ R. Then, z-score normalization is applied, i.e. the channel-wise mean of the full dataset 40

X is subtracted from each X𝑖 and the result of which is divided by the channel-wise standard 41

deviation of X. The resulting data has channel-wise means of zero and standard deviations of one. 42

1The NAS-Bench-201 authors remark that there are 6,466 architectures with unique topology in the search space due
to isomorphisms brought about by the “skip-connect” and “zeroize” operations.
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Figure A1: Visualization of the architectures generated by the search space. Note that the first con-
volutional layer in the main path and the average pooling layer in the shortcut path of
each residual block has a stride of 2. conv: 2D convolutional layer. bn: batch normalization.
relu: rectified linear (ReLU) activation layer. avg: 2D average pooling layer. 𝐹 : the number
of convolutional filters within each layer of a block.

Data augmentation.We zero-pad the left and right of each image with ⌈𝐻/8⌉ pixels and the top 43

and bottom of each image with ⌈𝑊 /8⌉ pixels. Then, each image is randomly cropped following 44

a uniform distribution back to shape 𝐻 ×𝑊 ×𝐶 . Next, the image is flipped horizontally with a 45

probability of 0.5. The final augmentation applied is cutout Devries and Taylor (2017). Randomly 46

centered rectangular windows with height 2⌈𝐻/8⌉ and width 2⌈𝑊 /8⌉ are selected to be filled with 47

zeros within the bounds of each image. 48

We do not allow offspring that have the same architecture as another offspring or a previously 49

evaluated architecture. There are 6 integer variables in the optimization problem, so we set the 50

probability of polynomial mutation per variable to 1/6. Table B1 contains the summary of all 51

hyperparameters used across the experiments. 52

2



Hyperparameter Value

M
od

el
Tr
ai
ni
ng

Loss Cross Entropy
Optimizer SGD

Learning Rate (LR) 0.1
LR Schedule Cosine Decay

Nesterov Yes
Momentum 0.9

Weight Decay 0.0005
Batch Size 512

Epochs 5∗, 12†, 200‡
Data Normalization Z-Score (Channel-Wise)
Data Augmentation See Text

N
SG

A-
II Population Size 64

Sampling Uniform Random
Crossover Simulated Binary 𝑝 = 0.9, 𝜂 = 3
Mutation Polynomial 𝑝 = 1/6, 𝜂 = 3

Table B1: Summary of hyperparameters used across each experiment. ∗MNIST; †CIFAR-10; ‡ImageNet-
16-120

ImageNet-16-120. The ImageNet-16-120 dataset, originally introduced in Chrabaszcz et al. (2017) 53

and adapted by the NAS-Bench-201 benchmark Dong and Yang (2020), is a downsampled version of 54

the ImageNet dataset. The dataset facilitates substantially faster experimentation while permitting 55

satisfactory classification results – performance on ImageNet-16-120 has been shown to be indicative 56

of performance across all of ImageNet. Each image in the dataset is resized to 16 × 16 pixels and 57

only the data for the first 120 classes are retained. 58

Introspectability Regularizer. Introspectability can be used as a regularization term as it is differen- 59

tiable. We add this as an auxiliary loss term and naively balance the term with cross entropy with a 60

regularizer weight of 0.5 – this bounds introspectability to the range [0, 1]. Because we want to 61

maximize introspectability, we take the cosine similarity instead of the distance. To accumulate ac- 62

tivations grouped by classes in TensorFlow, the tf.scatter_nd operator is used in implementation. 63

The remaining implementation is straightforward. 64

C Additional Activation Heat Maps 65

To gain a better qualitative understanding of the introspectability metric, we visualize the activations 66

of the Pareto-optimal solutions of each task. In Figure C2, the solutions of the highest and lowest 67

introspectability are shown for MNIST and ImageNet-16-120 (see main text for CIFAR-10). Within 68

each layer, the activations are normalized using z-score normalization. The activations within each 69

block per class are then averaged for the purpose of visualization. The differences between the 70

highest- and lowest-scoring models are quite apparent; the activation patterns for each class in 71

higher-scoring models have notable variance, whereas they are quite constant in lower-scoring 72

models. The heat maps are best viewed digitally. 73

D Additional PCA Visualizations 74

The remaining 2D PCA activation visualizations are shown for the MNIST and CIFAR-10 tasks in 75

