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Abstract

Deep neural network training largely depends on the choice of initial weight distribution.
However, this choice can often be nontrivial. Existing theoretical results for this problem
mostly cover simple architectures, e.g., feedforward networks with ReLLU activations. The
architectures used for practical problems are more complex and often incorporate many
overlapping modules, making them challenging for theoretical analysis. Therefore, practi-
tioners have to use heuristic initializers with questionable optimality and stability. In this
study, we propose a task-agnostic approach that discovers initializers for specific network
architectures and optimizers by learning the initial weight distributions directly through
the use of Meta-Learning. In several supervised and unsupervised learning scenarios, we
show the advantage of our initializers in terms of both faster convergence and higher model
performance. The PyTorch implementation of our algorithm is available online®.

1. Introduction

A key ingredient to the success of deep learning is its flexibility. Depending on the task at
hand, a deep learning practitioner can use convolutional, recurrent, attentive, graph-based,
or hundreds of other layer types. The layers can be combined in a myriad of ways ranging
from stacking layers sequentially to using residual or densely connected architectures (He
et al., 2016; Huang et al., 2017), to highly specialized architectures with multiple pathways,
each processing a subset of input features (Cheng et al., 2016; Vaswani et al., 2017).

However, designing a deep learning model is not limited to the architecture. One also
needs to choose a training protocol and decide on the initialization. This choice can signif-
icantly affect training speed, stability (Mishkin and Matas, 2015), and, for some architec-
tures, the ability to train at all (Xiao et al., 2018; Zhang et al., 2019a; Xu et al., 2019).

The majority of real-world architectures rely on standard heuristic initializers (Glorot
and Bengio, 2010; He et al., 2015). While these heuristics fit most training scenarios, they
can often be surpassed by the initializers designed for the specific architecture in use (Xiao
et al., 2018; Zhang et al., 2019a; Xu et al., 2019; Zhang et al., 2019b; Le et al., 2015). The
more comprehensive discussion of the related work is deferred to Appendix A.

Discovering effective task-specific initializers is an arduous task that requires human
intuition and theoretical insight. This task becomes more and more complex as we invent
more sophisticated network architectures. In this work, we argue that this task can and
should be automated to save valuable human time.

We propose a method for Discovering Initializers with Model Agnostic Meta-Learning
(DIMAML). Instead of optimizing model weights, DIMAML learns the probability distribu-

1. https://www.dropbox.com/sh/m8osg8ygdp99xig/AAA1PIk05Sti5SHQLIfiwsZHKa?dl=0
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Figure 1: DIMAML-PLIF training scheme: layer weights 0; are obtained by sampling
z ~ U(0,1) and computing Qs (z), for each layer in the network. Then, during
the inner training process, DIMAML computes the loss function on validation
data and backpropagates the loss w.r.t. the parameters s, b of weight distribution.

tion from which these weights are generated. The goal is to learn initializers that optimize
the training performance for the chosen architecture without being task-specific.

In other words, DIMAML learns initialization strategies that capture the specifics of
the model architecture and the training procedure but can be applied outside the specific
task that was used for meta-learning. Therefore, it is possible to learn the initializers once
and distribute them alongside the model architecture. We summarize the contributions of
our paper as follows:

1. We propose a DIMAML — an automated approach that learns initial parameter dis-
tributions for a given architecture by directly optimizing its training performance;

2. We evaluate our approach on several architectures for image and sequence processing
tasks and demonstrate that the initialization strategies learned by DIMAML match
or outperform existing alternatives;

3. We examine universality of the learned initializers by measuring their ability to gen-
eralize to unseen tasks, including different data distributions and training protocols.

2. Method

The main idea of DIMAML is to train weight initializers by backpropagating through the
training procedure. When learning initializers for a given neural network, we assume initial
weights 0;,;¢ to be an i.i.d. sample from py (6;,i¢) distribution with trainable parameters 1.

