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ABSTRACT

While one commonly trains large diffusion models by collecting datasets on tar-
get downstream tasks, it is often desired to align and finetune pretrained diffusion
models with some reward functions that are either designed by experts or learned
from small-scale datasets. Existing post-training methods for reward finetuning of
diffusion models typically suffer from lack of diversity in generated samples, lack
of prior preservation, and/or slow convergence in finetuning. In response to this
challenge, we take inspiration from recent successes in generative flow networks
(GFlowNets) and propose a reinforcement learning method for diffusion model
finetuning, dubbed Nabla-GFlowNet (abbreviated as∇-GFlowNet), that leverages
the rich signal in reward gradients for probabilistic diffusion finetuning. We show
that our proposed method achieves fast yet diversity- and prior-preserving finetun-
ing of Stable Diffusion, a large-scale text-conditioned image diffusion model, on
different realistic reward functions.

1 INTRODUCTION

Diffusion models [19, 62, 52] are a powerful class of generative models that model highly complex
data distributions with sequential denoising steps. They prove capable of modeling distributions
of images [52, 11, 50], videos [21, 20, 6], 3D objects [83, 48, 35, 36, 15], molecules [74, 22,
33], languages [38, 54, 37] and many others. State-of-the-arts diffusion models for downstream
applications are typically large in network size and demand a significant amount of data to train.

It is often desirable that one finetunes pretrained diffusion models with some reward — either learned
from human preferences as in reinforcement learning from human feedback (RLHF) [7, 44] or de-
signed by human experts [59, 42]. While existing methods achieve fast reward convergence [73, 8],
many of them are diversity-lacking, prior-ignoring, and/or computationally expensive.

To address this issue, we take the best from both traditional reinforcement learning (RL) and direct
reward maximization approaches and propose a novel reinforcement learning objective, dubbed ∇-
DB, that leverages the rich information in reward gradients. Our method is rooted in both generative
flow networks (GFlowNets) [3], a framework and language for generative modeling on a direct
acyclic transition graph, and soft RL [17, 18]. Compared to existing gradient-informed methods, our
probabilistic finetuning method achieves better sample diversity. We further propose ∇-GFlowNet
with the objective residual ∇-DB that, by leveraging the structure of diffusion models, allows us
to perform fast, diversity preserving and prior-preserving amortized finetuning of diffusion models
with rather long sampling sequences.

We summarize our major contributions below:

• We propose ∇-DB and the pretrained-model-aware variant residual ∇-DB, the objectives that
efficiently leverage the rich information in reward gradients in a principled and probabilistic way.

• Our ∇-GFlowNet is the first GFlowNet method that considers first-order information in reward
signals, and is closely connected to soft reinforcement learning.

• We empirically show that with the proposed residual ∇-DB objective, we may achieve diversity-
and prior-preserving yet fast finetuning and alignment of diffusion models.
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Figure 1: Left: Illustration of the proposed residual ∇-DB objective, along with its forward-looking variant.
The two “forces” on each image in each transition xt → xt+1 out of a trajectory τ = (x0, x1, ..., xT ) are
expected to sum to zero. Green and blue terms represent forward and reverse residual policy scores (respec-
tively), orange terms represent signals from terminal rewards and pink terms represent flow scores or residual
flow scores, each of which is defined in Section 3. Notice that the reward term on the xT in the final transition
are different from the others. Right: Generated image from a model finetuned with the proposed residual ∇-DB
on the Aesthetic Score reward. The text prompt for each row is shown on the left. The leftmost figure is the
image generated by the pretrained model while the rightmost one is from the model finetuned for 200 iterations.

2 PRELIMINARIES

2.1 DIFFUSION MODELS AND RL-BASED FINETUNING

Diffusion models [19, 60, 62] are a class of hierarchical latent models that model the generation
process as a sequence of denoising steps. Different from the convention in diffusion model literature,
for convenience we adopt in this paper the reverse time of arrow where xT means samples from the
data distribution and the sampling process starts from t = 0. Under this convention, the probability
of the generated samples is:

PF (xT ) =

∫
x0:T−1

P0(x0)
∏

PF (xt|xt−1)dx0:T−1. (1)

Here P0(x0) is a fixed initial distribution, PF (xT ) is the likelihood of the model generating
data xT , and the noisy states xt in the intermediate time steps are constructed by a pre-defined
noising process, and the forward policy PF (xt|xt−1) is the denoising step of the diffusion
model1. Take DDPM [19] as an example: the corresponding noising process is q(xt−1|xt) =

N (
√
αt−1/αtxt,

√
1− αt−1/αtI) and induces q(xt|xT ) = N (

√
αT−txT ,

√
1− αT−tI), where

{αt}t is a noise schedule set. With this noising process defined, the training loss is:

E
t∼Uniform({1,...,T}),ϵ∼N (0,I),xT∼D

w(t)
∥∥∥xθ(√αT−txT +

√
1− αT−tϵ, t)− xT

∥∥∥2, (2)

whereD is a dataset, w(t) is a certain schedule weighting function, and xθ(xt, t) is a data prediction
model that predict the clean data xT given a noisy data xt at time step t.

The sequential sampling process of diffusion models is Markovian and one could construct an
Markov desicion process (MDP) to describe its denoising process. Similar to existing approaches
[5, 82], given a Markovian diffusion sampling algorithm, we construct an MDP by treating the noisy
sample (xt, t) at each diffusion inference step t as a state and a denoising step from xt to xt+1

as a transition. Given such an MDP defined, one may finetune diffusion models with techniques
like DDPO [5] by collecting on-policy sample trajectories {(x1, ..., xT )} and optimize the forward
(denoising) policy with a given terminal reward R(xT ). We give a more detailed overview of MDP
construction and DDPO in Appendix F.

1To clarify, the “forward” and “backward” directions in the GFlowNet literature are typically the opposite
of those in the diffusion model literature.

2



Published as a conference paper at ICLR 2025

2.2 RL FINETUNING IN THE GFLOWNET FRAMEWORK

It is well known [17, 51] in the soft RL literature that, by maximizing Eπθ

∑
t[R(sT )+

1
βH(πθ(·|st)]

in an MDP (with state st, terminating state sT , action at, terminal reward R(·), discount rate γ, pol-
icy πθ and entropy function H), we have P (x) ∝ exp(βR(x)) for any terminating state x. Finding
optimal policies to sample from R(·) can therefore be achieved with appropriate designs of MDPs.
While we may derive our objective with the soft RL language, here we follow a recent work [82]
and adopt the GFlowNet [4, 2] framework for generative models that sample terminal states with
respect to reward with MDP defined on a directly acyclic graph (DAG). The GFlowNet framework
uniquely motivates the introduction of a special intermediate reward associated to a reference back-
ward policy, which is not obvious in the soft RL framework. Furthermore, in modeling distributions
with a DAG-based MDP, the GFlowNet framework is more general and perhaps more natural than
soft RL. We discuss the connections between two frameworks in Appendix D.

