
Goal

Contributions

Experiments
General Approach

Method
Develop an automatic method for discovering optimal initial weight distributions for
arbitrary neural networks.

• In practice, finding effective model-specific initializers is an arduous task that
requires human intuition and theoretical insights;

• Many sophisticated architectures and training protocols appear regularly.

Training Algorithm

• Propose DIMAML − an automated approach that learns initial parameter distributions
for a given architecture by directly optimizing its training performance;

• Evaluate DIMAML on several architectures and demonstrate that the learned
initialization strategies match or outperform existing alternatives;

• Examine universality of the learned initializers by measuring their ability to generalize
to unseen tasks, including different data distributions and training protocols;

• The code is available at https://github.com/yandex-research/learnable-init.

Residual Networks

Language models
Classification performance on Tiny ImageNet (Left) and ImageNet (Right) for

ResNet-18. During the first epochs, DIMAML is superior over all baselines and
then converges similar to top-performing Fixup reaching the same optima.

Autoencoders

Discovering Weight Initializers with Meta Learning

Initializer Parameterizations

• 𝑝!(𝜃"#"$) − a Normal distribution with parameters 𝜓 = {μ, 𝜎};

• Sample initial weights for layer 𝑙: 𝜃% = μ% + 𝜎% ⋅ 𝑧, 𝑧 ~ 𝑁(0, 1).

References
[1] C. Finn, P. Abbeel, and S. Levine, Model-agnostic meta-learning for fast adaptation of
deep networks, ICML2017.

[2] O. Ganea et al., Breaking the Softmax Bottleneck via Learnable Monotonic Pointwise
Non-linearities, ICML 2019.

[3] T. Chen et al., Training deep nets with sublinear memory cost, arXiv 2016.

[4] Y. Dauphin, S. Schoenholz, MetaInit: Initializing learning by learning to initialize,
NeurIPS 2019.

• Limitation: large memory footprint when applying MAML to
commonly used neural network architectures and datasets.

• Solution: Gradient checkpointing [4] stores only 1 in m
optimizer states in device memory, recomputing
intermediate steps on the fly. Thus, it allows us to fit about
10-100x more optimizer steps in the same GPU memory.

PLIF Initializers

Dmitry Baranchuk and Artem Babenko

Memory Efficient MAML

1. Define 𝑇$&'"# tasks to learn initializers and different 𝑇$()$ tasks for evaluation;
2. Define initial weight distributions 𝑝!(𝜃"#"$) with trainable parameters 𝜓;
3. Sample i.i.d. initial weights 𝜃"#"$~ 𝑝! 𝜃"#"$;
4. Train the model for a problem-specific objective using gradient descent and

calculate validation loss on intermediate training steps;
5. Backpropagate through the entire training procedure and update the meta-

parameters 𝜓.

Normal Initializers

1. Define the initial distribution for the 𝑖-th weight tensor - 𝑝!" (𝜃");
2. Sample 𝜃" ~ 𝑝!" (𝜃") for each weight tensor in the model;
3. Train the model with the gradient descent algorithm (e.g., SGD

or Adam) for 𝑁 training steps;
4. Compute the average validation loss measured on intermediate

training steps: 𝐿'*+= ∑,-./ 𝐿)$(0!(𝑥1'%, 𝑦1'%);
5. Compute 𝜕𝐿/𝜕𝜓 by backpropagating through the training loop;
6. Update meta-parameters 𝜓 by meta-optimizer.

We consider two parameterizations for initial distributions 𝑝! 𝜃"#"$.

DIMAML parameterizes weight initializers and exploits the ideas from Model-Agnostic
Meta-Learning [1] to learn them by backpropagating through the training loop:

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
EpoFh

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

CO
Ds

sL
ILF

Dt
Lo

n
Er

ro
r

FLxup
DeOtD2rthogonDO
0etDInLt
FLxup → 0etDInLt
FLxup → DI0A0L

0 1500 3000 4500 6000 7500 9000 10500 12000 13500 15000
IterDtLon

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

CO
Ds

sL
ILF

Dt
Lo

n
Er

ro
r

FLxup
DeOtD2rthogonDO
0etDInLt
FLxup → 0etDInLt
FLxup → DI0A0L

Time ImageNet ImageNet

Performance of the character-level language model in bits-per-character.
DIMAML initial distributions speedup the training and converges to better
optima for the same number of epochs. (*) corresponds to convergence.

Comparison of autoencoder models with different initializers in terms
of mean squared error. (*) corresponds to convergence.

• Represent 𝑝!(𝜃"#"$) in the form of its quantile function 𝑄!,
which is modeled as PLIF − a piecewise linear increasing function
[2] defined in [0, 1] with trainable slope and bias parameters;

• Inverse transform sampling − sample initial weights for layer 𝑙:
𝜃% = 𝐹!3. 𝑧 = 𝑄!(𝑧) , 𝑧 ~ U 0, 1 .

https://github.com/yandex-research/learnable-init