For each DIMAML update, we sample 6;nit ~ py(Ginit), then train these weights for
some task-specific objective L using gradient descent. Finally, we compute OL(044ined) /0%
by backpropagation and update the meta-parameters v. This procedure requires that py(-)
is reparameterizable (Kingma and Welling, 2014), i.e. sampling 0;pnt ~ py(Ginit) is differen-
tiable w.r.t. ¥. We study two such distributions:

Normal initializers. one popular choice of initializer is a Normal distribution with
parameters ¢ = {u, o }. Under such parameterization, initial weights for layer [ are sampled
as: 0 = yu; + oy z, where z ~ N(0,1). Conveniently for us, this sampling scheme is already
differentiable w.r.t. uy, oy.

PLIF initializers. However, Normal initialization limits the space of distributions that
DIMAML can learn. Thus, we propose to learn the shape of weight distributions in the form
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of their quantile functions?. By definition, a quantile function @ is non-decreasing function
with support (0,1). A natural way to model this kind of functions is PLIF (Ganea et al.,
2019) — a class of parametric piecewise linear increasing functions that was developed to
improve the expressiveness of softmax layers in natural language processing tasks.

In order to parameterize quantile functions, we define PLIF on the [0, 1] range with K +1
equally wide regions: m; = %,VO < ¢ < K. This function is piecewise linear, meaning that
f(z) = s; - x + b,V € [mj,m;y1), where s; > 0 is the slope of the linear function on the
interval [m;, m;;+1). We chose this parameterization because it can approximate continuous
quantile functions arbitrarily well with enough slope regions.

In order to sample weights 6;,;; with distribution function F', we sample uniform random
variable z ~ U(0,1), then compute 6;;s = F '(z) = Qsp(2). Being computationally
efficient, this procedure is also differentiable w.r.t. trainable parameters ) = {s,b}. Similar
to before, we learn several independent quantile functions, one per each weight tensor.

2.1 Training algorithm

The most natural way to evaluate a weight initializer is to train a neural network with that
initializer. Depending on the particular machine learning setup, we can choose initializers
based on their training speed, stability, or the final performance of the trained model.

Following this intuition, DIMAML explicitly maximizes the training performance of
neural networks as a function of their initializers. Formally, consider a neural network
fo1.05,....6,, () with m trainable weight tensors. We denote the quantile function for initial-
izing i-th weight tensor as Q;(z;).

First, we generate initial weight matrices 0; := Q;(z;),Vi € (1,...,m) using independent
uniform random variables z; ~ U(0, 1) for each weight in the tensor. Then, we apply the
gradient descent algorithm (e.g., SGD or Adam (Kingma and Ba, 2014)) for a certain
number of iterations to emulate the training process and record model performance on
validation samples.

The final DIMAML objective is the average validation loss measured on intermediate
training steps: Lgue = % Zi\;l Lstep; (Tvals Yvar)- Intuitively, minimizing this objective is
equivalent to minimizing the area under the validation loss curve, which should lead to
faster training and better performance of the final model (Antoniou et al., 2019).

We exploit the ideas from Model-Agnostic Meta-Learning (Finn et al., 2017) to compute
the gradients of Lgy. w.r.t. weight initializers py () by backpropagating through the training
loop. These gradients are used to train the distribution parameters v by a meta-optimizer,
which is also a gradient descent algorithm.

Since we want DIMAML to be task-agnostic, we measure its transferability to unseen
tasks. In each experiment, we use a single task Ti-qin to learn initializers, then evaluate on
a different task Ties:.

