
Learning Constraints from Offline Demonstrations via
Superior Distribution Correction Estimation

Guorui Quan 1 Zhiqiang Xu 2 Guiliang Liu 1 *

Abstract
An effective approach for learning both safety
constraints and control policies is Inverse Con-
strained Reinforcement Learning (ICRL). Previ-
ous ICRL algorithms commonly employ an on-
line learning framework that permits unlimited
sampling from an interactive environment. This
setting, however, is infeasible in many realistic
applications where data collection is dangerous
and expensive. To address this challenge, we
propose Inverse Constrained Superior Distribu-
tion Correction Estimation (ICSDICE) as an of-
fline ICRL solver. ICSDICE extracts feasible con-
straints from superior distributions, thereby high-
lighting policies with expert-exceeding rewards
maximization ability. To estimate these distribu-
tions, ICSDICE solves a regularized dual opti-
mization problem for safe control by exploiting
the observed reward signals and expert prefer-
ences. Striving for transferable constraints and
unbiased estimations, ICSDICE actively encour-
ages sparsity and incorporates a discounting effect
within the learned and observed distributions. Em-
pirical studies show that ICSDICE outperforms
other baselines by accurately recovering the con-
straints and adapting to high-dimensional envi-
ronments. The code is available at https:
//github.com/quangr/ICSDICE.

1. Introduction
To deploy Reinforcement Learning (RL) algorithms for
safety-critical applications, the control policy must adhere to
underlying constraints in the environment (Liu et al., 2021).
However, in many real-world tasks, due to the inherent

*Corresponding Author 1School of Data Science, The Chinese
University of Hong Kong, Shenzhen, Guangdong, 518172, P.R.
China 2Machine Learning, Mohamed bin Zayed University of Arti-
ficial Intelligence, Abu Dhabi, UAE. Correspondence to: Guiliang
Liu <liuguiliang@cuhk.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

complexity of environmental dynamics, the optimal con-
straint is often time-varying, context-sensitive, and rooted
in human experience. These constraints are challenging
to specify manually with prior knowledge and may not be
readily available to RL agents in policy learning.

To address these problems, Inverse Constraint Reinforce-
ment Learning (ICRL) considers inferring constraints from
expert demonstrations. Existing ICRL algorithms (Scobee
& Sastry, 2020; Malik et al., 2021; Liu & Zhu, 2022; Gaurav
et al., 2023; Papadimitriou et al., 2023; Qiao et al., 2023;
Xu & Liu, 2023) follow an online learning paradigm, where
the agent explores and collects experience from an inter-
active environment. However, boundless exploration often
involves unsafe behaviors that potentially violate underly-
ing constraints. Such a shortcoming is fundamental since
constraint violation contradicts the primary goal of safe con-
trol and may cause significant loss in practical applications,
especially for algorithms that require a large number of
training samples.

To effectively overcome these limitations, we propose de-
signing an offline ICRL algorithm that relies solely on a
fixed dataset for constraint inference. This task is challeng-
ing, primarily due to 1) the offline dataset covers only partial
knowledge of the training environment, necessitating the
algorithm to handle the uncertainty in unvisited states. 2)
ICRL algorithms typically depend on executing policy roll-
out in an online manner to learn the constraint, making it
infeasible to transfer to offline settings. 3) Offline ICRL is
inherently ill-posed since the ground-truth constraint is not
identifiable (Liu et al., 2022) from a limited dataset. How
to specify the ICRL objective in a meaningful and practical
way remains a critical challenge.

In this work, we address the aforementioned challenges by
reformulating offline ICRL into a two-stage optimization
problem, integrating policy learning with constraint infer-
ence through the estimation of superior distributions. These
distributions capture high-risk behaviors that yield greater
rewards than those achieved by expert agents. To estimate
these distributions from the offline dataset, in the forward
stage, we design a dual optimization problem for offline
RL under a Constrained Markov Decision Process (CMDP).
The problem solver constitutes an effective and meaningful

1

https://github.com/quangr/ICSDICE
https://github.com/quangr/ICSDICE

Learning Constraints from Offline Demonstrations via Superior Distribution Correction Estimation

representation of the superior distributions. Subsequently,
in the inverse stage, we update the constraint by assigning
costs to the high-risk region sampled from these estimated
distributions. We alternatively perform the forward and
backward optimizations until superior distributions match
expert demonstrations.

In the practical implementation, we propose an Inverse
Constrained Superior Distribution Correction Estimation
(ICSDICE) algorithm. ICSDICE actively encourages spar-
sity in the estimation of distributions, thereby capturing the
minimum constraint necessary to account for expert prefer-
ences. This technique accommodates the ill-posed natures
of ICRL problems and substantially improves the general-
izability of the learned constraints. To stabilize training,
ICSDICE utilizes the discounted probabilities to represent
visitation distributions, which provides an unbiased estima-
tion of Lagrangian multiplier.

Through comparative analysis with baseline methods in both
discrete and continuous settings, we find ICSDICE can con-
sistently learn a safe policy in conjunction with a sparse cost
function. To better illustrate the advantages of ICSDICE,
we conduct ablation studies to evaluate its performance
under different configurations and evaluate how well the
constraints can transfer to new environments.

2. Related Work
We review prior works that are most related to our approach.

Inverse Constrained Reinforcement Learning (ICRL).
Prior ICRL methods extend the maximum entropy frame-
work (Ziebart et al., 2008) for learned constraints from both
the expert demonstrations and the interactive MDP envi-
ronment. In the discrete state-action space, some recent
research (Scobee & Sastry, 2020; McPherson et al., 2021)
inferred the constrained sets for recording infeasible state-
action pairs in Constrained MDP, but these studies were
restricted to the environments with known dynamics. A sub-
sequent work (Malik et al., 2021) extended this approach to
continuous state-action spaces with unknown transition mod-
els by utilizing neural networks to approximate constraints.
To enable constraint inference in stochastic environments,
(Papadimitriou et al., 2023) inferred probability distribu-
tions over constraints by utilizing the Bayesian framework,
and (Baert et al., 2023) incorporate the maximum causal
entropy objective (Ziebart et al., 2010) into ICRL. Some
recent works explore ICRL under different settings, e.g.,
(Gaurav et al., 2023) extended ICRL to infer soft constraints.
Other works explored ICRL under the multi-agent (Liu &
Zhu, 2022; 2023) and the meta learning (Liu & Zhu, 2024)
setting. Striving for efficient comparisons, (Liu et al., 2023)
established an ICRL benchmark across various RL domains.
However, these algorithms primarily target online ICRL that
utilizes interactive environments instead of offline datasets.

Offline Reinforcement Learning. Offline RL utilizes a
data-driven RL paradigm where the agent learns the con-
trol policy exclusively from static datasets of previously
collected experiences (Levine et al., 2020). To mitigate
the distributional shift between training samples and test-
ing data, previous offline RL solutions commonly involve
constraining the learned policy to the data-collecting pol-
icy (Fujimoto et al., 2019; Kumar et al., 2019), making con-
servative estimates of future rewards (Kumar et al., 2020;
Yu et al., 2021), and developing uncertainty-aware action
selector (Janner et al., 2019; Kidambi et al., 2020). Some
recent advancements on Offline RL (Sikchi et al., 2024;
Xu et al., 2023) studied a regularized policy optimization
problem with convex objective and linear constraints. Some
recent DICE-related algorithms (Nachum et al., 2019a;b;
Lee et al., 2021) solve offline RL by estimating the visita-
tion distribution corrections term of the optimal policy. A
recent IRL work (Yue et al., 2023) considered recovering
conservative rewards from offline datasets, but none of these
methods has studied the offline constraint inference.

