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ABSTRACT

Data augmentation is critical to the empirical success of modern self-supervised
representation learning, such as contrastive learning and masked language modeling.
However, a theoretical understanding of the exact role of augmentation remains
limited. Recent work has built the connection between self-supervised learning and
the approximation of the top eigenspace of a graph Laplacian operator, suggesting
that learning a linear probe atop such representation can be connected to RKHS
regression. Building on this insight, this work delves into a statistical analysis of
augmentation-based pretraining. Starting from the isometry property, a geometric
characterization of the target function given by the augmentation, we disentangle
the effects of the model and the augmentation, and prove two generalization
bounds that are free of model complexity. Our first bound works for an arbitrary
encoder, where the prediction error is decomposed as the sum of an estimation error
incurred by fitting a linear probe with RKHS regression, and an approximation error
entailed by RKHS approximation. Our second bound specifically addresses the
case where the encoder is near-optimal, that is it approximates the top-d eigenspace
of the RKHS induced by the augmentation. A key ingredient in our analysis is
the augmentation complexity, which we use to quantitatively compare different
augmentations and analyze their impact on downstream performance.

1 INTRODUCTION

It is widely acknowledged that better data augmentation techniques have been a major driving force
in many recent breakthroughs in self-supervised representation learning. For example, contrastive
learning (Chen et al., 2020) with aggressive random cropping and strong color distortion greatly im-
proves the performance of vision tasks, and masked prediction with random masking and replacement
is among the state-of-the-art representation learning methods for both natural language process-
ing (Devlin et al., 2019) and vision (He et al., 2022). Due to their extraordinary empirical successes,
developing a rigorous theoretical understanding of augmentation-based representation learning is
an important open problem, and is crucial for inventing new, better and principled augmentation
techniques.

A key advance was recently made by HaoChen et al. (2021), who analyzed a variant of contrastive
representation learning, termed spectral contrastive learning, by connecting it to learning eigenfunc-
tions of a Laplacian operator over a population augmentation graph. This has been followed up by
multiple works which extended these results to more general contrastive learning approaches (Saunshi
et al., 2022; Johnson et al., 2023; Cabannes et al., 2023). However, the generalization guarantees in
these works have to explicitly grapple with the function class being used to learn the eigenfunctions
(typically deep neural networks in practice). Such a dependency was even deemed necessary by
Saunshi et al. (2022) who argued that “function-class-agnostic analysis leads to vacuous guarantees.”
Consequently, the generalization bounds such as HaoChen et al. (2021, Theorem 4.2) need to depend
on the Rademacher or other complexities of this encoder function class, yet finding proper complexity
measures for flexible function classes such as neural networks remains an open problem. Moreover,
with the effects of the augmentation and the encoder function class intertwined, these analyses cannot
discern the exact role of augmentation in self-supervised representation learning.
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L2(PX ): Large space of L2 bounded functions, containing the target function f∗

Induced RKHS HΓ: Functions with soft invariance to augmentation, f∗ ∈ HΓ

Empirical RKHS ĤΓ : Obtained with N samples to approximate inaccessible HΓ

Empirical top-d RKHS Ĥd : Induced by the pretrained d-dimensional encoder
Approximation error ∥f∗ − fΨ̂∥ : Distance from f∗ to Ĥd (Lemma 3, Theorem 2)
Estimation error ∥fΨ̂ − f̂∥: Entailed by downstream regression (Lemma 2)

Figure 1: Overall RKHS approximation/regression framework illustration and commentary.

In this work, we factor out the effect of the encoder function class completely. Our starting point is the
observation that target functions that are “soft invariant” to the augmentation lie in a specific RKHS
HΓ which we call the (augmentation) induced RKHS. Meanwhile, the d-dimensional feature encoder
we pretrain also spans an RKHS, and the closer this RKHS is to the induced RKHS, the better the
encoder. Thus, pretraining can be viewed as approximating the induced RKHS with unlabeled data.
Then, learning a linear probe atop corresponds to regression on the encoder’s RKHS with labeled
data. This perspective elucidates what roles the two stages of representation learning are playing:

• Upstream: The self-supervised pretraining stage can be viewed as doing RKHS approxi-
mation. It learns, with unlabeled data, an encoder Ψ̂ whose learned RKHS HΨ̂ (Eqn. (9))
approximates HΓ.

• Downstream: The supervised stage is doing RKHS regression over HΨ̂ with labeled data.

Figure 1 provides an illustration of this RKHS approximation/regression perspective. The learning
performance is measured by the prediction error of the downstream predictor, which decomposes
into two parts based on the above framework: the approximation error upstream entailed by RKHS
approximation, and the estimation error downstream entailed by RKHS regression.

Thus, using classical function analytic tools, this leads us to our first set of results: For an arbitrary
pretrained encoder, we provide a generalization bound on the L2 distance between the predictor and
the target function (Theorem 1). We emphasize that the encoder can be arbitrary, i.e. any architecture
and size. As a result, Theorem 1 starkly contrasts prior work in that it disentangles the effects of the
model and the augmentation: our generalization bound (a) is nonparametric, (b) does not depend on
any model complexity or model inductive bias, and hence (c) allows the user to choose any model
class for the encoder. Our bound depends on two key quantities: (a) the augmentation complexity κ,
which is smaller for stronger and “better behaved” augmentations; (b) the trace gap, which serves as
a proxy of how well the encoder approximates the induced RKHS.

The bound for an arbitrary encoder is great, but one might also be interested in proving guarantees for
the optimal encoder that minimizes the worst-case approximation error. We will show that the optimal
d-dimensional encoder consists of the top-d eigenfunctions of the induced RKHS (Proposition 4).
However, these eigenfunctions are not accessible given only finite samples, so we instead study the
near-optimal d-dimensional encoder, which is a Monte-Carlo approximation of the optimal one. Our
second set of results provide a generalization bound for the near-optimal encoder, by bounding its
trace gap (which captures its quality) with high probability in terms of some spectral aspects of the
induced RKHS. The bound shows that: As the number of unlabeled samples goes to infinity, the
near-optimal encoder will become optimal.

A practical implication of our framework is that the augmentation complexity κ, defined as the L∞

norm of the kernel of HΓ, can be used as a tool to quantitatively compare different augmentations
and analyze their impact on downstream performance. In Section 5, we demonstrate this point with
mask-type augmentations on synthetic and real datasets, and show that (i) κ depends on both the
augmentation strength and the augmentation strategy; (ii) a smaller κ (e.g. stronger augmentation)
leads to a smaller generalization gap, but an overly strong augmentation causes poor training perfor-
mance. Thus, there is a “sweet spot” in the middle with the best test performance. Overall, we believe
that this work places modern representation learning on a more scientific footing and can inspire
future empirical advancements. Finally, it is worth emphasizing that this work is about studying
self-supervised learning from a kernel perspective, rather than studying kernel methods.

2 PROBLEM SETUP, GEOMETRY OF THE AUGMENTATION INDUCED RKHS

Let X ⊂ RdX be the data space, and PX be the data distribution. LetL2(PX ) be theL2 function space,
such that any f ∈ L2(PX ) satisfies EPX [f(X)2] <∞. Let ⟨f1, f2⟩PX =

∫
f1(x)f2(x)dPX (x) and
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∥f∥PX = ⟨f, f⟩1/2PX
be the inner product and the norm of the Hilbert space L2(PX ). Let f∗ ∈ L2(PX )

be the target function we want to learn. This work studies the least-squares regression problem (see
Györfi et al. (2002) for an introduction), which is formally stated as follows:

Problem. Given unlabeled samples x1, · · · , xN and labeled samples x̃1, · · · , x̃n i.i.d. sampled
from PX , and labels ỹk = f∗(x̃k) + νk for k ∈ [n] and random noise νk, find a predictor
f̂ ∈ L2(PX ) with a low prediction error err(f̂ , f∗) := ∥f̂ − f∗∥2PX

= EPX [(f̂(X)− f∗(X))2].

2.1 THE AUGMENTATION OPERATOR Γ: A SOURCE OF PRIOR KNOWLEDGE

The core problem in self-supervised representation learning is how to leverage the unlabeled data
x1, · · · , xN . Without labels, the pretraining task must be built upon some prior knowledge we have
about the target function f∗. Data augmentation based pretraining tasks are built upon the following
prior knowledge: Two augmentations of the same sample x should be similar to each other.

Formally, let A denote an augmented space that contains the augmentations of x ∈ X . Data
augmentation induces a joint distribution PAX , with marginal distributions PA and PX . We will use
capital letters A and X to denote random variables from PA and PX . We define an augmentation
operator Γ = Γx→a : L2(PX ) → L2(PA) as (Γx→af)(a) = E[f(X)|a] for all f ∈ L2(PX ), and
define its adjoint operator Γ∗ = Γa→x : L2(PA) → L2(PX ) as (Γa→xg)(x) = E[g(A)|x] for all
g ∈ L2(PA). We can see that Γa→x is indeed the adjoint of Γx→a, since for all f ∈ L2(PX ) and
g ∈ L2(PA), there is ⟨Γx→af, g⟩PA =

∫∫
f(x)g(a)p(a, x)dadx = ⟨f,Γa→xg⟩PX . Intuitively, the

augmentation operator connects any single sample x to the distribution of its augmentations p(a|x).
Example: In BERT, suppose we use 15% random masking. Then, X is the space of original sentences,
and A is the space of 15% masked sentences; PX is the distribution over original sentences, A ∼
p(·|x) is the 15% randomly masked version of an original sentence x, and PAX (a, x) = PX (x)p(a|x).
Thus, (Γa→xg)(x) is the mean of g over all 15% randomly masked versions of x.

Now we define the “soft invariance” w.r.t. the augmentation. Denote the function class F(Γ; ϵ) to be
the set of function f∗ such that ∃g∗ ∈ L2(PA) such that f∗(x) = (Γa→xg

∗)(x) = E[g∗(A)|x], and

1

2
EX∼PXEA,A′∼p(·|X)

[
(g∗(A)− g∗(A′))2

]
≤ ϵ∥g∗∥2PA

, (1)

for some small positive constant ϵ. Eqn. (1) is a regularization constraint induced by the random walk
normalized Laplacian over the augmentation graph defined in HaoChen et al. (2021), where the edge
weight between a and a′ is given by P+

A (a, a′) in Eqn. (2). Compared to Assumption 1.1 in Johnson
et al. (2023), Eqn. (1) has an additional ∥g∗∥2PA

term on the right-hand side so it is homogeneous.
For any f ∈ F(Γ; ϵ), if ∥f∥PX ≤ B for some constant B, then we denote f ∈ FB(Γ; ϵ).

Assumption 1 (See discussions in Appendix A). We assume that f∗ ∈ FB(Γ; ϵ) for given B, ϵ.

Let the range of Γ∗ be R(Γ∗) =
{
f = Γa→xg

∣∣ g ∈ L2(PA)
}

. Then f∗ ∈ R(Γ∗) by Assumption 1.

2.2 INDUCED RKHS HΓ AND THE ISOMETRY PROPERTY

Now, we show that R(Γ∗) is an RKHS. Define the following kernel over A×A:

KA(a1, a2) :=
dP+

A

d(PA ⊗ PA)
=

P+
A (a1, a2)

PA(a1)PA(a2)
, P+

A (a1, a2) :=

∫
p(a1|x)p(a2|x)dPX (x). (2)

Here, P+
A is called the associative distribution, and KA is the Radon-Nikodym derivative of P+

A w.r.t.
PA ⊗ PA, also called the positive-pair kernel in Johnson et al. (2023). Next, we define a dual kernel
as:

KX(x1, x2) :=
dP+

X

d(PX ⊗ PX )
=

P+
X (x1, x2)

PX (x1)PX (x2)
=

∫
p(a|x1)p(a|x2)

PA(a)
da, (3)

which is constructed by swapping a and x in KX and then applying the Bayes rule. It holds that:{
(Γa→xΓx→af)(x) = (Γ∗Γf)(x) =

∫
KX(x, x′)f(x′)PX (x′)dx′;

(Γx→aΓa→xg)(a) = (ΓΓ∗g)(a) =
∫
KA(a, a

′)g(a′)PA(a
′)da′.
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See App. D for derivation. Let λi ∈ R and ψi ∈ L2(PX ) be the sorted eigenvalue and eigenfunction
of Γ∗Γ, i.e. Γ∗Γψi = λiψi, with λ1 ≥ λ2 ≥ · · · ≥ 0. Suppose

∫
KX(x, x′)2dPX (x)dPX (x′) <∞,

so that Γ∗Γ is a compact Hilbert-Schmidt integral operator. Then, by Hilbert-Schmidt theorem, we
can choose ψ1, ψ2, · · · that form an orthonormal basis of L2(PX ), such that ⟨ψi, ψj⟩PX = δi,j , and
any f ∈ L2(PX ) can be written as f =

∑
i uiψi for some {ui}i.

Note that λi ∈ [0, 1], since ∥g∥2PA
≥ ∥Γ∗g∥2PX

for any g ∈ L2(PA) by Jensen’s inequality. It is easy
to check that λ1 = 1 and ψ1 ≡ 1 is always a pair of eigenvalue and eigenfunction of Γ∗Γ. Moreover,
when d is sufficiently large, λd should be close to 0. Similarly, we can define a set of orthonormal
eigenfunctions of ΓΓ∗ denoted by {ϕi}, and we can relate these two sets of eigenfunctions by:

Proposition 1 (Duality). Operators ΓΓ∗ and Γ∗Γ share the same non-zero eigenvalues, and there
exist eigenfunctions {ϕi} of ΓΓ∗ that form an orthonormal basis of L2(PA), such that for any λi > 0,

ψi = λ
−1/2
i Γ∗ϕi = λ

−1/2
i Γa→xϕi and ϕi = λ

−1/2
i Γψi = λ

−1/2
i Γx→aψi.

Moreover, we have the following spectral decomposition of the Radon-Nikodym derivative:

dPAX

d(PA ⊗ PX )
=

PAX (a, x)

PA(a)PX (x)
=
∑
i

λ
1/2
i ϕi(a)ψi(x). (4)

Define a Hilbert space HΓ :=
{
f =

∑
i uiψi ∈ L2(PX )

∣∣ ∑
i λ

−1
i u2i <∞

}
, whose inner product is

⟨f1, f2⟩HΓ
=
∑

i λ
−1
i uivi for f1 =

∑
i uiψi and f2 =

∑
i viψi. It satisfies (proof in Appendix D):

(i) KX is the reproducing kernel of HΓ, such that for all f ∈ HΓ, f(x) = ⟨f,KX(x, ·)⟩HΓ
.