Memory Efficient MAML. One of the limitations of MAML is large memory footprint
when applied to commonly used neural network architectures and datasets. In DIMAML, we
mitigate this issue through the use of gradient checkpointing (Griewank and Walther, 2000;
Chen et al., 2016). This technique stores only 1 in m optimizer states in device memory,
recomputing intermediate steps on the fly. Therefore, one can fit more optimizer steps in the

2. or equivalently, inverse CDF functions
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Tiest CelebA Tiny ImageNet
Epoch 10 50 100 10 50 100
Kaiming 0.138+.001 | 0.1224.001 | 0.1174.001 | 0.281+.001 | 0.2614.003 | 0.257=+.001
DeltaOrthogonal | 0.143+.001 | 0.126=+.001 {0.12040.001 | 0.288+ .001 | 0.2644.001 | 0.2594.001
Metalnit 0.1754.007 | 0.1354.002 | 0.128+.002 |0.33140.023| 0.2794.002 | 0.2734.002

DIMAML-Normal|0.120£.001|{0.112+.000{0.109+.001|0.259+.001{0.252+.001|0.250+.001
DIMAML-PLIF |0.121+.001/0.112+.000{0.110+.000(0.260+£.001{0.252+.001|0.250=+.000

Tiest AnimeFaces AnimeFaces Shuffled Pixels
Epoch 10 50 100 10 50 100
Kaiming 0.47140.002| 0.383£.001 | 0.3694.001 | 0.823+.005 | 0.643+£.005 | 0.590=£.002
DeltaOrthogonal | 0.496+.005 | 0.392+.001 | 0.377+.001 | 0.842+.005 | 0.743+.016 | 0.652+.012
Metalnit 0.5524.013 | 0.4374.021 | 0.398+.007 | 0.859+£.005 | 0.792=+.026 | 0.7084.031
DIMAML-Normal|0.3864.003|0.3524-.003(0.344+.001|0.814+.013/0.570+.003(|0.5464-.002
DIMAML-PLIF [0.386+.006(/0.350+.001|0.3444-.001|0.8124-.008(0.567+.005(0.545+.003

Table 1: Comparison of autoencoder models with various initializers after 10, 50 and 100
epochs in terms of mean squared error. Evaluation is performed on 7.5 datasets
according to Table 2. DIMAML significantly outperforms baselines even on Ani-
meFaces with shuffled pixels which is very different from Tiqin.

same GPU memory. Gradient Checkpointing fits well with MAML because its computation
graph has natural “choke points” after each optimizer step. In our experiments, we place
gradient checkpointing every 5 — 10 steps of the inner optimizer, allowing us to perform
(~10—100x) more MAML steps within the same GPU memory budget.

3. Experiments

To thoroughly investigate the performance of DIMAML, we apply it to several commonly
used neural network architectures: convolutional autoencoders, residual networks (He et al.,
2016) and language models based on LSTM (Hochreiter and Schmidhuber, 1997). For
each architecture, we compare the weight distributions learned by DIMAML with popular
initialization techniques as well as another Meta Learning approach Metalnit (Dauphin and
Schoenholz, 2019).

7Zrain 7Zest
3.1 Autoencoders CelebA 64x64 Tiny Imagenet
. . Tiny Imagenet CelebA 64x64
Our first setup considers training a convo- Tinv T Animol
lutional autoencoder which trains reasonabl Iny mmagenet HmeTaces
utiona Y Tiny Imagenet | AnimeFaces Shuffled Pixels

well with standard initializers like Kaiming.
In this experiment we start with a default Figure 2: Tirqin and Ties: dataset pairs used
training protocol and examine whether DI- for autoencoder evaluation.
MAML is able to discover a better initializer.

The autoencoder model follows the architecture proposed in (Ghosh et al., 2020). The
experiment is performed on two standard image datasets: Tiny Imagenet (Le and Yang,
2015) and CelebA (Liu et al., 2015) resized to 64x64 resolution. We also consider the
AnimeFaces dataset® for evaluation because it differs significantly from natural images. We
also evaluate on AnimeFaces with randomly permuted pixels to further test DIMAML’s
task-agnosticism. The pairs of Tirein and Tiest for autoencoder architecture are presented
in Table 2. The training and meta-training protocols are described in Appendix B.1.