3. Problem Formulation
Constrained Reinforcement Learning (CRL). A CRL
problem is commonly based on a stationary Con-
strained Markov Decision Process (CMDP) M ∪ c :=
(S,A, pT , r, c, ϵ, ρ0, γ) where: 1) S andA denote the space
of states and actions. 2) pT ∈ ∆S

S×A
1 defines the transition

distributions. 3) r : S×A → R and c : S×A → [0, Cmax]
denotes the reward and cost functions. 4) ϵ ∈ R+ denotes
the bound of cumulative costs. 5) ρ0 ∈ ∆S denotes the
initial states distribution. 6) γ ∈ [0, 1) is the discount fac-
tor. The goal of CRL policy π ∈ ∆A

S is to maximize the
expected discounted rewards under known constraints

argmax
π

EpT ,π,ρ0

[T∑
t=0

γtr(st, at)
]

(1)

s.t. EpT ,π,ρ0

[T∑
t=0

γtc(st, at)
]
≤ ϵ (2)

Following the setting in (Malik et al., 2021), we are mainly
interested in the hard constraints such that ϵ = 0. Striving
for clarity, we define the CMDP with the known cost as
M∪ c, and the CMDP without cost (i.e., CMDP\c) asM.
Accordingly, the visitation distribution dπ ∈ ∆S×A (i.e.,
the normalized occupancy measure) produced by policy π
can be denoted as:

dπ(s, a) = (1− γ)π(a|s)
∞∑
t=0

γtp(st = s|π) (3)

where p(st = s|π) defines the probability of arriving state
s at time step t by performing policy π.

1∆X denotes the probabilistic simplex in the space X , and ∆X
Y

denotes a function maps Y to ∆X .

2

Learning Constraints from Offline Demonstrations via Superior Distribution Correction Estimation

Inverse Constrained Reinforcement Learning. Note that
traditional CRL problems often assume the constraint sig-
nals c(·) are directly observable from the environment, but
in real-world problems, instead of observing the constraint
signals, we often have access to expert demonstrations DE

that adhere to these constraints, and the agent is required
to recover the constraint models from the dataset. This
task is challenging because various combinations of rewards
and constraints can explain the same expert demonstrations.
Striving for the identifiability of solutions, ICRL algorithms
(Malik et al., 2021; Liu et al., 2023; Papadimitriou et al.,
2023) typically assume that reward signals are observable
and the goal is to recover only the constraints, in contrast to
Inverse Reinforcement Learning (IRL) (Ziebart et al., 2008),
which aims to learn rewards from an unconstrained MDP.

From Online to Offline ICRL. Classic ICRL algorithm
typically follows an online learning paradigm where the
agent iteratively collects experience by interacting with the
environment and using that experience for updating con-
straints and policy. Nevertheless, in many realistic settings,
online interaction is impractical, either because data col-
lection is expensive (e.g., in robotics, educational agents,
or healthcare) or dangerous (e.g., in autonomous driving,
or healthcare). To extend ICRL to the offline setting, we
formally define the problem of offline ICRL as follows:
Definition 3.1. (Offline ICRL) In Offline ICRL, we are
given an offline dataset DO = {sOn , aOn , rOn }

NO
n=1. Within

this dataset, expert trajectories are denoted as DE =
{sEn , aEn , rEn }

NE
n=1 ⊂ DO. These expert trajectories are

generated by an optimal policy πE adhering to the un-
observed constraints function c(s, a). i.e. πE = π∗

c :=
argmaxπ EdπE [r(s, a)], s.t. EdπE [c(s, a)] ≤ ϵ. An esti-
mated cost function ĉ is a feasible solution to ICRL if and
only if the optimal solution π∗

ĉ can reproduce dE . It is im-
portant to note that we cannot directly use the divergence
between the expert distribution and the learned distribution
as a feasible constraint for two reasons: 1. The divergence
cannot be written as an inner product of a fixed cost function
and the occupancy distribution d. 2. Such a constraint is
not incorporated with reward information and thus cannot
distinguish between high and low reward states.

In this work, we mainly study hard constraints with ϵ = 0.
This implies that the feasible set is bounded by the condition
d(s, a)c(s, a) ≤ 0 for all state-action pairs. Accordingly,
the CRL problem (2) can be equivalently formulated as:

max
π

Edπ [r(s, a)] s.t. dπ(s, a)c(s, a) ≤ 0 ∀s, a (4)

4. Inverse Constraint Inference via Superior
Distribution Correction Estimation

In this section, we introduce our approach to 1) modeling
the superior distributions (Section 4.1), 2) solving dual op-

timization problem (Section 4.2) to learn the distributions
from the offline dataset and 3) inferring constraint (Sec-
tion 4.3) based on these distributions.

4.1. Superior Distributions
To facilitate the cost identification, we formally define the
superior distributions.

Definition 4.1. The set of superior distributions, denoted
as O, is defined as those distributions that generated by
certain π and achieve higher cumulative rewards than ex-
pert, denoted as O = {dπ : Edπ [r(s, a)] > EdE [r(s, a)] |
dπ(s, a) = π(a|s)

∑∞
t=0 γ

tP (st = s|π)}.

We now establish the connection between superior distribu-
tions O and feasible solutions.

Proposition 4.2. The c(s, a) is a feasible solution for the
ICRL problem if and only if 1) For every d∗ ∈ O, there exists
at least one state-action pair (s, a) such that c(s, a) > 0
and d∗(s, a) > 0 and 2) if dE(s, a) > 0, then c(s, a) = 0.

Appendix C.3 shows the proof. Intuitively, for any superior
distribution d∗ ∈ O, there’s at least one state-action pair
(s, a) with d∗(s, a) > 0 that constitutes a violation of the
constraints. A direct approach to determine a feasible cost
function c involves initially estimating the superior distribu-
tions set O, followed by assigning a positive cost to at least
one state-action pair in the support of each distribution d∗

encompassed by this set.

However, directly constructing the set O is impractical, pri-
marily due to 1) O may contain an infinite number of distri-
butions, even in discrete state-action space. 2) identifying
such sets necessitates solving an offline policy evaluation
problem. Learning a low variance estimation of policy val-
ues is especially challenging in an offline context.

To circumvent these issues, we explicitly model a cost func-
tion c(s, a) and iteratively update this function by aligning
it with the expert demonstration. Specifically, we initial-
ize cost function c0(s, a) = 0. At each iteration k, based
on ck−1(s, a), we compute a distribution d∗k by solving the
CRL problem (4). Since it guarantees that d∗ ∈ O with the
following proposition, we can maintain a subset of supe-
rior distributions by collecting the occupancy distribution
of solved policies in each round: Ok = {d∗1, . . . , d∗k}.
Proposition 4.3. If the learned cost function ck(s, a) sat-
isfied the condition that dE(s, a) > 0 =⇒ ck(s, a) = 0,
the distribution generated by the CRL problem (4) d∗ is in
superior distributions, i.e., d∗ ∈ O.

Appendix C.4 shows the proof. In the next step, we update
ck(s, a) to ensure it’s a valid cost function based on the
distributions from previous k iterations Ok. To achieve this,
we increase cost in the support of these sampled distributions
so that the next sampled distribution be closer to the expert

3

Learning Constraints from Offline Demonstrations via Superior Distribution Correction Estimation

distribution. This process terminates when d∗k is sufficiently
closed to dE . Notably, our algorithm requires only solving
a forward CRL problem (4) and a cost learning problem. It
replaces the challenge of constructing the computationally-
intractable set O with the task of matching distributions,
which can be efficiently solved with a lower variance. In the
ideal case, such a process can converge to the expert policy
and will converge in a finite of steps in the discrete finite
MDPs, as shown in Proposition 4.4.

Proposition 4.4. If the MDP is finite, this process can re-
cover dE in a finite number of steps when problem 4 can be
accurately solved.

It’s worth noting that a similar convergence analysis is
shown in (Gaurav et al., 2023). However, they don’t ex-
plicitly introduce the concept of superior distributions and
rely on additional assumptions about the MDP.

The concept of superior distributions is key to inverse con-
straint reinforcement, we introduce the connection of our
approach to adversarial imitation learning through the lens
of superior distributions in Appendix B.

4.2. Offline Identification for Superior Distribution via
Dual Optimization

In this section, we introduce the approach to identifying the
superior distributions d∗ under the offline learning setting.
To achieve this goal, we regularize the cumulative rewards
in the objective (4) with the offline demonstration. The new
objective is given by: (5)

J(d) = Ed(s,a)[r(s, a)]− ξrDf (d(s, a) || dO(s, a))

where dO represents the visitation distribution in the of-
fline dataset DO, and Df (· || ·) denotes the f -divergence
between two distributions. Intuitively, instead of maximiz-
ing only the reward, we augment the cumulative reward
with a divergence regularizer to prevent it from deviating
beyond the coverage of the offline data. Such an objective
guarantees that the agent adheres to a conservative policy.

