
Published as a conference paper at ICLR 2025

LLAMAFLEX: MANY-IN-ONE LLMS VIA GENERALIZED
PRUNING AND WEIGHT SHARING

Ruisi Cai1, 2, Saurav Muralidharan1∗, Hongxu Yin1,
Zhangyang Wang2, Jan Kautz1, Pavlo Molchanov1

1 NVIDIA 2 The University of Texas at Austin

ABSTRACT

Large Language Model (LLM) providers typically train a family of models, each of a dif-
ferent size targeting a specific deployment scenario. Models in the family are all trained
from scratch, making the process extremely resource intensive. Recent work has suc-
cessfully reduced the cost of training model families through a combination of structured
pruning and knowledge distillation; here, only the largest model in the family is trained
from scratch, and smaller models are obtained via pruning. We observe that while effec-
tive, this strategy must still perform pruning and distillation with hundreds of billions of
training tokens for every new model, keeping overall training costs high. In this work,
we introduce a novel nested weight-shared architecture named LLAMAFLEX that can be
pruned across both width and depth dimensions in a zero-shot manner to instantly yield
a large number of highly accurate compressed models. LLAMAFLEX starts from a pre-
trained model, and only requires a single continued training phase consisting of ∼ 60B
tokens, which trains the elastic network and an end-to-end Gumbel Softmax-based router;
this router is able to interpolate smoothly across model sizes, enabling the “train once,
deploy many” paradigm. We train LLAMAFLEX on Llama 3.1 8B and use it to zero-shot
generate a family of compressed models that achieves accuracy on par with or better than
state-of-the-art pruned, elastic/flexible, and trained-from-scratch models.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable effectiveness across a diverse range of
tasks (Hendrycks et al., 2020; Chiang et al., 2024; Zheng et al., 2024). However, the generality and ro-
bustness of LLMs are largely attributed to their vast scale, with parameter counts ranging from one billion to
several hundred billion (Touvron et al., 2023; Zhang et al., 2022). This substantial model size, in turn, makes
them extremely resource-intensive to train and deploy. This problem is further exacerbated in model deploy-
ment scenarios characterized by varying compute and memory requirements, requiring model providers to
train an entire LLM “family”, containing different-sized models for each scenario; for instance, the Llama
3.1 model family includes three different variants with 8, 70 and 405 billion parameters, each trained from
scratch on 15 trillion tokens (Dubey et al., 2024).

Recent work has attempted to reduce the training cost of LLM families via a combination of structured
pruning and knowledge distillation (Muralidharan et al., 2024); in this setting, only the largest model in
the family is trained from scratch, with smaller models obtained via compression. Specifically, the original
pretrained model is pruned along both depth (layers) and width (attention heads, hidden dimension, MLP in-
termediate size) dimensions to target a particular parameter budget; this pruned network is then distilled with

∗Correspondence to: sauravm@nvidia.com

1

Published as a conference paper at ICLR 2025

the original model acting as teacher. While this approach succeeds in reducing both the compute and number
of training tokens required (w.r.t. training each model from scratch), it suffers from a major drawback: each
compressed model targeting a particular parameter or latency budget must be distilled separately; this keeps
the training cost for LLM families very high. Instead, we ask the following question: is it possible to create
a flexible network architecture which can yield different pruned sub-networks (depending on budget) without
the need for any additional fine-tuning or distillation - in a single shot? Our answer to this question is a new
elastic LLM architecture and post-training optimization framework named LLAMAFLEX.

LlamaFlex

Zero-Shot

Llama-3.1-8B

Llama-2-7B

GPT3-8B

Minitron-4B

Flextron

LLM-Pruner
Pythia-6.9BPythia-1.4B/2.8B

Shear.-1.3B/2.7B

Figure 1: MMLU vs. model size for LLAMAFLEX
vs. other similar frameworks/models. LLAMAFLEX en-
ables zero-shot generation of a Pareto frontier of models that
beats the accuracy of current state-of-the-art compressed
and trained-from-scratch models.

LLAMAFLEX utilizes a nested weight-shared net-
work architecture which can be sliced along both
depth (layers) and width (attention heads, hid-
den dimension, MLP intermediate size) axes, en-
abling on-demand, zero-shot generation of accu-
rate pruned models at inference time. An end-to-
end trained router is learned to dynamically decide
the optimal network architecture given a parame-
ter budget. We start from a pretrained model, and
perform a brief elastic pretraining and router train-
ing (60.4B training tokens in this work). LLA-
MAFLEX is able to generate a large number of
pruned networks without the need for any addi-
tional fine-tuning or distillation. As shown in Fig-
ure 1, the zero-shot pruned models obtained with
LLAMAFLEX perform on par with or better than
models obtained via structured pruning and dis-
tillation; we also notice that LLAMAFLEX mod-
els outperform similarly-sized models trained from
scratch. Figure 2 provides an overview of how
LLAMAFLEX models are created, and compares
our approach to (1) training from scratch, and (2) pruning + distillation.

Elastic nested transformer architectures are not new and have been explored in the past. Specifically, Mat-
former (Kudugunta et al., 2023) and Flextron (Cai et al., 2024) use a nested weight-shared architecture that is
very similar to the one used in LLAMAFLEX; Flextron also includes an input-adaptive router that can select
some width axes (MLP intermediate size and number of attention heads) based on a target latency. We note
that LLAMAFLEX differs in several key ways: (1) to the best of our knowledge, no existing elastic training

Architecture

Llama 8B

Llama 4B

Llama 2B

~15T Tokens

~15T Tokens

~15T Tokens Architecture Llama 8B
~15T Tokens

Llama 4B

Llama 2B

~100B Tokens

~100B Tokens

4B

2B
0 Tokens

0 Tokens

LlamaFlex 8BArchitecture Llama 8B
~15T Tokens ~60B Tokens

✂
 P

ru
ni

ng

Pretraining Elastic Training
. . .