(ii) HΓ = R(Γ∗). We call this the augmentation induced RKHS.

(iii) HΓ is isometric to span({ϕi}λi>0), a subspace of L2(PA), and ∥f∥HΓ
= infg:f=Γ∗g ∥g∥PA .

(iv) For any f∗ ∈ FB(Γ; ϵ) ⊂ R(Γ∗), let f∗ =
∑

i uiψi. Define g0 :=
∑

i λ
−1/2
i uiϕi. Then, g0

must satisfy Eqn. (1), so we can choose g∗ = g0, in which case Eqn. (1) is equivalent to:

⟨g∗, (I − ΓΓ∗)g∗⟩PA ≤ ϵ∥g∗∥2PA
⇔
∑
i

1− λi
λi

u2i ≤ ϵ
∑
i

1

λi
u2i . (5)

Moreover, Eqn. (5) is equivalent to a simple and intuitive isometry property:

(1− ϵ)∥f∗∥2HΓ
≤ ∥f∗∥2PX

≤ ∥f∗∥2HΓ
. (6)

Understanding the isometry property: This property essentially says that the operator Γ∗Γ pre-
serves most variance of the target function f∗ in the infinite-dimensional functional space. Thus
naturally, the optimal d-dimensional encoder that minimizes the approximation error should keep
as much variance as possible under Γ∗Γ. This isometry property can be considered as a counterpart
of the restricted isometry property (RIP) in infinite-dimensional functional spaces: In Section 4, we
will show that the optimal encoder consists of the top-d eigenfunctions of Γ∗Γ. Analogously, for a
finite-dimensional vector space, PCA finds the d principal components that keep the most variance
under a linear transformation T , and they consist of the top-d eigenvectors of T .

3 LEARNING GUARANTEES FOR AN ARBITRARY ENCODER

We now present generalization bounds for an arbitrary encoder. But before that, we need to clarify
which encoder we are talking about. In practice, people don’t directly pretrain Ψ̂ during upstream.
Instead, the common practice is to first pretrain an encoder Φ̂ = [ϕ̂1, · · · , ϕ̂d] on the augmented space
with ϕ̂i ∈ L2(PA), and then transform it into Ψ̂, on top of which a linear probe is learned downstream.
For example, in contrastive learning, the encoder is trained on views of images instead of original
images; in masked language modeling, the encoder is trained on masked sentences instead of full
sentences. In practice, people usually apply Φ̂ to downstream tasks directly without transformation,
but for theoretical analysis we need to explicitly write out the transformation since Ψ̂ and Φ̂ work on
different spaces. We consider the commonly used average encoder (Saunshi et al., 2022, Eqn. (4)):

Ψ̂(x) = E[Φ̂(A)|x] =
∫

Φ̂(a)p(a|x)da, (7)
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which is equivalent to Ψ̂ = Γ∗Φ̂, and thus ψ̂i ∈ R(Γ∗) = HΓ for all i ∈ [d]. In this section, Φ̂ can be
an arbitrary function, even with infinite dimensions, so that the model can have any architecture and
size; whereas Ψ̂ is always the average encoder of Φ̂. Moreover, we consider the following predictor:

Definition 1. The final predictor is the nonparametric least-squares estimate defined as

f̂ := argmin
f :f=w⊤Ψ̂∈HΨ̂,∥f∥HΓ

≤ B√
1−ϵ

{
1

n

n∑
k=1

(ỹk − f(x̃k))
2

}
. (8)

Here, note that by Eqn. (6) and ∥f∗∥PX ≤ B, there is ∥f∗∥HΓ
≤ B√

1−ϵ
.

We next introduce two key ingredients crucial to our analyses. The first ingredient is what we term
the augmentation complexity, which uniformly bounds the kernel and is typically required in RKHS
generalization analyses; for instance, see Schölkopf & Smola (2002, Section 12.1.3).

Definition 2. Define the augmentation complexity as κ := ∥KX∥1/2∞ , i.e. for PX -almost all x,

KX(x, x) =
∑
i

λiψi(x)
2 =

∫
p(a|x)2

PA(a)
da = Dχ2(PA(·|x) ∥ PA) + 1 ≤ κ2.

Here, Dχ2(P ∥ Q) :=
∫
( dPdQ − 1)2dQ is the χ2-divergence. Let Sλ(d) :=

∑d
i=1 λi and Sλ :=

Sλ(∞) =
∑∞

i=1 λi. Wang et al. (2022b) showed that Sλ = Dχ2(PA|X ∥ PA) + 1. By convexity of
Dχ2 , we have Sλ ≤ κ2, i.e. Γ∗Γ is a trace-class operator (or κ2 ≥

∫
KX(x, x)dPX (x) = Sλ). Thus,

κ ≥ 1 as λ1 = 1. We will provide examples of this augmentation complexity in Section 5.

Our second ingredient is the trace gap that captures the quality of the encoder. It is based on the
notion of the ratio trace. Given an encoder Φ̂, without loss of generality, suppose it is full-rank.

Definition 3. Define covariance matrices F ,G as F (i, j) = ⟨ψ̂i, ψ̂j⟩PX = ⟨Γ∗ϕ̂i,Γ
∗ϕ̂j⟩PX and

G(i, j) = ⟨ϕ̂i, ϕ̂j⟩PA . Then, the ratio trace is defined as Tr(G−1F ), if G−1 is well-defined.

Ratio trace is a classical quantity in linear discriminant analysis (LDA) (Wang et al., 2007) and, as
we will show, controls the approximation error. The largest ratio trace of any d-dimensional Φ̂ is
λ1+ · · ·+λd, and can be achieved by the top-d eigenspace of HΓ. Then, define the learned kernel as

K̂Ψ̂(x, x
′) = ⟨Γ∗(G−1/2Φ̂)(x),Γ∗(G−1/2Φ̂)(x′)⟩, (9)

which is the reproducing kernel of HΨ̂ = span(ψ̂1, ψ̂2, · · · ), a subspace of HΓ. Here G−1/2 is used
for normalization. The ratio trace can be viewed as the trace of HΨ̂. Then, define the trace gap as:

τ2 := inf
d′≤d

inf
h1,··· ,hd′

Sλ(d
′ + 1)− Tr(G−1

h Fh), (10)

where τ ≥ 0, hi = w⊤
i Φ̂, Gh = (⟨hi, hj⟩PA)i,j∈[d′], and Fh = (⟨Γ∗hi,Γ

∗hj⟩PX )i,j∈[d′]. Note that
for any d′ ≤ d there is Tr(G−1

h Fh) ≤ Sλ(d
′), so τ2 is always lower bounded by λd+1. And by

choosing hi = ϕ̂i for i ∈ [d], we can see that τ2 ≤ Sλ(d+ 1)− Tr(G−1F ).

We now state our first result. For simplicity, we assume that the random noise ν1, · · · , νn are i.i.d.
N (0, σ2) variates for some σ > 0, though this can be relaxed (Wainwright, 2019, Chapter 13).

Theorem 1. Let ν1, · · · , νn be i.i.d. N (0, σ2) variates. Let f̂ be defined by Definition 1. If Φ̂ has
d dimensions and τ < 1 (d can be ∞), then there are universal constants c0, c1, c2 such that with

probability at least 1− c1 exp

(
− c2

√
2nSλ(d+1)

κ

)
− exp

(
−
√

2nκ2B2

1−ϵ

)
, there is

∥f̂ − f∗∥2PX
≤ 9τ2(τ + ϵ)B2

(1− τ2)(1− ϵ)
+
c0κ(B

2 + σB)

1− ϵ

√
Sλ(d+ 1)

n
for all f∗ ∈ FB(Γ; ϵ).

Remark. The first term in the bound controls the approximation error entailed by the limited capacity
of the d-dimensional encoder Φ̂. This term may not vanish as N,n→ ∞, since τ2 is lower bounded
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by λd+1 which can be positive. For instance, if d is too small for Φ̂ to represent f∗, then the
approximation error cannot be zero regardless of the number of samples available. Nevertheless,
we can show that with a proper pretraining algorithm, the trace gap τ2 can be very close to λd+1 as
N → ∞ (Theorem 2). A larger ratio trace leads to a smaller approximation error, and indeed many
existing objectives are strongly connected to maximizing Tr(G−1F ) (see Appendix C). The second
term bounds the downstream estimation error, which vanishes as n→ ∞. Finally, this result requires
full access to p(a|x) for any x, which is available in theory since the augmentation scheme is of our
choice. Practical considerations for estimating p(a|x) is outside the scope of this work.

➢ Proof Sketch of Theorem 1: This result follows from two bounds:
Lemma 2 (Estimation error bound). Suppose ν1, · · · , νn are i.i.d. N (0, σ2) variates. If Φ̂ has d
dimensions (d can be ∞), then we have the following uniform bound over all f∗ = Γ∗g∗ ∈ FB(Γ; ϵ):

P
x̃i,νi

[
∀f∗ ∈ FB(Γ; ϵ), ∥f̂ − f∗∥2PX

≤ 9∥fΨ̂ − f∗∥2PX
+
c0κ(B

2 + σB)

1− ϵ

√
Sλ(d+ 1)

n

]

≥ 1− c1 exp

(
−
c2
√
2nSλ(d+ 1)

κ

)
− exp

(
−
√

2nκ2B2

1− ϵ

)
,

where fΨ̂ = Γ∗(ΠΦ̂g
∗) is the projection of f∗ onto HΨ̂ w.r.t. ⟨·, ·⟩HΓ , and c0, c1, c2 are universal

constants. Note that f̂ depends on f∗. Moreover, Sλ(d+ 1) ≤ min
{
d+ 1, κ2

}
.

Remark. The constant 9 in the bound is loose and can be tightened arbitrarily close to 1 (at the cost
of increasing other terms in the bound) by straightforward modifications to the proof, which we omit
here. Such a greater-than-one constant is inevitable for any uniform deviation bound.
Lemma 3 (Approximation error, upper bound). If τ < 1, then for any f∗ ∈ FB(Γ; ϵ), there is

∥fΨ̂ − f∗∥2PX
≤ τ2

1− τ2
τ + ϵ

1− ϵ
B2. (11)

4 ANALYSES FOR THE NEAR-OPTIMAL ENCODER

In this section, we consider the special case where Ψ̂ is near-optimal, i.e. the Monte-Carlo approx-
imation of the optimal d-dimensional encoder that minimizes the worst-case approximation error.
First, we show that the optimal encoder spans the top-d eigenspace, which is the linear span of the
top-d eigenfunctions ψ1, · · · , ψd. Define the worst-case approximation error over FB(Γ; ϵ) as:

err(Ψ̂;FB(Γ; ϵ)) := sup
f∈FB(Γ;ϵ)

min
w∈Rd

err(w⊤Ψ̂, f) = sup
f∈FB(Γ;ϵ)

min
w∈Rd

∥w⊤Ψ̂− f∥2PX
.

Proposition 4 (Approximation error, lower bound). For any Ψ̂ = [ψ̂1, · · · , ψ̂d] where ψ̂i ∈ L2(PX ),

err(Ψ̂;FB(Γ; ϵ)) ≥
λd+1

1− λd+1

ϵ

1− ϵ
B2 given that

λd+1

1− λd+1

ϵ

1− ϵ
≤ 1

2
.

To attain equality, it is sufficient for Ψ̂ to span the top-d eigenspace, and also necessary if λd+1 < λd.
One can use kernel PCA to recover top-d eigenspace (Belkin & Niyogi, 2003; Johnson et al., 2023),
which is however not scalable. Alternatively, one can use variational objectives that attain minimum
when Φ̂ spans the top-d eigenspace (see Appendix C for examples). Also, when λd > 0, the top-d
eigenspace lies within R(Γ∗), which is the function class of Ψ when using the average encoder.

The optimal d-dimensional encoder is inaccessible since ψ1, · · · , ψd cannot be extracted with
only finite samples. What one can do instead is extracting the empirical top-d eigenspace Ĥd.
Given samples x1, · · · , xN , define two Hilbert spaces L2(P̂X ) and L2(P̂A), where ⟨f1, f2⟩P̂X

=
1
N

∑N
k=1 f1(xk)f2(xk), and ⟨g1, g2⟩P̂A

=
∫
g1(a)g2(a)dP̂A(a) for P̂A(a) = 1

N

∑N
k=1 p(a|xk).

With these finite samples, Γ∗ will remain the same, but Γ will become the empirical version Γ̄:

(Γ̄f)(a) =
1

N

N∑
k=1

f(xk)p(a|xk)
P̂A(a)

.

Let the eigenvalues and eigenfunctions of Γ∗Γ̄ be {(λ̄i, ψ̄i)}. Let ϕ̄i be the eigenfunctions of Γ̄Γ∗.
ϕ̄i and ψ̄i have the duality property similar to Proposition 1. Let ĤΓ be the RKHS associated with
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Γ∗Γ̄, which is the span of
{
ψ̄i

}
λ̄i>0

and hence is a subspace of HΓ = R(Γ∗). Let Ĥd be the top-d

eigenspace of ĤΓ. Let λmax(G), λmin(G) be the largest and smallest eigenvalue of G. For the case
of interest where HΨ̂ = Ĥd, we have our second main learning guarantee that bounds the trace gap:

Theorem 2. Suppose ϕ̂i = ϕ̄i for i ∈ [d]. Let γG := λmax(G)/λmin(G) be the condition number
of G. Then, for any δ > 0, it holds with probability at least 1− δ that

τ2 ≤ Sλ(d+ 1)− Tr(G−1F ) ≤ λd+1 +

(
2 +

√
2 log

2

δ

)
(λ−1

d + λ̄−1
d γ

1/2
G + 2)κ2√
N

d.

Remark. Combining this result with the first main Theorem 1 leads to the bound for HΨ̂ = Ĥd. Since
τ2 ≥ λd+1, this result says that the gap between τ2 and its optimal value is O(N−1/2), ignoring
potential dependence of γG and λ̄−1

d on N . Comparing the upper bound in Lemma 3 + Theorem 2 to
the lower bound in Proposition 4, we note that the upper bound is near tight: The only difference is
that in Eqn. (11), we have τ+ϵ

1−ϵ instead of ϵ
1−ϵ . Unlike the bounds in HaoChen et al. (2021); Saunshi

et al. (2022), this bound only depends on λ−1
d , λ̄−1

d and γG, but not (λd′ − λd+1)
−1 for some d′ ≤ d,

i.e. it does not require the separability of the top-d eigenfunctions, because it does not need the top-d
eigenspace to be close to the empirical top-d eigenspace. Instead, it only requires the traces of the
two top-d eigenspaces to be close. This is a big improvement since the eigenvalues can have high
multiplicity as pointed out by Saunshi et al. (2022).

