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Goal

Develop an automatic method for discovering optimal initial weight distributions for
arbitrary neural networks.

Inverse Transform Sampling

In practice, finding effective model-specific initializers is an arduous task that
requires human intuition and theoretical insights;

Many sophisticated architectures and training protocols appear regularly.

Contributions

Propose DIMAML - an automated approach that learns initial parameter distributions
for a given architecture by directly optimizing its training performance;

Evaluate DIMAML on several architectures and demonstrate that the learned
initialization strategies match or outperform existing alternatives;

Examine universality of the learned initializers by measuring their ability to generalize
to unseen tasks, including different data distributions and training protocols;

The code is available at https://qgithub.com/yandex-research/learnable-init.
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DIMAML parameterizes weight initializers and exploits the ideas from Model-Agnostic
Meta-Learning [1] to learn them by backpropagating through the training loop:
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Define Ty, 4i,, tasks to learn initializers and different T;.¢; tasks for evaluation;
Define initial weight distributions p,, (6;;;) with trainable parameters ;
Sample i.i.d. initial weights 0;;c~ Py (Oinit);

Train the model for a problem-specific objective using gradient descent and
calculate validation loss on intermediate training steps;

Backpropagate through the entire training procedure and update the meta-
parameters 1.

We consider two parameterizations for initial distributions py, (6;5,;¢).

Initializer Parameterizations

Dy (0;,,i+) —a Normal distribution with parameters ¥ = {u, o};

Sample initial weights for layer [: 6; =y, +0;-2z,z~ N(0O, 1).

Normal Initializers

PLIF Initializers

Yandex

Method

Represent py, (0;i) in the form of its quantile function Qy,

which is modeled as PLIF — a piecewise linear increasing function
[2] defined in [0, 1] with trainable slope and bias parameters;

Inverse transform sampling — sample initial weights for layer [:

0, = Fl/jl(z) = Qy(2),z~U(0,1).

Training Algorithm

1. Define the initial distribution for the i-th weight tensor - pf/) (0;);

2. Sample §; ~ pf/) (0;) for each weight tensor in the model;

3. Train the model with the gradient descent algorithm (e.g., SGD

or Adam) for N training steps;
4. Compute the average validation loss measured on intermediate

training steps: Lgyc= Z?’:l Lstepi(xval, Vvai);
5. Compute JdL/0y by backpropagating through the training loop;
6. Update meta-parameters i) by meta-optimizer.

Memory Efficient MAML

* Limitation: large memory footprint when applying MAML to
commonly used neural network architectures and datasets.

* Solution: Gradient checkpointing [4] storesonly 1 in m
optimizer states in device memory, recomputing
intermediate steps on the fly. Thus, it allows us to fit about
10-100x more optimizer steps in the same GPU memory.

Experiments

Autoencoders
rain Tiny ImageNet Tiny ImageNet

Tiost AnimeFaces AnimeFaces Shuffled Pixels
Epoch 10 50 100* 10 50 100*
Kaiming 0.471 | 0.383 | 0.369 | 0.823 | 0.643 0.590
DeltaOrthogonal | 0.496 | 0.392 | 0.377 | 0.842 | 0.743 0.652
Metalnit [4] 0.552 | 0.437 | 0.398 | 0.859 | 0.792 0.708
DIMAML-Normal | 0.386 | 0.352 | 0.344 | 0.814 | 0.570 0.546
DIMAML-PLIF | 0.386 | 0.350 | 0.344 | 0.812 | 0.567 0.545

Comparison of autoencoder models with different initializers in terms

of mean squared error. (*) corresponds to convergence.

Language models

e Penn'Treebank Wikitext?2
Trent Wikitext?2 PennTreebank

Epoch 10 50 100* 10 50 100*
Kaiming 1.983 | 1.843 | 1.801 | 1.492 | 1.377 | 1.352
Orthogonal 2.017 | 1.849 | 1.806 | 1.528 | 1.383 | 1.354
Metalnit [4] 1.907 | 1.819 | 1.792 | 1.477 | 1.382 | 1.359
DIMAML-Normal | 1.879 | 1.812 | 1.782 | 1.454 | 1.372 | 1.345
DIMAML-PLIF 1.876 | 1.810 | 1.784 | 1.452 | 1.369 | 1.344

Performance of the c

naracter-level language model in bits-per-character.
DIMAML initial distributions speedup the training and converges to better
optima for the same number of epochs. (*) corresponds to convergence.

Residual Networks
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Classification performance on Tiny ImageNet (Left) and ImageNet (Right) for
ResNet-18. During the first epochs, DIMAML is superior over all baselines and

then converges similar to top-performing Fixup reaching the same optima.
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