In a GFlowNet, the forward sampling policy PF (s
′|s) on a DAG from an initial state s0 to a terminal

state sf is paired with a backward “reference” policy PB(s|s′). One can view PF as distributing
probability mass from s to its successors, and PB as moving mass backward from s′ to its ancestors.
When PF and PB are matched, they induce an unnormalized density F (s) at each state, called the
flow function. One way to specify the matching between PF and PB is through the following:

Detailed Balance (DB). A valid GFlowNet with a forward policy PF (s
′|s), a backward policy

PB(s|s′), and a flow function F (s) satisfies the following DB condition for all transition (s→ s′)

PF (s
′|s)F (s) = PB(s|s′)F (s′). (3)

Hence we have the following GFlowNet DB loss in the logarithm probability space:

LDB(s, s
′) =

(
logPF (s

′|s) + logF (s)− logPB(s|s′)− logF (s′)
)2

(4)

with an extra terminal constraint F (sf ) = R(sf ) to incorporate the target reward information.

In the context of time-indexed sampling processes such as diffusion models, the transition graph of
states s ≜ (xt, t) is naturally acyclic, as it adheres to the arrow of time [77]. With slight abuse of
terminology that we use xt to represents the tuple (xt, t) when necessary, for time-indexed settings
the forward policy is PF (xt+1|xt), the backward policy is PB(xt|xt+1), and the flow function is
F (xt)

2. The corresponding DB condition is therefore

PF (xt+1|xt)F (xt) = PB(xt|xt+1)F (xt+1). (5)

To finetune a diffusion model with DB losses [82], one can simply set PF (xt+1|xt) to be the sam-
pling process and fix PB(xt|xt+1) to be the noising process used by the pretrained diffusion model.
If PB is set to be fixed, we can similarly derive this condition using soft Q-learning [17], with details
provided in Appendix D.

3 REWARD FINETUNING VIA GRADIENT-INFORMED GFLOWNETS

3.1 ∇-DB: THE GRADIENT-INFORMED DETAILED BALANCE

In our setting, we do not have access to any dataset of images, but are given an external positive-
valued reward function R(·) to which a generative model is trained to adapt. While a typical
GFlowNet-based algorithm can effectively achieve this objective with diversity in generated sam-
ples, it only leverages the zeroth-order reward information and does not leverage any differentiability
of the reward function. Yet, whenever the reward gradients are available, it is often beneficial to in-
corporate them into the finetuning objective since they help navigate the finetuned model on the
optimization landscape and may significantly accelerate the optimization process. We are therefore
motivated to develop ∇-GFlowNet, a method that builds upon GFlowNet-based algorithms to take
full advantage of the reward gradient signal. To achieve this, we take derivatives on the logarithms of
both sides of the DB condition (logarithm of Equation 5) with respect to xt+1 and obtain a necessary
condition, which we call the forward3 ∇-DB condition:

∇xt+1 logPF (xt+1|xt) = ∇xt+1 logPB(xt|xt+1) +∇xt+1 logF (xt+1), (6)

2We write Ft(xt) as F (xt) for the sake of notation simplicity.
3This is because the derivative is taken with respect to xt+1.
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and hence the corresponding forward∇-DB objective L−→∇DB(xt, xt+1) to be∥∥∥∇xt+1 logPF (xt+1|xt)−∇xt+1 logPB(xt|xt+1)−∇xt+1 logF (xt+1)
∥∥∥2, (7)

with the terminal flow loss on the logarithm scale

L∇DB-terminal(xT ) =
∥∥∥∇xT

logF (xT )− β∇xT
logR(xT )

∥∥∥2, (8)

where β is a temperature coefficient and serve as a hyperparameter in the experiments. No-
tice that, by taking derivatives on the logarithms, we obtain the (conditional) score function
∇xt+1

logPF (xt+1|xt) of the finetuned diffusion model. Indeed, the ∇-DB loss is closely related
to a Fisher divergence, also known as Fisher information score [27] (see Appendix B.1).

Similarly, by taking the derivative of both sides in Equation 5 with respect to xt, one obtains the
reverse∇-DB objective:

L←−∇DB(xt, xt+1) =
∥∥∥∇xt

logPF (xt+1|xt)−∇xt
logPB(xt|xt+1) +∇xt

logF (xt)
∥∥∥2. (9)

Such∇-GFlowNet objectives constitute a valid GFlowNet algorithm (see the proof in Section B.2):
Proposition 1. If L−→∇DB(xt, xt+1) = L←−∇DB(xt, xt+1) = 0 for any denoising transition (xt, xt+1)

over the state space and L∇DB-terminal(xT ) = 0 for all terminal state xT , then the resulting forward
policy generate samples xT with probability proportional to the reward function R(xT )β .
Remark 2. The original detailed balance condition propagates information from the reward func-
tion to each state flow function in the sense of F (xt+1) → (F (xt), PF (xt+1|xt)), assuming the
backward (noising) policy is fixed (i.e., there is no learning component in the diffusion noising pro-
cess). In our case, if we take a close look at Equation 7, we can see that L−→∇DB(xt, xt+1) could
propagate the information from F (xt+1) to the forward policy PF (xt+1|xt) but not F (xt).
Remark 3. Compared to previous GFlowNet works which use a scalar-output network to parame-
terize the (log-) flow function, in∇-GFlowNet we can directly use a U-Net [53]-like architecture that
(whose output and input shares the same number of dimension) to parameterize ∇ logF (·), which
potentially provides more modeling flexibility. Furthermore, it is possible to initialize ∇ logF (·)
with layers from the pretrained model so that it can learn upon known semantic information.

3.2 RESIDUAL ∇-DB FOR REWARD FINETUNING OF PRETRAINED MODELS

With the ∇-DB losses, one can already finetune a diffusion model to sample from the reward dis-
tribution R(x). However, the finetuned model may eventually over-optimize the reward and thus
forget the pretrained prior (e.g., how natural images look like). Instead, similar to other amortized
inference work [84, 69], we consider the following objective with an augmented reward:

PF (xT ) ∝ R(xT )βP#
F (xT ), (10)

where R(x) is the positive-valued reward function, β is the temperature coefficient, P#
F (xT ) is

the marginal distribution of the pretrained model4 and PF (xT ) is the marginal distribution of the
finetuned model (as defined in Equation 1).

Because both the finetuned and pretrained model share the same backward policy PB (the noising
process of the diffusion models), we can remove the PB term and obtain the forward residual∇-DB
condition by subtracting the forward ∇-DB equation for the pretrained model from the that of the
finetuned model:

∇xt+1 logPF (xt+1|xt)−∇xt+1 logP
#
F (xt+1|xt)︸ ︷︷ ︸

∇xt+1
log P̃F (xt+1|xt): residual policy score function

=∇xt+1 logF (xt+1)−∇xt+1 logF
#(xt+1)︸ ︷︷ ︸

∇xt+1
log F̃ (xt+1): residual flow score function

.