In
fi

ni
te

 V
ar

ia
nt

s
(0

-S
ho

t)

1.3B 1B

3.2B 2.2B

◼
 F

ro
m

 S
cr

at
ch

🦙
 L

la
m

aF
le

x

Figure 2: High-level overview of LLAMAFLEX. In contrast to training from scratch (top left part of the
figure) and pruning (top right), LLAMAFLEX supports the generation of a potentially infinite number of
pruned models without additional fine-tuning/distillation (zero-shot) after a brief elastic pretraining phase.

2

Published as a conference paper at ICLR 2025

framework supports the full suite of width and depth dimensions other than LLAMAFLEX, (2) pure nesting
introduces a hard constraint on the resulting models which may potentially make them less expressive; we
counter this by introducing additional parameters for each nesting level through a technique we term policy-
aware modulation, and (3) both Matformer and Flextron produce heterogenous architectures (each layer has
potentially different architectural configurations) which are difficult to deploy in common frameworks such
as TensorRT-LLM (NVIDIA, 2023) and llama.cpp; LLAMAFLEX always produces uniform architectures
which have optimized implementations in such common LLM deployment frameworks.

This paper makes the following key contributions:

1. Introduces a novel elastic LLM architecture named LLAMAFLEX which can be resized along both
depth and width axes to achieve superior accuracy (compared to other pruning approaches, nested
architectures, and training from scratch) for a given deployment scenario with no fine-tuning re-
quired. Further, LLAMAFLEX produces pruned architectures that are uniform, making it easy to
deploy using existing LLM frameworks such as TensorRT-LLM.

2. Presents a Gumbel Softmax-based end-to-end learnable router that is able to interpolate smoothly
from 25% to 100% of the original model’s size in a zero-shot manner. This enables the “train once,
generate many” paradigm.

3. Increases the generality of nested architectures by introducing a policy-aware modulation technique
inspired from the diffusion model literature.

4. Produces a state-of-the-art family of compressed models from Llama 3.1 8B, each of which can be
obtained zero-shot after an initial elastic pretraining and router training phase consisting of ∼ 60B
tokens. LLAMAFLEX achieves better accuracy than state-of-the-art compression techniques such
as Minitron Muralidharan et al. (2024), nested weight-shared architectures such as Flextron Cai
et al. (2024) and models trained from scratch.

2 METHOD

In the following sections, we will cover the design of LLAMAFLEX and go over the process of converting a
pretrained LLM to an elastic form. We provide a high-level overview of LLAMAFLEX’s design in Figure 3.

2.1 ELASTIC FRAMEWORK: BACKGROUND AND NOTATION

Large Language Models (LLMs) process diverse inputs and tasks by passing tokens through stacked trans-
former blocks, whose shapes are characterized by some key architectural variables: the number of trans-
former blocks (N), the hidden dimension size (H), the intermediate dimension of the MLP layer (D), and
the number of attention heads (NA). Collectively, these parameters, denoted as (D,NA, H,N), describe the
“shape” of the model. Specifically, an LLM with shape (D,NA, H,N) models language as:

LLM(D,NA,H,N)(x) = xN where

xi+1 =
(
MHAi

(H,NA) ◦MLPi
(H,D)

)
(xi) + xi, i = 1, . . . , N − 1

(1)

LLAMAFLEX allows the original model to operate as diverse model variants, each with a unique shape and
achieving a different performance-efficiency trade-off. Users are able to choose the variant with a suitable
size during inference, based on their resource and performance constraints. Specifically, a model variant j
with shape (Dj , N j

A, H
j , N j) can be formalized as follows:

Elastic-LLM(Dj ,Nj
A,Hj ,Nj)(x;λ

j) = xN where

xi+1 = λj
i

(
MHAi

(Hj ,Nj
A)

◦MLPi
(Hj ,Dj)

)
(xi) + xi, i = 1, . . . , N − 1,

(2)

3

Published as a conference paper at ICLR 2025

Anchor Target

Interpolated Target

100% 75% 50% 25%

Router

MLP width
75%

MHA #heads
50%

Hidden Dim
62.5%

Remaining layers
0,1,3,4,6...

Modulation

Layer Norm

75% MLP

62.5% Hidden Feature

Modulation

Layer Norm

50% MHA

62.5% Hidden Feature

Layer 2 (skip)

Layer 0 (remain)

Layer 3 (remain)

Layer 1 (remain)

Router & Slicing

75%
variant

Full Model
(100%)

50%
variant 90%

variant

60%
variant

40%
variant

25%
variant

100% 75% 50% 25%

Sample

Loss

Figure 3: Overview of the LLAMAFLEX Framework. A router is introduced to determine the sub-network configuration
(i.e., the size of the MLP, MHA, hidden dimensions, and the number of layers) that satisfies a given budget target (i.e.,
the percentage of remaining parameters) while optimizing performance. Although the router is trained on discrete
“anchor”budget targets (e.g., 50%, 75%, as shown), it generalizes well to unseen budget targets (e.g., 62.5%).

here, λj
i is a binary scaler, controlling whether layer i in submodel j is skipped (λj

i = 0) or not. λj
i is the

i-th item of λj ;
∑

i λ
j
i = N j . The elastic MHA and MLP layers are defined as follows:

MLPi
(Hj ,Dj)(xi) = σ

(
xi ·

(
IDjW (1)IHj

)T) ·
(
IDjW (2)IHj

)
,

MHAi
(Hj ,Nj

A)
(xi) = Concat(head1, ...headNj

A
) ·

(
INj

ACW
O
)
,

headk = Attn(xiIHjWQ
k ,xiIHjWK

k ,xiIHjW V
k),

(3)

where, IDj ∈ RD×D, IHj ∈ RH×H , and INj
AC ∈ RH×H are diagonal matrices with the first Dj , Hj ,

and N j
AC diagonal elements equal to 1, and the rest 0, respectively. C denotes the size of a single head.