3. https://www.kaggle.com/soumikrakshit/anime-faces
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Figure 3: Classification performance evaluation on Tiny ImageNet (Left) and ImageNet
(Right) for ResNet-18. During the first 25 epochs on Tiny ImageNet and 3 epochs
on ImageNet, DIMAML is superior over all baselines and then converges similar
to top-performing Fixup reaching the same optima.

After meta-learning converges, we evaluate the obtained initialization by inspecting
the model performance over longer training sessions of 10, 50, and 100 epochs. As main
baselines, we evaluate Kaiming (He et al., 2015) and Metalnit (Dauphin and Schoenholz,
2019) initializations. Delta Orthogonal (Xiao et al., 2018) is also considered, although it
was designed for deeper convolutional networks without batch normalization. The meta-
optimization starts from the Kaiming initializer.

The evaluation results are presented in Table 1. From the quantitative standpoint,
initializer distributions learned by DIMAML demonstrate significantly faster and tighter
convergence. DIMAML also outperforms baseline on AnimeFaces and AnimeFaces with
shuffled pixels, both of which are significantly different from 7irqn. We also note that
DIMAML with PLIF demonstrates similar performance as DIMAML-Normal. In Appendix
C.1, we aim to explain the advantage of the DIMAML initializers for the autoencoder model.

3.2 Residual Networks

In order to evaluate how DIMAML handles more complex training scenarios, we apply it to
ResNet-18 on top of the Fixup initialization (Zhang et al., 2019b). Fixup is a ResNet-specific
initialization that allows for faster and more stable training without the use of normalization
layers. In Fixup, half of the weight tensors are initialized with zeros, while the other half
uses scaled Kaiming initializers. In this experiment, we apply DIMAML to adjust non-zero
initializers and discover whether there is a potential for further improvement.

DIMAML initializers are trained on the CIFAR100 dataset and evaluated on TinyIma-
geNet and ImageNet. Note that CIFAR100 has much smaller image resolution and number
of classes compared to both Ties;. For CIFAR100 and Tiny Imagenet datasets, we adapt
ResNet-18 to deal with low resolutions by replacing the first convolutional and maxpooling
layers with a single 3x3 convolution. For ImageNet evaluation, we use the original model.

We perform a comparison of the learned initializers with Fixup, DeltaOrthogonal and
Metalnit methods. Metalnit is applied on top of Fixup and Kaiming initializations as
proposed in (Dauphin and Schoenholz, 2019). We present test classification error curves in
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Tiest Wikitext2 PennTreebank
Epoch 10 50 100 10 50 100
Kaiming 1.983+.009 | 1.843+.006 | 1.801£.002 | 1.4924.004 | 1.377+.002 | 1.352+.001
Orthogonal 2.0174.007 | 1.8494.003 | 1.8064.004 | 1.5284.009 | 1.383+.003 | 1.354+.002
Metalnit 1.907+.005 | 1.819+.002 | 1.792+.003 | 1.477+.003 | 1.382+.004 | 1.359+.005
DIMAML-Normal|1.879+.005(1.812+.003(1.782+.003|1.454+.003|1.372+.002(1.345+.003
DIMAML-PLIF [1.876+.003|1.810+.004(1.784+4.004|1.452+.003|1.369+.001|1.344+.002

Table 2: Performance of the character-level language model in bit-per-character (bpc) after
10, 50 and 100 epochs. DIMAML initial distributions speedup the training and
converges to better optima for the same number of epochs.

Figure 3. For this experiment we omit DIMAML-PLIF since it matches the performance of
DIMAML-Normal almost exactly as in Section 3.1.

TinyImageNet, Left. We observe that DIMAML demonstrates faster training during
the first 25 epochs and then coincides with Fixup baseline until convergence. In turn,
Metalnit based on Kaiming fares significantly worse than Fixup and DIMAML on the
entire curve, while Metalnit based on Fixup does not converge at all.