(11)

With the two residual terms defined above, we obtain the forward residual ∇-DB objective:

L−→∇DB-res(xt, xt+1) =
∥∥∥∇xt+1 log P̃F (xt+1|xt)−∇xt+1 log F̃ (xt+1),

∥∥∥2. (12)

4We use the notation of # to indicate quantities of the pretrained model.
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Similarly, we have the reverse residual ∇-DB loss:

L←−∇DB-res(xt, xt+1) =
∥∥∥∇xt

log P̃F (xt+1|xt) +∇xt
log F̃ (xt)

∥∥∥2. (13)

The terminal loss of the residual∇-DB method stays the same form as in Equation 8

L∇DB-terminal(xT ) =
∥∥∥∇xT

log F̃ (xT )− β∇xT
logR(xT )

∥∥∥2. (14)

Proposition 4. If L−→∇DB-res(xt, xt+1) = L←−∇DB-res(xt, xt+1) = 0 for any denoising transition
(xt, xt+1) over the state space and L∇DB-terminal(xT ) = 0 for all terminal state xT , then the re-
sulting forward policy generate samples xT with probability proportional to R(xT )βP

#
F (xT ).

Remark 5. We point out that perform the same way of deriving Equation 11, i.e., subtraction be-
tween GFlowNet conditions from the finetuned and pretrained model, on the DB condition without
gradient, we can obtain a residual DB condition F̃ (xt)PF (xt+1|xt) = P#

F (xt+1|xt)F̃ (xt+1). Mul-
tiplying this condition across time and eliminate the term of intermediate F̃ (xt) will lead to the
objective derived in the relative GFlowNet work [68] as shown in Section B.4, which is a prior
paper that proposes to work on reward finetuning GFlowNets with a given pretrained model.
Remark 6. One may completely eliminate the need for any residual flow score func-
tion with the residual ∇-DB conditions of both directions: ∇xt+1

log P̃F (xt+1|xt) =

−∇xt+1 log P̃F (xt+2|xt+1). The bidirectional residual ∇-DB condition can be analogously un-
derstood as the balance condition of two forces from xt and xt+2 acting on xt+1: if not balanced,
one can locally find some other xt+1 that makes both transitions more probable.
Flow reparameterization through forward-looking (FL) trick. Though mathematically valid,
the bidirectional pair of ∇-DB conditions suffers from inefficient credit assignment for long se-
quences, a problem commonly observed in RL settings [64, 67]. Instead, we may leverage the priors
we have from the pretrained diffusion model to speed up the finetuning process and consider the
individual conditions for the forward and reverse directions. Specifically, we employ the forward-
looking (FL) technique for GFlowNets [45, 82] and parameterize the residual flow score function
with a “baseline” of the “one-step predicted reward gradient”:

∇xt log F̃ (xt) ≜ βγt∇xt log R(x̂θ(xt))︸ ︷︷ ︸
predicted reward

+ gϕ(xt) (15)

where γt is the scalar to control the strength of forward looking with the constraint γT = 1 and
gϕ(xt) is the actual neural network with parameters satisfying the terminal constraint gϕ(xT ) = 0.
Here x̂θ(·) is the one-step clean data prediction defined in Equation 2. With the FL technique, one
achieves faster convergences since it sets a better initialization for the residual flow score function
than a naïve zero or random initialization [45].

We therefore obtain the forward-looking version of residual ∇-DB losses of both directions:

L−→∇DB-FL-res(xt, xt+1) =
∥∥∥∇xt+1

log P̃F (xt+1|xt; θ)−
[
βγt∇xt+1

logR(x̂θ(xt+1)) + gϕ(xt+1)
]∥∥∥2.

(16)
L←−∇DB-FL-res(xt, xt+1) =

∥∥∥∇xt log P̃F (xt+1|xt) +
[
βγt∇xt logR(x̂θ(xt)) + gϕ(xt)

]∥∥∥2. (17)

Moreover, the corresponding terminal loss objective now becomes

L∇DB-FL-terminal(xT ) =
∥∥∥∇xT

log F̃ (xT )− βγt∇xT
logR(xT )

∥∥∥2 =
∥∥∥gϕ(xT )∥∥∥2, (18)

which indicates that the actual parameterized flow network gϕ should take a near-zero value for
terminal states xT . The total loss on a collected trajectory τ = (x0, x1, ..., xT ) is therefore∑

t

[
wF (t)L−→∇DB-FL-res(xt, xt+1) + wB(t)L←−∇DB-FL-res(xt, xt+1)

]
+ L∇DB-FL-terminal(xT ) (19)

where wF (t) and wB(t) are scalar weights to control the relative importance of each term.

We summarize the resulting algorithm in Algorithm 1 in Appendix 1.

Choice of FL scale. Naïvely setting γt = 1 can be aggressive especially when the reward scale β
and the learning rate are set to a relatively high value. Inspired by the fact that in diffusion models
Ft(xt) can be seen as R(x) smoothed with a Gaussian kernel, we propose to set γt = αT−t.

5



Published as a conference paper at ICLR 2025

4 EXPERIMENTS AND RESULTS

4.1 BASELINES

For gradient-free methods, we consider DAG-DB [82] (i.e., GFlowNet finetuning with the DB ob-
jective) and DDPO [5]. Since the original DB objective aims to finetune with Rβ(x) instead of
P#
F (xT )R

β(xT ), we also consider the forward-looking residual DB loss, defined as

LDB-FL-res(xt, xt+1) =
(
log P̃F (xt+1|xt)−β logR(x̂θ(xt+1))− gϕ(xt+1)

+β logR(x̂θ(xt)) + gϕ(xt)
)2

. (20)

For other gradient-aware finetuning methods, we consider ReFL [73] and DRaFT [8]. ReFL samples
a trajectory and stops at some random time step t, with which it maximizes R(x̂θ(xt) where x̂θ(·) is
the one-step sample prediction function and xt is the computed via denoising /∇(xt−1) with /∇ being
the stop-gradient operation. Differently, DRaFT samples time step T − K (typically K = 1) and
expand the computational graph of DDPM from /∇(xT−K) to xT so that R(xT ) can be backprop-
agated to xT−K , with all xt in the previous time steps removed from this computational graph. A
variant of DRaFT called DRaFT-LV performs a few more differentiable steps of “noising-denoising”
on the sampled xT before feeding it into the reward function R(·). We follow the paper of DRaFT
and use only one “noising-denoising“ step: x′T−1 ∼ PB(x

′
T−1|xT ) and x′T ∼ PF (x

′
T |x′T−1).

