Discovering Weight Initializers with Meta Learning

Dmitry Baranchuk and Artem Babenko

Goal

Develop an automatic method for discovering optimal initial weight distributions for arbitrary neural networks.

- In practice, finding effective model-specific initializers is an arduous task that requires human intuition and theoretical insights;
- Many sophisticated architectures and training protocols appear regularly.

Contributions

- Propose **DIMAML** an automated approach that learns initial parameter distributions for a given architecture by directly optimizing its training performance;
- Evaluate DIMAML on several architectures and demonstrate that the learned initialization strategies match or outperform existing alternatives;
- Examine universality of the learned initializers by measuring their ability to generalize to unseen tasks, including different data distributions and training protocols;
- The code is available at <u>https://github.com/yandex-research/learnable-init</u>.

DIMAML parameterizes weight initializers and exploits the ideas from Model-Agnostic Meta-Learning [1] to learn them by backpropagating through the training loop:

- Define T_{train} tasks to learn initializers and different T_{test} tasks for evaluation;
- 2. Define initial weight distributions $p_{\psi}(\theta_{init})$ with trainable parameters ψ ;
- 3. Sample i.i.d. initial weights $\theta_{init} \sim p_{\psi}(\theta_{init})$;
- 4. Train the model for a problem-specific objective using gradient descent and calculate validation loss on intermediate training steps;
- Backpropagate through the entire training procedure and update the metaparameters ψ .

Initializer Parameterizations

We consider two param

- $\theta_l = F_{\psi}^{-1}(z) = Q_{\psi}(z)$, $z \sim U(0, 1)$.

\mathcal{T}_{train}	Tiny ImageNet			Tiny ImageNet		
\mathcal{T}_{test}	AnimeFaces			AnimeFaces Shuffled Pixels		
Epoch	10	50	100*	10	50	100*
Kaiming	0.471	0.383	0.369	0.823	0.643	0.590
DeltaOrthogonal	0.496	0.392	0.377	0.842	0.743	0.652
MetaInit [4]	0.552	0.437	0.398	0.859	0.792	0.708
DIMAML-Normal	0.386	0.352	0.344	0.814	0.570	0.546
DIMAML-PLIF	0.386	0.350	0.344	0.812	0.567	0.545

Comparison of autoencoder models with different initializers in terms of mean squared error. (*) corresponds to convergence.

\mathcal{T}_{train}	PennTreebank			Wikitext2		
\mathcal{T}_{test}	Wikitext2			PennTreebank		
Epoch	10	50	100*	10	50	100*
Kaiming	1.983	1.843	1.801	1.492	1.377	1.352
Orthogonal	2.017	1.849	1.806	1.528	1.383	1.354
MetaInit [4]	1.907	1.819	1.792	1.477	1.382	1.359
DIMAML-Normal	1.879	1.812	1.782	1.454	1.372	1.345
DIMAML-PLIF	1.876	1.810	1.784	1.452	1.369	1.344

Performance of the character-level language model in bits-per-character. DIMAML initial distributions speedup the training and converges to better optima for the same number of epochs. (*) corresponds to convergence.

Method

	c · · · ·		()
neterizations f	for initial	distributions	$p_{\psi}(\theta_{init}).$

Normal Initializers

 $p_{\psi}(\theta_{init})$ – a Normal distribution with parameters ψ = { μ, σ };

Sample initial weights for layer $l: \theta_l = \mu_l + \sigma_l \cdot z, z \sim N(0, 1)$.

PLIF Initializers

Represent $p_{\psi}(\theta_{init})$ in the form of its quantile function Q_{ψ} , which is modeled as **PLIF** – a **p**iecewise linear increasing function [2] defined in [0, 1] with trainable slope and bias parameters;

Inverse transform sampling – sample initial weights for layer *l*:

Experiments

Autoencoders

Language models

Classification performance on Tiny ImageNet (Left) and ImageNet (Right) for ResNet-18. During the first epochs, DIMAML is superior over all baselines and then converges similar to top-performing Fixup reaching the same optima.

[1] C. Finn, P. Abbeel, and S. Levine, Model-agnostic meta-learning for fast adaptation of deep networks, ICML2017.

[2] O. Ganea et al., Breaking the Softmax Bottleneck via Learnable Monotonic Pointwise Non-linearities, ICML 2019.

[3] T. Chen et al., Training deep nets with sublinear memory cost, arXiv 2016.

NeurIPS 2019.

- 3.

Training Algorithm

1. Define the initial distribution for the *i*-th weight tensor - $p_{\psi}^{i}(\theta_{i})$; 2. Sample $\theta_i \sim p_{\psi}^i(\theta_i)$ for each weight tensor in the model; Train the model with the gradient descent algorithm (e.g., SGD or Adam) for N training steps;

4. Compute the average validation loss measured on intermediate training steps: $L_{auc} = \sum_{I=1}^{N} L_{step_i}(x_{val}, y_{val});$

Compute $\partial L/\partial \psi$ by backpropagating through the training loop; 6. Update meta-parameters ψ by meta-optimizer.

Memory Efficient MAML

Limitation: large memory footprint when applying MAML to commonly used neural network architectures and datasets. **Solution:** Gradient checkpointing [4] stores only 1 in m optimizer states in device memory, recomputing intermediate steps on the fly. Thus, it allows us to fit about 10-100x more optimizer steps in the same GPU memory.

References

[4] Y. Dauphin, S. Schoenholz, MetaInit: Initializing learning by learning to initialize,