➢ Proof Sketch of Theorem 2: Denote Sλ̄(d) :=
∑d

i=1 λ̄i. We define two empirical covariance
matrices F̂ and Ĝ as: F̂ (i, j) = ⟨ψ̂i, ψ̂j⟩P̂X

, and Ĝ(i, j) = ⟨ϕ̂i, ϕ̂j⟩P̂A
. Since any invertible linear

transformation to Φ̂ does not change Tr(G−1F ) or the empirical ratio trace Tr(Ĝ−1F̂ ), we can
see that for HΨ̂ = Ĥd there is Tr(Ĝ−1F̂ ) = Sλ̄(d) (simply consider ϕ̂i = ϕ̄i). Thus, it suffices to
bound |Tr(Ĝ−1F̂ )− Tr(G−1F )|, and Sλ(d)− Sλ̄(d).

We start with bounding the gap between empirical and real ratio traces for any encoder Φ̂:

Lemma 5. Suppose there exists a constant C > 0 such that EPA [g
4] ≤ C2∥g∥2PA

, for all g = w⊤Φ̂
where ∥g∥PA ≤ 1. Then, for any δ > 0, it holds with probability at least 1− δ that

|Tr(Ĝ−1F̂ )− Tr(G−1F )| ≤

(
2 +

√
2 log

2

δ

)
Cκ+ κ2√

N
d. (12)

Lemma 5 considers a general Φ̂, and requires a fourth-moment control assumption (Wainwright,
2019, Eqn. (14.22a)). For the specific case ϕ̂i = ϕ̄i studied in this section, we can prove that this
assumption holds (that is why it does not appear in Theorem 2), i.e. the top-d empirical eigenfunctions
can be proved to be delocalized (Erdős et al., 2009). In particular, we prove the following:

Lemma 6. Suppose ϕ̂i = ϕ̄i for i ∈ [d]. Let γG := λmax(G)/λmin(G), which is the condition
number of G. Then, for any δ > 0, both

d∑
j=1

λ̄j ≥
d∑

i=1

λi −

(
2 +

√
2 log

2

δ

)
(λ−1

d + 1)κ2√
N

d

and Eqn. (12) with C = κλ̄−1
d γ

1/2
G hold simultaneously for HΨ̂ = Ĥd with probability at least 1− δ.

5 ESTIMATING AND EXPLOITING THE AUGMENTATION COMPLEXITY

An important quantity from our analysis is the augmentation complexity κ — both approximation and
estimation error bounds get smaller when κ is reduced. A natural way to reduce κ is via a stronger
augmentation, which has indeed been helpful in practice (Chen et al., 2020; Wettig et al., 2023).

In this section, we take a closer look at κ of mask-type augmentations. We study κ of different
masking schemes on the hypercube data model introduced in Saunshi et al. (2022), and show that
κ depends on both the mask ratio (augmentation strength) and the masking strategy. Then, we
empirically estimate κ on the real-world NLP dataset wikipedia-simple, and demonstrate

7
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its correlation with the generalization gap on real downstream tasks. Our results indicate that the
augmentation complexity κ offers a means to compare different augmentations quantitatively and
implies a tradeoff in the choice of augmentations.

5.1 THEORETICAL HYPERCUBE DATA MODEL

3. Block Mask + Flip
2. Block Mask

1. Random Mask

Original Sample 1 1 -1 -1 1 -1 1 1

0 0 -1 0 1 -1 1 0

1 0 0 0 0 -1 1 1

1 0 0 -1 1 1 1 -1

Masked Flipped

Figure 2: Augmentation illustration.

Like Cabannes et al. (2023), we study three random
masking methods (Figure 2): (i) Independent ran-
dom masking, (ii) Cutout-like block masking, and
(iii) BERT-like masking. Let α denote the mask
rate. Consider the data space X = {−1, 1}dX with
PX being the uniform distribution over X . Denote
the corresponding κ of these three methods to be
κr, κc, and κb. We will show that these κ’s will be very different even with the same α.

Let’s first consider the independently random masking (derivations are deferred to Appendix G):
Example 1. Consider a random masking augmentation, i.e. for any x ∈ X , each coordinate x(i)
is randomly and independently masked to be 0 (i.e. 0 denotes the [MASK] token) with probability
α ∈ (0, 1) . Then, its augmentation complexity is given by κ2r = (2− α)dX .

Next, consider the Cutout-like block masking (DeVries & Taylor, 2017), which has been successfully
applied in practice such as ViT (Dosovitskiy et al., 2021) and MAE (He et al., 2022). Compared to
the previous example, Cutout-like block masking leads to a smaller κ with the same α:
Example 2. Consider a random block masking augmentation, i.e. masking x(i), x(i+1), · · · , x(i+r−1)

for r = ⌈αdX ⌉ and a uniformly random i ∈ [dX − r], for any x ∈ X . Then, κ2c ≤ [2(1−α)]dX .

Our third and final example resembles the 80-10-10 strategy in BERT (Devlin et al., 2019): First
randomly mask some tokens, and then randomly replace some unmasked tokens with other tokens.
Example 3. Consider random block masking with flipping, where for any x ∈ X , first mask
x(i), · · · , x(i+r−1) to be 0 for r = ⌈αdX ⌉ and a uniformly random i ∈ [dX − r], then randomly flip
the sign of each remaining coordinate w.p. α

2 independently. Then, κ2b ≤
[
(α2 − 2α+ 2)(1−α/2)

]dX .

While κr, κc, κb all have an exponential dependency on dX , their bases are different, as shown in
Figure 3a. This means these methods have different κ despite having the same mask rate, which
highlights the importance of the masking strategy.

On the exponentiality of κ in dX . We suspect the exponential dependency on dX is a manifestation
of the typical curse of dimensionality in high-dimensional statistics in the absence of strong inductive
bias. Bengio et al. (2013, Section 3.2) had a discussion on this point. What our analysis makes salient
is that the inductive bias can be expressed via controlled augmentation complexity. One approach to
obtain a polynomial augmentation complexity is by using very strong augmentations, such as using
ImageNet pretraining where A is a finite set of size 1000, i.e. the ImageNet label set. However, such
simple strong augmentations usually lead to substantially worse performance in practice. We posit
developing more interesting augmentations with bounded augmentation complexity as an important
open problem facing the field of representation learning.

We postulate moreover that despite the worst-case bounds above come with exponential dependency
on data dimension, the empirical success of existing augmentation-based self-supervised learning
suggest that they implicitly adapt to the inherent low-dimensional manifold structure in real-world
data. We conjecture that as long as the augmentation captures such a structure, it can evade the curse.

5.2 AUGMENTATIONS ON REAL DATASETS

The augmentation complexity κ can be estimated on real datasets and used to quantitatively analyze
and compare augmentations, which we demonstrate on the NLP dataset wikipedia-simple. We
study masked language modeling, where x is a full sentence and a is a masked sentence. Recall that
κ2 upper bounds

∫ p(x|a)
p(x) p(a|x)da. Empirically, we replace the integration with sample average;

namely, for x = [x(1), · · · , x(l)] where x(i) is the ith token, we have

log p (x|a) = log p
(
x(1)

∣∣∣a)+ log p
(
x(2)

∣∣∣a, x(1))+ · · ·+ log p
(
x(l)
∣∣∣a, x(1), · · · , x(l−1)

)
.
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Figure 3: Plots for Section 5. In (b), log κ2 is estimated on wikipedia-simple.

We leverage a bi-directional MLM such as a BERT, and compute p(x(i)|a, x(<i)) auto-regressively:
For any i ∈ [l], compute p(x(i)|a, x(<i)) with the BERT, and then replace a(i) with x(i) for i+1. We
compute this for a random subset of samples. We report the 99th percentile of KX(x, x) instead of
supxKX(x, x) due to the presence of outliers. Experimental details are deferred to Appendix H.

Estimating κ. We study Random masking, Block masking, Random masking + Flipping, and
Block masking + Flipping. For Masking + Flipping, we randomly mask α/2 of the tokens, and
replace another α/2 of the tokens with random tokens; this replace rate is much higher than standard
practice, since we want to highlight the effect of flipping. Figure 3b plots the estimated log κ2 of the
four augmentations w.r.t. the mask rate α, where log κ2 is calculated as the average of five runs with
different random seeds. The complexity drops as α increases as predicted by theory. One observation
is that the “Random + Flip” curve intersects with “Block” and “Block + Flip”, suggesting that block
masking has a stronger effect when α is small, whereas flipping has a stronger effect when α is large.

Downstream performance. We also study how the mask ratio α affects the downstream perfor-
mance, using QNLI (Wang et al., 2018) and SST-2 (Socher et al., 2013). For pretraining, we train
roberta-large models with different mask ratios using the fast pretraining recipe in Wettig et al.
(2023). We focus on Random masking and do not apply the 80-10-10 strategy. For downstream, we
fine-tune the encoder together with the linear head following common practice. To align better with
our theory, we explicitly use the average encoder Eqn. (7), estimated by sampling 16 a’s for each x.
We evaluate the train/test accuracies of the models, and plot the test accuracy (blue solid) and the
train-test accuracy gap (green dashed) in Figure 3c. The highest test accuracy is achieved at α = 0.15
on QNLI and at α = 0.40 on SST-2 (marked in red). The test accuracy is low when α is too small
due to the large generalization gap, and also low when α is too large due to low training accuracy.
Regarding the train-test gap, QNLI shows a monotonic decrease in the gap as the mask ratio grows,
but the gap on SST-2 is U-shaped, with the lowest point at α = 0.40. This is likely because with
α > 0.40 is too strong an augmentation for SST-2 that Assumption 1 is broken, in which case our
theoretical results will not hold. Thus, these results align with our theory that while augmentations
should be sufficiently robust, they must not be so strong as to violate Assumption 1. This suggests
the presence of a “sweet spot”, which is also supported by evidence in prior work (Tian et al., 2020).

6 CONCLUSION

This work establishes an RKHS approximation/regression framework that completely disentangles
the effects of the model and the augmentation. Our framework (i) clarifies the roles of the two stages
of representation learning, as well as the role of augmentation with the isometry property Eqn. (6);
(ii) leads to nonparametric statistical guarantees free of model complexity or inductive bias, so that
they are valid for an arbitrary encoder; and (iii) formulates the augmentation complexity κ as a
tool to quantitatively analyze the effect of augmentations. We also refer our readers to two recent
works that used similar techniques but derived quite different results: Wang et al. (2022b) studied an
RKHS similar to HΓ, but in a completely different context (they studied conditional moment models);
Cabannes et al. (2023) studied a similar problem, but they used a pre-defined kernel to define the
function class and derived guarantees, while the RKHS HΓ in this work is completely induced by the
data augmentation. We defer discussions for more related work to Appendix B.

Limitations and open problems. The major limitation of this work is that κ can be exponential in
dX , which as we pointed out could be a natural consequence of the curse of dimensionality, and that
the low-dimensional structure of real-world data could be a potential reason of circumventing the
exponential dependency. Another limitation is that we studied the average encoder, while usually
people directly apply the original encoder to downstream. The latter case requires the model to
perform some type of implicit transformation as the upstream and downstream have different input
spaces (A and X ), and this transformation cannot be studied within the architecture-free framework
of this work. Additionally, an open problem is how to deal with the common upstream-to-downstream
data distribution shift in practice, for which downstream fine-tuning could be critical. This has been
discussed in Cabannes et al. (2023), but a more general analysis is desired.
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CODE

The code of Section 5 can be found at https://colab.research.google.com/drive/
1loSZLLI-qfoKE7BCIi1SWJKgruU6i4ku?usp=sharing.
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A DISCUSSION

Why do we need Assumption 1 and can it be relaxed? We first note that an assumption on the
target function is necessary to establish any non-vacuous learning theory. This is implied by the
No Free Lunch Theorem (Wolpert & Macready, 1997), which states that if the target function is
sampled uniformly at random from all possible target functions, then any learner achieves the same
performance as random guess.

Assumption 1 implies an isometry property. As pointed out by Goldblum et al. (2023), real-world
datasets are highly structured, and the structures are largely shared across different domains. As-
sumption 1 and implied isometry property suggest that a well-designed augmentation is a key to
capturing such a low-dimensional cross-domain structure. Indeed, better augmentation has been the
main driving force in the recent progress in contrastive learning and masked language modeling. Our
focus on augmentation is in stark contrast to prior work on the generalization of overparameterized
models (see Appendix B), which can find the global minima fitting all samples, yet cannot capture
the invariant structure within the data and the target concept.

If we were to relax Assumption 1 (e.g. the target function f∗ can be outside but very close to HΓ),
additional assumptions on f∗ would be required for our proof with uniform deviation bounds to hold.
Namely, f∗ can no longer be any L2 function that is close to HΓ. For instance, we at least need
to assume that |f∗(x)| is a.e. uniformly bounded by some constant C which the final bound will
depend on, or assume that f∗ belongs to some predefined RKHS similar to Cabannes et al. (2023).
We feel that these additional assumptions would complicate our analysis and obscure the role of
augmentation, hence we choose to assume f∗ ∈ HΓ instead.

The main theorem allows the encoder to use any model. Does it mean that the inductive bias
of the model is not useful as opposed to prior work? No, the inductive bias is still useful. In
fact, we believe that the model family and data augmentation are two key ingredients of modern
representation learning. The former has been studied by prior work (Saunshi et al., 2022; HaoChen &
Ma, 2023), while this work studies the latter and introduces a class of augmentation complexity based
generalization bounds that is orthogonal to the class of classical model complexity based bounds, in
the sense that the bounds are nonparametric and do not require any inductive biases from the model
family. This new class of guarantees deepens our understanding because it clarifies the roles of these
two ingredients. However, a downside of our analysis is that it cannot leverage the geometric structure
of the data. For example, the data might be so good that it is linearly separable in the Euclidean space,
but our nonparametric framework cannot make use of this information.

The inductive bias of the model has at least two roles: (i) It further reduces the complexity on top of
the data augmentation, leading to even tighter bounds; (ii) While we used the average encoder in our
analysis, in practice people usually directly apply the pretrained encoder to the data in the downstream
task. In this case, the model architecture has to implicitly perform some kind of transformation, since
the pretraining and downstream samples come from different spaces, in which case the inductive
biases of the model will be helpful.