Since our goal is to identify the occupancy distribution,
instead of estimating π̂, we incorporate the Bellman flow
constraint to the objective and directly solve the occupancy
distribution d through a convex problem:

max
d(s,a)c(s,a)≤0,d(s,a)≥0

Ed[r(s, a)]− ξrDf (d || dO) (6)

s.t.
∑

a∈A d(s, a) = (1− γ)ρ0(s)+

γ
∑

s′∈S,a′∈A
d(s′, a′)p(s|s′, a′), ∀s ∈ S

To derive a solution for the problem (6), we introduce a
Lagrangian dual variable V and construct a dual problem by
following (Lee et al., 2021; Sikchi et al., 2024). Appendix
C.1 shows the detailed derivation.

min
V

max
d

Ed[δV]− ξrDf (d || dO) + (1− γ)Eρ0
[V] (7)

s.t. d(s, a)c(s, a) ≤ 0 and d(s, a) ≥ 0 (8)

where

δV (s, a) = r(s, a) +
∑
s′∈S

pT (s
′|s, a)γV (s′)− V (s)

We provide the closed-form solution for the inner optimiza-
tion problem in Equation (7) in the following :
Proposition 4.5. Assume the learned distribution d(s, a) >
0 for all (s, a) such that dO(s, a) > 0. The optimal solution
for the inner optimization problem in (7), denoted as d∗, is
given by :

d∗(s, a) = dO(s, a)1c(s,a)=0w
∗
f (δV (s, a)) (9)

Substituting d∗ into problem (7), the problem becomes:(10)

min
V

EdO

[
ξr1c(s,a)=0f

∗
p (
δV (s, a)

ξr
)

]
+ (1− γ)Eρ0 [V]

where w∗
f and f∗p is related to the convex function f speci-

fied in f-divergence: w∗
f (y) = max(0, f ′−1(y

ξr
)),f∗p (y) =

Ew∗ [y]− f(w∗(y)).

The proof is in Appendix C.2. In the representation of supe-
rior distributions d∗ (Equation 9), ω∗ denotes a correction
term in Distribution Correction Estimation (DICE) (Nachum
et al., 2019a), and its implementation is vital for controlling
the sparsity of the estimated constraint (Section 5.1). At
each interaction k, we estimate a d∗k, and record it to the set
Ok = Ok−1 ∪ d∗k, with which we learn the cost function as
follows.

4.3. Constraint Inference from Distribution Set

Given the set of estimated superior distributions Ok, we
assign high costs to state-action pairs in the support of these
distributions (i.e., {(s, a) | d∗(s, a) > 0 ∧ d∗ ∈ Ok}) by
following Proposition 4.2. To achieve this goal, we design
the following objective to update the cost function.

ck = argmin
c

Ed∗∈Ok

[
Ed∗(s,a)

[
(c(s, a)− 1)2)

]
+ ψ(c)

]
s.t. EdE(s,a)[c(s, a)] = 0 (11)

where we optimize the cost by adjusting mean cost to 1 for
state-action pairs with positive probability in d∗ ∈ O and ψ
denotes a cost regularizer.

In our experiment, we introduce the L2 norm of the cost
function as the cost regularizer, and by utilizing the La-
grange variable λe, the final objective can be defined as:

ck =argmin
c

Ed∗∈Ok

[
Ed∗

[
(c(s, a)− 1)2 + λL2c(s, a)

2
]]

+ λeEdE(s,a)

[
c(s, a)2

]
(12)

4

Learning Constraints from Offline Demonstrations via Superior Distribution Correction Estimation

5. Practical Implementation
In this section, we present the practical implementation of
ICSDICE (see Algorithm 1) by introducing the approach
to: 1) Encouraging sparsity in the learned constraints (Sec-
tion 5.1), 2) Utilizing the discounted visitation distribution
to enable the recovery of right sparse superior visitation
distributions (Section 5.2), and 3) Extracting policy from
the learned distribution (Section 5.3).

5.1. Encouraging the Sparsity of Inferred Constraints

The Importance of Sparsity. Similar to IRL, the optimal
constraint in ICRL is not uniquely identifiable. indicating
that multiple constraints may equivalently explain the expert
behaviors. To address this issue, ICRL algorithms aim to
learn the most sparse constraint under which the imitation
agent can reproduce the behaviors of the expert (Scobee &
Sastry, 2020). Additionally, sparsity is critical for guaran-
teeing the applicability of the learned constraints. This is
because the lack of sparsity can lead to learning an exces-
sively restrictive constraint that blocks all the movement
not covered by the expert dataset. While such a constraint
may accurately reproduce the observed expert behaviors, it
lacks practical utility for two reasons: 1) The offline dataset
may not cover all potential actions an expert agent could
execute (i.e., {a | πE(a|s) > 0}), thereby resulting in the
exclusion of many feasible actions due to overly restrictive
constraints. and 2) it cannot be generalized to environments
with even minor modifications to rewards or dynamics (see
experiments in Section 6.3), which is a critical challenge in
bridging the Sim-to-Real gap in practice.

From Cost Sparsity to Distributional Sparsity. In ac-
cordance with Proposition 4.2, positive costs are allocated
exclusively to the state-action pairs within the set {(s, a) |
d∗(s, a) > 0∧ d∗ ∈ O}. Consequently, when the estimated
set superior distributions d∗ are sparse, meaning there are
relatively few state-action pairs where d∗(s, a) > 0, the
positive costs will be assigned to a smaller number of state-
action pairs, which efficiently encourages the sparsity of
constraint.

To learn a more sparse distribution, we utilize the chi-square
distance as the f -divergence metric Df in objective (7).
Specifically, the corresponding convex function f and the
superior distributions are represented as:

f(x) = (x− 1)2 and f ′−1(x) = 1 +
x

2
(13)

d∗(s, a)

dO(s, a)
= w∗

f (s, a) =

(
1 +

δV (s, a)

2ξr

)
+

(14)

This representation can facilitate sparsity, primarily be-
cause in the cost learning step, if the temporal difference
δV (s, a) ≤ −2ξr, objective (14) ensures d∗(s, a) = 0 for
this (s, a), indicating the following movements will not in-

fluence the costs. As a result, positive costs can not be
assigned to the low-reward state-action pairs, which encour-
ages the sparsity of c(s, a). By reducing ξr (i.e., the tolerant
threshold), the impact of this clipping mechanism becomes
more influential. In this way, we can control the sparsity of
the learned distribution by adjusting ξr. On the other hand,
this method makes the cost function only sensitive to re-
gions exhibiting constraint-violating behaviors, particularly
those associated with rewards exceeding the expert level.

5.2. Utilizing the Discounted Visitation Distribution

While previous DICE-related algorithms (Kostrikov et al.,
2020; Lee et al., 2021; Ma et al., 2022a) commonly sample
data by following the empirical visitation distribution dO

in the offline dataset DO, we propose utilizing a discounted
visitation distribution in our training objective (10).

Definition 5.1. Let πO denote the sampling policy for the
offline dataset DO. The discounted visitation distribution is
represented as:

dOγ (s, a) =

∞∑
k=0

γkP (s, a|ρ0, πO) (15)

After replacing dO(s, a) with dOγ (s, a) in our previous ob-
jective (10), we obtain a new objective for updating the
value functions:

EdO
γ

[
ξr1c(s,a)≤0f

∗
p (
δV (s, a)

ξr
)

]
+ (1− γ)Eρ0(s)[V (s)] (16)

= EdO
γ

[
ξr1c(s,a)≤0f

∗
p (
δV (s, a)

ξr
) + (1− γ) ρ0(s)

dOγ (s)
V (s)

]
Such a replacement offers several benefits: 1) The discount
factor is crucial in defining the occupancy measure; thus,
incorporating this factor into the construction of the vis-
itation distribution is essential. 2) It introduces a more
principled approach to managing values in absorbing states.
To elucidate, we may interpret the left term in the preceding
objective as follows:

EdO
γ

[
ξr1c(s,a)=0f

∗
p (
δV (s, a)

ξr
)

]
= (17)

T−1∑
t=0

λt1c(st,at)=0f
∗
p

(
γV (st+1) + r(st, at)− V (st)

α

)

+

∞∑
t=T

λtf∗p

(
γV (sT)− V (sT)

α

)
where sT denotes an absorbing state occurring at
time T . The value of sT is updated to maximize
λT

1−λf
∗
p [

(γ−1)
α V (sT)] as opposite to the previous methods.

