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Motivation

• Persistence-based summaries are increasingly integrated into deep learning through topological
loss functions or regularisers.

• The implicit role of a topological term in a loss function is to restrict the class of functions in
which we are learning (the hypothesis class) to those with a specific topology.

• Although doing so has had empirical success, to the best of our knowledge there exists no result
in the literature that theoretically justifies this restriction.

• Given a binary classifier in the plane with a Morse-like decision boundary, we prove that the
hypothesis class defined by restricting the topology of the possible decision boundaries to those
with a unique persistence diagram results in a nonuniformly learnable class of functions.

• In doing so, we provide a statistical learning theoretic justification for the use of
persistence-based summaries in loss functions.

Topologically restricted hypothesis classes

In the context of machine learning, the persistence map, given by

PHk : X 7→ D,

takes a set of pointsX ⊂ Rd and maps them to a persistence diagram D: a multiset in the extended
plane that concisely represents the k-persistent homology (roughly, the topology of the points at
all scales). Persistence diagrams and their embeddings, collectively referred to as persistence-based
summaries, have been integrated into deep learning via topological loss or regularisation terms. For
examples, see [1], [2], [3], [4], [5] and [6].

Given prior knowledge about the topology in the form of a persistence diagram D, topological loss
terms implicitly restrict the decision boundaries to the class of functions

PH−1(D) = {f : PH(f ) = D} .
This class of functions has been studied by Curry [7]. Given a real-valued function f : [0, 1] → R,
we identify its graph as the decision boundary of a binary classifier hf : [0, 1]× R→ {0, 1} by

hf((x, y)) =

{
0, f (x) ≤ y,

1, f (x) > y.

Thus we are studying the hypothesis class

HD = {hf : f ∈ PH−1(D)}.

Nonuniform learnability

Consider the standard supervised machine learning setting, in which a learner, when given an input
example x ∈ X , from an input space X , would like to accurately predict the corresponding target
label y ∈ Y , from an output space Y . The learner has access to a finite sample, S = {(xi, yi)}mi=1,
of training examples, sampled from a distribution, µ over X × Y , of interest.

The goal of the learner is to select a hypothesis, h : X → Y , belonging to the hypothesis class, H,
which achieves low expected error with respect to the distribution µ. The error of a given hypothesis
rule h on a given example (x, y) is given via a loss function, ` : Y×Y → R, by evaluating `(h(x), y).
More formally, the goal of the learner is to select a hypothesis which attains low risk:

Lµ(h) = E(x,y)∼µ [`(h(x), y)] .

Within the framework of Statistical Learning Theory, a hypothesis class which captures these goals
is characterised by the following definition [8].

Definition 1 (Nonuniform learnability). A hypothesis classH is nonuniformly learnable if there exists
a learning algorithm, A, and a function mNUL

H : (0, 1)2 ×H → N such that, for every ε, δ ∈ (0, 1)
and for every h ∈ H, if m ≥ mNUL

H (ε, δ, h) then for every distribution µ, with probability at least
1− δ over the choice of S ∼ µm, it holds that Lµ(A(S)) ≤ Lµ(h) + ε.

Main result

Following previous work on the fibre of the persistence map, we concern ourselves with binary
classifiers on the plane with decision boundaries that are Morse-like real-valued functions on the
unit interval with local minima at x = 0, 1, and the 0th persistence diagram [7]. Although this
is clearly a restricted setting, it provides an initial justification for the use of persistence-based
summaries in loss functions. We prove the following Theorem.

Theorem 2. Given a persistence diagram D, the hypothesis class of binary classifiers with decision
boundaries defined by Morse-like real-valued functions on the interval with local minima at x = 0, 1
given by

HD = {hf : f ∈ PH−1
0 (D)}.

is nonuniformly learnable.

Conclusions

• Despite an increasing amount of work that
integrates persistence-based summaries into
loss functions for deep learning, before now
there has been no theoretical justification
for doing so.

• We use results on the fibre of the persistence
map to show that restricting the hypothe-
sis class for binary classifiers on the plane
to functions with a unique 0th persistence
diagram results in a nonuniformly learnable
hypothesis class.
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