Comparing to the claim in Saunshi et al. (2022). Saunshi et al. (2022) argued that there exist
setups where any learning guarantees independent of the model inductive bias are necessarily vacuous.
They presented an example of a disjoint augmentation, such that any two different original samples
x1 and x2 cannot be augmented to the same a. In this case, our KX defined in Eqn. (3) is zero
everywhere, so apparently our analysis will not work. The observation made by Saunshi et al. (2022)
is that even for this augmentation, if there is a good model (feature map), then good generalization
can still be achieved, and therefore they claimed that model inductive bias is irreplaceable.

The analysis in this work is compatible with their observation. Our analysis shows that if the
augmentation is good enough (such that Assumption 1 is satisfied and the augmentation complexity
is small enough, which is in fact a strong assumption), then we can achieve good generalization only
with the augmentation and without any help of the model. In other words, the disjoint augmentation
example showcases a poor choice of augmentation, which is orthogonal to the emphasis of this paper.
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B RELATED WORK

B.1 LEARNING GUARANTEES FOR BIG MODELS

Big models with millions and even billions of parameters have been proved to work well on a wide
variety of tasks. However, their empirical success cannot be explained by classical generalization
bounds that use the VC-dimension or the Rademacher complexity. This discrepancy was made
clear by Zhang et al. (2017), which shows that while enjoying good generalization on real tasks,
modern neural networks have sufficient capacity to fit random labels. This challenges the classical
generalization theory, which appeals to the Occam’s razor argument that big models cannot generalize
well in general. There is a large body of research on improving classical generalization bounds for
neural networks and big models, and we highlight a few seminal works below.

Algorithmic stability. This line of research attributes the good generalization of complex models
to the stability of the (random) training algorithm. There is a folklore that one key reason why
neural networks generalize so well is that they are trained by stochastic gradient descent (SGD). Let
f(x;A,S) be the predictor trained by a random training algorithm A on a finite training set S. A
is called uniformly stable (Kearns & Ron, 1997; Bousquet & Elisseeff, 2002), if EA|f(x;A,S)−
f(x;A,S′)| is uniformly bounded when S and S′ only differ by one training sample. f is guaranteed
to enjoy good generalization if A is uniformly stable. Then, Hardt et al. (2016) proved that SGD
is uniformly stable under certain conditions. There are also weaker notions of algorithmic stability
(Mukherjee et al., 2006; Shalev-Shwartz et al., 2010). It has also been shown in Li et al. (2018); Arora
et al. (2019a) that gradient methods for overparameterized models provide an implicit regularization
effect that helps generalization. However, Zhang et al. (2021) challenged this line of work by
empirically showing that SGD on real neural networks is not very stable, even with regularization.

PAC-Bayes and sharpness. Compared to algorithmic stability, the PAC-Bayes line of analysis
attributes generalization to model stability, that is the empirical risk is insensitive to perturbations
in model parameters. If the model is stable, then the empirical risk is small within a large region
around the global minima, meaning that the risk landscape has low sharpness (Keskar et al., 2017;
Neyshabur et al., 2017) around the global minima. The PAC-Bayes generalization bound McAllester
(1999); Langford & Seeger (2001) considers a prior distribution P over the model’s function space
(usually Gaussian or uniform), and a posterior stationary distribution Q found by a training algorithm.
If DKL(Q ∥ P ) is small, then good generalization is guaranteed. Thus, the more models there are in
the support of Q, the better the generalization. So we can see that a lower sharpness around the global
minima leads to better generalization. Sharpness-based bounds are shown to be empirically tighter
than other bounds in Jiang et al. (2020), and inspire a class of training method called sharpness-aware
minimization (SAM) (Foret et al., 2021; Bartlett et al., 2023; Wen et al., 2023). Other generalization
guarantees derived from the PAC-Bayes analysis with similar ideas include low spectral norm
(Bartlett et al., 2017; Neyshabur et al., 2018), flat minima (Hochreiter & Schmidhuber, 1997), and
derandomization (Negrea et al., 2020).

One prominent class of analysis within the PAC-Bayes paradigm uses compression to obtain tighter,
and empirically non-vacuous generalization bounds. For instance, Dziugaite & Roy (2017) proposed
to directly optimize the PAC-Bayes bound for multi-layer perceptrons, and it was improved by
Rivasplata et al. (2019) with a relaxation on the bound. Then, Arora et al. (2018) formulated the
compression framework, and showed that models with noise stability are more compressible and
thus lead to tighter bounds (also discovered in Nagarajan & Kolter (2019)). Zhou et al. (2019) then
used the compression framework to obtain non-vacuous generalization bounds for ImageNet. More
recently, Lotfi et al. (2022) compressed models by considering model equivariance, and Goldblum
et al. (2023) verified that large language models favor simpler sequences. Both papers proposed to
use generalization bounds based on the Kolmogorov complexity (Kolmogorov, 1963).

Implicit bias of overparameterized models. This line of analysis attributes the good generalization
to the implicit bias of a specific model architecture, i.e. with certain training algorithms such as SGD,
these models can find the global minima that can generalize. First, on the optimization side, there
is a series of work that shows that gradient descent finds the global optima of overparameterized
neural networks, starting from the results in Kawaguchi (2016) for linear neural networks, and then
Li & Yuan (2017); Du et al. (2019b;a); Arora et al. (2019b) for two-layer fully-connected ReLU
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networks, and Allen-Zhu et al. (2019b) for other architectures such as CNNs and ResNets. The
analysis on overparameterized fully-connected networks with two or more layers is then extended to
generalization in Du & Lee (2018); Allen-Zhu et al. (2019a). There is also analysis based on neural
tangent kernels (NTK) (Jacot et al., 2018), including Lee et al. (2019); Arora et al. (2019c). Most
of these work requires the neural network to be overparameterized, i.e. the number of neurons is
polynomially large comparing to the input size (Allen-Zhu et al., 2019b). One caveat of this line of
analysis, as argued in Chizat et al. (2019), is that these overparameterized models might fall into the
“lazy training” regime, meaning that the training dynamics of these models resemble those of a linear
model. They argued that the phenomenal success of deep neural networks is unlikely to be due to
their similarity to linear models, and Wang et al. (2020) provided a counter-argument.

B.2 THEORETICAL STUDY ON AUGMENTATION BASED REPRESENTATION LEARNING

Many recent studies have been devoted to theoretically understanding representation learning. One
line of research studies the effectiveness of contrastive learning by showing its features are optimal
for linear predictor of certain downstream tasks (Saunshi et al., 2019; Tosh et al., 2021a;b), robust
to class imbalance (Liu et al., 2021), and suitable for unsupervised domain adaptation (Shen et al.,
2022; HaoChen et al., 2022). Masked prediction tasks have been shown to be useful for reducing
the downstream sample complexity (Lee et al., 2021) and for parameter identifiability (Liu et al.,
2022). Relating to language applications, Saunshi et al. (2019) explained why next-word prediction
can benefit sentiment classification, and Wei et al. (2021) studied the effect of prompt tuning through
the lens of implicit Bayesian inference. Regarding the optimization in representation learning, there
have been prior works on the training dynamics and loss landscapes of contrastive learning (Wen &
Li, 2021; Jing et al., 2022; Tian, 2022), non-contrastive learning (Tian et al., 2021; Pokle et al., 2022;
Wen & Li, 2022), and masked prediction (Xiong et al., 2020; Huang et al., 2020).

Representation learning has adopted the idea of compression. Classical representation learning
aims to extract the low-dimensional manifold on which the data resides (Belkin & Niyogi, 2003;
2004; Bengio et al., 2004). More recently, Yu et al. (2020) proposes maximal coding rate reduction
(MCR2), which learns an explicitly meaningful low-dimensional representation by maximizing the
rate reduction, defined as the difference in coding rate, i.e. the number of bits needed to encode the
embedding before and after a certain partition (e.g. according to different classes). Yu et al. (2020)
showed that MCR2 is closely related to contrastive learning. Follow-up work includes Chan et al.
(2022); Dai et al. (2022).

More closely related to this work is the line of work that formulates contrastive learning as a
Laplacian operator over the augmentation graph. The idea of studying data augmentation from a
kernel perspective was first explored in Mroueh et al. (2015); Raj et al. (2017); Dao et al. (2019).
The augmentation graph was defined in HaoChen et al. (2021) in whose Theorem 4.2 proved a
generalization bound for the spectral contrastive loss that includes a Rademacher complexity term
w.r.t. a1, · · · , aN , which is incurred by sampling only one a from each x (see their Definition D.3).
Then, Saunshi et al. (2022) pointed out that this model-class-free bound could be vacuous with a
hypercube construction. One thing to note is that while Saunshi et al. (2022) claimed that the bound
in HaoChen et al. (2021) is “function class independent”, actually it is not.* As a response to Saunshi
et al. (2022), HaoChen & Ma (2023) included the effect of the encoder’s inductive bias into their
generalization bound. Then, Wang et al. (2023) connected contrastive learning to message passing on
the augmentation graph.

In Section 6 we highlighted two related recent papers. Wang et al. (2022b) studied a similar RKHS as
the HΓ defined in this work. In particular, the kernels kx and kz in their work are similar to the kernels
KA and KX in this work. However, their work studies the conditional moment model, which is a
completely different problem than ours. Their bounds are also distinct from ours and are with stronger
assumptions. Nevertheless, the fact that they derived similar kernels to ours from a completely
different angle suggests a strong innate connection, which alludes to the role of augmentation in
self-supervised pretraining, namely, it defines a ordered set of features as we articulated after Eqn. (6).

*Theorem 4.2 in the NeurIPS version and the arXiv [v7] version of HaoChen et al. (2021) have different
forms. We have confirmed with the authors that this theorem does depend on the complexity of the function
class.
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Another related work is Cabannes et al. (2023), who studied the same problem as this work. The
difference is that their work uses a pre-defined kernel, while the kernels KA and KX in this work are
completely induced by the augmentation, i.e. there would be not be a kernel without the augmentation.
Their work studied regularized kernel regression, while this work studies unregularized kernel
regression. Moreover, the bounds derived in their work and ours are significantly different. We
would also like to credit Cabannes et al. (2023) for studying the upstream-to-downstream distribution
shift which provides inspiring preliminary analysis. Last but not least, the follow-up work by Zhai
et al. (2024) applies the framework developed in this paper to a more general semi-supervised kernel
learning setting.

Finally, similar to Saunshi et al. (2022), we point out one common issue of existing learning guarantees
for contrastive learning: Most of them require the samples from the same downstream class to have
some type of “overlap” in the augmentation graph, but we find that sometimes these assumptions could
be too strong to be reasonable. For instance, Wang et al. (2022a) assumed intra-class connectivity,
i.e. the subgraph of the augmentation graph given by each downstream class is connected; Huang
et al. (2023) assumed that each downstream class has a “main part” of samples, in which any two
samples can be augmented to be close in Euclidean distance. We find these two assumptions hard to
be reasonable for any practical scenario.

C VARIATIONAL OBJECTIVES THAT EXTRACT THE TOP-D EIGENSPACE

In Proposition 4, we demonstrated the optimality of the top-d eigenspace. The question is: How
to extract the top-d eigenspace? We cannot do so via explicit eigendecomposition of the kernel in
most real tasks, where the kernel is huge and sparse. Instead, we will show that several pretraining
objectives can extract the top-d eigenspace assuming optimization converges to the global minima,
because these objective are uniquely optimized by the top-d eigenspace.

Contrastive learning. Let us warm up with contrastive learning, whose connection to kernels has
been studied in prior work, among which HaoChen et al. (2021) introduced the spectral contrastive
loss:

LSCL(Φ̂) = −2E
[
⟨Φ̂(A), Φ̂(A+)⟩

]
+ E

[
⟨Φ̂(A), Φ̂(A−)⟩2

]
, (13)

where (A,A+) is a positive pair that is jointly sampled from PX(a, a+), and A− is a negative sample
that is sampled from PA independently of A. It has been shown that:

Theorem 3. (HaoChen et al., 2021) Eqn. (13) is minimized by the top-d eigenspace, and is uniquely
minimized by the top-d eigenspace if λd+1 < λd.

Here, “minimized by the top-d eigenspace” means that the objective is minimized when Φ̂ spans the
top-d eigenspace, and “uniquely minimized” means that this condition is necessary. The proof is
based on the following Eckart-Young-Mirsky Theorem:

Theorem 4 (Eckart-Young-Mirsky). Given a matrix A ∈ Rm×n, consider the following optimization
problem:

min
B∈Rm×n,rank(B)≤k

∥A−B∥2F (14)

where 1 ≤ k ≤ min{m,n}. Let the SVD of A and B be A = UΣV ⊤ and B = U1Σ1V
⊤
1 , where

Σ = diag(σ1, · · · , σmin{m,n}), and σ1 ≥ σ2 ≥ · · · ≥ σmin{m,n}. Then B is a minimizer of the
above problem if U1 is the first k columns of U , V1 is the first k columns of V , and Σ1 is the upper
left k × k block of Σ. Moreover, if σk+1 < σk, then this is the unique minimizer.

To make this paper self-contained, here we recap the proof of Theorem 3 in HaoChen et al. (2021):

Proof. Define matrix C as: Φ̂ = CΦ∗, and matrix B as B = C⊤C. Then, ⟨Φ̂, Φ̂⟩ = Φ∗⊤BΦ∗.
Let the SVD of C be C = UΣV ⊤. Denote Dλ = diag(λ1, λ2, · · · ). Then, the spectral contrastive
loss is equivalent to

LSCL(Φ̂) = −2
∑
i

λibi,i +
∑
i,j

b2i,j = ∥B −Dλ∥2F − ∥Dλ∥2F . (15)
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So it suffices to minimize ∥B −Dλ∥2F where rank(B) ≤ d. By Theorem 4, this is minimized if
V (i, j) = δi,j and Σ = diag(

√
λi), which means that Φ̂ = Udiag(

√
λ1, · · · ,

√
λd)Φ

∗ for some
orthogonal matrix U ∈ Rd×d. Moreover, by Thm. 4, this is the unique minimizer if λd+1 < λd.

CLIP. CLIP (Radford et al., 2021) maximizes the similarity between two samples from different
modalities. There is an objective similar to the spectral contrastive loss, which we term the spectral
CLIP loss:

LSCLIP(Φ̂, Ξ̂) = −2E[⟨Φ̂(A), Ξ̂(X+)⟩] + E[⟨Φ̂(A), Ξ̂(X−)⟩2], (16)

where Φ̂ and Ξ̂ are encoders for different modalities (e.g. image and text). (A,X+) is a positive pair,
while X− is a negative sample independent of A. This loss also appeared in Wang et al. (2022b) (see
their Section 4.1). We will show that this loss also extracts the top-d eigenspace.
Theorem 5. Eqn. (16) is minimized by the top-d eigenspace, and is uniquely minimized by the top-d
eigenspace if λd+1 < λd.