For example, striving for simplicity, OptiDICE (Lee et al.,
2021) enforces V (sT) to zero. This conventional approach

5

Learning Constraints from Offline Demonstrations via Superior Distribution Correction Estimation

is inadequate because V serves as a Lagrangian multiplier
(see objective 6) in the optimization problem.

To demonstrate the importance of our update, we conducted
experiments in the Point Maze environment(Fu et al., 2020)
to examine whether the algorithm can identify the supe-
rior distribution d∗ under the offline learning setting. We
demonstrated the effects of our modified learning objec-
tive against OptiDICE (Lee et al., 2021) and the ablation
of our algorithm that utilizes the undiscounted dO(s, a).
Figure 1 visualize the learned distribution. While our ICS-
DICE objective can learn a sparse distribution capturing the
shortest path to the destination, both OptiDICE and the ab-
lated ICSDICE objective fail to achieve this goal due to their
biased estimate. Besides, we find as ξr decreases, the dis-
tribution learned by our ICSDICE objective becomes more
sparse, which well aligns with our intuition in Section 5.1.

Op
tiD

ice

r=0.01 r=0.1 r=1

Ou
r M

et
ho

d
 (w

/o
 d

isc
ou

nt
)

Ou
r M

et
ho

d

Dataset DO

Figure 1: A 2D maze example for comparing different DICE
objectives, varying different ξr. We use a green circle to
mark the start point, and a red line represents the finish line.

5.3. Extracting Policy from the Learned Distribution
Once we learned a matched distribution d∗ with dE , the
policy π defined by optimal distribution d∗ is given by
π(a|s) = d(s,a)∑

a′ d(s,a′) . We can extract the policy by maximiz-
ing Ed∗(s,a)[log π(a|s)] = EdO(s,a)[ω

∗(s, a) log π(a|s)].
To stabilize the training, we utilize the advantage-weighted
regression (Peters & Schaal, 2007) method as follows:

maxEdO(s,a)

[
eδV (s,a) log π(a|s)

]
(18)

We also use a max clipping operation on δV in case its
values are too large, which could cause numeric instability
during training.

6. Empirical Evaluation
6.1. Discrete Grid-world Environment

We utilize grid-world environments for evaluating our al-
gorithm. These environments consist of 7x7 discrete maps,
and each map has a unique constraint setting (First row in
Figure 2). Within these environments, each agent is per-
mitted to perform eight actions: moving up, down, right,

Algorithm 1 Inverse Constrained Superior Distribution Cor-
rection Estimation (ICSDICE)

Require: Offline dataset DO = {DE ,D¬E}, Running it-
erations K; Initialize c0(·) = 0,O0 = {};

1: for k = 1 . . .K iterations do
2: Learn the value function Vk with the dual optimiza-

tion objective (16) based on cost function ck−1;
3: Solve the distribution d∗k with objective (9);
4: Update the distribution set Ok = Ok−1 ∪ {d∗k};
5: Update the cost function ck(s, a) with objective (12).
6: Extract policy π with objective (18);
7: end for

left, or in one of four diagonal directions. The primary ob-
jective for every agent is to navigate from the start to the
end point, taking the shortest possible route while avoiding
specific constrained states. The agent receives a -1 reward
for each step taken until it reaches its destination. To enable
offline ICRL, we provide an expert dataset DE and a sub-
optimal dataset D¬E (collected through random walks) for
each environment. The size of the sub-optimal dataset is 50
(trajectories) (Check details in Appendix A.1).

Constraint Visualization. Figure 2 illustrates the informa-
tion captured by different methods from an offline dataset.
We find ICSDICE learns sparse constraints that are most
similar to the ground-truth ones. When it comes to com-
parison methods, Offline IL (i.e., Inverse Q-learning (Al-
Hafez et al., 2023)) learns a Q function representing reward.
We observe that the value function in each state learned
by the imitation model fails to accurately capture the con-
straint, especially in settings 1 and 4. This highlights that
the constraint cannot be captured by traditional IRL algo-
rithms. The method, Offline IL + rewards, is an extension
of Inverse Q learning, where we incorporate rewards into
the Q-learning process by modeling the learned rewards
as r̄(s, a) = r(s, a) + c(s, a), where r(s, a) represents the
known rewards. This enables the cost signals to be extracted
from the learned Q function. For additional details, please
refer to Appendix A.4. We observe that after incorporating
rewards, the learned value function becomes overly conser-
vative and thus can only represent part of cost information.
This indicates that incorporating reward signals into IRL is
insufficient to learn a well-defined cost function.

Additionally, Figure 3 visualizes the learned superior distri-
bution d∗k and the learned cost function ck from the learning
process. Our method successfully samples sparse d∗ from
O and effectively learns a sparse cost function by capturing
sparse superior distributions.

6.2. High-Dimensional Continuous Environment
We extend MuJoCo environments (Todorov et al., 2012)
for evaluating ICRL algorithms by incorporating predefined

6

Learning Constraints from Offline Demonstrations via Superior Distribution Correction Estimation

0.0

0.2

0.4

0.6

0.8

1.0

setting1 setting2 setting3 setting4

Ground
Truth

setting1 setting2 setting3 setting4

Offline IL

setting1 setting2 setting3 setting4

Offline IL
+rewards

setting1 setting2 setting3 setting4

Our
methods

Figure 2: Visualizing the constraints captured by different
methods based on an offline dataset. Blue, red mark the
starting, target states.

d *
0 d *

1 d *
2 d *

3 d *
4

c0 c1 c2 c3 dE

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Visualizing the support of superior distributions
(top) and constraints (bottom) in the setting 1 from the
beginning (left) until the end (right) of training.

constraints into each environment. Inspired by (Liu et al.,
2023), the first type of constraint, marked by HalfChee-
tah(Obstacle), prohibits the robot from moving backward,
although it’s relatively easier for the robot to move back-
ward than forward. The second type of constraint, denoted
as Ant(LS) and Walker(LS), limits the robot’s maximum
speed of moving forward. The third type of constraint, de-
noted as Ant(Blocked) and Hopper(Blocked), restricts the
robot leg’s angular velocity and thus constricts the size of
each move. For further details, please refer to Appendix A.2.

Experiment Setting. By following (Malik et al., 2021),
we adopt the following evaluation metrics: 1) Constraint
Violation Rate, which assesses the likelihood for a policy to
violate a constraint within a given trajectory, and 2) Feasible
Cumulative Rewards, which calculates the total rewards
accumulated by the agent before violating any constraints.
We run experiments with 5 different seeds and present the
mean± std results for each algorithm. Appendix A.5 reports
the detailed settings and random seeds.

Comparison Methods. Due to the lack of offline ICRL
baselines, we compare ICSDICE with the following base-
lines: 1) LS-IQ follows the implementation of Least Square
Inverse Q-Learning (Al-Hafez et al., 2023) method that
infers reward value functions from offline data to imitate
expert policy. 2) SMODICE refers to the recently proposed

SMODICE (Ma et al., 2022b) algorithm that leverages the
dual and offline reward function to control. 3) Behavior
Cloning. As these methods do not utilize reward informa-
tion, we introduce two additional baselines: 1) OptiDICE-
Constraint replaces our DICE objective in Section 5.2 with
OptiDICE. 2) SMODICE-Constraint Based on SMODICE,
we incorporate rewards information by adding environment
rewards to the SMODICE’s learned discriminator reward.
For additional details, please refer to Appendix A.4.

Table 1 shows the evaluation results, and Figure 7 illustrates
the corresponding learning curve is shown in. Across all
environments, ICSDICE achieves leading performance in
imitating high-performing policies offline while maintaining
policy safety. The offline IL methods cannot ensure lower
cost even when incorporated with rewards information. This
limitation is understandable since these methods are not
specifically designed for safety concerns.