4.2 REWARD FUNCTIONS, PROMPT DATASETS AND METRICS

For the main experiments, we consider two reward functions: Aesthetic Score [30], Human Prefer-
ence Score (HPSv2) [70, 71] and ImageReward [73], all of which trained on large-scale human pref-
erence datasets such as LAION-aesthetic [30] and predict the logarithm of reward values. For base
experiments with Aesthetic Score, we use a set of 45 simple animal prompts as used in DDPO [5];
for those with HPSv2, we use photo+painting prompts from the human preference dataset (HPDv2)
[70]. To measure the diversity of generated images, we follow Domingo-Enrich et al. [12] and
compute the variance of latent features extracted from a batch of generated images (we use a batch
of size 64). Using the same set of examples, we evaluate the capability of prior preservation, we
compute the per-prompt FID score between images generated from the pretrained model and from
the finetuned model and take the average FID score over all evaluation prompts.

4.3 EXPERIMENT SETTINGS

For all methods, we use 50-step DDPM sampler [19] to construct the MDP. StableDiffusion-v1.5
[52] is used as the base model. For finetuning diffusion model policies, we use LoRA [23] with
rank 8. The residual flow score function in residual ∇-DB is set to be a scaled-down version of
the StableDiffusion U-Net, whereas the flow function (in DAG-DB and residual DB) is set to be a
similar network but without the U-Net decoding structure (since the desired output is a scalar instead
of an image vector). Both networks are initialized with tiny weights in the final output layers.

As the landscape of R(x) can be highly non-smooth, we approximate ∇xt logR(x̂θ(xt))
with Eϵ∼N (0,c)∇xt logR(x̂θ(xt) + ϵ) where c is a tiny constant. For StableDiffusion
[52], since the diffusion process runs in the latent space, the reward function is instead
Eϵ∼N (0,c)∇xt logR(decode(x̂θ(xt) + ϵ)) in which decode(·) is the pretrained (and frozen) VAE
decoder and c is set to 2 × 10−3, slightly smaller than one pixel (i.e., 1/255). We approximate this
expectation with 3 independent samples for each transition in each trajectory. For all experiments,
we try 3 random seeds. We set wF (t) = 1 for all t’s and unless otherwise specified wB(t) = 1.

To stabilize the training process of our method (residual ∇-DB), we follow the official repo of
DAG-DB [82] and uses the following output regularization: λ∥ϵθ(xt) − ϵθ†(xt)∥2 where θ† is the
diffusion model parameters in the previous update step5. For residual ∇-DB, We set the output
regularization strength λ = 2000 in Aesthetic Score experiments and λ = 5000 in HPSv2 and
ImageReward experiments. For all experiments with residual ∇-DB, we set the learning rate to

5Essentially a Fisher divergence between the pretrained and the finetuned distributions conditioned on xt.
Similar regularizations with KL divergence has been seen in RL algorithms like TRPO [55] and PPO [56].
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DAG-DB
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Reward = 5.62

Reward = 8.42

Reward = 7.86

Reward = 8.03

Reward = 6.67

Reward = 6.69
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Figure 2: Comparison between images generated by models finetuned with different methods for a maximum
of 200 update steps. For each method, we pick the model trained that produces images with the highest rewards
without semantic collapse among all model checkpoints, as methods like ReFL and DRaFT-LV easily collapses
(as illustrated in Fig. 3). For each method, we show the average reward of the corresponding presented images.

1 × 10−3 and ablate over a set of choices of reward temperature β, in a range such that the reward
gradients are more significant than the residual policy score function ∇xt logPF (xt+1|xt) of the
pretrained model. For HPSv2 and ImageReward experiments, we set β to be 500000 and 10000,
respectively. For each epoch, we collect 64 generation trajectories for each of which we randomly
shuffle the orders of transitions. We use the number of gradient accumulation steps to 4 and for
each 32 trajectories we update both the forward policy and the residual flow score function. For
residual ∇-DB in most of the experiments, we for training sub-sample 10% of the transitions in
each collected trajectory by uniformly sample one transition in each of the uniformly split time-step
intervals but ensuring that the final transition step always included.

Epoch 10 Epoch 20 Epoch 40 Epoch 70

Residual DB

ReFL

DRaFT-LV

Residual -DB

Figure 3: Our ∇-GFlowNet finetuning yields
stable output compared to other baselines.

For residual DB and DAG-DB, we set the learning rate
to 3×10−4 with the output regularization strength λ = 1
The sampling and training procedures are similar to the
residual∇-DB experiments. For both ReFL and DRaFT,
we use a learning rate of 10−4. For ReFL, we follow the
official repo and similarly set the random stop time steps
to between 35 and 49. For DRaFT, since the official code
is not released, we follow the settings in AlignProp [49],
a similar concurrent paper. We set the loss for both ReFL
and DRaFT to −ExT∼PF

ReLU(R(decode(xT ))) where
the ReLU function is introduced for training stability in
the case of the ImageReward reward function.

4.4 EXPERIMENTAL RESULTS

General experiments. In Figure 6 and Table 1, we show the evolution of reward, DreamSim diver-
sity and FID scores of all methods with the mean curves and the corresponding standard deviations
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Prompt: A painting of a Bladerunner interior room in Africa with detailed artwork.

Prompt: A broken videogame console with a colorful and compelling painting.

Prompt: The image features a castle surrounded by a dreamy garden with roses and a cloudy sky in the background.  
Pretrained Residual DB DDPO ReFL DRaFT-LVResidual -DB

Figure 4: Qualitative results on HPSv2.

Pretrained Residual DB DDPO ReFL DRaFT-LVResidual -DB
Prompt: An IT-guy trying to fix hardware of a PC tower is being tangled by the PC cables like Laokoon. 

Marble, copy after Hellenistic original from ca. 200 BC. Found in the Baths of Trajan, 1506.

Prompt: A zebra underneath a broccoli.

Prompt: A blue colored dog.

Figure 5: Qualitative results on ImageReward.