Proof. Let Φ̂ = CΦ∗ and Ξ̂ = SΨ∗. Let Ξ† = ΓΞ̂ = SD
1/2
λ Φ∗. Then, we have

E[⟨Φ̂(A), Ξ̂(X+)⟩] =
∫∫ 〈

Φ̂(a), Ξ̂(x)
〉
p(x|a)p(a)dadx

=

∫ 〈
Φ̂(a),

∫
Ξ̂(x)p(x|a)dx

〉
p(a)da

=

∫ 〈
Φ̂(a),Ξ†(a)

〉
p(a)da = Tr

(
C⊤SD

1/2
λ

)
.

We also have

E[⟨Φ̂(A), Ξ̂(X−)⟩2] =
∫∫ ( d∑

k=1

Φ̂(a)kΞ̂(x)k

)2

p(a)p(z)dadz

=

d∑
k,l=1

(∫
Φ̂(a)kΦ̂(a)lp(a)da

)(∫
Ξ̂(x)kΞ̂(x)lp(x)dx

)
= Tr

(
CC⊤SS⊤) = ∥∥C⊤S

∥∥2
F
.

Therefore, the spectral CLIP loss is equivalent to

LSCLIP(Φ̂, Ξ̂) =
∥∥C⊤S

∥∥2
F
− 2Tr

(
C⊤SD

1/2
λ

)
=
∥∥∥C⊤S −D

1/2
λ

∥∥∥2
F
−
∥∥∥D1/2

λ

∥∥∥2
F
. (17)

Let the SVD of C be C = UΣV ⊤. Let M = ΣU⊤S. Then, C⊤S = V M . It is well known in
linear regression that Eqn. (17) is minimized when M =

(
V ⊤V

)−1
V ⊤D

1/2
λ = V ⊤D

1/2
λ , so

min
Φ̂,Ξ̂

LSCLIP(Φ̂, Ξ̂) = min
V

∥∥∥(I − V V ⊤)D
1/2
λ

∥∥∥2
F
−
∥∥∥D1/2

λ

∥∥∥2
F
.

By Theorem 4, this is minimized when the top d rows of V is an orthogonal matrix, and this condition
is also necessary if λd+1 < λd. This proves the result. Moreover, we can see that Ξ̂ is the minimizer
if it extracts the top-d eigenspace of Ψ∗.

Regularized Barlow Twins. Barlow twins (Zbontar et al., 2021) is a non-contrastive learning
method that trains without negative sampling. We consider the following regularized Barlow Twins
loss:

LRBT(Φ̂;α, β) =

d∑
k=1

(
E
[
Φ̂(A)kΦ̂(A

+)k

]
− 1
)2

+α
∑
k ̸=l

(
E
[
Φ̂(A)kΦ̂(A

+)l

])2
+βE

[∥∥∥Φ̂(A)∥∥∥2
2

]
.

(18)
When the regularization term β is close to 0 so that the last term is much smaller than the first two,
the above can be considered as a constrained optimization task:

min
θ

E
[∥∥∥Φ̂(A)∥∥∥2

2

]
s.t. LRBT(Φ̂;α, 0) = 0. (19)
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Theorem 6. The constrained optimization problem Eqn. (19) is minimized by the top-d eigenspace,
and is uniquely minimized by the top-d eigenspace if λd+1 < λd.

Proof. Define matrix C = (ci,j) as: Φ̂ = CΦ∗. Then, for all k, l ∈ [d], there is

E[Φ̂(A)kΦ̂(A+)l] =
∑
i

λick,icl,i.

Thus, LRBT(Φ̂;α, 0) = 0 is equivalent to CDλC
⊤ = I . Meanwhile, E

[∥∥∥Φ̂(A)∥∥∥2
2

]
= ∥C∥2F . So

the optimization problem is equivalent to minimizing ∥C∥2F subject to CDλC
⊤ = I .

Let G = C
√
Dλ = (gk,i), then GG⊤ =

∑
k gkg

⊤
k = I , where gk = [gk,1, · · · , gk,d]. For all

j ∈ [d], define Mj =
∑j

k=1 gkg
⊤
k . Then, rank(Mj) ≤ j, and all eigenvalues of Mj belong to [0, 1].

So the sum of eigenvalues of Mj is at most j, which implies that

j∑
k=1

g⊤
j gj =

j∑
k=1

Tr
(
g⊤
j gj

)
=

j∑
k=1

Tr
(
gjg

⊤
j

)
= Tr(Mj) ≤ j.

Denote 1
λ0

= 0. Thus, by Abel transformation, we have

∥C∥2F =
∑
i

1

λi
g⊤
i gi =

∑
j≥0

(
d−

j∑
k=1

g⊤
k gk

)(
1

λj+1
− 1

λj

)
≥

d−1∑
j=0

(d−j)
(

1

λj+1
− 1

λj

)
=

d∑
i=1

1

λi
.

A sufficient condition of achieving the above equality is
∑j

k=1 g
⊤
k gk = j for all j ∈ [d], and it is

also necessary if λd+1 < λd. This condition is equivalent to g1, · · · , gd forming an orthonormal
basis of Rd, i.e. Φ̂ extracts the top-d eigenspace.

Maximizing the ratio trace. Now we demonstrate the connection of contrastive learning and
Barlow Twins to maximizing the ratio trace defined in Definition 3. We start with the regularized
Barlow Twins loss, which we have shown is equivalent to minimizing ∥C∥2F subject to CDλC

⊤ = I .
Now, observe that G = CC⊤, and F = CDλC

⊤. Thus, regularized Barlow Twins is essentially
minimizing Tr(F−1G), which is similar but not equivalent to maximizing Tr(G−1F ).

Now we consider a variant of VICReg (Bardes et al., 2022), also given by Cabannes et al. (2023,
Eqn. (2)):

LVICReg(Φ̂;β) =
∥∥∥E [Φ̂(A)Φ̂(A)⊤]− I

∥∥∥2
F
+ βE

[∥∥∥Φ̂(A)− Φ̂(A+)
∥∥∥2
2

]
. (20)

When the regularization term β is close to 0, we have E
[
Φ̂(A)Φ̂(A)⊤

]
= G = I . And we minimize

E
[∥∥∥Φ̂(A)− Φ̂(A+)

∥∥∥2
2

]
, which is equivalent to −2E

[
Tr
(
Φ̂(A)Φ̂(A+)

)]
+ c = −2Tr(F ) + c for

some constant c. Thus, this objective is equivalent to maximizing Tr(G−1F ), the ratio trace, when
β ≈ 0. And when β = 1, Eqn. (20) is equivalent to the spectral contrastive loss.

D PROOFS FOR SECTION 2

Γ∗Γ and ΓΓ∗ are integral operators.{
(Γa→xΓx→af)(x) = (Γ∗Γf)(x) =

∫
KX(x, x′)f(x′)p(x′)dx′;

(Γx→aΓa→xg)(a) = (ΓΓ∗g)(a) =
∫
KA(a, a

′)g(a′)p(a′)da′.
(21)
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Proof. We only show the first equation, and the second one can be proved in the same way.

(Γ∗Γf)(x) = Γ∗
(∫

f(x′)p(x′|a)dx′
)

=

∫ (∫
f(x′)p(x′|a)dx′

)
p(a|x)da

=

∫∫
f(x′)p(a|x)p(x′|a)dadx′ =

∫∫
f(x′)

p(a|x)p(a|x′)
p(a)

p(x′)dadx′

=

∫
KX(x, x′)f(x′)p(x′)dx′.

Proposition 1 (Duality). ΓΓ∗ shares the same non-zero eigenvalues as Γ∗Γ, and there exist
eigenfunctions {ϕi} of ΓΓ∗ that form an orthonormal basis of L2(PA), such that for any λi > 0,

ψi = λ
−1/2
i Γ∗ϕi and ϕi = λ

−1/2
i Γψi, (22)

and we also have the following spectral decomposition of the Radon-Nikodym derivative:

dPAX

d(PA ⊗ PX )
=

p(a, x)

p(a)p(x)
=
∑
i

λ
1/2
i ϕi(a)ψi(x). (23)

Proof. Suppose λi, ψi(x) is a pair of eigenvalue and eigenfunction of Γ∗Γ, and λi > 0. Then, we
have ΓΓ∗Γψi = λiΓψi, which means that Γψi is an eigenfunction of ΓΓ∗ with eigenvalue λi. The
λ
−1/2
i is used for normalization. To see this, let ϕi = λ

−1/2
i Γψi. Then, we have

⟨ϕi, ϕj⟩PA = λ
−1/2
i λ

−1/2
j ⟨Γψi,Γψj⟩PA

= λ
−1/2
i λ

−1/2
j ⟨Γ∗Γψi, ψj⟩PX

= λ
−1/2
i λ

−1/2
j ⟨λiψi, ψj⟩PX = δi,j .

We can prove the reverse direction similarly. And for any fixed x, there is〈
p(a, x)

p(a)p(x)
, ϕi

〉
PA

=

∫
p(a, x)

p(a)p(x)
ϕi(a)p(a)da =

∫
p(a|x)ϕi(a)da =

√
λiψi(x). (24)

which implies Eqn. (23).

Basic properties of HΓ.

(i) KX is the reproducing kernel of HΓ, such that for all f ∈ HΓ, f(x) = ⟨f,KX(x, ·)⟩HΓ
.

(ii) HΓ = R(Γ∗).

(iii) HΓ is isometric to span({ϕi}λi>0), a subspace of L2(PA), and ∥f∥HΓ = infg:f=Γ∗g ∥g∥PA .

(iv) For any f∗ ∈ FB(Γ; ϵ) ⊂ R(Γ∗), let f∗ =
∑

i uiψi. Define g0 :=
∑

i λ
−1/2
i uiϕi. Then, g0

must satisfy Eqn. (1), so we can choose g∗ = g0, in which case Eqn. (1) is equivalent to:

⟨g∗, (I − ΓΓ∗)g∗⟩PA ≤ ϵ∥g∗∥2PA
⇔
∑
i

1− λi
λi

u2i ≤ ϵ
∑
i

1

λi
u2i . (25)

Proof. (i) First, note that HΓ =
{∑

i:λi>0 aiei
∣∣ ∑

i a
2
i <∞

}
where ei = λ

−1/2
i ψi, so it is

isomorphic to ℓ2((ai)i:λi>0) and is thus a Hilbert space. Then,KX(x, x′) =
∑

i λiψi(x)ψi(x
′).

For any f ∈ HΓ, let f =
∑

i uiψi, then

⟨f(x′),KX(x, x′)⟩HΓ
=
∑
i

1

λi
ui(λiψi(x)) =

∑
i

uiψi(x) = f(x).
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(ii) For any f =
∑

i uiψi ∈ HΓ, there is
∑

i λ
−1
i u2i <∞ by definition. So for any λi = 0, there

must be ui = 0. Let g =
∑

i λ
−1/2
i uiψi. Then, ∥g∥2PA

=
∑

i λ
−1
i u2i <∞, meaning that g ∈

L2(PA). And there is f = Γ∗g, so f ∈ R(Γ∗), which implies that HΓ ⊆ R(Γ∗). Meanwhile,
for any f = Γ∗g ∈ R(Γ∗), let g =

∑
i viϕi, then

∑
i v

2
i < ∞. Then, f =

∑
i λ

1/2
i viψi by

duality, so
∑

i λ
−1
i (λ

1/2
i vi)

2 <∞, meaning that f ∈ HΓ, so R(Γ∗) ⊆ HΓ.

(iii) For any f =
∑

i uiψi ∈ HΓ, let g =
∑

i λ
−1/2
i uiψi. By the proof of (ii) we know that f 7→ g

is bijective, and ∥f∥HΓ
= ∥g∥PA . Moreover, g ∈ span({ϕi}λi>0).

(iv) Let g∗ =
∑

i viϕi. Then, since we have f∗ = Γ∗g∗ =
∑

i λ
1/2
i viψi, for any λi > 0,

there is vi = λ−1/2ui; and for any λi = 0, there is ui = 0. Let g∗ = g0 + g1, where
g0 =

∑
i λ

−1/2
i uiϕi, and g1 ⊥ g0 and Γ∗g1 = 0. By duality, ΓΓ∗g0 belongs to the linear

span of {ϕi}λi>0, so g1 ⊥ ΓΓ∗g0. As we will show later, Eqn. (1) is equivalent to Eqn. (25),
which is the random walk normalized Laplacian over the augmentation graph (Chung, 1997,
Section 1.2). This is equivalent to ⟨g∗, (I−ΓΓ∗)g∗⟩PA ≤ ϵ∥g∗∥2PA

, which is further equivalent
to ⟨g0, (I−ΓΓ∗)g0⟩PA +∥g1∥2PA

≤ ϵ(∥g0∥2PA
+∥g1∥2PA

) (note that ΓΓ∗g1 = 0). This implies
that ⟨g0, (I − ΓΓ∗)g0⟩PA ≤ ϵ∥g0∥2PA

, i.e. g0 satisfies Eqn. (1). Since we also have f∗ = Γ∗g0,
g0 must satisfy Assumption 1, so we can choose g∗ = g0.

Next, to show the equivalence to Eqn. (25), We just need to show that ⟨g∗, (I − ΓΓ∗)g∗⟩PA =
1
2EX∼PXEA,A′∼p(·|X)

[
(g∗(A)− g∗(A′))2

]
. And indeed, we have:

⟨g∗, (I − ΓΓ∗)g∗⟩PA =

〈
g∗, g∗ −

∫
g∗(a′)KA(·, a′)p(a′)da′

〉
PA

= ∥g∗∥2PA
−
∫∫

g(a)g(a′)

∫
p(a|x)p(a′|x)p(x)dx

p(a)p(a′)
p(a′)p(a)dada′

=
1

2
E[g∗(A)2] +

1

2
E[g∗(A′)2]− 1

2
EX∼PXEA,A′∼p(·|X)[2g

∗(A)g∗(A′)]

=
1

2
EX∼PXEA,A′∼p(·|X)

[
(g∗(A)− g∗(A′))2

]
,

as desired.