Figure D1 and Figure D2, respectively. For MNIST, there is little discernible difference between the 76

models with highest and lowest introspectability – this is expected as the difference between these 77

introspectability scores is small (see the main text). For CIFAR-10, an apparent difference between 78

the two models can be observed; the spread of points about the origin is more Gaussian with the 79

higher-scoring model, which, empirically, should indicate a greater mean cosine distance between 80
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Figure C1: Mean activations heatmap of the models with (a) highest and (b) lowest introspectability
on the MNIST task.
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Figure C2: Mean activations heatmap of the model with highest introspectability on the ImageNet-16-
120 task.

class representations. It is important to recall that the PCA projection eliminates thousands of 81

dimensions used to represent activations. Naturally, this causes small changes in introspectability 82

to be less apparent in visualizations. 83

E Analysis of Operator Selection 84

We show the operator-level normalized frequencies selected in the Pareto-optimal solutions of each 85

task in Tables E1-E3. The 3x3 convolutions are most popular across all tasks, followed by either 3x3 86

average pooling or “zeroize” operators. The skip-connect and 1x1 convolutions are least frequent 87

among these solutions. 88

F Frequentist Analysis of Motifs 89

We conduct analysis of the most common motifs across the Pareto-optimal solutions of each task, 90

as shown in Tables F1-F3. Recall that the integer-coded cells are encoded as follows: 91

• 0: 3x3 Conv2D 92

• 1: 1x1 Conv2D 93

• 2: 3x3 AvgPool2D 94
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Figure D1: 2D PCA of the mean activations per class from the non-dominated models with highest
and lowest introspectability on MNIST.

20 0 20
20

15

10

5

0

5

10

15

20

airplane

automobile

bird

cat

deerdog

frog

horse

ship

truck

Highest Introspectability (CIFAR-10)

20 10 0 10 20 30

15

10

5

0

5

10

15

20

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Lowest Introspectability (CIFAR-10)

Figure D2: 2D PCA of the mean activations per class from the non-dominated models with highest
and lowest introspectability on CIFAR-10.

• 3: Zeroize 95

• 4: Skip-Connect 96

We also use an asterisk (*) to match any operator. Within each table, the encodings of sizes 1 97

through 5 are shown alongside its normalized frequency of that size. Motifs of size 6 are not 98

shown as we do not evaluate duplicate architectures (other than isomorphisms). The most common 99

motifs reflect the operator frequencies discussed in the previous section. Interestingly, >67% of the 100

Pareto-optimal solutions of each task all have a common motif of size 1, and >45% a common motif 101

of size 2. This suggests that certain cell topologies exhibit inductive biases specific to the task. 102

G Comparing Motifs Across the Pareto Front 103

Motif Discovery. 104

1. Assemble the following data into a tabular structure: architecture encoding, accuracy, and 105

introspectability for the Pareto front of the solutions 106

2. Sort the data by accuracy and then introspectability which results in data with ascending 107

accuracy and descending introspectability 108

3. Record the count of each block for each architecture encoding 109

4. For each architecture encoding in the sorted data, enumerate all applicable motifs of size 1 to 5 110

(motifs of size 6 cannot exist as architectures are not evaluatedmultiple times). For example, some 111
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Operation Normalized
Frequency

3x3 Conv2D 0.51515
3x3 AvgPool2D 0.16667
Zeroize 0.16667
1x1 Conv2D 0.09091
Skip-Connect 0.06061

Table E1: Frequency of operations of solutions in the Pareto front (normalized by total cell operations
across the Pareto front models) on the MNIST task