ImageNet, Right. To test the transferability of the learned initializers, we run the
standard training protocol for Fixup on ImageNet. This task is different from Tinqi, in
both data and training protocol. The error curves are visualized over 3 full epochs. Again,
DIMAML outperforms the baselines in the early stages and matches Fixup in convergence.
Surprisingly, DIMAML demonstrates similar behavior as on TinylmageNet despite larger
image resolution, different training protocol and modified architecture.

3.3 Language Modeling

In this final experiment, we apply DIMAML to discover initial distributions for recurrent
neural networks. To do this, we formulate a character-level language modeling problem.
Both training and evaluation are performed on common benchmark datasets for language
modeling: Wikitext2 (Merity et al., 2016) and PennTreebank (Marcus et al., 1993). DI-
MAML initializers trained on Wikitext2 are evaluated on PennTreebank and vice versa.
The model architecture and inner loop optimization setting are described in Appendix B.3.
As for baselines, we tried Kaiming initializers, but for the embedding layer, which is
initialized as N(0,1); we also consider Metalnit and orthogonal initialization for weight
tensors, which deal with previous hidden states as proposed in (Henaff et al., 2016).
Overall, the training performance of DIMAML initializers, see Table 2, is superior to
all baselines both in terms of faster training and the final quality of the converged model.
We also discuss the learned quantile functions of DIMAML distributions in Appendix C.2.

4. Conclusion

In this paper, we addressed the learning of the optimal weight initializer for a given objective,
model architecture and optimization method. Unlike existing works, DIMAML explicitly
learns initializers that maximize both convergence rate and final model performance. DI-
MAML can be used for any DNN architecture and is much more universal than existing
heuristic-based initializers. We empirically confirm the advantage of learnable initializations
on several standard learning scenarios for different data domains. Further discussions on
DIMAML performance, primary use cases and limitations are provided in Appendix D.
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DISCOVERING WEIGHT INITIALIZERS WITH META LEARNING

Appendices

Appendix A. Related work
A.1 Weight initialization

Choosing initial weights is a long-standing problem in deep learning. Since the number of
works on weight initialization is enormous, we only briefly describe the main ideas underlying
this field.

Traditional initializers. Earlier neural networks were typically initialized with small
random numbers from normal or uniform distribution (LeCun et al., 1989). However, for
deeper networks, this initialization has proven inefficient. A poorly chosen initializer can
cause network activations to explode or vanish (He et al., 2016; Hanin and Rolnick, 2018).
Since then, the community put much effort into the design of initial distributions that ensure
the stability of activations (Glorot and Bengio, 2010; He et al., 2015). These initializers
are often the default choice in existing deep learning packages (ten, 2015; Paszke et al.,
2019). However, they were originally developed for a narrow subset of neural networks. For
instance, some works require a certain number of layers (Chen and Bastani, 1990) or loss
function (Ghods et al., 2020). The effectiveness of such initializers in complex real-world
architectures is not guaranteed.

Model-specific initializers. Several works have addressed initialization for specific
architectures, e.g. convolutional (Xiao et al., 2018), residual (Zhang et al., 2019b; Arpit
et al., 2019; Yang and Schoenholz, 2017), popular recurrent models (Pascanu et al., 2013;
Aghajanyan, 2017; Chen et al., 2018; Gilboa et al., 2019), and others (Zhang et al., 2019a;
Xu et al., 2019; Blumenfeld et al., 2019; Yang et al., 2019). Alas, coming up with these
initializations requires careful analysis of the architecture and the data distribution. When
deep learning community develops a novel model architecture, it may take months or years
for effective initialization strategies to emerge.