E PROOFS FOR SECTION 3

E.1 LOCAL GAUSSIAN COMPLEXITY AND LOCALIZED RADEMACHER COMPLEXITY

We first provide the definition of the two complexities we will use in our analysis. For a function f ,
let ∥f∥2n := 1

n

∑n
i=1 f(x̃i)

2 be its mean on the downstream samples.
Definition 4. (Wainwright, 2019, Eqns. (13.16) & (14.3)) For any B, ϵ > 0, define

F0 :=

{
f1 − f2

∣∣∣∣ fi ∈ HΨ̂, ∥fi∥HΓ ≤ B√
1− ϵ

}
=

{
f ∈ HΨ̂

∣∣∣∣ ∥f∥HΓ ≤ 2B√
1− ϵ

}
. (26)

Then, the local Gaussian complexity around fΨ̂ at scale δ > 0 is given by

Gn(δ;F0) := E
ω1,··· ,ωn

[
sup

f∈F0,∥f∥n≤δ

∣∣∣∣∣ 1n
n∑

i=1

ωif(x̃i)

∣∣∣∣∣
]
, (27)

where ω1, · · · , ωn are i.i.d. N (0, 1) variates. And define

F∗ :=

{
f = f1 + αf∗

∣∣∣∣ α ∈ [−1, 1], f1 ∈ HΨ̂, ∥f1∥HΓ
≤ B√

1− ϵ

}
. (28)

Then, the localized population Rademacher complexity of radius δ > 0 is given by

R̄n(δ;F∗) := E
σ1,··· ,σn,x1,··· ,xn

[
sup

f∈F∗,∥f∥PX ≤δ

∣∣∣∣∣ 1n
n∑

i=1

σif(xi)

∣∣∣∣∣
]
, (29)

where σ1, · · · , σn are i.i.d. Rademacher variables taking values in {−1,+1} equiprobably.
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Our master plan is to apply Theorems 13.13 and 14.1 of Wainwright (2019) to fΨ̂ = Γ∗(ΠΦ̂g
∗),

where ΠΦ̂ is the projection operator onto Φ̂ in L2(PX ), and fΨ̂ is the projection of f∗ onto HΨ̂ w.r.t.
⟨·, ·⟩HΓ . Therefore, we need to bound Gn(δ;F0) and R̄n(δ;F∗). We start with the following uniform
bound:
Proposition 7. If f = Γ∗g, and ∥g∥PA ≤ T , then |f(x)| ≤ κT for all x.

Proof. By Eqn. (4), we have p(a|x) =
∑

i

√
λiϕi(a)ψi(x)p(a). For any g =

∑
i uiϕi ∈ L2(PA)

such that ∥g∥PA ≤ T , (Γ∗g)(x) =
∫
g(a)p(a|x)da =

∑
i

√
λiuiψi(x). Then, by Cauchy-Schwarz

inequality, we have for all x, f(x)2 = (Γ∗g)(x)2 ≤ (
∑

i λiψi(x)
2)(
∑

i u
2
i ) ≤ κ2T 2.

This proposition immediately implies that f∗ and fΨ̂ are uniformly bounded:

Corollary 8. For any f∗ ∈ FB(Γ; ϵ), Eqn. (6) ensures that ∥g∗∥2PA
≤ B2

1−ϵ , so |f∗(x)| ≤ κB√
1−ϵ

for

all x. Moreover, ∥ΠΦ̂g
∗∥PA ≤ ∥g∗∥PA implies that ∥fΨ̂∥HΓ ≤ B√

1−ϵ
, and |fΨ̂(x)| ≤

κB√
1−ϵ

for all
x.

We will also use the following simple result in linear algebra:
Lemma 9. Let Dλ = diag(λ1, λ2, · · · ) where λ1 ≥ λ2 ≥ · · · ≥ 0 and λi → 0. Let Q be a matrix
with d rows that are unit vectors. Then, Tr(QDλQ

⊤) ≤ λ1 + · · ·+ λd.

Proof. Let qi be the i-th column of Q. Then for all j ∈ [d], there is
∑j

i=1 q
⊤
i qi ≤ j. And for j > d,∑j

i=1 q
⊤
i qi ≤ d. Thus, using Abel transformation, we have

Tr(QDλQ
⊤) = Tr(DλQ

⊤Q) =

∞∑
i=1

λiq
⊤
i qi =

∞∑
j=1

(
j∑

i=1

q⊤
i qi

)
(λj − λj+1) ≤

d∑
i=1

λi,

which proves the assertion.

This result has many implications. For instance, for any rank-d subspace of HΓ, its trace (the sum of
its eigenvalues) is at most Sλ(d).

Now, let us bound Gn(δ;F0) with the following result:
Lemma 10. (Application of Wainwright (2019, Lemma 13.22)) Let H be an RKHS with reproducing
kernel K. Given samples x̃1, · · · , x̃n, let K be the normalized kernel matrix with entries K(i, j) =
K(x̃i, x̃j)/n. Let µ1 ≥ · · · ≥ µn ≥ 0 be the eigenvalues of K. Then for all δ > 0, we have

E

[
sup

∥f∥H≤T,∥f∥n≤δ

∣∣∣∣∣ 1n
n∑

i=1

ωif(x̃i)

∣∣∣∣∣
]
≤
√

2

n

√√√√ n∑
j=1

min{δ2, µjT 2}, (30)

where ω1, · · · , ωn are i.i.d. N (0, 1) variates. We apply this result to K = KX . By Definition 2, all
elements on the diagonal of K are at most κ2/n, so

∑
j µj = Tr(K) ≤ κ2. Thus, we have

Gn(δ;F0) ≤

√
8κ2B2

n(1− ϵ)
for any HΨ̂. (31)

Regarding R̄n(δ;F∗), F∗ is also a subset of RKHS Ĥ∗, which is the linear span of Ψ̂ and f∗, and
is a subspace of HΓ whose rank is at most (d+ 1). By Lemma 9, the sum of eigenvalues of Ĥ∗ is
at most Sλ(d + 1). Since ∥f∗∥HΓ

≤ B√
1−ϵ

, all f ∈ F∗ satisfy ∥f∥HΓ
≤ 2B√

1−ϵ
. So we have the

following bound for R̄n(δ;F∗):
Lemma 11. (Application of Wainwright (2019, Corollary 14.5)) Let µ1, µ2, · · · be the eigenvalues
of the RKHS Ĥ∗. Since rank(Ĥ∗) ≤ rank(HΨ̂) + 1, we have

R̄n(δ;F∗) ≤
√

2

n

√√√√ ∞∑
j=1

min

{
δ2,

4µjB2

1− ϵ

}
≤

√
8B2

n(1− ϵ)
Sλ(d+ 1) if rank(HΨ̂) ≤ d, (32)

and for an arbitrary HΨ̂, we can simply replace Sλ(d+ 1) with Sλ.
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E.2 PROOFS

Lemma 2. Suppose ν1, · · · , νn are i.i.d. N (0, σ2) variates. If Φ̂ has d dimensions (d can be ∞),
then we have the following uniform bound over all f∗ = Γ∗g∗ ∈ FB(Γ; ϵ):

P
x̃i,νi

[
∀f∗ ∈ FB(Γ; ϵ), ∥f̂ − f∗∥2PX

≤ 9∥fΨ̂ − f∗∥2PX
+
c0κ(B

2 + σB)

1− ϵ

√
Sλ(d+ 1)

n

]

≥ 1− c1 exp

(
−
c2
√
2nSλ(d+ 1)

κ

)
− exp

(
−
√

2nκ2B2

1− ϵ

)
,

where fΨ̂ = Γ∗(ΠΦ̂g
∗) is the projection of f∗ onto HΨ̂ w.r.t. ⟨·, ·⟩HΓ , and c0, c1, c2 are universal

constants. Moreover, Sλ(d+ 1) ≤ min
{
d+ 1, κ2

}
.

Proof. By Proposition 7, all functions in F∗ are b-uniformly bounded, with b = 2κB√
1−ϵ

. And
obviously F∗ is star-shaped, meaning that for all f ∈ F∗ and all β ∈ [0, 1], βf ∈ F∗. Let

t2 = b ·
√

8B2

n(1−ϵ)Sλ(d+ 1) ≥ bR̄n(δ;F∗). Then, by Wainwright (2019, Theorem 14.1), we have

P
[∣∣∥f∥2n − ∥f∥2PX

∣∣ ≥ 1

2
∥f∥2PX

+
t2

2

]
≤ c1 exp

(
−c2

nt2

b2

)
for all f ∈ F∗ (33)

for universal constant c1, c2. We know that f̂ − f∗ ∈ F∗ and fΨ̂ − f∗ ∈ F∗, which means that

P
[(

∥f̂ − f∗∥2PX
≥ 2∥f̂ − f∗∥2n + t2

)
∨
(
∥fΨ̂ − f∗∥2n ≥ 3

2
∥fΨ̂ − f∗∥2PX

+
t2

2

)]
≤ c1 exp

(
−c2

nt2

b2

)
.

(34)

Let δ2n = 2σ
√

8κ2B2

n(1−ϵ) . By Lemma 10, we have δ2n ≥ 2σGn(δn;F0). And F0 is also star-shaped.

Thus, by setting γ = 1/2 in Wainwright (2019, Theorem 13.13), we have†

P
[
∥f̂ − f∗∥2n ≥ 3∥fΨ̂ − f∗∥2n + 32δ2n

]
≤ exp

(
−nδ

2
n

2σ2

)
. (35)

Combining the two inequalities above with the union bound, we obtain the result.

Now we prove Lemma 3. Without loss of generality, suppose h1, · · · , hd′ are linearly independent.
Let Ĥd′ := span{h1, · · · , hd′}. Let g∗ = g0 + βg1, where g0 = ΠĤd′

g∗, g1 ⊥ g0, and ∥g1∥PA = 1.
So by Lemma 9, we have:

Proposition 12. ∥Γ∗(G
−1/2
h h1)∥2PX

+ · · ·+ ∥Γ∗(G
−1/2
h hd′)∥2PX

+ ∥Γ∗g1∥2PX
≤ λ1 + · · ·+ λd′+1.

Proof. Let
[
G

−1/2
h h1, · · · ,G−1/2

h hd′ , g1

]
= QΦ∗, where Q is a matrix with (d′ + 1) orthonormal

rows. Then,
[
Γ∗(G

−1/2
h h1), · · · ,Γ∗(G

−1/2
h hd′),Γ∗g1

]
= QDλ

1/2Φ∗. Thus, we have

∥Γ∗(G
−1/2
h h1)∥2PX

+ · · ·+ ∥Γ∗(G
−1/2
h hd′)∥2PX

+ ∥Γ∗g1∥2PX
= Tr(QDλQ

⊤).

Then, applying Lemma 9 completes the proof.

Remark. This proposition is the functional version of Fan (1949, Theorem 1).

Notice that ∥Γ∗(G
−1/2
h h1)∥2PX

+· · ·+∥Γ∗(G
−1/2
h hd′)∥2PX

= Tr(G
−1/2
h FhG

−1/2
h ) = Tr(G−1

h Fh).
With this, we can prove Lemma 3:

†Please refer to the proof of Wainwright (2019, Theorem 13.13) for removing the universal constants in this
theorem.
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Lemma 3. For any f∗ ∈ FB(Γ; ϵ), there is

∥fΨ̂ − f∗∥2PX
≤ τ2

1− τ2
τ + ϵ

1− ϵ
B2.

Proof. Let α2 = ∥g0∥2PA
, and β2 = ∥g0− g∗∥2PA

. By Corollary 8, α2+β2 ≤ B2

1−ϵ . Eqn. (6) implies
that

(1− ϵ)(α2 + β2) ≤ ∥Γ∗(g0 + βg1)∥2PX
≤ α2 + β2τ2 + 2αβτ,

since ∥Γ∗g0∥2PX
≤ ∥g0∥2PA

= α2, and ∥Γ∗g1∥2PX
≤ τ2 by Proposition 12. Thus,

(1− τ2)β2 ≤ ϵ(α2 + β2) + 2αβτ ≤ (ϵ+ τ)(α2 + β2) ≤ (ϵ+ τ)
B2

1− ϵ
.

Thus, we have ∥fΨ̂ − f∗∥2PX
= ∥Γ∗(g0 − g∗)∥2PX

= β2∥Γ∗g1∥2PX
≤ β2τ2, which leads to the

inequality we need to prove. Finally, by setting hi = ϕ̂i, we can see that τ2 ≤ Sλ(d+1)−Tr(G−1F ).
And for all d′ ≤ d, Tr(G−1

h Fh) ≤ Sλ(d
′), so τ2 ≥ λd+1.

F PROOFS FOR SECTION 4

Proposition 4. For any Ψ̂ = [ψ̂1, · · · , ψ̂d] where ψ̂i ∈ L2(PX ), it holds that

err(Ψ̂;FB(Γ; ϵ)) ≥
λd+1

1− λd+1

ϵ

1− ϵ
B2 given that

λd+1

1− λd+1

ϵ

1− ϵ
≤ 1

2
. (36)

To attain equality, it is sufficient for Ψ̂ to span the top-d eigenspace, and also necessary if λd+1 < λd.

Proof. Necessity: Since Ψ̂ is at most rank-d, there must be a function in span{ψ1, · · · , ψd+1}
that is orthogonal to Ψ̂. Thus, we can find two functions f1, f2 ∈ span{ψ1, · · · , ψd+1} such that:
∥f1∥PX = ∥f2∥PX = 1, f1 is orthogonal to Ψ̂, f2 = u⊤Ψ̂ (which means that f2 ⊥ f1), and
ψ1 ∈ span{f1, f2}. Recall that λ1 = 1, and ψ1 ≡ 1. Let ψ1 = α1f1 + α2f2, then α2

1 + α2
2 = 1.

Without loss of generality, suppose α1, α2 ∈ [0, 1]. Let f0 = α2f1 − α1f2. Then, ∥f0∥PX = 1,
f0 ⊥ ψ1. Note that we also have ⟨ψ1, f0⟩HΓ = 0 by duality. Let β1, β2 ∈ [0, 1] be any value such
that f = β1ψ1 + β2f0 satisfies ∥f∥2PX

= β2
1 + β2

2 = 1, and ∥f∥2HΓ
≤ 1

1−ϵ . This is satisfied as long

as β2
2 ≤ ϵ

1−ϵ
λd+1

1−λd+1
, because ∥f∥2HΓ

≤ β2
1 +

β2
2

λd+1
= 1 + 1−λd+1

λd+1
β2
2 ≤ 1

1−ϵ . Moreover, we have
Bf ∈ FB(Γ; ϵ).

