Discovering Weight Initializers with Meta Learning

Dmitry Baranchuk and Artem Babenko

Goal

Develop an automatic method for discovering optimal initial weight distributions for
arbitrary neural networks.

Inverse Transform Sampling

In practice, finding effective model-specific initializers is an arduous task that
requires human intuition and theoretical insights;

Many sophisticated architectures and training protocols appear regularly.

Contributions

Propose DIMAML - an automated approach that learns initial parameter distributions
for a given architecture by directly optimizing its training performance;

Evaluate DIMAML on several architectures and demonstrate that the learned
initialization strategies match or outperform existing alternatives;

Examine universality of the learned initializers by measuring their ability to generalize
to unseen tasks, including different data distributions and training protocols;

The code is available at https://qgithub.com/yandex-research/learnable-init.

General Approach

MAML
inner loop

...............

..... Initial .. e vo W,
--- model el —(0O—
Q(z) :;:;_______: Q

gradients I e

DIMAML parameterizes weight initializers and exploits the ideas from Model-Agnostic
Meta-Learning [1] to learn them by backpropagating through the training loop:

= W

Define Ty, 4i,, tasks to learn initializers and different T;.¢; tasks for evaluation;
Define initial weight distributions p,, (6;;;) with trainable parameters ;
Sample i.i.d. initial weights 0;;c~ Py (Oinit);

Train the model for a problem-specific objective using gradient descent and
calculate validation loss on intermediate training steps;

Backpropagate through the entire training procedure and update the meta-
parameters 1.

We consider two parameterizations for initial distributions py, (6;5,;¢).

Initializer Parameterizations

Dy (0;,,i+) —a Normal distribution with parameters ¥ = {u, o};

Sample initial weights for layer [: 6; =y, +0;-2z,z~ N(0O, 1).

Normal Initializers

PLIF Initializers

Yandex

Method

Represent py, (0;i) in the form of its quantile function Qy,

which is modeled as PLIF — a piecewise linear increasing function
[2] defined in [0, 1] with trainable slope and bias parameters;

Inverse transform sampling — sample initial weights for layer [:

0, = Fl/jl(z) = Qy(2),z~U(0,1).

Training Algorithm

1. Define the initial distribution for the i-th weight tensor - pf/) (0;);

2. Sample §; ~ pf/) (0;) for each weight tensor in the model;

3. Train the model with the gradient descent algorithm (e.g., SGD

or Adam) for N training steps;
4. Compute the average validation loss measured on intermediate

training steps: Lgyc= Z?’:l Lstepi(xval, Vvai);
5. Compute JdL/0y by backpropagating through the training loop;
6. Update meta-parameters i) by meta-optimizer.

Memory Efficient MAML

* Limitation: large memory footprint when applying MAML to
commonly used neural network architectures and datasets.

* Solution: Gradient checkpointing [4] storesonly 1 in m
optimizer states in device memory, recomputing
intermediate steps on the fly. Thus, it allows us to fit about
10-100x more optimizer steps in the same GPU memory.

Experiments

Autoencoders
rain Tiny ImageNet Tiny ImageNet

Tiost AnimeFaces AnimeFaces Shuffled Pixels
Epoch 10 50 100* 10 50 100*
Kaiming 0.471 | 0.383 | 0.369 | 0.823 | 0.643 0.590
DeltaOrthogonal | 0.496 | 0.392 | 0.377 | 0.842 | 0.743 0.652
Metalnit [4] 0.552 | 0.437 | 0.398 | 0.859 | 0.792 0.708
DIMAML-Normal | 0.386 | 0.352 | 0.344 | 0.814 | 0.570 0.546
DIMAML-PLIF | 0.386 | 0.350 | 0.344 | 0.812 | 0.567 0.545

Comparison of autoencoder models with different initializers in terms

of mean squared error. (*) corresponds to convergence.

Language models

e Penn'Treebank Wikitext?2
Trent Wikitext?2 PennTreebank

Epoch 10 50 100* 10 50 100*
Kaiming 1.983 | 1.843 | 1.801 | 1.492 | 1.377 | 1.352
Orthogonal 2.017 | 1.849 | 1.806 | 1.528 | 1.383 | 1.354
Metalnit [4] 1.907 | 1.819 | 1.792 | 1.477 | 1.382 | 1.359
DIMAML-Normal | 1.879 | 1.812 | 1.782 | 1.454 | 1.372 | 1.345
DIMAML-PLIF 1.876 | 1.810 | 1.784 | 1.452 | 1.369 | 1.344

Performance of the c

naracter-level language model in bits-per-character.
DIMAML initial distributions speedup the training and converges to better
optima for the same number of epochs. (*) corresponds to convergence.

Residual Networks

Time ImageNet ImageNet

1.00 1.00 <
—— Fixup
—— DeltaOrthogonal 0.95
0.90 Metalnit
0.85 —— Fixup - Metalnit 0.90
—— Fixup -» DIMAML

—— Fixup

—— DeltaOrthogonal
Metalnit

—— Fixup - Metalnit

—— Fixup -» DIMAML
0.85

Classification Error

0.60

0 1500 3000 4500 6000 7500 9000 10500 12000 13500 15000
Ilteration

0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Epoch

Classification performance on Tiny ImageNet (Left) and ImageNet (Right) for
ResNet-18. During the first epochs, DIMAML is superior over all baselines and

then converges similar to top-performing Fixup reaching the same optima.

References

[1] C. Finn, P. Abbeel, and S. Levine, Model-agnostic meta-learning for fast adaptation of
deep networks, ICML2017.

[2] O. Ganea et al., Breaking the Softmax Bottleneck via Learnable Monotonic Pointwise
Non-linearities, ICML 20109.

[3] T. Chen et al., Training deep nets with sublinear memory cost, arXiv 2016.

[4] Y. Dauphin, S. Schoenholz, Metalnit: Initializing learning by learning to initialize,
NeurlPS 2019.

https://github.com/yandex-research/learnable-init