One intriguing observation is that OptiDICE-Constraint per-
forms comparably to our method. Given the tricks applied
by OptiDICE-c (normalization and soft-chi divergence), it’s
not surprising that OptiDICE-c may perform slightly better
than our algorithm in the task of recovering policy. However,
it’s important to note that this improvement comes at the cost
of learning a dense superior distribution and the inaccurate
constraint. To understand the difference to our ICSDICE ,
we investigate whether these ICRL methods have learned
the true cost by utilizing the ROC (Receiver Operating Char-
acteristic) curve to illustrate the relationship between the
learned cost and the ground truth cost. As shown in Fig-
ure 5, although OptiDICE-Constraint exhibits similar per-
formance in policy learning, our ICSDICE achieves notably
higher performance in cost identification. This is because
OptiDICE-Constraint tends to have a high false positive rate
due to its biased estimation of the distribution (See Sec-
tion 5.2). Additionally, as ξr decreases, the curve shifts
to the left, indicating the learned constraint becomes more
sparse and thus the false positive errors become smaller. For
more evidence, Figure 8 visualizes the learned constraints.

6.3. Generalizability of Constraints

To examine whether the learned constraint can be transferred
to new configurations, we apply our methods and OptiDICE-
Constraint to learn cost functions in the limited-speed Ant
environment. Then, we modify the environment setting by
rewarding the velocity in a distinct direction. We utilize the
forward objective (10) to learn policy based on these costs
under new rewards. Ideally, the transfer behaviors should
move in the rewarded direction while adhering to the same
constraint on the x-axis velocity. For more details, please
refer to Appendix A.3. Additionally, we used a zero-cost
function (denoted as w/o cost) for comparison.
Figure 4 shows the learning curve of cumulative rewards

7

Learning Constraints from Offline Demonstrations via Superior Distribution Correction Estimation

Table 1: MuJoCo testing performance. We report average cumulative rewards and costs over 10 runs. Bold denotes safe
methods with a violation rate below 5%, gray denotes unsafe methods with a violation rate above 5%, and blue highlights
methods whose standard deviation range includes the average performance of the top-performing method. The percentage in
the dataset column indicates how many percent of expert transitions are known as expert demonstrations.

Dataset Task BC LS-IQ SMODICE SMODICE-c OptiDICE-c Our Method
cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑

100%
expert

Ant(Blocked) 0.04±0.02 876±138 0.40±0.12 -63±208 0.33±0.07 1,410±153 0.53±0.03 1,763±180 0.01±0.00 3,070±91 0.01±0.00 3,073±103
Ant(LS) 0.00±0.00 1,106±93 0.07±0.06 -1,232±1,616 0.06±0.05 1,341±50 0.03±0.04 1,361±67 0.00±0.00 1,368±3 0.00±0.00 1,340±44
HalfCheetah(Obstacle) 0.30±0.40 731±693 0.04±0.05 2,175±775 0.13±0.11 3,565±345 0.30±0.24 3,829±661 0.03±0.06 2,749±597 0.04±0.04 2,315±740
Hopper(Blocked) 0.40±0.05 158±78 0.07±0.02 350±242 0.23±0.12 2,024±657 0.19±0.21 1,609±907 0.00±0.00 1,255±576 0.02±0.02 1,017±341
Walker(LS) 0.01±0.02 -7±5 0.17±0.09 603±203 0.52±0.19 2,334±238 0.18±0.15 1,871±155 0.01±0.01 1,538±283 0.01±0.02 1,587±308

50%
expert

Ant(Blocked) 0.03±0.01 1,012±258 0.35±0.16 -14±70 0.04±0.03 2,856±266 0.18±0.07 2,574±284 0.01±0.00 3,069±141 0.01±0.00 3,025±101
Ant(LS) 0.00±0.00 1,047±88 0.10±0.00 -125±187 0.25±0.24 1,516±234 0.22±0.13 1,422±106 0.00±0.00 1,361±9 0.00±0.00 1,364±5
HalfCheetah(Obstacle) 0.08±0.11 938±807 0.03±0.04 2,097±365 0.22±0.13 3,796±170 0.21±0.13 3,693±434 0.01±0.02 2,086±1,153 0.00±0.01 1,657±723
Hopper(Blocked) 0.46±0.20 209±77 0.07±0.11 245±146 0.26±0.27 1,589±819 0.33±0.12 1,166±692 0.04±0.03 1,327±885 0.02±0.01 1,101±714
Walker(LS) 0.00±0.00 -9±3 0.02±0.03 123±146 0.23±0.27 1,922±209 0.49±0.26 2,191±408 0.01±0.03 1,645±73 0.05±0.07 1,168±516

1 2 3 4 5
timesteps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

vi
ol

at
io

n
ra

te

Costs

1 2 3 4 5
timesteps 1e5

1

2

3

4

5

cu
m

ul
at

iv
e

re
wa

rd
s

1e3 Rewards

0 2 4 6
x-velocity

4

2

0

2

y-
ve

lo
cit

y

Velocity

w/o cost Our Method OptiDice-c

Figure 4: Generalization performance of learned costs. The
black dashed line marks the velocity constraint.

and costs in the first two plots, and the velocity distribution
sampled from the different transfer policies in the third
plot. We observe that, with a zero-cost function, the policy
can achieve high rewards but also has a high violation rate.
The OptiDICE-Constraint method’s learned cost resulted
in the agent being constrained to only move forward and
achieve the lowest return. This occurred because it masked
unnecessary states, leading to an overly conservative cost
and ultimately failing during transformation. In contrast,
our methods successfully enabled the agent to follow the
constraint while moving in the direction aligning with the
rewards. These results demonstrate that our method can
effectively learn a transferable cost function.

6.4. Realistic Environments

To evaluate the practical applicability of our algorithm, we
examined its performance in various traffic scenarios rep-
resented by highway driving datasets HighD (Krajewski
et al., 2018). Additionally, we utilized the commonroad-RL
(Wang et al., 2021) environments to extract relevant features
from driving scenarios.

We first conducted an experiment to determine if our algo-
rithm could effectively identify and adhere to constraints
related to vehicle velocity. We set the constraint as Car
Velocity ≤ 40 m/s. Table 2 presents the performance of dif-
ferent algorithms. Our methods outperformed the baseline
BC and OptiDICE-c in terms of both cumulative returns and
Area Under the Curve (AUC).

To evaluate the performance on more challenging tasks in-

volving high-dimensional inputs like images, we replaced
the input to the constraint network with raw images and
modified the network structure to use a CNN instead of
an MLP. We designed a constraint related to car distance
(Car distance ≥ 20m) and expected our method to learn
this distance information from the pixels. We tested the
learned cost function on a split test dataset, which included
scenarios not seen during training. Our algorithm learned
costs that could transfer to these settings, achieving an AUC
of 0.75, while the OptiDICE-c baseline only achieved 0.69.
Additionally, we visualized the images assigned with the
highest cost in 5 scenarios in Figure 6. It can be clearly
observed that our method assigns high costs to close car
distances, while the OptiDICE-c baseline fails to do so.

Table 2: Performance under HighD speed constraint setting.

Metric BC OptiDice-c Our Method Expert

Return −2.3± 2.3 −1.6± 3.7 10.7± 1.5 14.0
Cost 1.4% 12% 6.5% 0.8%
AUC NA 0.76± 0.02 0.81± 0.01 NA

6.5. Ablation Study

In this experiment, we conduct ablations on our algorithm’s
design choice. We evaluate the performance of the learned
policy by cumulative return and violation rate, and assess
the learned cost discriminator by comparing the Area under
the ROC curve. We compare the following variants: w/o
discount: Replace the discounted distribution with the em-
pirical distribution. w/o constraint: Remove the constraint
learning step.

Table 3: Performance of different variants of ICSDICE.

Task Our Method w/o discount w/o constraint
cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑

Ant(Blocked) 0.01 3,073 0.05 2,894 0.21 1,692
Ant(LS) 0.00 1,340 0.00 1,369 0.18 1,381
HalfCheetah(Obstacle) 0.04 2,315 0.07 3,332 0.30 4,343
Hopper(Blocked) 0.02 1,017 0.02 1,009 0.32 2,091
Walker(LS) 0.01 1,587 0.13 1,256 0.29 1,942

The results in Table 3 and Table 4 indicate that, by using the

8

Learning Constraints from Offline Demonstrations via Superior Distribution Correction Estimation

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Ant(LS)

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Hopper(Blocked)

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Walker(LS)

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Ant(Blocked)

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
HalfCheetah(Obstacle)

Our Method OptiDice-c r = 1e 05 r = 5e 05 r = 0.0001 r = 0.0005 r = 0.001

Figure 5: Receiver Operating Characteristic (ROC) Curve illustrating the accuracy of the learned cost. A curve closer to the
top-left corner indicates higher accuracy.