(on 3 random seeds). Our proposed residual∇-DB is able to achieve comparable convergence speed,
measured in update steps, to that of the gradient-free baselines while those diversity-aware baselines
fail to do so. In Figure 7, we plot the diversity-reward tuples and FID-reward tuples for models
evaluated at different checkpoints (every 5 update steps) and show that our method achieves Pareto
improvements on diversity preservation, prior preservation and reward. The gradient-informed base-
lines, ReFL and the DRaFT variants, generally behave worse than residual∇-DB due to their mode-
seeking nature. Qualitatively, we show that the model finetuned with residual ∇-DB on Aesthetic
Score generate more aesthetic and more diverse samples in both style and subject identity (Fig. 2
and Fig. 24), while the other baselines exhibit mode collapse or even catastrophic forgetting of pre-
trained image prior. We also demonstrate some images generated by the diffusion model finetuned
with residual∇-DB on HPSv2 in Figure 4 and on ImageReward in Figure 5. Furthermore, we qual-
itatively show that residual ∇-DB is robust while with the gradient-informed baseline methods are
prone to training collapse (Fig. 3). Due to limited space, here we only show the most important abla-
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Method

Aesthetic Score HPSv2 ImageReward

Reward
(↑)

Diversity
DreamSim
(↑, 10−2)

FID
(↓)

Reward
(↑, 10−1)

Diversity
DreamSim
(↑, 10−2)

FID
(↓)

Reward
(↑, 10−1)

Diversity
DreamSim
(↑, 10−2)

FID
(↓)

Base Model 5.83 ± 0.01 35.91 ± 0.00 216 ± 1 2.38 ± 0.13 37.75 ± 0.21 563 ± 5 -0.38 ± 0.12 41.09 ± 0.03 468 ± 1

DDPO 6.68 ± 0.14 32.96 ± 1.04 312 ± 9 2.52 ± 0.04 3.49 ± 0.03 681 ± 16 0.27 ± 0.38 38.51 ± 1.49 714 ± 25

ReFL 9.53 ± 0.46 8.20 ± 3.06 1765 ± 51 3.67 ± 0.06 19.84 ± 1.70 1191 ± 46 1.36 ± 0.30 36.50 ± 0.52 597 ± 10

DRaFT-1 10.16 ± 0.13 4.24 ± 0.45 1665 ± 182 3.70 ± 0.06 18.96 ± 1.35 1222 ± 84 1.59 ± 0.25 37.27 ± 0.49 531 ± 13

DRaFT-LV 10.21 ± 0.34 6.39 ± 1.66 1854 ± 296 3.75 ± 0.08 21.13 ± 1.19 1164 ± 43 1.44 ± 0.25 37.56 ± 0.09 529 ± 18

DAG-DB 7.73 ± 0.07 15.88 ± 0.70 595 ± 87 2.52 ± 0.06 32.50 ± 0.59 866 ± 41 4.70 ± 0.75 26.78 ± 0.64 809 ± 34

residual DB 7.20 ± 0.92 19.38 ± 4.07 1065 ± 587 2.55 ± 0.06 32.49 ± 0.47 840 ± 107 6.47 ± 0.54 25.52 ± 0.35 772 ± 19

∇-GFlowNet
(wB=0) 7.86 ± 0.06 29.21 ± 0.18 318 ± 13 3.53 ± 0.03 24.40 ± 0.56 973 ± 5 5.33 ± 0.62 35.85 ± 0.66 638 ± 15

∇-GFlowNet
(wB=1) 7.90 ± 0.09 29.67 ± 0.51 317 ± 15 3.53 ± 0.04 24.39 ± 0.87 1000 ± 39 2.23 ± 0.34 39.85 ± 0.67 501 ± 7

Table 1: Comparison between the models finetuned with our proposed method ∇-GFlowNet (with the objective
residual ∇-DB) and the baselines. All models are finetuned with 200 update steps. For each method, the model
with the best mean reward is used for evaluation. Note that while baselines like DDPO can achieve better scores
on some metric, it often comes with the price of much worse performance on some other.

tion studies and leave the rest to Appendix I. For the same reason, we leave plots for experiments on
HPSv2 and ImageReward to Appendix H and qualitative comparisons on diversity to Appendix L.

Effect of reward temperature. We perform ablation study on Aesthetic Score with β ∈
{5000, 7000, 10000} in residual∇-DB. Not surprisingly, a higher reward temperature leads to faster
convergence at the cost of worse diversity- and worse prior-preservation, as observed in Figure 8.

Effect of sub-sampling. Typically, sub-sampling results in worse gradient estimates. We empir-
ically study how sub-sampling may effect the performance and show the results in Figure 10 and
11 in the appendix. We empirically do not observe huge performance drop due to the subsampling
strategy, potentially because the rich gradient signals in both the reward and the flow are sufficient.

Effect of attenuating scaling on predicted reward. In Fig. 16 and 17, we show that the model
trained without attenuation converges faster, but at the cost of worse diversity and prior-preservation.

Reward finetuning with other sampling algorithms. To show that our method generalizes to
different sampling diffusion algorithms, we construct another MDP based on SDE-DPM-Solver++
[39], with 20 inference steps. In Fig. 18 and 19, we obverse that our residual∇-DB can still achieve
a good balance between reward convergence speed, diversity preservation and prior preservation.

Residual -DB Residual DB DDPO ReFL DRaFT-LV
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Figure 6: Convergence curves of different metrics for different methods throughout the finetuning process on
Aesthetic Score. Finetuning with our proposed residual ∇-DB converges faster than the non-gradient-informed
methods and with better diversity- and prior-preserving capability.

5 RELATED WORK

Reward finetuning of diffusion models. The demand for reward finetuning is commonly seen in
alignment, where one obtains utilize a human reference reward function to align the behavior of
generative models [24, 1, 70] for better instruction following capability and better AI safety. With a
reward function, typically obtained by learning from human preference datasets [86, 63], one may
use reinforcement learning (RL) algorithms, for instance PPO [56], to adapt not only autoregressive
language models [44] which naturally admits a Markov decision process (MDP), but also diffusion
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Figure 7: Trade-offs between reward, diversity preservation and prior preservation for different reward fine-
tuning methods. Dots represent the evaluation results of models checkpoint saved after every 5 iterations of
finetuning, where ones with larger reward, larger diversity scores and smaller FID scores are considered better.
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Figure 8: Higher temperature β leads to faster convergence but with less diversity and less prior preservation.

models [5, 14]. Specifically, one can construct MDPs from some diffusion sampling algorithm [60,
39] by considering each noisy image at some inference step as a state and each denoising step as
an action. Besides RL algorithms, there exist some other approaches, including stochastic optimal
control [12, 66], GFlowNets [82] and some other ones akin to RL methods [32, 13]. While most
of the aforementioned approaches train with only black-box rewards, once we have access to a
differentiable reward function we may accelerate the finetuning process with reward gradient signals.
For instance, methods exist to construct a computational graph from sampled generation trajectories
to directly optimize for rewards [8, 49, 72], yet with these methods models are not trained to correctly
sample according to the reward function. While one may also generate samples from the reward
function without finetuning using plug-in guidance methods for diffusion models [11, 61, 28, 16] as
an alternative, but the generated distributions are often very biased. Besides, reward finetuning for
diffusion models is typically memory consuming as many methods require a large computational
graph rolled out from long generation trajectories, for which it is typical to employ parameter-
efficient finetuning techniques [23, 50, 34].