Operation Normalized
Frequency

3x3 Conv2D 0.44444
Zeroize 0.24306
3x3 AvgPool2D 0.19097
Skip-Connect 0.06250
1x1 Conv2D 0.05903

Table E2: Frequency of operations of solutions in the Pareto front (normalized by total cell operations
across the Pareto front models) on the CIFAR-10 task

architecture encoding [𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ] has ∑5
𝑘=1

(6
𝑘

)
motifs, e.g. [𝑎, ∗, ∗, ∗, 𝑒, ∗] and [∗, 𝑏, 𝑐, ∗, ∗, 𝑓 ] 112

but not, say, [∗, 𝑏, 𝑐, ∗, ∗, 𝑒]. This is nearly equivalent to its power set minus ∅ and the original 113

sequence. An asterisk here implies a match with any other operator, and thus allows for the 114

comparison of motifs between different architectures 115

5. For each motif, compute the absolute value of the Spearman rank correlation coefficient between 116

the ranks of the solutions in the sorted data and whether each solution has the motif. If applicable, 117

the count of the operator is used instead of a simple indicator flag. The intuition here is that we 118

discover interesting architectures that demonstrably are favored more in one part of the Pareto 119

front than another, e.g. the high-accuracy vs. high-introspectability regions 120

6. In addition to each motif having a correlation score, we also record the support (the number of 121

solutions with the motif) and the motif size 122

7. Compute the Pareto front of the scored motifs (the costs being the correlation score, the support 123

and the motif size) to identify the most salient motifs. We heuristically eliminate motifs that 124

have support less than 3 or correlation less than 0.2 125

All figures from this discovery are present at the end of the appendices for the sake of space. 126

H Comparing Evolution of Single- and Multi-Objective Search 127

We illustrate the evolution of accuracy and introspectability of the models on the Pareto front over 128

each generation in Figure H1-Figure H3. Each figure contrasts single-objective with multi-objective 129

optimization to better understand the benefit of NSGA-II in our framework. Note that we do 130

not expect a strict increase in each objective at each generation, which would be expected for 131

population-level statistics, as opposed to statistics within the Pareto front. With single-objective 132

optimization, we can observe that solutions with higher introspectability tend to lie beyond the 133

95% confidence interval. This indicates fluke solutions, whereas multi-objective more confidently 134

produces higher-introspectability solutions. 135
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Operation Normalized
Frequency

3x3 Conv2D 0.48039
3x3 AvgPool2D 0.21078
Zeroize 0.10784
Skip-Connect 0.10784
1x1 Conv2D 0.09314

Table E3: Frequency of operations of solutions in the Pareto front (normalized by total cell operations
across the Pareto front models) on the ImageNet-16-120 task

Size Normalized
Frequency Encoding

1 0.81818 [0 * * * * *]
2 0.45455 [0 * * * 3 *]
2 0.45455 [0 * 0 * * *]
2 0.45455 [0 * * * * 0]
2 0.45455 [* * 0 * * 0]
3 0.36364 [0 * 0 * * 0]
4 0.27273 [0 * 0 4 * 0]
5 0.18182 [0 0 0 4 * 0]
5 0.18182 [0 * 0 4 3 0]

Table F1: Frequency of encodings of solutions in the Pareto front (normalized by the number of Pareto-
optimal solutions) on the MNIST task. The top motif (motifs if tied frequency) for each size
is shown only

I Comparing XNAS Accuracy with Related NAS Methods 136

We compare XNAS to other multi-objective approaches on the CIFAR-10 task. Building on the 137

collected results and approach from Lu et al. (2019), we take the architecture with the best accuracy 138

and increase the number of filters by a factor of four. We then perform full training on the CIFAR-10 139

dataset for 200 epochs. The comparison of results and methods is shown in Table I1. While XNAS 140

does not achieve the best accuracy (nor was this the objective of this research), the result is still 141

competitive, especially considering the trade-off between accuracy and introspectability. 142