Table 4: Area under the ROC Curve (AUC) of different
variants of ICSDICE.

Task Our Method w/o discount OptiDice-c
Ant(LS) 0.94±0.01 0.98±0.01 0.60±0.04
Ant(Blocked) 0.91±0.01 0.88±0.01 0.54±0.08
Hopper(Blocked) 0.63±0.04 0.63±0.03 0.59±0.01
HalfCheetah(Obstacle) 0.98±0.02 0.77±0.05 0.97±0.02
Walker(LS) 0.93±0.02 0.86±0.00 0.80±0.03

discounted distribution, our objectives can strike the right
trade-off between the performance of the learned policy
and the learned cost discriminator. Our approach performs
very well on both the recovered policy and the discriminator
performance compared to other ablation variants.

7. Conclusion
In this paper, we solve an offline ICRL by proposing a ICS-
DICE algorithm. As the first attempt, ICSDICE derives
superior distributions from the dual objective of regular-
ized policy learning under a CMDP and proposes the
two-stage optimization method for updating both policies
and constraints. To enhance practical applicability, ICS-
DICE effectively addresses insufficient sparsity and biased
estimation. Empirical results demonstrate the performance
of ICSDICE in various settings. A promising avenue for
future research involves extending our method to accommo-
date uncertainty raised in the offline dataset and conducting
a rigorous theoretical study for analyzing the convergence
rate and sample efficiency of ICSDICE .

Acknowledgements
This work is supported in part by the National Key
R&D Program of China under grant No.2022ZD0116004,
Guangdong-Shenzhen Joint Research Fund under grant
2023A1515110617, GuangDong Basic and Applied Basic
Research Foundation under grant 2024A1515012103, Shen-
zhen Fundamental Research Program (General Program)
under grant JCYJ20230807114202005, Shenzhen Science

and Technology Program ZDSYS20211021111415025, and
Guangdong Provincial Key Laboratory of Mathematical
Foundations for Artificial Intelligence (2023B1212010001).

Impact Statement
Our approach significantly advances the ability to acquire
behavioral insights from datasets, furthering the progress
of user-centric artificial intelligence systems. While there
are numerous potential societal implications stemming from
our research, we believe that none require specific emphasis
in this context.

References
Al-Hafez, F., Tateo, D., Arenz, O., Zhao, G., and Peters,

J. Ls-iq: Implicit reward regularization for inverse re-
inforcement learning. arXiv preprint arXiv:2303.00599,
2023.

Baert, M., Mazzaglia, P., Leroux, S., and Simoens, P. Max-
imum causal entropy inverse constrained reinforcement
learning. arXiv preprint arXiv:2305.02857, 2023.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219, 2020.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep
reinforcement learning without exploration. In Interna-
tional Conference on Machine Learning (ICML), vol-
ume 97, pp. 2052–2062, 2019.

Garg, D., Chakraborty, S., Cundy, C., Song, J., and Ermon,
S. Iq-learn: Inverse soft-q learning for imitation. In
Neural Information Processing Systems (NeurIPS), pp.
4028–4039, 2021.

Gaurav, A., Rezaee, K., Liu, G., and Poupart, P. Learning
soft constraints from constrained expert demonstrations.
In International Conference on Learning Representations
(ICLR), 2023.

9

Learning Constraints from Offline Demonstrations via Superior Distribution Correction Estimation

Ho, J. and Ermon, S. Generative adversarial imitation learn-
ing. In Neural Information Processing Systems (NeurIPS),
pp. 4565–4573, 2016.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to
trust your model: Model-based policy optimization. In
Neural Information Processing Systems (NeurIPS), pp.
12498–12509, 2019.

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims,
T. Morel: Model-based offline reinforcement learning. In
Neural Information Processing Systems (NeurIPS), 2020.

Kostrikov, I., Nachum, O., and Tompson, J. Imitation learn-
ing via off-policy distribution matching. In International
Conference on Learning Representations (ICLR), 2020.

Krajewski, R., Bock, J., Kloeker, L., and Eckstein, L. The
highd dataset: A drone dataset of naturalistic vehicle
trajectories on german highways for validation of highly
automated driving systems. In 2018 21st International
Conference on Intelligent Transportation Systems (ITSC),
pp. 2118–2125, 2018. doi: 10.1109/ITSC.2018.8569552.

Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S.
Stabilizing off-policy q-learning via bootstrapping error
reduction. In Neural Information Processing Systems
(NeurIPS), pp. 11761–11771, 2019.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conser-
vative q-learning for offline reinforcement learning. In
Neural Information Processing Systems (NeurIPS), 2020.

Lee, J., Jeon, W., Lee, B., Pineau, J., and Kim, K.-E. Op-
tidice: Offline policy optimization via stationary distribu-
tion correction estimation. In International Conference
on Machine Learning (ICML), pp. 6120–6130, 2021.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. CoRR, abs/2005.01643, 2020.

Liu, G., Luo, Y., Schulte, O., and Poupart, P. Uncertainty-
aware reinforcement learning for risk-sensitive player
evaluation in sports game. In Neural Information Pro-
cessing Systems (NeurIPS), 2022.

Liu, G., Luo, Y., Gaurav, A., Rezaee, K., and Poupart, P.
Benchmarking constraint inference in inverse reinforce-
ment learning. In International Conference on Learning
Representations (ICLR), 2023.

Liu, S. and Zhu, M. Distributed inverse constrained rein-
forcement learning for multi-agent systems. In Neural
Information Processing Systems (NeurIPS), 2022.

Liu, S. and Zhu, M. Learning multi-agent behaviors from
distributed and streaming demonstrations. In Advances in
Neural Information Processing Systems (NeurIPS), 2023.

Liu, S. and Zhu, M. Meta inverse constrained reinforce-
ment learning: Convergence guarantee and generaliza-
tion analysis. In International Conference on Learning
Representations (ICRL), 2024.

Liu, Y., Halev, A., and Liu, X. Policy learning with con-
straints in model-free reinforcement learning: A survey.
In International Joint Conference on Artificial Intelli-
gence (IJCAI), pp. 4508–4515, 2021.

Ma, J. Y., Yan, J., Jayaraman, D., and Bastani, O. Offline
goal-conditioned reinforcement learning via f -advantage
regression. Neural Information Processing Systems
(NeurIPS), 35:310–323, 2022a.

Ma, Y., Shen, A., Jayaraman, D., and Bastani, O. Versa-
tile offline imitation from observations and examples via
regularized state-occupancy matching. In International
Conference on Machine Learning (ICML), pp. 14639–
14663, 2022b.

Malik, S., Anwar, U., Aghasi, A., and Ahmed, A. Inverse
constrained reinforcement learning. In International Con-
ference on Machine Learning (ICML), pp. 7390–7399,
2021.

McPherson, D. L., Stocking, K. C., and Sastry, S. S. Max-
imum likelihood constraint inference from stochastic
demonstrations. In IEEE Conference on Control Technol-
ogy and Applications, (CCTA), pp. 1208–1213, 2021.

Nachum, O., Chow, Y., Dai, B., and Li, L. Dualdice:
Behavior-agnostic estimation of discounted stationary
distribution corrections. In Neural Information Process-
ing Systems (NeurIPS), pp. 2315–2325, 2019a.

Nachum, O., Dai, B., Kostrikov, I., Chow, Y., Li, L., and
Schuurmans, D. Algaedice: Policy gradient from ar-
bitrary experience. arXiv preprint arXiv:1912.02074,
2019b.

Papadimitriou, D., Anwar, U., and Brown, D. S. Bayesian
methods for constraint inference in reinforcement learn-
ing. Transactions on Machine Learning Research, 2023.

Peters, J. and Schaal, S. Reinforcement learning by reward-
weighted regression for operational space control. In
International Conference on Machine Learning (ICML),
pp. 745–750, 2007.

Qiao, G., Liu, G., Poupart, P., and Xu, Z. Multi-modal in-
verse constrained reinforcement learning from a mixture
of demonstrations. In Neural Information Processing
Systems (NeurIPS), 2023.

Scobee, D. R. R. and Sastry, S. S. Maximum likelihood
constraint inference for inverse reinforcement learning.
In International Conference on Learning Representations
(ICLR), 2020.