These diagonal matrices ensure that the jth sub-model only utilizes the first Hj hidden features, the first Dj

MLP intermediate neurons, and the first N j
A attention heads. We constrain Dj < D,Hj < H,N j

A < NA.
W (1) and W (2) are the associated two weight matrices in MLP layers, with W (1),W (2) ∈ RD×H ; σ(·)
refers to the non-linear activation function. WQ,i,WK,i,W V,i ∈ RH×C and WO ∈ RNAC×H . For
implementation, the diagonal matrix I can be replaced with a slicing operator. Compared to existing meth-
ods (Kudugunta et al., 2023; Kavehzadeh et al., 2023; Cai et al., 2024), LLAMAFLEX is the first generalized
elastic framework that supports learnable layer skipping and flexible hidden dimension.

2.2 GENERALIZABLE ROUTER DESIGN

Problem Formulation The router is tasked with identifying the optimal configuration of the sub-model
(Dj , N j

A, H
j , N j) achieving the best performance while adhering to budget constraints bj , defined as the

percentage of remaining parameters relative to the original model. This process can be formalized as a
combinatorial optimization problem:

min
(Dj ,Nj

A,Hj ,Nj ,λj)
Ex∼p(x)

[
L(Dj ,Nj

A,Hj ,Nj)(x;λ
j)
]
,

s.t. P(Dj , N j
A, H

j , N j ,λj) ≤ bj · P(D,NA, H,N,1N),

Dj ∈ D, N j
A ∈ NA, Hj ∈ H, N j ∈ N ,

(4)

4

Published as a conference paper at ICLR 2025

where P(·) denotes the number of parameters given the network dimensions (i.e., Dj , N j
A, H

j , N j) and the
binary vector for layer skipping (i.e., λj). P(D,NA, H,N,1N) denotes the number of parameters in the
original pre-trained model. To satisfy the constraint, we introduce an additional loss term, which is detailed
in Sec 2.3. Each of the dimensions are selected from the pre-defined sets D, NA, H, N , respectively.

Router Design. Due to the discrete nature of the variables Dj , N j
A, H

j , N j , {λj
i , i ∈ [0, N]}, traditional

gradient descent methods are ineffective as they require the continuous differentiability of the objective
function with respect to the variables. Direct optimization of these discrete choices would typically in-
volve an exhaustive search or evolutionary algorithms, which can be computationally prohibitive given the
large search space. To address this challenge, we utilize the Gumbel-Softmax trick (Jang et al., 2016) as a
continuous relaxation of the discrete optimization problem. The Gumbel-Softmax technique allows us to ap-
proximate categorical distributions over discrete choices with a differentiable softmax function, enabling the
use of gradient-based optimization methods. We first represent each architectural variable as a categorical
distribution, and instead of directly selecting values, we model the probability of each choice. For example,
for Dj , we define a categorical distribution with class probabilities P (Dj = md) for md ∈ D, where the
probabilities satisfy the constraint

∑
md

P (Dj = md) = 1. During stochastic sampling, the algorithm
assigns higher probabilities to values of md that are more likely to produce better performance, reflecting a
preference for favorable configurations.

Router Architecture We model the categorical distribution of each architectural variable using a
lightweight router implemented as a two-layer MLP. As described in Section 2.1, architectural variables
include the MLP intermediate dimension Dj , hidden dimension Hj , number of heads in MHA NA, and
the Bernoulli variable λj

i , which controls whether to skip the layer i or not. For each budget bj ∈ B,
we first encode it as a one-hot vector, hj = One-Hot(bj), where hj ∈ R|B|×1. For instance, to
model the distribution for Dj , we input hj into the MLP and obtain the un-normalized log-probilities
logπ(Dj = md) = MLPD(hj). Similarly, we compute the logits for the other architectural variables:
logπ(Hj = mh) = MLPH(hj), logπ(N j

A = ma) = MLPNA
(hj), and logπ(λj

i = mλ) = MLPλi
(hj).

This framework allows the router to generalize to unseen budget targets, bk /∈ B, a crucial capability we will
discuss in more detail later in this Section.

Router Optimization To enable differentiable sampling, we apply the Gumbel-Softmax (Jang et al., 2016)
trick to these categorical distributions. For each architectural variable, the categorical distribution is repa-
rameterized as:

P (Dj = md) =
exp

(
(κlogπ(Dj = md) + gd)/τ

)∑
m∈D exp ((κlogπ(Dj = m) + g)/τ)

, (5)

where gd is a sample from the Gumbel(0,1) distribution, and τ is a temperature parameter that controls the
smoothness of the approximation; κ is the scaling factor to balance the relative magnitude of logits and
Gumbel noises. As τ → 0, the distribution approaches a one-hot vector, allowing the router to make discrete
choices. With the same formulation, we compute P (Hj = mh), P (N j

A = ma), and P (λj
i = mλ). The

optimization problem now focuses on minimizing the following loss function:
LR(x; θ, θR, j) = E(Dj ,Nj

A,Hj ,Nj ,λj)∼QθR
(·|j)

[
L(Dj ,Nj

A,Hj ,Nj)(x; θ,λ
j)
]
, (6)

where θR represents the parameters of the router and θ denotes the parameters of the backbone. QθR in-
dicates that the architectural choices (Dj , N j

A, H
j , N j ,λj) are sampled from the probability distributions

modeled by the routers, for budget target bj , which is parameterized by θR.