J Additional Ablation Studies 143

We perform additional studies to understand the relationships between the objectives, accuracy 144

and introspectability, and the generalization error, number of parameters, and training speed 145

of architectures. Figure J1 demonstrates that introspectability and accuracy have an inverse 146

relationship on the generalization error – this error increases with high-accuracy models and 147

decreases with high-introspectability models. Likewise, the trend can be observed with the number 148

of parameters and training speed as shown in Figures J2 and J3, respectively. These figures follow 149

a similar trend as the number of parameters correlates with the number of FLOPs and thus the 150

training time. As discussed in Section 4.4 of the main text, high-introspectability networks tend to 151

have a more pooling layers whereas high-accuracy networks have more convolutional layers. This 152

helps to explain the trends observed in the number of parameters. A takeaway from this analysis is 153

that the trade-off between accuracy and introspectability also implies a trade-off in parameters 154

(and FLOPs), training time, and generalization error. 155
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Size Normalized
Frequency Encoding

1 0.70833 [* * * * 3 *]
2 0.50000 [* * * * 3 0]
3 0.29167 [0 * 0 * 3 *]
3 0.29167 [* * 0 * 3 0]
4 0.18750 [0 * 0 * 3 0]
5 0.08333 [0 * 0 1 3 0]

Table F2: Frequency of encodings of solutions in the Pareto front (normalized by the number of Pareto-
optimal solutions) on the CIFAR-10 task. The top motif (motifs if tied frequency) for each
size is shown only

Size Normalized
Frequency Encoding

1 0.67647 [* 0 * * * *]
2 0.47059 [* 0 * * * 0]
3 0.23529 [* 0 * 0 * 0]
4 0.11765 [2 0 * 1 * 0]
4 0.11765 [* 0 * 0 0 0]
4 0.11765 [0 0 * * 0 0]
4 0.11765 [0 0 * 0 * 0]
4 0.11765 [0 * * 0 0 0]
5 0.05882 [3 0 2 2 * 3]
5 0.05882 [2 0 1 1 * 0]
5 0.05882 [2 0 * 1 4 0]
5 0.05882 [2 0 4 0 0 *]
5 0.05882 [2 0 * 0 0 0]

Table F3: Frequency of encodings of solutions in the Pareto front (normalized by the number of Pareto-
optimal solutions) on the ImageNet-16-120 task. The top motif (motifs if tied frequency, up
to 5) for each size is shown only

K Model Debugging Experiments 156

Here, we study the ability of our activations calibration approach to correct bugs in models. We first 157

demonstrate that there is a strong connection between the pairwise activation distances used in the 158

formulation of introspectability and the ground truth confusion matrix. To make this comparison, 159

the pairwise distances are negated as disentanglement (separation) between class representations is 160

posited to correlate with confounding. Since the distance between the activations of a class and itself 161

is 0, ideally, the distance between such and the activations of other classes is maximized. There is 162

no information about ground truth available in computing pairwise distances, i.e. the computation 163

is symmetrical and unconditioned. In turn, we compare this information to a confusion matrix 164

folded along the diagonal. This means that element 𝑥𝑖, 𝑗 , 𝑖 ≠ 𝑗 in the folded confusion matrix is 165

equivalent to the sum 𝑥𝑖, 𝑗 +𝑥 𝑗,𝑖 in the original confusion matrix. On a higher level, each element 𝑥𝑖, 𝑗 166

is either the number of true positives for a class (when considering the diagonal), or the support of 167

class 𝑖 being predicted when class 𝑗 were true and the support of the converse. To support this, we 168

measure the correlation between the negated pairwise activation distances and the folded ground 169

truth confusion matrix across Pareto optimal models trained on CIFAR-10. High-introspectability 170

models achieve a correlation of 𝜌 = 0.85 while low-introspectability models achieve a correlation 171
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Figure H1: The mean accuracy (blue) and introspectability (green) of the Pareto front solutions each
generation on the MNIST task. (a) single-objective; (b) multi-objective. The shaded region
indicates the 95% confidence interval of solutions at each generation.
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Figure H2: The mean accuracy (blue) and introspectability (green) of the Pareto front solutions each
generation on the CIFAR-10 task. (a) single-objective; (b) multi-objective. The shaded
region indicates the 95% confidence interval of solutions at each generation.