10

Learning Constraints from Offline Demonstrations via Superior Distribution Correction Estimation

Sikchi, H., Zheng, Q., Zhang, A., and Niekum, S. Dual RL:
Unification and new methods for reinforcement and imi-
tation learning. In International Conference on Learning
Representations, ICLR, 2024.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics en-
gine for model-based control. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp.
5026–5033, 2012.

Wang, X., Krasowski, H., and Althoff, M. Commonroad-
rl: A configurable reinforcement learning environment
for motion planning of autonomous vehicles. In 2021
IEEE International Intelligent Transportation Systems
Conference (ITSC), pp. 466–472. IEEE, 2021.

Xu, H., Jiang, L., Li, J., Yang, Z., Wang, Z., Chan, W. K. V.,
and Zhan, X. Offline RL with no OOD actions: In-sample
learning via implicit value regularization. In International
Conference on Learning Representations, ICLR, 2023.

Xu, S. and Liu, G. Uncertainty-aware constraint inference
in inverse constrained reinforcement learning. In The
Twelfth International Conference on Learning Represen-
tations, 2023.

Yu, T., Kumar, A., Rafailov, R., Rajeswaran, A., Levine, S.,
and Finn, C. COMBO: conservative offline model-based
policy optimization. In Neural Information Processing
Systems (NeurIPS), pp. 28954–28967, 2021.

Yue, S., Wang, G., Shao, W., Zhang, Z., Lin, S., Ren, J.,
and Zhang, J. CLARE: conservative model-based reward
learning for offline inverse reinforcement learning. In
International Conference on Learning Representations,
ICLR, 2023.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K.
Maximum entropy inverse reinforcement learning. In
AAAI Conference on Artificial Intelligence, pp. 1433–
1438, 2008.

Ziebart, B. D., Bagnell, J. A., and Dey, A. K. Modeling in-
teraction via the principle of maximum causal entropy. In
International Conference on Machine Learning (ICML),
pp. 1255–1262, 2010.

11

Learning Constraints from Offline Demonstrations via Superior Distribution Correction Estimation

A. Implementation and Environment Details
A.1. Discrete Environments

Our discrete environments use a 7x7 gridworld map, with four different settings for constraint learning. In each setting, we
assign a starting point where the agent is initially located and an absorbing point, which also functions as a terminate state.
We employ value iteration to obtain the expert demonstration, and we shape the reward as r̂ = r − 100c by subtracting a
cost term to ensure that the demonstration is safe. For offline data collection, we sampled from random walks starting at
grids [1,1], [1,5], [5,1], and [5,5]. To enrich the dataset with additional information, the data collect agent was instructed to
choose a state it had not visited previously whenever making a move. To obtain the value function recovered by inverse
imitation learning, we employed inverse q learning(Garg et al., 2021).

A.2. Continuous Environments

Our virtual environments are based on Mujoco. We utilize c(s, a), derived from a state function c(s′) representing state
safety, with c(s, a) = Es′∼P (s′|s,a)[c(s

′)]. We provide more details about the virtual environments as follows:

1. HalfCheetah(Obstacle) This environments are taken from (Liu et al., 2023). In this environment, The agent controls
a robot that can move faster backward than forward. The reward is based on the distance it moves between the current
and previous time steps, along with a penalty related to the magnitude of the input action. We have defined a constraint
that restricts movement in the region where the X-coordinate is less than or equal to -3, allowing the robot to move
forward only.

2. Ant (Blocked) and Hopper (Blocked)

In this environment, the agent controls a robot to move forward and obtain rewards related to moving distance. However,
we enforce a constraint on the agent’s leg angular velocity to prevent a large force on the ground. The limits are 1 for
Ant and 0.3 for Hopper.

3. Ant (LS) and Hopper (LS)

In this environment, the agent controls a robot to move forward and obtain rewards related to moving distance. However,
it must not exceed a speed limit (0.5 for Ant and 1 for Hopper), resulting in obtaining fewer rewards compared to no
constraint.

To obtain offline data, we first build a suboptimal dataset using two 200,000-step early stop SAC agents. We use the original
reward and reward-shaping (modifying the reward by subtracting a cost) as reward signals and collect the replay buffers
between 100,000 and 200,000 steps. Together, we obtain a suboptimal dataset with 200,000 steps.

For the expert dataset, we sample 50 trajectories from a PPO-lag algorithm. When sampling from the offline dataset,
we maintain a balanced approach by selecting half of the samples from the suboptimal dataset and half from the expert
trajectories.

A.3. Transfer Environments

In the Ant environment, we train an agent with the constraint vx < 1.0 as the expert policy. For the transfer rewards, we
modify the direction of the velocity in the x-axis in the original rewards vx to be the velocity along a -45 degree angle,
denoted as v−45◦ . For offline data, we employ PPO to train a policy that maximizes the transfer rewards, and PPO-lag to
train a policy that maximizes rewards while adhering to the specified constraint. We sample 50 trajectories from each trained
policy and merge together the data in DO as offline data.

A.4. Incorporating Rewards in Inverse Reinforcement Learning

Since offline inverse reinforcement learning does not assume the existence of reward information, we construct a variant for
inverse RL by modeling the reward model r̄ in inverse RL with r̄ = r + c, where r is the ground truth reward function, and
c is the cost function to be estimated. To be more specific, we incorporate the reward information in the following formula:

12

Learning Constraints from Offline Demonstrations via Superior Distribution Correction Estimation

LS-IQ: We replace the original Q-learning objective (objective (20) in (Al-Hafez et al., 2023)) with

Llsiq-o(Q) =αEdπE

[
(Q(s,Γω(s, s

′))−Qmax + r(s, a))
2
]
+ ᾱEdπ

[(
Q(s, a)− (rmin + r(s, a) + γEs′∼P (.|s,a)[V

∗(s′)])
)2]

,

(19)

SMODICE: We add the ground truth reward function SMODICE’s learned discriminator reward R(s, a) (objective (14) in
(Ma et al., 2022b)) with

Rnew(s, a) = R(s, a) + r(s, a) (20)

A.5. Implementation Details

Across our set of environments, we maintain the same hyperparameters, except for the temperature parameter ξr. We select
the parameter from the set [0.01, 0.001, 0.0001, 0.00001], choosing the one with the highest mean return from safe results
(violation rate < 0.05) and the lowest violation rate when all parameters are unsafe. We utilize a two-layer MLP with 256
hidden units and a ReLU activation function. The complete set of hyperparameters used in our experiments is presented in
Table 5.

Hyperparameter Value

Batch Size 256
Policy Learning Rate 3e-4
Value Learning Rate 3e-4
L2 Regularization Coefficient 0.0005
Random Seed α 1 2 3 4 5

Table 5: Hyperparameters for our experiments.

A.6. Experimental Equipment and Infrastructures

We ran the experiment on a cluster that has multiple RTX 3090 GPUs, each with 24 GB of memory. There is only one
running node. With the aforementioned resources, running one seed in the virtual environment takes about 40 minutes.

B. Compared to Adversarial Imitation Learning
As proposed by (Ho & Ermon, 2016), the idea behind adversarial imitation learning is to learn a cost(reward) function to
discriminate expert behavior from others:

max
r

min
π∈Π

L(π, r) = EdE [c(s, a)]− Edπ [c(s, a)]−H(π)

In our ICRL setting, we can view our tasks as discriminating expert behavior from behavior within a smaller set, i.e. superior
distributions. Because of information provided by predefined rewards, the feasible region of such max-min question is
smaller and thus makes it become an easier problem to solve. This implies the potential for better policy recovery and a
more transferable cost function.