Router Interpolation LLAMAFLEX allows the router to generalize to unseen budget targets at zero addi-
tional cost. This is a crucial capability that in turn allows LLAMAFLEX to instantly generate pruned models

5

Published as a conference paper at ICLR 2025

targeting specific user-defined deployment targets. As previously discussed, when bj ∈ B, the embedding
vector is obtained through one-hot encoding, hj = One-Hot(bj). For an unseen budget target bk /∈ B,
its embedding vector can be derived by linearly interpolate between its nearest neighbors in the budget set.
Specifically, Assume that bn and bn+1 are the nearest known budget targets such that bn ≤ bk ≤ bn+1. The
embedding vector hk for the unseen budget target bk can be interpolated linearly as follows:

hk =
bn+1 − bk
bn+1 − bn

· hn +
bk − bn

bn+1 − bn
· hn+1 (7)

This linear interpolation ensures a smooth transition between the embedding vectors of the known budgets,
enabling the router to generalize effectively to the unseen budget target bk. With this interpolation capability,
LLAMAFLEX can produce a spectrum of model variants that adapt to continuously changing budget targets.

2.3 MODEL PREPARATION AND ROUTER TRAINING

Model Preparation Given the pre-trained model, we first prepare it following the approach in prior
work (Cai et al., 2024; Muralidharan et al., 2024). Specifically, using a small set of data samples, we
compute the importance of each MLP neuron, attention head, and hidden feature based on the accumulated
magnitude of activations. Once the importance is determined, we reorder the corresponding weight matrices
such that neurons, heads, and hidden features are arranged in decreasing order of importance for each layer.
Sub-networks can then be constructed by simply selecting the first several neurons or heads in each layer,
thereby preserving the essential knowledge encoded in the most important channels.

Router Training After the model preparation step, we conduct end-to-end training to jointly optimize the
backbone parameters θ and router parameters θR, using the loss function below:

L =
∑
j

(LR(xj ; θ, θR, j) + LB(θR, j)) (8)

Here, we note that each sub-network j uses a different data batch xj . Since the sub-networks are created
by slicing and therefore share weights, the gradient propagated by one sub-network can implicitly affect
the others. This allows all sub-networks to benefit from the information across different data batches, even
though they are directly trained on separate inputs. Unlike traditional pruning (Xia et al., 2023; Ma et al.,
2023; Muralidharan et al., 2024), which generate pruned variants separately, weight sharing helps training
efficiency by allowing sub-networks to collectively leverage knowledge from various inputs. In addition to
the router loss LR(·), we introduce an additional loss term LB(·) to ensure that the sampled sub-network
adheres to the parameter budget constraint defined in Equ. 4. Here, P(·) represents the number of parameters
based on the network dimensions (i.e., Dj , N j

A, H
j , N j) and the binary vector for layer skipping (i.e., λj).

Meanwhile, Pfull refers to the total number of parameters in the original pre-trained model.

LB(θR, j) = max
(
E(Dj ,Nj

A,Hj ,Nj ,λj)∼QθR
(·|j)P(Dj , N j

A, H
j , N j ,λj)− bj · Pfull, 0

)
,

where Pfull = P(D,NA, H,N,1N), 0).
(9)

Following prior approaches (Fang et al., 2024), we apply an exponential decay to the value of temperature,
while linearly increasing the scaling factor of router outputs. We provide more details on hyper-parameter
choice in Sec 3.1. In the initial phase, when the temperature is high and the scaling factor is small, signif-
icant randomness is introduced, allowing for optimization of the router. As training progresses, the router
transitions to making deterministic decisions.

2.4 POLICY-AWARE MODULATION

Due to its simplicity, a nested structure has been widely adopted in most existing elastic LLM work (Kusu-
pati et al., 2022; Kudugunta et al., 2023; Kavehzadeh et al., 2023). In this approach, each sub-network is

6

Published as a conference paper at ICLR 2025

generated by simply slicing the weight matrices. However, this constraint can potentially limit the represen-
tational capacity of elastic networks, as the same set of weights must accommodate inputs across all possible
sub-networks.

Router

Elastic Decision
MLP = 75%

modulation MLP

Scale Vector Shift Vector

Layer Norm

75% MLP

Hidden Feature

Hidden Feature

Scale Vector
x

Shift Vector
+

Hidden Feature

MLP sub-Block
MLP=100%

MLP=87.5%

MLP=75%(picked)

MLP=62.5%

MLP=50%

MLP=37.5%

MLP=25%

Figure 4: The illustration on Modulation.

To address this limitation, we propose the use
of policy-aware modulation, a technique in-
spired by methods in the literature on dif-
fusion models (Ho et al., 2020; Peebles &
Xie, 2023). In these models, the time step t
is encoded in the Transformer layers through
learnable normalization, allowing the same
parameters to process inputs with varying
noise scales. We adopt a similar approach in
LLAMAFLEX by introducing lightweight non-
linear modulation heads, which are applied after the elastic components (i.e., elastic MLP/elastic MHA, as
detailed in Equ. 3). These heads modulate the outputs of elastic operations based on the elastic choice.
Taking elastic MLP as an example, if the current sub-network chooses to use ek hidden neurons, we condi-
tion the output of the elastic MLP on ek. Concretely, we use a sinusoidal embedding of ek followed by a
learnable MLP layer to generate modulation vectors for scaling and shifting. These modulation vectors then
transform the output of the elastic MLP y as follows:

ŷ = y ·MLPscale(Emb(ek)) +MLPshift(Emb(ek)) (10)

3 RESULTS

3.1 EXPERIMENTAL DETAILS

Pre-trained Model and Dataset We validate our method on Llama 3.1 8B (Dubey et al., 2024), a promi-
nent open-source large language model trained on 15 trillion tokens. The model comprises N = 32 Trans-
former blocks, each containing a Multi-head Attention (MHA) layer with 8 attention groups and NA = 32
query heads, along with a Multilayer Perceptron (MLP) with an intermediate dimension of D = 14436. The
hidden feature dimension is H = 4096. The model has a total of 6.98 billion non-embedding parameters,
with 5.64 billion parameters allocated to the MLP layers. Since the original training data is not publicly
available, we use a proprietary dataset consisting of high-quality pretraining data. With 4 choices of bj , we
sample different tokens for different budget goals (see details in Equ. 8), and use 60.4 billion training tokens
in total.