It is easy to show that F (α1) = α1β1 + α2β2 = α1β1 +
√

1− α2
1β2 (α1 ∈ [0, 1]) first increases

then decreases, so F (α1)
2 ≥ min

{
F (0)2, F (1)2

}
= min

{
β2
1 , β

2
2

}
, which can be ϵ

1−ϵ
λd+1

1−λd+1
in

the worst case given that it is at most 1
2 , in which case the prediction error of Bf is ∥B(α1β1 +

α2β2)f1∥2PX
= F (α1)

2B2 = ϵ
1−ϵ

λd+1

1−λd+1
B2. Thus, for any Ψ̂, we can find a function Bf ∈

FB(Γ; ϵ) such that minw err(w⊤Ψ̂, Bf) ≥ ϵ
1−ϵ

λd+1

1−λd+1
B2.

When λd > λd+1, to attain equality, we need α1 = 0, and ∥f∥2HΓ
= β2

1 +
β2
2

λd+1
, which means that

f0 = ψd+1. Thus, only f1 = f0 = ψd+1 is orthogonal to Ψ̂, so Ψ̂ must span the top-d eigenspace.

Sufficiency: Suppose Ψ̂ spans the top-d eigenspace. For any f ∈ FB(Γ; ϵ) such that f =
∑

i uiψi,
we have

∑
i u

2
i ≤ B2, and

∑
i
1−ϵ−λi

λi
u2i ≤ 0. Let a =

∑
i≥d+1 u

2
i and b =

∑d
i=1 u

2
i . Then,

a = minw err(w⊤Ψ̂, f), and a+ b ≤ B2. So we have

0 ≥
∑
i

1− ϵ− λi
λi

u2i ≥ −ϵb+ 1− ϵ− λd+1

λd+1
a

(
since

1− ϵ− λ

λ
decreases with λ

)
≥ −ϵ(B2 − a) +

1− ϵ− λd+1

λd+1
a

= −ϵB2 + (1− ϵ)
1− λd+1

λd+1
a,

which combined with the necessity part implies that err(Ψ̂;FB(Γ; ϵ)) =
ϵ

1−ϵ
λd+1

1−λd+1
B2.
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Lemma 5. Suppose there exists a constant C > 0 such that EPA [g
4] ≤ C2∥g∥2PA

, for all
g = w⊤Φ̂ where ∥g∥PA ≤ 1. Then, for any δ > 0, it holds with probability at least 1− δ that

|Tr(Ĝ−1F̂ )− Tr(G−1F )| ≤

(
2 +

√
2 log

2

δ

)
Cκ+ κ2√

N
d.

Proof. Since multiplying an invertible d × d matrix to Φ̂ does not change either Tr(Ĝ−1F̂ ) or
Tr(G−1F ), for simplicity let us multiply G−1/2 to Φ̂, so that ⟨ϕ̂i, ϕ̂j⟩PA = δi,j for all i, j ∈ [d] (i.e.
G = I). Define F1 = {f ∈ HΓ | ∥f∥HΓ

≤ 1}. Its Rademacher complexity is given by

RN (F1) = E
x1,··· ,xN

E
σ1,··· ,σN

[
sup
f∈F1

1

N

N∑
k=1

σkf(xk)

]
. (37)

By Mohri et al. (2018, Theorem 6.12), we have RN (F1) ≤ κN−1/2. Moreover, by Proposition 7, all
f ∈ F1 satisfy |f(x)| ≤ κ for all x. Thus, by Wainwright (2019, Theorem 4.10), for any δ > 0, with
probability at least 1− δ/2, it holds for all f ∈ F1 that∣∣∣∣∣ 1N

N∑
k=1

f(xk)− E[f(X)]

∣∣∣∣∣ ≤ 2RN (F1) + κ

√
2

N
log

2

δ
≤

(
2 +

√
2 log

2

δ

)
κ√
N
. (38)

Define matrix M = Ĝ−1/2F̂ Ĝ−1/2 = (mi,j)i,j∈[d]. ∥M∥2 ≤ 1, so
∑d

i=1m
2
i,j ≤ 1 for all j ∈ [d].

Consider Tr((I − Ĝ)M). For any j ∈ [d], we have

((I − Ĝ)M)(j, j) =

〈
ϕ̂j ,

d∑
i=1

mi,j ϕ̂i

〉
P̂A

−

〈
ϕ̂j ,

d∑
i=1

mi,j ϕ̂i

〉
PA

.

Note that
∥∥∥∑d

i=1mi,j ϕ̂i

∥∥∥
PA

≤ 1, so
∥∥∥ϕ̂j (∑d

i=1mi,j ϕ̂i

)∥∥∥2
PA

≤

√
E[ϕ̂4j ]E

[(∑d
i=1mi,j ϕ̂i

)4]
≤

C2, which means that C−1Γ∗
(
ϕ̂j

(∑d
i=1mi,j ϕ̂i

))
∈ F1. So if Eqn. (38) holds, then for all j ∈ [d],

we have

((I − Ĝ)M)(j, j) =

∣∣∣∣∣ 1N
N∑

k=1

Γ∗

(
ϕ̂j

(
d∑

i=1

mi,j ϕ̂i

))
(xk)− E

[
Γ∗

(
ϕ̂j

(
d∑

i=1

mi,j ϕ̂i

))
(X)

]∣∣∣∣∣
≤

(
2 +

√
2 log

2

δ

)
Cκ√
N
,

which implies that

Tr
(
Ĝ−1F̂ − F̂

)
= Tr

(
Ĝ−1/2(I − Ĝ)Ĝ−1/2F̂

)
= Tr

(
(I − Ĝ)M

)
≤

(
2 +

√
2 log

2

δ

)
Cκd√
N
.

Next, define F2 = {f1f2 | f1, f2 ∈ HΓ, ∥f1∥HΓ
≤ 1, ∥f2∥HΓ

≤ 1}. By Proposition 13 (proved
after this lemma), we have RN (F2) ≤ κ2N−1/2. And all f ∈ F2 satisfy |f(x)| ≤ κ2 for all x by
Proposition 7. So with probability at least 1− δ/2, we have for all f ∈ F2,∣∣∣∣∣ 1N

N∑
k=1

f(xk)− E[f(X)]

∣∣∣∣∣ ≤ 2RN (F2) + κ2
√

2

N
log

2

δ
≤

(
2 +

√
2 log

2

δ

)
κ2√
N
. (39)

Note that ∥ψ̂i∥HΓ
≤ 1. So under Eqn. (39), we have for all i, j ∈ [d],∣∣∣⟨ψ̂i, ψ̂j⟩P̂X

− ⟨ψ̂i, ψ̂j⟩PX

∣∣∣ = ∣∣∣∣∣ 1N
N∑

k=1

ψ̂i(xk)ψ̂j(xk)− E[ψ̂iψ̂j ]

∣∣∣∣∣ ≤
(
2 +

√
2 log

2

δ

)
κ2√
N
,
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which implies that Tr
(
F̂ −G−1F

)
= Tr

(
F̂ − F

)
≤
(
2 +

√
2 log 2

δ

)
κ2d√
N

.

Finally, applying the union bound completes the proof.

Proposition 13. Let F2 = {f1f2 | f1, f2 ∈ HΓ, ∥f1∥HΓ
≤ 1, ∥f2∥HΓ

≤ 1}. Then, RN (F2) ≤ κ2
√
N

.

Proof. For any h(x) = f1(x)f2(x) ∈ F2, let f1 = Γ∗g1 and f2 = Γ∗g2, where ∥g1∥PA ≤ 1 and
∥g2∥PA ≤ 1. Let g1 =

∑
i uiϕi and g2 =

∑
i viϕi. Let u = [u1, u2, · · · ] and v = [v1, v2, · · · ].

Then, ∥u∥2 ≤ 1 and ∥v∥2 ≤ 1. And we have f1 =
∑

i λ
1/2
i uiψi, and f2 =

∑
i λ

1/2
i viψi.

For any x ∈ X , let Ψ(x) = [λ
1/2
1 ψ1(x), λ

1/2
2 ψ2(x), · · · ]. Then, f1(x) = u⊤Ψ(x) and f2(x) =

v⊤Ψ(x). Denote Ψk = Ψ(xk). Then, Ψ⊤
k Ψk ≤ κ2 for all k ∈ [N ]. So for any S = {x1, · · · , xN},

the empirical Rademacher complexity satisfies

R̂S(F2) ≤ E
σ

[
sup

∥u∥2≤1,∥v∥2≤1

∣∣∣∣∣ 1N
N∑

k=1

σku
⊤ΨkΨ

⊤
k v

∣∣∣∣∣
]

≤ 1

N
E
σ

[∥∥∥∥∥
N∑

k=1

σkΨkΨ
⊤
k

∥∥∥∥∥
2

]

≤ 1

N
E
σ

[∥∥∥∥∥
N∑

k=1

σkΨkΨ
⊤
k

∥∥∥∥∥
F

]

=
1

N
E
σ

Tr
( N∑

k=1

σkΨkΨ
⊤
k

)⊤( N∑
l=1

σlΨlΨ
⊤
l

)1/2


≤ 1

N

√√√√√E
σ

Tr
 N∑

k,l=1

σkσlΨkΨ⊤
k ΨlΨ⊤

l

 (Jensen)

=
1

N

√√√√√Tr

 N∑
k,l=1

E[σkσl]ΨkΨ⊤
k ΨlΨ⊤

l


=

1

N

√√√√Tr

(
N∑

k=1

ΨkΨ⊤
k ΨkΨ⊤

k

)

≤ 1

N

√
Nκ4 =

κ2√
N
.

Then, since RN (F2) = ES [R̂S(F2)], we obtain the result.

Lemma 6. Suppose ϕ̂i = ϕ̄i for i ∈ [d]. Let γG := λmax(G)/λmin(G), which is the condition
number of G. Then, for any δ > 0, both

d∑
j=1

λ̄j ≥
d∑

i=1

λi −

(
2 +

√
2 log

2

δ

)
(λ−1

d + 1)κ2√
N

d

and Eqn. (12) with C = κλ̄−1
d γ

1/2
G hold simultaneously for HΨ̂ = Ĥd with probability at least

1− δ.

Proof. Denote Φ∗
d = [ϕ1, · · · , ϕd] and Φ̄∗

d = [ϕ̄1, · · · , ϕ̄d]. Let Φ̄∗
d = PΦ∗, where P is a

matrix with d rows. Observe that for any g =
∑

i uiϕ̄i such that ∥g∥PA ≤ 1, we have g =

Γ̄Γ∗ (∑
i λ̄

−1
i uiϕ̄i

)
. Let u = (u1, · · · , ud), then there is g = u⊤Φ̄∗

d = u⊤PΦ∗, so ∥P⊤u∥2 ≤ 1.
Thus, we have ∥

∑
i λ̄

−1
i uiϕ̄i∥PA = ∥P⊤D−1

λ̄d u∥2 = ∥P⊤D−1
λ̄d (PP⊤)−1PP⊤u∥2.
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So we just need to show that ∥P⊤D−1
λ̄d (PP⊤)−1P ∥2 ≤ λ̄−1

d γ
1/2
G . ∥P⊤D−1

λ̄d (PP⊤)−1P ∥2 is
equal to the square root of the largest eigenvalue of P⊤D−1

λ̄d (PP⊤)−1D−1
λ̄d P , and by using two

simple linear algebra exercises: (i) λmax(AB) ≤ λmax(A)λmax(B) for positive definite matrices
A and B, and (ii) AB and BA share the same non-zero eigenvalues (Sylvester’s Theorem), and the
fact that G = PP⊤, we can show that the largest eigenvalue of this matrix is at most λ̄−2

d γG.

Therefore, we have ∥P⊤D−1
λ̄d (PP⊤)−1P ∥2 ≤ λ̄−1

d γ
1/2
G , which combined with ∥P⊤u∥2 ≤ 1

implies that ∥
∑

i λ̄
−1
i uiϕ̄i∥PA ≤ λ̄−1

d γ
1/2
G . By Proposition 7, |Γ∗ (∑

i λ̄
−1
i uiϕ̄i

)
(x)| ≤ κλ̄−1

d γ
1/2
G

for all x, so we have |Γ̄Γ∗ (∑
i λ̄

−1
i uiϕ̄i

)
(a)| = |

∫
Γ∗ (∑

i λ̄
−1
i uiϕ̄i

)
(x)p(x|a)dx| ≤ κλ̄−1

d γ
1/2
G

for all a. This means that with C = κλ̄−1
d γ

1/2
G , g satisfies the condition of Lemma 5. Therefore, with

probability at least 1− δ, both Eqn. (38) and Eqn. (39) hold and they lead to Eqn. (12).

Now let Φ∗
d = QΦ̄∗, where Q is a matrix with d rows. Consider two matrices QQ⊤,QDλ̄Q

⊤ ∈
Rd×d where Dλ̄ = diag(λ̄1, λ̄2, · · · ), for which we have

(QQ⊤)(i, j) = ⟨ϕi, ϕj⟩P̂A
and (QDλ̄Q

⊤)(i, j) = ⟨Γ∗ϕi,Γ
∗ϕj⟩P̂X

.

We have (⟨ϕi, ϕj⟩PA)i,j∈[d] = I and (⟨Γ∗ϕi,Γ
∗ϕj⟩PX )i,j∈[d] = Dλd := diag(λ1, · · · , λd). More-

over, for any g = u⊤Φ∗
d such that ∥g∥PA ≤ 1, there is g = ΓΓ∗ (∑

i λ
−1
i uiϕi

)
, and obviously

∥
∑

i λ
−1
i uiϕi∥PA ≤ λ−1

d . Thus, we can show that for all a, |g(a)| ≤ κλ−1
d , which means that Φ∗

d

satisfies the fourth-moment control assumption in Lemma 5 with C ′ = κλ−1
d . So similar to the proof

of Lemma 5, for all u ∈ Rd such that ∥u∥2 ≤ 1, we can show that∣∣u⊤(QQ⊤ − I)u
∣∣ = ∣∣∣〈u⊤Φ∗

d,u
⊤Φ∗

d

〉
P̂A

−
〈
u⊤Φ∗

d,u
⊤Φ∗

d

〉
PA

∣∣∣ ≤ (2 +√2 log
2

δ

)
κ2λ−1

d√
N

,

which implies that ∥QQ⊤∥2 ≤ 1 +
(
2 +

√
2 log 2

δ

)
κ2λ−1

d√
N

. It is easy to show that all non-zero

eigenvalues of Q⊤Q are also eigenvalues of QQ⊤, so ∥Q⊤Q∥2 ≤ 1 +
(
2 +

√
2 log 2

δ

)
κ2λ−1

d√
N

.
Moreover, similar to the proof of Lemma 5, we can show that for all i, j ∈ [d],

∣∣(QQ⊤ − I
)
(i, j)

∣∣ ≤ (2 +√2 log
2

δ

)
κ2λ−1

d√
N

; (40)

∣∣(QDλ̄Q
⊤ −Dλd

)
(i, j)

∣∣ ≤ (2 +√2 log
2

δ

)
κ2√
N
. (41)

Let qi be the i-th column of Q. Then for all i ∈ [d], q⊤
i qi ≤ 1 +

(
2 +

√
2 log 2

δ

)
κ2λ−1

d√
N

. And we

also have
∑∞

i=1 q
⊤
i qi = Tr(Q⊤Q) = Tr(QQ⊤) ≤ d+

(
2 +

√
2 log 2

δ

)
κ2λ−1

d d√
N

. Thus, we have

d∑
i=1

λi −

(
2 +

√
2 log

2

δ

)
κ2√
N
d ≤ Tr(QDλ̄Q

⊤) = Tr(Dλ̄Q
⊤Q)

=

∞∑
i=1

λ̄iq
⊤
i qi =

∞∑
j=1

(
j∑

i=1

q⊤
i qi

)
(λ̄j − λ̄j+1)

≤
d∑

i=1

λ̄i

[
1 +

(
2 +

√
2 log

2

δ

)
κ2λ−1

d√
N

]
≤

d∑
i=1

λ̄i +

(
2 +

√
2 log

2

δ

)
κ2λ−1

d d√
N

,

which proves the assertion.