C. Proof and Derivation
C.1. Deriving Lagrangian of Problem (6)

By introducing the Lagrange multiplier V and λd. The Lagrangian of problem (6) can be:

13

Learning Constraints from Offline Demonstrations via Superior Distribution Correction Estimation

Ed[r(s, a)]− ξrDf (d || dO)− V (s)(
∑
a∈A

d(s, a)− (1− γ)ρ0(s)− γ
∑

(s′,a′)

d(s′, a′)p(s|s′, a′))

=Ed

r(s, a) + γ
∑

(s′,a′)

d(s′, a′)p(s|s′, a′))V (s′)− V (s)

+ (1− γ)Eρ0 [V]− ξrDf (d || dO)

=Ed[δV]− ξrDf (d || dO) + (1− γ)Eρ0
[V]

C.2. Proof of Proposition 4.5

Proof. In order to solve:

max
d

Ed[δV − c]− ξrDf (d || dO) + (1− γ)Eρ0
[V] (21)

s.t. d(s, a)c(s, a) ≤ 0 and d(s, a) ≥ 0 ∀s, a (22)

Assume d(s, a) > 0 implies dO(s, a) > 0. We introduce a new variable w(s, a) = d(s,a)
dO(s,a)

and redefine our optimization
objective as follows:

max
w

EdO [w(s, a)δV − ξrf(w(s, a))] + (1− γ)Eρ0 [V (s)] (23)

s.t. ω(s, a)c(s, a) ≤ 0 and ω(s, a) ≥ 0 (24)

Without the constraint on d(s, a), the maximization of the first part is equivalent to finding the convex conjugate of the
function f , denoted as f∗(y) = maxx(xy − f(y)). However, we must consider the non-negativity constraint d(s, a) ≥ 0
and feasible constraint ω(s, a)c(s, a) ≤ 0.

We can form the Lagrangian function:

L(V, λc, λ) = EdO [w(s, a)δV − ξrf(w(s, a))] + (1− γ)Eρ0 [V (s)] +
∑
s,a

(λ(s, a)ω(s, a)− λc(s, a)c(s, a)ω(s, a))

The KKT condition of this problem is:

1.Primal feasibility ω(s, a)c(s, a) ≤ 0, ω∗(s, a) ≥ 0 ∀s, a

2.Dual feasibility λ∗c(s, a) ≥ 0, λ∗(s, a) ≥ 0 ∀s, a

3.Stationarity ∂L
∂V = dO(s, a)(−f ′(ω∗(s, a)) + δV (s, a) + λ∗(s, a)− λ∗c(s, a)c(s, a)) = 0 ∀s, a

4.Complementary Slackness ω∗(s, a)λ∗(s, a) = 0, λ∗c(s, a)ω
∗(s, a)c(s, a) = 0

Using Complementary Slackness, we have two cases:

Case 1:λ∗c(s, a) = 0, which means the solution without introducing constraint is feasible. Following a similar proof given in
(Sikchi et al., 2024)(Refer to equation 43 in the appendix of the cited paper for more details), we solve the optimal solution
with the stationary equation and first complementary slackness equation:

ω∗(s, a) = ωr(s, a) = max(0, f ′−1(
δV (s, a)

ξr
))

. and ωr(s, a) satisfies primal feasibility ω∗(s, a)c(s, a) = 0.

Case2:λ∗c(s, a) ̸= 0, which means ω∗(s, a)c(s, a) = 0. Which means we need to solve the following question. Note that
such a solution is possible if only there exists some x s.t. f ′(x) = 0.

14

Learning Constraints from Offline Demonstrations via Superior Distribution Correction Estimation

ω∗(s, a) = max(0, f ′−1(
δV (s, a)− λ∗c(s, a)c(s, a)

ξr
)) (25)

ω∗(s, a)c(s, a) = 0 (26)

Summarizing these two case and replace ω∗ with d∗, we have

d∗(s, a) = dO(s, a)1c(s,a)=0 max(0, f ′−1(
δV (s, a)

ξr
)) (27)

C.3. Proof of Proposition 4.2

Proof. ”→”: If d = dE solve the problem. then the c(s, a) = 0 for all dE(s, a) > 0, otherwise the dE is not feasible. And
if there exists a d ∈ O s.t. d(s, a)c(s, a) = 0 ∀s, a, then d is feasible and d is optimal than dr in primal problem, which
leads to a contradiction.

”←”: If ∀d ∈ O there is at least one (s, a),s.t. dc ̸= 0, then all d ∈ O are all not feasible. Since c(s, a) =
0 ∀(s, a)s.t.dE(s, a) > 0 dE is feasible, so dE is optimal.

C.4. Proposition of Maintaining Optimality

Proposition C.1. If the learned cost function ck(s, a) satisfied the condition that dE(s, a) > 0 =⇒ ck(s, a) = 0, the
distribution generated by the CRL problem (4) d∗ is in superior distributions, i.e., d∗ ∈ O.

Proof. If d∗ ̸∈ O, than Ed∗(s,a)[r(s, a)] < EdE(s,a)[r(s, a)]. But since dE(s, a) > 0 =⇒ ck(s, a) = 0, dE is a feasible
solution for CRL problem (4), which contradicts to the optimality of d∗.

Proposition C.2. For a finite state space S and a finite action spaceA, if d∗ is the only optimal solution under the constraint,
we initialize c0(s, a) = 0. By alternately solving for d∗i and updating ci to project at any d∗i (s, a) such that at least c∗(s, a)
is set to 0 when d∗i (s, a) > 0, while keeping ci(s, a) = 0 for all dE(s, a) > 0.

Then, the algorithm will converge to dE . During the learning process, the visiting distribution d∗k maintains J(d∗k) ≥ J(dE).

Proof. We know J(d) ≥ J(dE) since dE is always a candidate for a solution in each round of the update. We now prove
that if d∗(k) ̸= dE , we can always find some s, a such that d∗(k)(s, a) > 0 and dE(s, a) > 0. First, we observe that for any
policy d that visits fewer state-action pairs than dE , i.e., if {(s, a) : d(s, a) > 0} ⊂ {(s, a) : dE(s, a) > 0}, we have
J(d) < J(dE). Otherwise, d is feasible, which would contradict the uniqueness of optimality of dE . Thus, we can always
find some (s, a) in {(s, a) : d(s, a) > 0} but not in {(s, a) : dE(s, a) > 0}.

From this, we also know that if the algorithm converges, it will always converge to dE . We notice that for every round of
updating, the number of zeros in c(k)(s, a) is increasing. Since in every round k, the optimal visitation distribution d∗(k)(s, a)
with respect to V ∗

(k) satisfies d∗(k)(s, a)c(k−1)(s, a) = 0, and in round k, we must set some c(k)(s, a) to be above 0 for
d∗(k)(s, a) > 0.

Now, the spaces S and A are finite. We know the algorithm will converge to dE since there are only a finite number of
combinations of (s, a).

D. Experiments
This section contains additional results.

15

Learning Constraints from Offline Demonstrations via Superior Distribution Correction Estimation

D.1. Cost Visualization in HighD Dataset

We visualize the images with the highest assigned cost in each scenario using different methods. Notably, our method
assigns higher costs to cars that are much closer in the test dataset, while OptiDICE-c failed to do so.

Figure 6: The red car represents the ego car, the blue cars are the other vehicles the agent is trying to maintain distance from,
and the yellow block is the destination.

D.2. Training Curves for Baseline

D.3. Results in MuJoCo

16

Learning Constraints from Offline Demonstrations via Superior Distribution Correction Estimation

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Co
st

s

Ant(LS)

0.00 0.25 0.50 0.75 1.00
1e6

0.00

0.25

0.50

0.75

1.00
Hopper(Blocked)

0.00 0.25 0.50 0.75 1.00
1e6

0.00

0.25

0.50

0.75

1.00
Ant(Blocked)

0.00 0.25 0.50 0.75 1.00
1e6

0.00

0.25

0.50

0.75

1.00
HalfCheetah(Obstacle)

0.00 0.25 0.50 0.75 1.00
1e6

0.00

0.25

0.50

0.75

1.00
Walker(LS)

0.0 0.2 0.4 0.6 0.8 1.0
1e6

3000

2000

1000

0

1000

Cu
m

ul
at

iv
e

Re
wa

rd
s

0.00 0.25 0.50 0.75 1.00
1e6

0

1000

2000

3000

0.00 0.25 0.50 0.75 1.00
1e6

0

2000

0.00 0.25 0.50 0.75 1.00
1e6

0

2000

4000

0.00 0.25 0.50 0.75 1.00
1e6

0

1000

2000

3000

IQ-LS SMODice-c SMODice OptiDice-c Our Method Expert Offline

Figure 7: The cumulative rewards and the costs from the evaluation during training.

4 2 0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

An
t(L

S)

Our Method

4 2 0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

OptiDICE-c

2 1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

Ha
lfC

he
et

ah
(O

bs
ta

cle
)

Our Method

2 1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

OptiDICE-c

Figure 8: Recovered cost results: The x-axis represents the cost dimension of the state, and the y-axis represents the learned
normalized cost. The plot is jittered along the y-axis for visualization.

17