of 𝜌 = 0.59. With this motivation, we demonstrate how model bugs can be identified and corrected 172

in the following case study. 173

Case Study: Bug Identification and Correction. Figure K1 demonstrates for a random higher- 174

introspectability model trained on CIFAR-10 that there is strong correlation between the negated 175

pairwise activation distances and the ground truth confusion matrix folded along the diagonal 176

(𝜌 = 0.81). Noticeably, the model confounds the classes 3 and 5, which is reflected in the pairwise 177

activations as the smallest distance (largest negated distance). 178

With the bug in the model identified, we formulate a strategy to mitigate the issue. The key 179

of our approach is to push the representations of classes 3 and 5 apart in order to reduce the 180

confounding of one another. We accomplish this by using the introspectability regularizer approach 181

with pairwise coefficients. The generalization of this to arbitrary pairs is formalized in Eq. (1). 182

Introspectabilityreg(M,X) = −1(
𝑁𝐶

2
) 𝑁𝐶∑︁
𝑐=1

𝑁𝐶∑︁
𝑘=𝑐+1

𝐷 (Φ̄(𝑐) , Φ̄(𝑘) ) × 𝜔𝑖, 𝑗 (1)

where 𝜔𝑖, 𝑗 is a weight for each class pair (𝑖, 𝑗). With every 𝜔𝑖, 𝑗 = 1 this is equivalent to the 183

untargeted introspectability regularizer. If the aim is to target all confounded predictions, one 184

can set all 𝜔𝑖, 𝑗 proportionally to the pairwise activation distances (or folded confusion matrix). 185

However, we target a single pair in this case study. In our experiment, the model is trained with 186

the regularization term for an additional 5 epochs, a learning rate of 0.001, 𝜔3,5 = 25, and all other 187
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Figure H3: The mean accuracy (blue) and introspectability (green) of the Pareto front solutions each
generation on the ImageNet-16-120 task. (a) single-objective; (b) multi-objective. The
shaded region indicates the 95% confidence interval of solutions at each generation.

Method Error Other Objective Compute

PPP-Net
Dong et al. (2018) 4.36%

FLOPs, #
parameters, or
inference time

Nvidia Titan X

MONAS
Hsu et al. (2018) 4.34% Power Nvidia 1080 Ti

NSGA-Net
Lu et al. (2019) 3.85% FLOPs Nvidia 1080 Ti

8 GPU Days

XNAS 4.45% Introspectability Nvidia Tesla P100
6 GPU Days

Table I1: Multi-objective methods for CIFAR-10 (best accuracy for eachmethod). Table adapted from Lu
et al. (2019)

𝜔𝑖, 𝑗 = 1. The results are visualized in Figure K2. The approach is stronger in identifying bugs than 188

mitigating them, although there is improvement without significant degradation of accuracy (±0.6% 189

across 10 trials). We leave the tuning of hyperparameters and alternative weighting schemes to 190

future exploration. 191

L Extended Background 192

DNN Inspection within Explainable AI (XAI).The opaque nature of deep neural networks (DNNs) 193

has ultimately led to the sub-field of explainable AI (XAI) Gunning (2019), which was denominated 194

in 2016 by DARPA, although relevant work predates this by years. Relevant to the subject matter 195

of this work are XAI methods of DNN inspection. This suite of methods enables the debugging of 196

model behavior, the detection of dataset errors, and the development of adversarial attacks. The 197

authors of Koh and Liang (2017) scale influence functions, a robust statistics method, to DNNs 198

to understand the effect of training points on a prediction. DNN visualization tools have been 199

proposed to provide qualitative modes of analysis. Notably, Erhan et al. (2009); Yosinski et al. (2015) 200

provide tools for visualizations by gradient ascent, deconvolution for highlighting input images, 201

and discovering preferred input patterns for each class. Probing-based methods aim to qualify 202

the role of DNN internal elements (neurons, latent representations, etc.). In Kim et al. (2018); Bau 203

et al. (2020), methods are proposed to relate DNN internals to semantic concepts, such as textures, 204

shapes, colors, or even people. Another approach introduced in Ghorbani and Zou (2020) is to use 205