Data-aware initializers. Another line of research focuses on data-aware initialization
(Mishkin and Matas, 2015; Krdhenbiihl et al., 2015). These approaches dynamically adjust
initial weights on a sample of inputs to have the desired statistical properties. In general,
data-aware initialization is more flexible to the choice of layer structure and activation
functions, but it can still be impractical for more complex models such as recurrent neural
networks or architectures with weight sharing. Moreover, data-aware initializations are
essentially heuristics: they focus on attaining certain statistical properties instead of directly
optimizing the convergence rate or the performance of the initialized model.

A.2 Meta-learning

Meta-learning is a family of methods that aims to learn algorithms for training machine
learning models. These methods were shown to be successful in a large number of prob-
lems, such as few-shot learning (Finn et al., 2017; Nichol and Schulman, 2018), learnable
optimizers (Andrychowicz et al., 2016), and reinforcement learning (Houthooft et al., 2018).

Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017) is a popular technique
that learns neural network weights by explicitly optimizing their ability to be trained by
gradient descent. In a nutshell, MAML is based on the idea that a gradient-based neural
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network training is itself a differentiable function that can be backpropagated through.
Using this observation, one can explicitly learn initial weights that are most appropriate for
training with a specific learning algorithm, such as SGD or Adam (Kingma and Ba, 2014).

This idea inspired a lot of subsequent research that tackle its practical issues. A recent
study (Antoniou et al., 2019) presents several recipes that stabilize training and improve
generalization performance. Other works (Nichol et al., 2018; Nichol and Schulman, 2018)
develop light-weight MAML approximations that use only first-order information. Finally,
(Rajeswaran et al., 2019) proposes a more efficient way to obtain meta-gradients via implicit
differentiation.

A.3 Meta-learning for initialization

To the best of our knowledge, only one recent work addresses model initialization from
the meta-learning perspective - Metalnit (Dauphin and Schoenholz, 2019). The authors
propose to train initial weight norms to minimize gradient quotient: the change in gradient
direction between initial iterations of SGD. This allows Metalnit to recover from pathologi-
cal initializations and, in some cases, improve model performance. However, minimizing the
gradient quotient does not guarantee optimal training performance, and we argue that there
is still room for improvement. We provide a more detailed comparison between DIMAML
and Metalnit in Section 3.

Appendix B. Experimental details
B.1 Autoencoders

For all datasets, we use 64-dimensional latent space. The autoencoder is trained to minimize
mean squared error using SGD with momentum of 0.9, learning rate of 10~2, and mini-batch
sizes equal to 128. The number of steps in the inner loop is 600.

Weight distributions are meta-optimized using Adam with learning rate of 104 and
£1=0.9 and £>,=0.997. Note that while our model contains batch normalization layers (Ioffe
and Szegedy, 2015), the statistics of these layers are not meta-learned, but are instead reset
at the start of every training run.

B.2 Residual Networks

DIMAML emulates the following training protocol: the optimizer is SGD with Nesterov
momentum of 0.9, learning rate of 0.1 and weight decay of 5e—4. The inner loop runs for
200 optimization steps with a batch size of 128. The meta-optimizer is Adam with learning
rate of 10~* and $;=0.9 and $,=0.997.

B.3 Language Modeling

As a character-level language model, we consider an architecture consisting of an embedding
layer, two-layer LSTM module, and one fully connected layer to compute logits. The hidden
size of the LSTM module is 256, the dimensionality of embeddings is 128. The inner loop
runs for 200 Adam optimization steps with learning rate of 10~2 and batch size of 128. The
meta-optimizer is Adam with learning rate of 3x10™% and $1=0.9 and 3,=0.997.

12
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Appendix C. Analysis
C.1 Autoencoders

To explain the advantage of the learned initializers for the autoencoder model, we first ex-
amine the quantile functions of distributions learned on Tiny ImageNet dataset and present
them in Figure 4. After a coarse examination of these distributions, we observe that the
learned distributions have only slight changes in shape but significantly lower variances
compared to the Kaiming initializer.