GFlowNets. Generative flow network (GFlowNet) [3] is a high-level algorithmic framework that
introduces sequential decision-making into generative modeling [77], bridging methodology be-
tween reinforcement learning [80, 46, 47, 45, 31] and energy-based modeling [78]. GFlowNets are
versatile since many models, such as diffusion models, can be easily treated as specifications of
GFlowNets [77, 29, 81, 57]. GFlowNets perform amortized variational inference [41] and generate
samples with probability proportional to a given density or reward. GFlowNets are used in vari-
ous applications including but not limited to drug discovery [25, 26, 58], structure learning [10],
phylogenetic inference [85], combinatorial optimization [76, 79], and prompt adaptation [75].

6 CONCLUDING REMARKS

We propose ∇-GFlowNet, a fast, diversity and prior-preserving diffusion alignment method, by
leveraging gradient information in the probabilistic framework of GFlowNets that aims to sample
according to a given unnormalized density function or reward. Specifically, we develop ∇-DB, the
gradient-informed version of the Detailed Balance objective, and the variant of residual∇-DB with
which one may finetune a diffusion model with reward in a prior-preserving way. Our empirical
results show that ∇-GFlowNet achieves a better trade-off between convergence speed, diversity in
generated samples and prior preservation. We hope that our method sheds lights on future studies on
more efficient post-training alignment strategies of diffusion models as well as related applications.
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A OVERALL ALGORITHM

Algorithm 1∇-GFlowNet Diffusion Finetuning with residual ∇-DB

1: Inputs: Pretrained diffusion model fθ# with the MDP constructed from some Markovian sam-
pler, reward function R(·)

2: Initialization: Model to finetune fθ with θ = θ#, residual flow score function gϕ(·).
3: Sample the initial batch of trajectoriesDprev = {(x1, ..., xT )i}i=1...N with the current finetuned

diffusion model fθ.
4: Set θ† ← θ.
5: while not converged do
6: Sample a batch of trajectoriesDcurr = {(x1, ..., xT )i}i=1...N with the finetuned

diffusion model.
7: Subsample the time steps to train with: the full set Ti = {1, ..., T} or the

sampled set Ti = Sample-N({1, ..., T}) where Sample-N is some unbiased
sampling algorithm to randomly pick N samples.

8: Compute the loss∑
t∈Ti,(x1:T )i∈Dprev

L∇DB-FL-res(xt, xt+1; θ, θ
#, ϕ,R)

+ L∇DB-FL-terminal(xT ;ϕ) + λ∥fθ(xt)− fθ†(xt)∥2.
9: Set θ† ← θ.

10: Update the diffusion model and the residual flow score function.
11: Set Dprev ← Dcurr.
12: end while
13: return finetuned model fθ.
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B ALGORITHMIC DETAILS

B.1 ∇-DB OBJECTIVE AS A STATISTICAL DIVERGENCE

L∇DB (Equation 7) is analogous to a Fisher divergence (up to a constant scale) if we always use
on-policy samples to update the diffusion model and the flow function:

DFisher

(
PF (xt+1|xt)

∣∣∣∣∣∣PB(xt|xt+1)F (xt+1)

F (xt)

)
=

1

2
E

xt+1∼PF (xt+1|xt)

∣∣∣∣∣∣∇xt+1
logPB(xt|xt+1)−∇xt+1

log
PB(xt|xt+1)F (xt+1)

F (xt)

∣∣∣∣∣∣2
=

1

2
E

xt+1∼PF (xt+1|xt)
L∇DB(xt, xt+1). (21)

B.2 PROOF OF PROPOSITION 1

Proof. When the training objectives equal 0 for all states, we would have
∇xt+1

logPF (xt+1|xt) = ∇xt+1
logPB(xt|xt+1) +∇xt+1

logFt+1(xt+1) (22)
∇xt

logPF (xt+1|xt) = ∇xt
logPB(xt|xt+1)−∇xt

logFt(xt) (23)
∇xT

logF (xT ) = β∇xT
logR(xT ) (24)

for any trajectory (x0, . . . , xT ).

Through indefinite integral, these indicate that there exist a function Ct(xt) satisfies
Ct(xt)PF (xt+1|xt) = Ft+1(xt+1)PB(xt|xt+1) (25)
Ft(xt)PF (xt+1|xt) = Ct+1(xt+1)PB(xt|xt+1) (26)

F (xT ) ∝ R(xT )β . (27)
Therefore, we have

Ct(xt)

Ft(xt)
=
Ft+1(xt+1)

Ct+1(xt+1)
, ∀(xt, xt+1). (28)

The right hand side does not depend on xt, therefore, the left hand side is a constant. So we have
Ct(xt) ∝ Ft(xt), ∀t. (29)

The probability of generating a data xT then equals

PF (xT ) =

∫
P0(x0|⊘)

∏
t

PF (xt+1|xt)dx0:T−1 (30)

=

∫
F0(x0)

∏
t

Ft+1(xt+1)PB(xt|xt+1)

Ct(xt)
dx0:T−1 (31)

∝
∫
F0(x0)

∏
t

Ft+1(xt+1)PB(xt|xt+1)

Ft(xt)
dx0:T−1 (32)

∝ F (xT )
∫ ∏

t

PB(xt|xt+1)dx0:T−1 (33)

∝ F (xT ) ∝ R(xT )β , (34)
which proves the validity of the∇-GFlowNet algorithm.

B.3 PROOF OF PROPOSITION 4

When the training objectives equal 0 for all states, we have

∇xt+1
log P̃F (xt+1|xt) = ∇xt+1

log F̃ (xt+1) (35)

∇xt
log P̃F (xt+1|xt) = −∇xt

log F̃ (xt) (36)

∇xT
log F̃ (xT ) = β∇xT

logR(xT ) (37)
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for any trajectory (x0, . . . , xT ).

Through indefinite integral, these indicate that there exist a function Ct(xt) satisfies

Ct(xt)P̃F (xt+1|xt) = F̃ (xt+1) (38)

F̃ (xt)P̃F (xt+1|xt) = Ct+1(xt+1) (39)

F̃ (xT ) ∝ R(xT )β . (40)

Thus we have

Ct(xt)

F̃t(xt)
=
F̃t+1(xt+1)

Ct+1(xt+1)
, ∀(xt, xt+1). (41)

The right hand side does not depend on xt, therefore, the left hand side is a constant. So we have

Ct(xt) ∝ F̃t(xt), ∀t. (42)

The probability of generating a data xT then equals

PF (xT ) =

∫
P0(x0|⊘)

∏
t

PF (xt+1|xt)dx0:T−1 (43)

=

∫
P#
0 (x0|⊘)

∏
t

P#
F (xt+1|xt)

∏
t

P̃F (xt+1|xt)dx0:T−1 (44)

=

∫
P#
0 (x0|⊘)

∏
t

P#
F (xt+1|xt)

F̃t+1(xt+1)

Ct(xt)
dx0:T−1 (45)

∝ F̃T (xT )

∫
P#
0 (x0|⊘)

∏
t

P#
F (xt+1|xt)dx0:T−1 (46)

∝ R(xT )βP#
F (xT ). (47)

Hence zero∇-DB losses in both forward and reverse direction for all (xt, xt+1) pairs yield the ideal
tilted distribution R(xT )βP

#
F (xT ).

B.4 RELATIONSHIP BETWEEN RESIDUAL DB AND TRAJECTORY BALANCE

Here we illustrate the Remark 5. A different but equivalent condition for GFlowNets states:

Trajectory Balance (TB) [40]. The following TB condition must hold for any transition sequence
(s0, s1, ..., sN ) where x0 is the unique starting state in the MDP and sN is a terminal state, given a
GFlowNet with the forward policy PF (s

′|s) and the backward policy PB(s|s′):

log
Z
∏
PF (s

′|s)
R(xT )

∏
PB(s|s′)

= 0 (48)

where Z = F (x0) is the total flow and R(xT ) = F (xT ) the reward. The proof is immediate with a
telescoping product of the DB condition.