Shapley values from game theory to quantify the influence each neuron has on overall DNN error. 206
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(c) ImageNet-16-120

Figure J1: The effect of introspectability and accuracy on generalization error across the tasks.

More related to our work are those related to disentanglement, i.e. the separation of concept- or 207

class-relevant information in a network. For instance, Zhang et al. (2018) proposes the learning of 208

interpretable CNN filters by coercing feature maps to resemble hand-crafted templates. Moreover, 209

the variational autoencoder (VAE) Kingma and Welling (2014) has been extended to produce a 210

disentangled latent space by regularizing the bottleneck layer Higgins et al. (2017). In contrast, we 211

optimize for DNNs with disentangled internal representations of classes without explicit constraints 212

on the loss, modifications to the architecture, or hand-crafted activation patterns. This also allows 213

for the use of non-differentiable objectives. 214

M Extended Crossover and Mutation Details 215

Mating comprises two core operations: crossover and mutation. The crossover operator produces 216

offspring by combining the encodings of two parents. The operator combines the building blocks 217

between successful parents to exploit the implicit parallelism of population-based search (Holland, 218

1992). Due to the integer-based encoding that we employ in this work, we elect to use simulated 219

binary crossover (Deb et al., 2007), which uses a probability density function to simulate the single- 220

point crossover of binary-coded genetic algorithms. The mutation operator produces offspring 221

by modulating one or more of the variables of a single parent. We specifically select polynomial 222

mutation, which follows the same probability distribution as simulated binary crossover. Both 223

crossover and mutation also have a parameter 𝑝 that controls the probability that the respective 224

operator is applied to a member of the population. 225
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Figure J2: The effect of introspectability and accuracy on the number of parameters across the tasks.

N Dataset Information 226

MNIST. The MNIST LeCun et al. (2010) dataset is available at https://yann.lecun.com/exdb/ 227

mnist/. Yann LeCun and Corinna Cortes hold the copyright of MNIST dataset, which is a derivative 228

work from the original NIST datasets. MNIST dataset is made available under the terms of the 229

Creative Commons Attribution-Share Alike 3.0 license. The dataset does not contain personally 230

identifiable information or offensive content. 231

CIFAR-10. The CIFAR-10 Krizhevsky (2009) dataset is available at https://www.cs.toronto.edu/ 232

%7Ekriz/cifar.html. There is no license provided for the dataset. The dataset does not contain 233

personally identifiable information or offensive content. 234

ImageNet-16-120. The ImageNet-16-120 (Dong and Yang, 2020) dataset is a subset of ImageNet 235

which is available at https://www.image-net.org/download.php. The terms of using the ImageNet 236

dataset are also outlined at https://www.image-net.org/download.php. ImageNet does not own 237

the copyright to the images, rather it compiles a list of web images per synset as described at https: 238

//www.image-net.org/about.php. The dataset is known to contain some personally identifiable 239

information and potentially offensive content – see Asano et al. (2021) for further details. 240

O Scaling Up XNAS 241

We scale XNAS to clusters comprising an arbitrary number of compute nodes using the distributed 242

framework, Ray (Moritz et al., 2018). Given a set of𝑀 nodes {𝑛𝑖}𝑀𝑖=1, 𝑛1 is treated as a head node 243
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(c) ImageNet-16-120

Figure J3: The effect of introspectability and accuracy on the training speed across the tasks.