Downstream Tasks We evaluate LLAMAFLEX on several downstream tasks including ARC-easy (Clark
et al., 2018), LAMBADA (Paperno et al., 2016), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al.,
2021), MMLU (Hendrycks et al., 2020), and HellaSwag (Zellers et al., 2019). Following the approach of
(Xia et al., 2023), we report 5-shot performance for MMLU and 10-shot performance for HellaSwag, while
presenting zero-shot results for the other tasks.

Table 1: Details of elastic configurations.
Budget B {25%, 50%, 75%, 100%}
MHA # Heads NA {25%, 50%, 75%, 100%}
MLP inter. dim D {25%, 37.5%, 50%, 62.5%, 75%, 87.5%, 100%}
Hid. dim H {50%, 62.5%, 75%, 87.5%, 100%}

Elastic Configurations and Training Details As de-
scribed in Section 2.2, for every budget target bj ∈ B,
architectural choices, Dj , N j

A, and Hj are sampled
from the predefined sets D, NA, and H, respectively.
We present these sets of choices in Table 1. We omit the
details of layer skipping, as its indicator variable λj

i is a binary scalar that controls whether layer i in model
j is skipped. Unless otherwise specified, we set the sequence length to 4096 and the batch size to 128, and

7

Published as a conference paper at ICLR 2025

fine-tune the model for 28800 iterations. We set the initial learning rate to 4e − 5, and use cosine learning
rate decay for LLM parameters.

Table 2: Downstream task evaluation of LLAMAFLEX framework. Here, #Params refers to the number of non-
embedding parameters. The prefix Exp. indicates that the sub-models are explicitly trained, i.e., b ∈ B, while prefix
Inter. refers to models generated through router interpolation.
Type Model #Params ARC-E LAMB. PIQA Wino. Hell. (10) MMLU (5) Avg.

LLAMAFLEX

Exp.-25% 1.8 B 66.7% 61.6% 74.3% 61.9% 67.6% 42.2% 62.4%
Inter.-38.8% 2.7 B 71.3% 64.6% 76.0% 62.5% 71.1% 53.8% 66.6%
Exp.-50% 3.5 B 76.1% 66.3% 77.0% 67.9% 76.0% 60.3% 70.6%
Inter.-62.5% 4.4 B 77.4% 68.1% 77.4% 69.4% 76.4% 61.2% 71.7%
Exp.-75% 5.2 B 78.9% 71.7% 78.1% 72.9% 77.2% 62.7% 73.6%
Inter.-86.1% 6.0 B 79.2% 72.1% 78.8% 74.1% 77.9% 63.1% 74.2%
Exp.-100% 7.0 B 81.9% 72.8% 79.7% 75.4% 78.0% 64.7% 75.4%

0.5× 3.5 B 65.9% 61.7% 74.8% 61.9% 67.6% 35.9% 61.3%
0.6× 4.0 B 66.1% 63.8% 75.0% 62.1% 68.0% 37.7% 62.1%
0.7× 4.2 B 65.8% 64.2% 75.6% 62.3% 67.1% 41.9% 62.8%Flextron

Full 6.5 B 75.1% 71.5% 77.5% 69.1% 78.1% 45.1% 69.4%

Compression

Minitron-Depth 3.7 B 74.7% 61.5% 74.9% 72.5% 73.2% 58.7% 69.3%
Minitron-Width 3.7 B 75.1% 63.0% 75.0% 73.1% 76.1% 60.5% 70.5%
Sheared.-1.3B 1.2 B 61.5% 61.0% 73.4% 57.9% 60.7% 25.7% 56.7%
Sheared.-2.7B 2.5 B 67.0% 68.4% 75.8% 64.2% 70.8% 26.4% 62.1%
NutePrune 3.2 B 51.7% - 71.0% 57.5% 55.9% - -
LLM-Pruner 4.5 B 59.2% - 73.4% 64.2% 56.5% 23.9% -
Compresso 4.5 B 66.0% - 72.9% 63.4% - 25.9% -
SliceGPT 4.8 B - - 66.2% - 50.3% 28.9% -
LaCo 4.7 B - - 69.8% - 55.7% 26.5% -

Open-Source

Llama-3.1-8B 7.0 B 81.8% 72.9% 81.0% 75.7% 81.8% 65.3% 76.4%
Llama2-7B 6.5 B 75.2% 68.2% 78.8% 69.2% 78.6% 45.3% 69.2%
OpenLLaMA-3Bv2 3.2 B 63.7% 59.1% 78.1% 63.3% 71.6% 25.7% 60.3%
OpenLLaMA-7Bv2 6.5 B 69.5% 63.8% 79.9% 66.0% 76.6% 40.4% 66.0%
GPT3-8B 6.4 B 70.1% 70.5% 79.7% 69.8% 77.7% 40.2% 68.0%
Pythia-1.4B 1.2 B 53.9% 46.8% 70.6% 57.1% 52.2% 25.6% 51.0%
Pythia-2.8B 2.5 B 57.9% 50.1% 73.8% 58.6% 60.0% 26.8% 54.5%
Pythia-6.9B 6.4 B 60.2% 47.1% 75.2% 59.9% 64.4% 25.5% 55.4%