Since the autoencoder architecture uses Batch Normalization, model activations are in-
variant to the scale of weights. However, the rate at which these weights are updated (San-
turkar et al., 2018; Bjorck et al., 2018) is not invariant. Decreasing the magnitude of initial
weights will accelerate training for that particular layer. To illustrate this phenomena, we
report the individual update rates for every weight tensor. We estimate these quantities as
a ratio between gradient and weight norms after each training step on the CelebA dataset
(see Figure 5). We observe that DIMAML initialization causes most layers to train faster
especially in the early stages of training.

Finally, we test whether DIMAML initialization acquired any side-effects that were not
covered by the above analysis. We isolate the effect of individual update rates by training
with Kaiming initializer and artificially rescaling gradients to match DIMAML update rates
from Figure 5. The training curves on the CelebA dataset are presented in Figure 6. We
observe that transferring DIMAML individual update rates at each training step demon-
strates almost the same performance as the original DIMAMUL. Therefore, we conclude that
for this simple model, DIMAML succeeds mostly due to the individual learning rates, which
also explains its task-agnostic properties (Table 1).

The layer-wise learning rates are reminiscent to those produced by LARS (You et al.,
2017) optimizer. After tuning the "trust” coefficient, we observe the similar performance
compared to DIMAML. Interestingly, the learned initialization produces the learning rate
schedule achieved by LARS, which manually tunes learning rates at each training iteration.

C.2 Language Modeling

We also report learned quantile functions of DIMAML distributions in Figure 7. These dis-
tributions differ from Kaiming not only in terms of mean and variance, but also shapes, e.g.
“logits” layer transformed from uniform to the “sigmoid”-like quantile function. However,
when we replaced the learned shapes with corresponding normal distributions difference in
performance was negligible.

Appendix D. Discussion

e PLIF vs Normal. In our experiments, we observe, that DIMAML-PLIF does not uti-
lize the given degree of freedom and only slightly changes the shapes of distributions.
These changes do not affect neither the training speed nor the total performance. This
observation is consistent with common knowledge in the community that the shapes
of initial distributions do not make a difference if the weights in each layer are i.i.d.
and all distributions are light tailed.
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Figure 6: Autoencoder MSE curves for Kaiming and DIMAML initializers during the train-
ing on CelebA. DIMAML LR transfers individual layer update rates obtained
during DIMAML’s training to Kaiming initialization. While DIMAML converges
much better than the baseline, this appears to be solely due to the layer-wise
update rates for autoencoder model.

e Recovering from bad initializations. If the base initialization does not cause
explosive gradients then DIMAML is able to recover from bad initialization. However,
there are no formal guarantees for that. Therefore, when one needs to find some
working initialization we recommend using Metalnit. Note that Metalnit can be used
in conjunction with DIMAML: the former recovers from the bad initialization, and the
latter optimizes the Metalnit output to improve training performance even further.

e Primary use cases. Firstly, one can use DIMAML for the training protocols that are
not properly tuned. DIMAML will work around its issues by speeding up the train-
ing and reaching better optima, as we demonstrated in Section 3.1 and Section 3.3.
Otherwise, DIMAML is likely to speed up some training regions leading to faster
convergence.

Moreover, DIMAML can be theoretically valuable by discovering initializers for a
specific task and neural network architecture and comparing them with theoretically
well-founded initialization procedures.

e Scalability. In principle, DIMAML can work with arbitrary models. However, due to
memory and computational limits, it might sometimes be unable to emulate enough
training steps to dispose of the short-horizon bias (Wu et al., 2018) and improve
the total convergence. In that case, we hypothesize that one can train DIMAML on
simpler tasks and expect that it will generalize to the large-scale settings (based on
Section 3.2).
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Figure 7: The quantile functions of the baseline (N(0,1) distribution for the Embedding
layer and Kaiming for others) and learned initial distributions for the character-
level language model. The initializers are learned on the PennTreebank dataset.
’ih” and ’hh’ correspond to weight tensors that process inputs and previous hidden
states, respectively.
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