G PROOFS FOR SECTION 5

Example 1. Consider X = {−1, 1}dX , where each x ∈ X is a vector of −1 and 1 with length dX .
Let pX be the uniform distribution over X . Consider a random masking augmentation, where for any
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x ∈ X , each coordinate xi is randomly masked to be 0 with probability α ∈ (0, 1) independently,
where α is the mask ratio (0 is the [MASK] token). Then, κ2 = (2− α)dX .

Proof. We know that κ2 ≥
∫ p(a|x)2

p(a) da, and by symmetry, the right-hand-side is the same for all x.
Given an a, suppose a has r coordinates masked and (dX − r) coordinates unmasked. Then, there
are 2r possible x that can be augmented to a. For each of these x, p(a|x) = αr(1 − α)dX−r. So
p(a) =

∫
p(a|x)p(x)dx = 2r−dXαr(1− α)dX−r. Thus, we have

κ2 =

∫
p(a|x)2

p(a)
da =

dX∑
r=0

(
dX
r

)
α2r(1− α)2dX−2r

2r−dXαr(1− α)dX−r

=

dX∑
r=0

(
dX
r

)
αr(2− 2α)dX−r

= (α+ 2− 2α)dX = (2− α)dX ,

which completes the proof.

Example 2. Consider a random block masking augmentation with ratio α, which for any x ∈ X
masks xi, xi+1, · · · , xi+r−1 for a uniformly random i, and r = ⌈αdX ⌉. Then, κ2 ≤ [2(1−α)]dX .

Proof. For any a, we have p(a) = 1
dX−r+1

1
2dX−r , and p(a|x) = 1

dX−r+1 if x can be augmented to

a. So there always is p(a|x)
p(a) = 2dX−r ≤ 2(1−α)dX . Thus, we have κ2 ≤ 2(1−α)dX .

Example 3. Consider random block masking + flipping with ratio α, where for any x ∈ X ,
first xi, · · · , xi+r−1 are masked to be 0 for a uniformly random i and r = ⌈α

2 dX ⌉, and then
each remaining coordinate is randomly flipped sign (1 → −1 and −1 → 1) with probability α

2

independently. Then, κ2 ≤
[
(α2 − 2α+ 2)(1−α/2)

]dX .

Proof. For any a, we have p(a) = 1
dX−r+1

1
2dX−r . Suppose a is augmented from x, and among the

unmasked (dX − r) coordinates, a and x have k disagreeing coordinates. For a given k, there are
(dX − r+1)

(
dX−r

k

)
possible a, and we have p(a|x) = 1

dX−r+1 (
α
2 )

k(1− α
2 )

dX−r−k. Thus, we have∫
p(a|x)2

p(a)
da =

dX−r∑
k=0

(dX − r + 1)

(
dX − r

k

) 1
(dX−r+1)2 (

α
2 )

2k(1− α
2 )

2dX−2r−2k

1
dX−r+1

1
2dX−r

=

dX−r∑
k=0

(
dX − r

k

)
2dX−r

(
α2

4

)k (
1− α+

α2

4

)dX−r−k

= 2dX−r

(
α2

4
+ 1− α+

α2

4

)dX−r

≤
(
α2 − 2α+ 2

)dX−r ≤
(
α2 − 2α+ 2

)(1−α/2)dX
,

which completes the proof.

H EXPERIMENT DETAILS

This section contains the details of the experiments we conducted in Section 5.2.

H.1 ESTIMATING THE AUGMENTATION COMPLEXITY OF MASKED LANGUAGE MODELING

We estimate the κ of four augmentations, namely Random masking, Block masking, Random masking
+ Flipping, and Block masking + Flipping, on the widely used NLP dataset wikipedia-simple.
Since it is prohibitively expensive to iterate over the entire dataset, we instead aim to estimate κ with
a subset of the dataset. In our experiments, instead of estimating supxKX(x, x), we estimate its
99th percentile. This is because of two reasons:
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(i) supxKX(x, x) is statistically impossible to estimate from a subset of data without any extra
assumptions on the distribution of KX(x, x). This means that without iterating over the entire
dataset, we cannot get a finite confidence interval. The percentile, on the other hand, can
be estimated with a finite confidence interval via sampling regardless of the distribution of
KX(x, x), which is a well-known result in statistics (Hahn & Meeker, 2011, Section 5.2).

(ii) Almost all real datasets contain outliers, i.e. samples that are very different from the other
samples. These samples will have a very large KX(x, x), because their augmentations rarely
overlap with the augmentations of other samples. Therefore, supxKX(x, x) itself is not really
meaningful because it is too sensitive to outliers, and cannot show how the augmentation works
on most part of the population.

As a demonstration of (ii), the following is an example outlier in the wikipedia-simple dataset,‡
and it has a very large KX(x, x):

Geroldsgrün is a municipality in Hof, Bavaria, Germany.

Geography

Boroughs

Dürrenwaid
Dürrenwaiderhammer
Langenbachtal
Langenau
Langenbach
Lotharheil
Mühlleiten
Geroldsgrün
Geroldsreuth
Großenreuth
Hermesgrün
Hertwegsgrün
Hirschberglein
Silberstein
Steinbach
Untersteinbach

References

We can see that this sample is very different from a typical sample in the dataset in that (a) It contains
lots of German words while this is an English dataset; (b) It mostly consists of individual words,
while most other samples are comprised of sentences and paragraphs. Such outliers are rare in the
dataset, but they result in a large KX(x, x). Therefore, we instead estimate the β-th percentile of
KX(x, x) for some β close to 100. This is a more robust estimator that can be computed with a
subset of data.

Specifically, we sample m = 1000 samples x1, · · · , xm from the dataset uniformly at random.
The maximum length is set at l = 64. For each xi, we estimate

∫ p(xi|a)
p(xi)

p(a|xi)da via sampling

r = 255 i.i.d. augmentations from p(a|xi) and computing the mean of p(xi|aj)
p(xi)

. So it suffices
to estimate p(xi|aj) and p(xi). To do this, we leverage a bert-base-uncased, which is a
bi-directional language model. Then, we can estimate p(x|a) for any x and a as follows: For a sample
x = [x(1), · · · , x(l)] (x(i) is a token) and its augmentation a, there is

log p (x|a) = log p
(
x(1)

∣∣∣a)+ log p
(
x(2)

∣∣∣a, x(1))+ · · ·+ log p
(
x(l)
∣∣∣a, x(1), · · · , x(l−1)

)
.

So we can estimate log p (x|a) in an autoregressive fashion: First estimate log p
(
x(1)

∣∣a), then
replace a(1) with x(1) and estimate log p

(
x(2)

∣∣a, x(1)), then replace a(2) with x(2) and estimate

‡Dataset available at huggingface.co/datasets/wikipedia. The index of the example outlier is 199562.
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Figure 4: Plots of log
(∫ p(x|a)

p(x) p̂(a|x)da
)

for random masking. Left: α = 0.15; Right: α = 0.4.

Table 1: 99th percentile of estimated logKX(x, x) on wikipedia-simple.

Random Mask Random Mask + Flip Block Mask Block Mask + Flip

α = 0.05 353.94 ± 4.63 350.99 ± 3.20 346.77 ± 4.47 350.46 ± 1.43
α = 0.10 348.45 ± 2.94 349.14 ± 1.15 339.86 ± 5.62 343.73 ± 5.76
α = 0.15 346.40 ± 1.94 342.77 ± 4.17 327.13 ± 2.33 336.81 ± 5.27
α = 0.20 339.03 ± 2.88 335.01 ± 2.65 313.90 ± 2.55 322.87 ± 3.55
α = 0.30 325.08 ± 2.35 312.21 ± 5.96 280.65 ± 1.87 302.60 ± 2.49
α = 0.40 307.00 ± 4.55 280.76 ± 0.71 254.40 ± 1.48 279.24 ± 4.59
α = 0.50 278.59 ± 2.46 241.59 ± 4.50 217.35 ± 2.81 240.73 ± 1.58
α = 0.60 250.01 ± 3.43 198.15 ± 4.01 187.60 ± 2.45 205.45 ± 2.63
α = 0.70 214.14 ± 0.88 151.58 ± 3.32 152.70 ± 1.60 164.48 ± 2.59
α = 0.80 160.24 ± 2.44 84.51 ± 2.35 113.86 ± 2.39 108.44 ± 1.43

log p
(
x(3)

∣∣a, x(1), x(2)), and so on. The bi-directionality of BERT is important for such estimation.
To compute p(x), we set a to be a fully masked sentence, and then compute p(x|a) = p(x).

First, we decide the percentile of KX(x, x) to report. In Figure 4, we plot the histogram of
log
(∫ p(x|a)

p(x) p̂(a|x)da
)

estimated using the above method of random masking with mask ratio

α = 0.15 and α = 0.4. The red dashed lines indicate the 99th percentile, and we can see that they
cut the tail of the data while preserving the bulk of the mass. Thus, we report the 99th percentile for
this dataset.

We study four masking augmentations: Random masking (mask r = ⌈αdX ⌉ tokens uniformly at
random), block masking (mask a block of r tokens uniformly at random), random masking and
flipping (mask r/2 tokens uniformly at random and then replace r/2 remaining tokens with random
tokens), and block masking and flipping (mask a block of r/2 tokens uniformly at random and then
replace r/2 remaining tokens with random tokens). In standard BERT, the number of randomly
replaced tokens is much smaller than the number of masked tokens, but here we make them the same
in order to magnify their difference.

In Table 1, we report the estimated 99th percentile of logKX(x, x). Each experiment is run five
times with different random seeds, and we report the average and standard deviation. We can see that:

(i) κ decreases as α grows, showing that a stronger augmentation has a lower complexity.

(ii) Random masking always has the highest complexity. Regarding the effect of block masking
and flipping, block masking has a greater effect when α is small and it makes the complexity
lower, whereas flipping has a greater effect when α is larger.

To conclude, as long as there is a way to estimate p(x|a)
p(x) or p(a|x)

p(a) , we can estimate κ via sampling
from the dataset. Note that in our estimation, BERT is only used for estimating p(x|a). κ itself is
defined free of any model.
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H.2 ANALYZING THE EFFECT OF AUGMENTATION ON DOWNSTREAM PERFORMANCE

Our theoretical analysis implies that as long as Assumption 1 is satisfied, a smaller κ, i.e. a
stronger augmentation, leads to better generalization. However, this does not mean that a stronger
augmentation will always lead to a better test performance of tighter generalization gap, due to the
following reasons:

(i) If the augmentation is too strong, then the model might have low training performance. In the
extreme case, if the sentences are 100% masked, then the language model can learn nothing.

(ii) Stronger augmentations usually work better with larger models. For instance, Wettig et al. (2023)
demonstrated that large models with strong augmentations can achieve higher performance than
standard models and augmentations. However, for small models, stronger augmentations can
lead to lower performance. One possible reason is that small models are not expressive enough,
but we conjecture that this is not the true cause since a Transformer with a moderate size is
already sufficiently complex. We conjecture that the real reason lies in optimization, in that it
would be harder for the optimizer to find a point close to the global minima with a small model
and a strong augmentation. The big model, on the other hand, has more parameters and could
be easier to optimize in practice.

(iii) If the augmentation is too strong, then Assumption 1 will be violated, and our results will not
hold so that the generalization gap can be large.

We study the effect of the augmentation on two real NLP downstream tasks, namely QNLI and SST-2.
We study random masking with different mask ratios. Unlike the experiments in Wettig et al. (2023)
that applied the pretrained encoder directly to downstream tasks, in our experiments we explicitly
use the average encoder Eqn. (7), which is estimated by sampling 16 augmentations for each sample
x and then averaging their embeddings. We do, however, fine-tune the encoder during downstream
as people do in common practice, which has been proven useful, § even though our theory does not
analyze fine-tuning. We acknowledge that there is a discrepancy between the theory and real practice,
which we aim to address in the future.

Details of our experiments:

(i) We train roberta-large models using the fast training recipe provided by Wettig et al.
(2023). For α ≥ 0.15, we directly use the Huggingface checkpoints they provide. For
α = 0.05, 0.10, we pretrain new encoders using their source code¶ without any modification.
Note that these models use pre-layer normalization (see the original github repository regarding
this detail). We use 8 NVIDIA A6000 GPUs for pretraining.

(ii) For downstream fine-tuning and evaluation, we use the official repository provided by Hug-
gingface.|| The only modification we make is that we explicitly use the average encoder. The
classifiers are trained for 3 epochs on QNLI and 6 epochs on SST-2. All hyperparameters
are kept the same as the official repository. We use 4 NVIDIA A6000 GPUs for downstream
training and evaluation.

The results are plotted in Figure 3c in Section 5.2. As discussed there, the “sweet spot” where the
model achieves the highest test performance is in the middle, where the augmentation is strong
enough to have good generalization, yet not too strong to break Assumption 1 or to make the training
performance too low.

§We find in our experiments that without fine-tuning, the downstream classifiers cannot achieve meaningful
training accuracy, merely higher than 70% for a binary classification task. With the training accuracy so low,
there is no empirical generalization gap, and the test accuracy is even higher than the training accuracy in many
cases, so these results are not meaningful.

¶https://github.com/princeton-nlp/DinkyTrain
||https://github.com/huggingface/transformers/tree/main/examples/

pytorch/text-classification
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