Router Architecture and Modulation Details For each architectural variable, we use a two-layer MLP
followed by a shared embedding layer. The embedding layer converts the scalar bj into an embedding
vector of dimension 128, and is shared across all architectural choices. Each MLP processes an intermediate
dimension of 128 and outputs a logits vector, with a dimension corresponding to the number of elastic
choices. The routers contains 0.51 million parameters in total. We use Gumbel-Softmax to optimize the
routers, following the practice outlined in MaskLLM Fang et al. (2024). Specifically, we exponentially
decay the temperature with rate 0.9999, and linearly scale the scaling factor κ from 1 to 10. We set the
initial learning rate of 4e − 2 for router tuning. During the tuning process, we employ a combination of
both soft and hard Gumbel-Softmax techniques (Jang et al., 2016). For each elastic choice, we modulate
the elastic output by a sinusoidal embedding, of size 16, followed by a learnable lightweight MLP with an
intermediate dimension of 128. Every modulation network only contains 0.02 million parameters. We also
set the initial learning rate of 4e− 2 for modulation networks.

3.2 DOWNSTREAM TASK EVALUATION

We present our downstream task evaluation results in Table 2. Here, we compare LLAMAFLEX against
existing flexible inference frameworks such as Flextron (Cai et al., 2024), as well as open-source models,
including Llama 3.1 8B (Dubey et al., 2024), Llama2 7B (Touvron et al., 2023), Pythia (Biderman et al.,

8

Published as a conference paper at ICLR 2025

2023), OpenLLaMA (Geng & Liu, 2023), and GPT3 8B (Shoeybi et al., 2019). Additionally, we com-
pare with models generated by post-hoc compression methods, including Minitron (Muralidharan et al.,
2024), Sheared-LLaMA (Xia et al., 2023), Compresso (Guo et al., 2023), LLM-Pruner (Ma et al., 2023),
SliceGPT (Ashkboos et al., 2024), and LaCo (Yang et al., 2024).

Since MMLU (Hendrycks et al., 2020) is a comprehensive benchmark for evaluating general knowledge
across a wide range of domains, we provide a detailed visualization of the model’s performance on bench-
mark in Figure 1. From Table 2 and Figure 1, we notice that LLAMAFLEX achieves the best performance-
efficiency trade-off compared to baseline methods. In addition, the interpolated LLAMAFLEX models (de-
noted by the prefix Inter.) demonstrate a smooth transition in the performance-efficiency trade-off com-
pared to the models explicitly receiving gradients (denoted by the prefix Exp.), highlighting the generaliz-
ability of our routers.

3.3 ROUTER VISUALIZATION

Table 3: Architecture details of sub-networks selected by the learn-
able router. Each sub-network corresponds to a different budget bj ;
the architecture of the pre-trained Llama 3.1 8B model is shown in the
bj = 100% row. We present the MLP intermediate dimension Dj ,
the number of attention heads (the number of queries) N j

A, the hidden
dimension Hj , the number of layers N j , and the resulting number of
non-embedding parameters. Note that since the pretrained model uses
grouped-query attention and we keep the number of attention groups
fixed, we modify the number of queries per group.
bj #Param MLP Dim. MHA #Heads Hid. Dim #Remain. layers

25% 1.84B 10752 (75.0%) 24 (75%) 2560 (62.5%) 18 (56.25%)
50% 3.48B 12544 (87.5%) 24 (75%) 2560 (62.5%) 30 (93.75%)
75% 5.20B 12544 (87.5%) 24 (75%) 3584 (87.5%) 32 (100%)

100% 6.98B 14336 32 4096 32

In Table 3, we visualize the 4 sub-
networks learned by the LLAMAFLEX
router; here, each sub-network satisfies a
unique budget requirement bj . As shown
in the table, for higher budgets (e.g.,
50% or 75%), the sub-networks gener-
ally avoid skipping layers and utilize rel-
atively smaller MHA and MLP blocks.
However, for lower budgets (e.g., 25%),
the router tends to skip nearly half of the
layers. Additionally, we observe that the
router finds it hard to reduce the num-
ber of attention heads for Llama 3.1, and
it remains the same for all different sub-
networks. For the 25% variant, layers [1–7, 17–24, 29–30, 32] are retained while the others are skipped. In
the 50% variant, the 13-th and 31-th layers are removed.

4 ABLATION STUDY

Table 4: Results of our ablation study on policy-aware modulation. We
run LLAMAFLEX for 800 iterations and report the validation loss. All
sub-networks show improved performance when modulation is enabled,
reducing validation loss by 0.08 on average.
bj 25% 50% 75% 100% avg.

w/ Modulation 2.53 (↓ 0.08) 2.41 (↓ 0.13) 2.08 (↓ 0.09) 1.88 2.22 (↓ 0.08)
wo Modulation 2.61 2.54 2.17 1.88 2.30

Effect of Policy-Aware Modulation
We validate the effectiveness of our
modulation technique by comparing per-
formance with and without modulation.
We set B = {25%, 50%, 75%, 100%},
and perform LLAMAFLEX training with
and without modulation. We train Llama
3.1 8B (Dubey et al., 2024) for 800 iterations, and show the obtained performance in Table 4. We notice that
including modulation consistently improves the performance of all sub-networks, reducing validation loss
by 0.08 on average. We provide more experimental results in Appendix A.