With an (ideal) pretrained model P#
F and the satisfication of the finetuning objective of Equation 10,

one can prove the conclusion in [68]:

log
Z
∏
PF (s

′|s)
Z#

∏
P#
F (s′|s)

= β logR(xT ), (49)

which is also an immediate result of a telescoping products of the residual DB condition (which
leads to Equation 20):
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log P̃F (xt+1|xt) = log F̃ (xt+1)− log F̃ (xt). (50)

While Equation 49 and residual DB are mathematically equivalent, implementation-wise TB in
Equation 49 demands the whole sampling sequence be stored in the memory for gradient com-
putation, or one has resort to the time-costly technique of gradient checkpointing. In comparison,
with DB-based methods one may amortize the computational cost into flows at different time steps
and therefore allow diffusion finetuning with flexible sampling sequence, of which the distribution
approximation capacity and generation performance are generally greater.

C GENERALIZATION TO THE LEARNABLE PB SETTING

If the backward process PB is learnable, the resulted PB does not cancel the backward propcess P#
B

in the pretrained model in the derivation of the residual∇-DB condition. Let log P̃B(xt|xt+1; θB) =

logPB(xt|xt+1; θB)− logP#
B (xt|xt+1). We instead have the following residual ∇-DB losses:

∇xt+1
log P̃F (xt+1|xt; θ)−∇xt+1

log P̃B(xt|xt+1; θB) = ∇xt+1
log F̃ (xt+1;ϕ) (51)

∇xt
log P̃F (xt+1|xt; θ)−∇xt

log P̃B(xt|xt+1; θB) = −∇xt
log F̃ (xt;ϕ) (52)

Therefore, we have the general residual ∇-DB losses:

Lforward, general(xt, xt+1)

=
∥∥∥∇xt+1

log P̃F (xt+1|xt; θ)−∇xt+1
log P̃B(xt|xt+1; θB)−∇xt+1

log F̃ (xt+1;ϕ)
∥∥∥2, (53)

and

Lreverse, general(xt, xt+1)

=
∥∥∥∇xt

log P̃F (xt+1|xt; θ)−∇xt
log P̃B(xt|xt+1; θB) +∇xt

log F̃ (xt;ϕ)
∥∥∥2. (54)

D COMMONS AND DIFFERENCES BETWEEN GFLOWNET AND SOFT RL

D.1 GFLOWNET IN THE LENS OF SOFT RL

We restate the finding [65, 9] that, by constructing a special MDP, we may prove that GFlowNet and
soft RL are equivalent when PB is fixed.
Theorem 7. LetM = (G, r) be an MDP define on a DAG G and a reward function r(s, s′) (defined
for any transition s → s′ on G). Let PB be an arbitrary backward transition probability on G.
Suppose for any complete trajectory τ = (s0, s1, . . . , sT ), we have the intermediate reward

r(st, st+1) =

{
1
β logPB(st | st+1) , t ̸= T − 1,

logR(sT ) +
1
β logPB(st | st+1) , t = T − 1.

Then the optimal policy with respect to the following objective (whereH is the entropy function)

π⋆ = argmax
π

Eτ∼π

[
T∑

t=0

r(st, st+1) +
1

β
H (π(· | st))

]
samples terminating states x with probability proportional to R(x)β .
Remark 8. The introduction of the intermediate reward terms logPB(st|st+1) (with fixed PB) es-
sentially anchors the optimal solution around the reference backward policy, which is rather natural
from the generative model perspective and beneficial in creating better optimization landscapes.
Remark 9. Soft RL does not cover the case where PB can be jointly learned.
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D.2 DERIVATION OF ∇-DB WITH SOFT Q-LEARNING

With soft Q-learning [17] (a special case of path consistency learning [43]) in the MDP defined in
Sec D.1 with a fixed PB , one aims at

∆SQL(s→ s′)
∆
= Q(s, s′)− (r(s, s′) + V (s′)) = 0 (55)

where the soft value function is V (s′)
∆
= 1

β log
∑

s′:s→s′ exp (βQ(s′, s′′)) and Q(s, s′) is the soft
Q-value function. One can show that

PF (s
′|s) = exp(βQ(s, s′))∑

s′ exp(βQ(s, s′))
. (56)

Therefore, at optimality where ∆SQL(s → s′) = 0 for all s → s′, we can plug in the definitions
above and obtain

logPF (s
′|s)− logPB(s|s′) = V (s′)− V (s) (57)

which is in the same form of the DB condition. Taking gradients of the above condition with respect
to both s and s′ leads to equivalent∇-DB conditions.

E CORRECTIONS FOR NON-IDEAL PRETRAINED MODELS

For non-ideal pretrained models in which P#
F does not match PB (i.e., the DB condition is violated),

the original residual∇-DB objective is apparently biased. We may introduce an additional learnable
term h(xt, xt+1;ψ) to compensate for this error, with which we have the corrected DB condition for
the pretrained model:

logP#
F (xt+1|xt)− logPB(xt|xt+1) = logF#(xt+1)− logF#(xt)− h(xt, xt+1) (58)

Hence, we have the following residual ∇-DB losses in the case of the imperfect pretrained model:

L−→∇DB-res-v2(xt, xt+1) =
∥∥∥∇xt+1

log P̃F (xt+1|xt)−∇xt+1
log F̃ (xt+1) +∇xt+1

h(xt, xt+1;ψ).
∥∥∥2,

(59)

L←−∇DB-res-v2(xt, xt+1) =
∥∥∥∇xt

log P̃F (xt+1|xt) +∇xt
log F̃ (xt+1) +∇xt

h(xt, xt+1;ψ).
∥∥∥2,

(60)

and the bidirectional∇-DB loss for learning h in the pretrained model:

L−→∇DB-pretrained(xt, xt+1, xt+2) =
∥∥∥∇xt+1

logP#
F (xt+1|xt) +∇xt+1

logP#
F (xt+2|xt+1)

−∇xt+1
logPB(xt|xt+1)−∇xt+1

logPB(xt+1|xt+2)

+∇xt+1h(xt, xt+1;ψ) +∇xt+1h(xt+1, xt+2;ψ)
∥∥∥2. (61)
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F MDP CONSTRUCTION FOR DIFFUSION MODELS

Many typical inference algorithms (or samplers) of diffusion models, including but not limited to
DDPM [19], DDIM [60] and SDE-DPM-solver++ [39], can be abstracted into a loop with the fol-
lowing two steps (with the convention of GFlowNets on time indexing):

1. Computation of predicted clean data. x̂T = f(xt, t).
2. Back-projection of the predicted clean data. xt+1 ∼ N (g(x̂T , t+ 1), σt+1I)

The MDP for diffusion models can therefore be simply constructed as:

• State: (xt, t).