that is responsible for running the core NSGA-II optimization loop and the core Ray server. The 244

remaining nodes {𝑛𝑖}𝑀𝑖=2 are configured as workers available to train and evaluate architectures 245

on a dataset. When a new generation of architectures is created, each offspring is submitted for 246

fitness evaluation to a queue by the head node. Each job in the queue is offloaded to a free worker 247

until all workers complete their jobs and the queue is empty. The head node 𝑛1 also is treated as an 248

additional worker if it has free resources. Each worker node can execute in parallel as many jobs as 249

it has GPUs. 250

P FLOPs Analysis 251

Here, we show the relationship between FLOPs and the two objectives, accuracy and introspectabil- 252

ity. While fewer convolutional layers are preferred by the introspectability metric, there is not a 253

direct relationship between either objective and FLOPs. Figure P1 shows the relationship for the 254

MNIST, CIFAR-10, and ImageNet-16-120 datasets for the Pareto fronts discovered by multi-objective 255

XNAS. 256
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Figure K1: Heat maps of (left) the negated pairwise activation distances as part of the introspectability
computation, and (right) the ground truth confusion matrix folded along the diagonal. The
heat maps are shown for a random model trained on CIFAR-10. As can be seen, the model
confounds the classes 3 and 5, which is reflected in the distance between activations.
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Figure P1: Relationship between FLOPs and the two objectives, accuracy and introspectability, on
the MNIST, CIFAR-10, and ImageNet-16-120 datasets for the Pareto fronts discovered by
multi-objective XNAS.
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Figure Q8: All discovered motifs among the Pareto optimal solutions on the CIFAR-10 task. See text for
description of the motif discovery process. Each red solution indicates that its architecture
has the motif shown in the sub-plot title. The remaining solutions are shown in blue. For
the N/A plot, none of the discovered motifs apply to the architecture.
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Figure Q9: Discovered motifs of size 2 among the Pareto optimal solutions on the CIFAR-10 task. See
text for description of the motif discovery process. Each red solution indicates that its
architecture has the motif shown in the sub-plot title. The remaining solutions are shown
in blue. For the N/A plot, none of the discovered motifs apply to the architecture.
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Figure Q10: Discovered motifs of size 3 among the Pareto optimal solutions on the CIFAR-10 task. See
text for description of the motif discovery process. Each red solution indicates that its
architecture has the motif shown in the sub-plot title. The remaining solutions are shown
in blue. For the N/A plot, none of the discovered motifs apply to the architecture.
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Figure Q11: Discovered motifs of size 4 among the Pareto optimal solutions on the CIFAR-10 task. See
text for description of the motif discovery process. Each red solution indicates that its
architecture has the motif shown in the sub-plot title. The remaining solutions are shown
in blue. For the N/A plot, none of the discovered motifs apply to the architecture.
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Figure Q12: All discovered motifs among the Pareto optimal solutions on the ImageNet-16-120 task.
See text for description of the motif discovery process. Each red solution indicates that its
architecture has the motif shown in the sub-plot title. The remaining solutions are shown
in blue. For the N/A plot, none of the discovered motifs apply to the architecture.
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Figure Q13: Discovered motifs of size 2 among the Pareto optimal solutions on the ImageNet-16-120
task. See text for description of the motif discovery process. Each red solution indicates
that its architecture has the motif shown in the sub-plot title. The remaining solutions are
shown in blue. For the N/A plot, none of the discovered motifs apply to the architecture.
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Figure Q14: Discovered motifs of size 3 among the Pareto optimal solutions on the ImageNet-16-120
task. See text for description of the motif discovery process. Each red solution indicates
that its architecture has the motif shown in the sub-plot title. The remaining solutions are
shown in blue. For the N/A plot, none of the discovered motifs apply to the architecture.
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Figure Q15: Discovered motifs of size 4 among the Pareto optimal solutions on the ImageNet-16-120
task. See text for description of the motif discovery process. Each red solution indicates
that its architecture has the motif shown in the sub-plot title. The remaining solutions are
shown in blue. For the N/A plot, none of the discovered motifs apply to the architecture.
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