5 RELATED WORK

Structured Pruning A number of recent structured pruning papers specifically target LLMs; we can
broadly classify these works into two main categories: (1) ones that prune only depth (layers), and (2)

9

Published as a conference paper at ICLR 2025

ones that prune width (attention heads, MLP intermediate dimension, etc.) and/or depth. Recent work in the
first category (depth pruning) includes ShortGPT Men et al. (2024), LaCo Yang et al. (2024), and Shortened
LLaMa Kim et al. (2024), while those in the second category includes Minitron Muralidharan et al. (2024),
ShearedLlama Xia et al. (2023), Dery et al. (2024), SliceGPT Ashkboos et al. (2024), and LLM-Pruner Ma
et al. (2023). To the best of our knowledge, all the work in this area requires fine-tuning or distillation on
a per-compressed-model basis (not zero-shot). We compare the accuracy of LLAMAFLEX models against a
large subset of these frameworks in this paper.

Flexible Architectures Flexible inference has been extensively studied, particularly in the context of con-
volutional neural networks (CNNs). Yu et al. (2018); Yu & Huang (2019) introduced slimmable neural
networks, which enabled the deployment of the same model with varying numbers of convolutional ker-
nels. Building on this, OFA (Cai et al., 2019) generalized pruning techniques to create a single model
that can adapt to multiple configurations. Recent research has extended slimmable models to Transformer
architectures. Kusupati et al. (2022) introduced a nested weight structure for Transformer networks, focus-
ing primarily on hidden features. Matformer (Kudugunta et al., 2023) further developed this architecture
by applying it to the intermediate dimensions of MLPs. Additionally, SortedNet (Valipour et al., 2023)
employed a sampling-based training strategy to train multiple models via gradient accumulation, while
SortedLlama (Kavehzadeh et al., 2023) explored depth-wise sampling in large language models (LLMs).
Recently, Flextron (Cai et al., 2024) introduced elastic multi-head attention (MHA) and search-based rout-
ing to enhance flexibility. Similar to Flextron, LLAMAFLEX leverages a router mechanism, but supports
end-to-end training, interpolation between trained targets, and produces more easily deployable uniform ar-
chitectures. Additionally, LLAMAFLEX introduces a novel policy-aware modulation technique, providing
additional model expressivity and enhancing adaptability.

SuperNet-based Neural Architecture Search (NAS) HAT (Wang et al., 2020) and HELP (Lee et al.,
2021) have explored supernet-based approaches for generating sub-networks, primarily targeting relatively
small-sized models, while Meta-NAS (Elsken et al., 2020) and DARTS-EGS (Chang et al., 2019) have
utilized Gumbel-Softmax-based supernet techniques. Our work focuses on addressing the unique challenges
of LLMs, which differ significantly from prior studies targeting smaller models. To avoid costly training
processes and huge GPU memory usage, we transform a pre-trained model into an elastic framework, and
employ weight-sharing, unlike previous attempts. To avoid repeated computation, we enable zero-shot sub-
network generation for any parameter budget through router interpolation - capabilities not achieved by
supernet-based methods.

6 CONCLUSIONS

In this paper, we have presented LLAMAFLEX, a novel elastic LLM architecture that supports zero-shot
resizing along both width and depth dimensions, yielding a large space of uniform (for ease of deployment)
compressed models without any fine-tuning. It utilizes a Gumbel Softmax-based end-to-end learnable router
that requires a one-time training phase, and is then able to smoothly interpolate across model sizes, ranging
from 0 to 100% of the original model size. We have also introduced a novel policy-aware modulation
technique that improves the generality of nested architectures. LLAMAFLEX on Llama 3.1 8B produces a
frontier of highly accurate compressed models that outperform similarly-sized compressed, elastic/flexible,
and trained-from-scratch models.

Limitations. Our method is not training-free, as it requires router tuning and necessitate modification on
backbone weights to convert the pre-trained model into an elastic one. There is a potential application of
training LLAMAFLEX from scratch, we leave this to future work.

10

Published as a conference paper at ICLR 2025

REFERENCES

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James Hens-
man. Slicegpt: Compress large language models by deleting rows and columns. arXiv preprint
arXiv:2401.15024, 2024.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al. Pythia:
A suite for analyzing large language models across training and scaling. In International Conference on
Machine Learning, pp. 2397–2430. PMLR, 2023.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about physical
commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial Intelligence, 2020.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one network and
specialize it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

Ruisi Cai, Saurav Muralidharan, Greg Heinrich, Hongxu Yin, Zhangyang Wang, Jan Kautz, and Pavlo
Molchanov. Flextron: Many-in-one flexible large language model. arXiv preprint arXiv:2406.10260,
2024.

Jianlong Chang, Xinbang Zhang, Yiwen Guo, Gaofeng Meng, Shiming Xiang, and Chunhong Pan. Differ-
entiable architecture search with ensemble gumbel-softmax. arXiv preprint arXiv:1905.01786, 2019.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng Li,
Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica. Chatbot arena: An open
platform for evaluating llms by human preference, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

Lucio Dery, Steven Kolawole, Jean-Francois Kagey, Virginia Smith, Graham Neubig, and Ameet Tal-
walkar. Everybody prune now: Structured pruning of llms with only forward passes. arXiv preprint
arXiv:2402.05406, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 Herd of Models. arXiv preprint
arXiv:2407.21783, 2024.

Thomas Elsken, Benedikt Staffler, Jan Hendrik Metzen, and Frank Hutter. Meta-learning of neural architec-
tures for few-shot learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 12365–12375, 2020.

Gongfan Fang, Hongxu Yin, Saurav Muralidharan, Greg Heinrich, Jeff Pool, Jan Kautz, Pavlo Molchanov,
and Xinchao Wang. Maskllm: Learnable semi-structured sparsity for large language models, 2024. URL
https://arxiv.org/abs/2409.17481.

Xinyang Geng and Hao Liu. Openllama: An open reproduction of llama, May 2023. URL https:
//github.com/openlm-research/open_llama.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The unrea-
sonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

11

https://arxiv.org/abs/2409.17481
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama

Published as a conference paper at ICLR 2025

Song Guo, Jiahang Xu, Li Lyna Zhang, and Mao Yang. Compresso: Structured pruning with collaborative
prompting learns compact large language models. arXiv preprint arXiv:2310.05015, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. Measuring massive multitask language understanding. arXiv preprint arXiv:2009.03300, 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Parsa Kavehzadeh, Mojtaba Valipour, Marzieh Tahaei, Ali Ghodsi, Boxing Chen, and Mehdi Reza-
gholizadeh. Sorted llama: Unlocking the potential of intermediate layers of large language models for
dynamic inference using sorted fine-tuning (soft). arXiv preprint arXiv:2309.08968, 2023.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and Hyoung-
Kyu Song. Shortened LLaMA: A simple depth pruning for large language models. In ICLR 2024
Workshop on Mathematical and Empirical Understanding of Foundation Models, 2024. URL https:
//openreview.net/forum?id=18VGxuOdpu.

Sneha Kudugunta, Aditya Kusupati, Tim Dettmers, Kaifeng Chen, Inderjit Dhillon, Yulia Tsvetkov, Han-
naneh Hajishirzi, Sham Kakade, Ali Farhadi, Prateek Jain, et al. Matformer: Nested transformer for
elastic inference. arXiv preprint arXiv:2310.07707, 2023.

Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek Ramanujan,
William Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, et al. Matryoshka representation
learning. Advances in Neural Information Processing Systems, 35:30233–30249, 2022.

Hayeon Lee, Sewoong Lee, Song Chong, and Sung Ju Hwang. Help: Hardware-adaptive efficient latency
prediction for nas via meta-learning. arXiv preprint arXiv:2106.08630, 2021.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large language
models. Advances in neural information processing systems, 36:21702–21720, 2023.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. Shortgpt: Layers in large language models are more redundant than you expect. arXiv preprint
arXiv:2403.03853, 2024.

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa Patwary,
Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact language models via
pruning and knowledge distillation. arXiv preprint arXiv:2407.14679, 2024.

NVIDIA. Tensorrt-llm: A tensorrt toolbox for optimized large language model inference, 2023. URL
https://github.com/NVIDIA/TensorRT-LLM.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernandez. The LAMBADA dataset: Word pre-
diction requiring a broad discourse context. In Proceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pp. 1525–1534, Berlin, Germany, August
2016. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/
P16-1144.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

12

https://openreview.net/forum?id=18VGxuOdpu
https://openreview.net/forum?id=18VGxuOdpu
https://github.com/NVIDIA/TensorRT-LLM
http://www.aclweb.org/anthology/P16-1144
http://www.aclweb.org/anthology/P16-1144

Published as a conference paper at ICLR 2025

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial
winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-LM: Training multi-billion parameter language models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

Shoaib Ahmed Siddiqui, Xin Dong, Greg Heinrich, Thomas Breuel, Jan Kautz, David Krueger, and Pavlo
Molchanov. A deeper look at depth pruning of llms. arXiv preprint arXiv:2407.16286, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288, 2023.

Mojtaba Valipour, Mehdi Rezagholizadeh, Hossein Rajabzadeh, Marzieh Tahaei, Boxing Chen, and Ali
Ghodsi. Sortednet, a place for every network and every network in its place: Towards a generalized
solution for training many-in-one neural networks. arXiv preprint arXiv:2309.00255, 2023.

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song Han. Hat:
Hardware-aware transformers for efficient natural language processing. arXiv preprint arXiv:2005.14187,
2020.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language model
pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse. arXiv
preprint arXiv:2402.11187, 2024.

Jiahui Yu and Thomas S Huang. Universally slimmable networks and improved training techniques. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 1803–1811, 2019.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks. arXiv
preprint arXiv:1812.08928, 2018.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really
finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena.
Advances in Neural Information Processing Systems, 36, 2024.

13

Published as a conference paper at ICLR 2025

A MORE EXPERIMENTAL RESULTS

0 200 400 600 800
Training Tokens (Million)

2

3

4

5

6

7

Ev
al

ua
tio

n
Lo

ss

Heuristic Skipping
Random Skipping
Learnable Skipping (ours)

600 650 700

2.2

2.4

2.6

Figure 5: Evaluation of the proposed learnable
layer skipping method. Here, we use the full Trans-
former block and only enable layer skipping in the
router, setting it to use 50% of layers. Our method
(green curve) is compared against random skip-
ping (orange curve) and the approach used by Mini-
tron (Muralidharan et al., 2024) (blue curve).

Performance of Learnable Layer Skipping All existing
techniques for layer skipping that we are aware of use hand-
crafted heuristics to measure the importance of layers and
subsequently prune the layers with the lowest importance
scores (Men et al., 2024; Gromov et al., 2024; Siddiqui
et al., 2024; Muralidharan et al., 2024). In contrast, our pro-
posed method uses a Gumbel Softmax-based router to op-
timize layer skipping. To evaluate how well our approach
works, we use the full transformer block and only enable
layer skipping; thus, to produce a sub-network with 50%
remaining parameters we skip half the transformer layers.
We compare against two baselines: (1) random layer skip-
ping, and (2) skipping the last half of the layers, except
for the final layer (i.e., layers 15 to 31 in 32-layers Llama
3.1 8B model), which follows the depth-pruning approach
used by Muralidharan et al. (2024). We train the models for
1600 iterations and present the evaluation loss in Figure 5.
We observe that while heuristic skipping converges more
quickly than other methods, our approach demonstrates su-
perior performance once training has converged.

14

	Introduction
	Method
	Elastic Framework: Background and Notation
	Generalizable Router Design
	Model Preparation and Router Training
	Policy-Aware Modulation

	Results
	Experimental Details
	Downstream Task Evaluation
	Router Visualization

	Ablation Study
	Related Work
	Conclusions
	More Experimental Results