• Transition: xt ∼ N
(
g(f(xt−1, t− 1), t), σtI

)
.

• Starting state: x0 ∼ P (x0) = N (0, σ0I).
• Terminal state: (xT , T ).
• Terminal reward: R(xT , T ).
• Intermediate reward: R(xt, t) = 0.

Since the intermediate rewards are always zero, for terminal rewards we simply writeR(xT ) without
the second argument of T .

With this MDP defined, it is straightforward to apply policy gradient methods to optimize the return
of the sampled on-policy trajectories. For instance, DDPO employs PPO [56] to perform updates.

23



Published as a conference paper at ICLR 2025

G FINETUNING CONVERGENCE IN WALL TIME

We further show the convergence speed measured in relative wall time on a single node with 8
80GB-mem A100 GPUs in Fig. 9.
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Figure 9: Convergence curves of different metrics for different methods throughout the finetuning process on
Aesthetic Score, with the x-axis being the relative wall time. All methods are benchmarked on a single node
with 8 80GB-mem A100 GPUs.
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H RESULTS OF ABLATION STUDY
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Figure 10: Ablation study on the effect of subsampling rate on the collected trajectories for computing the
residual ∇-DB loss.
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Figure 11: Pareto frontiers for reward, diversity and prior-preservation (measured by FID) of models trained
with different subsampling rate. In expectation, higher subsampling rates seem to slightly help in increasing
diversity.
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Figure 12: Convergence curve of metrics of different methods throughout the finetuning process on the HPSv2
reward model.

25



Published as a conference paper at ICLR 2025

0.05 0.10 0.15 0.20 0.25 0.30 0.35

Reward

0.15

0.20

0.25

0.30

0.35

D
re

am
Si

m
 D

iv
er

si
ty

Diversity vs. Reward,  HPSv2

Residual -DB
Residual DB
DDPO
ReFL
DRaFT-LV

0.225 0.250 0.275 0.300 0.325 0.350 0.375

Reward

500

750

1000

1250

1500

1750

2000

2250

Fr
ec

he
t I

nc
ep

tio
n 

D
is

ta
nc

e

FID vs. Reward,  HPSv2

Residual -DB
Residual DB
DDPO
ReFL
DRaFT-LV

Figure 13: Pareto frontiers for reward, diversity and prior-preservation (measured by FID) on HPSv2.
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Figure 14: Convergence curve of metrics of different methods throughout the finetuning process on the Im-
ageReward reward model.
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Figure 15: Pareto frontiers for reward, diversity and prior-preservation (measured by FID) on ImageReward.
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Figure 16: Convergence curve of metrics of different methods throughout the finetuning process on Aesthetic
Score with time-dependent attenuation of predicted rewards. Both models are trained with β = 10000. With
decayed predicted rewards, the convergence speed is slower but due to less aggressive prediction on reward
signal, the model with reward attenuation achives better diversity and prior-preserving results.
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Figure 17: Pareto frontiers for reward, diversity and prior-preservation (measured by FID) on Aesthetic Score
with time-dependent scaling of predicted rewards.
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Figure 18: Convergence curve of metrics of different methods throughout the finetuning process on Aesthetic
Score with the MDP constructed by SDE-DPM-Solver++ (with 20 inference steps).
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Figure 19: Pareto frontiers for reward, diversity and prior-preservation (measured by FID) on Aesthetic Score
with the MDP constructed by SDE-DPM-Solver++ (with 20 inference steps).
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I ADDITIONAL ABLATION EXPERIMENTS

Effect of different prior strengths. It is often of interest to have slightly weaker prior instead
of simply increasing the reward strength, of which the sampling objective is R(xT )βP

#
F (xT )

η .
While it is hard to obtain an exact estimate of P#

F (xT )
η where η ∈ (0, 1] is the prior strength,

one can approximate it with the weighted score function η∇xt
logP#

F (xt, t). Denoting Fη(xt) the
corresponding flow, we have the modified residual ∇-DB conditions.

∇xt+1 logPF (xt+1|xt)−η∇xt+1 logP
#
F (xt+1|xt)︸ ︷︷ ︸

∇xt+1
log P̃F (xt+1|xt): residual policy score function

=∇xt+1 logF (xt+1)−∇xt+1 logF
#
η (xt+1)︸ ︷︷ ︸

∇xt+1
log F̃ (xt+1): residual flow score function

.

(62)

∇xt
logPF (xt+1|xt)−η∇xt

logP#
F (xt+1|xt)︸ ︷︷ ︸

∇xt log P̃F (xt+1|xt): reverse residual policy score function

= ∇xt
logF (xt)−∇xt

logF#
η (xt+1)︸ ︷︷ ︸

∇xt log F̃ (xt): residual flow score function

.

(63)

We experiment with choices of prior strengths η and observed in Fig. 20 and 21 that lower η lead to
better diversity-reward trade-off and faster reward convergence.
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Figure 20: Convergence curve of metrics of different methods throughout the finetuning process on Aesthetic
Score with different prior strength η.
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Figure 21: Pareto frontiers for reward, diversity and prior-preservation (measured by FID) on Aesthetic Score
with different prior strength η.

Effect of 2nd-order gradients in finetuning. In Fig. 22 and 23, we show the comparison between
models with and without 2nd-order gradients, where both models are trained with β = 10000. Em-
pirically, 2nd-order gradients hurts the trade-off between reward convergence, diversity preservation
and prior preservation.
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Without 2nd-order Gradient With 2nd-order Gradient
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Figure 22: Convergence curve of metrics of different methods throughout the finetuning process on Aesthetic
Score with and without 2nd-order gradients.
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Figure 23: Pareto frontiers for reward, diversity and prior-preservation (measured by FID) on Aesthetic Score
with and without 2nd-order gradients.
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J MORE SAMPLES (AESTHETIC SCORE)

Figure 24: Additional uncurated samples from the model finetuned with residual ∇-DB on the reward model
of Aesthetic Score.
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K MORE SAMPLES (HPSV2)

Residual DB

DDPO DRaFT-LV

Residual -DB

Prompt: An ultra-realistic illustration of a bird god swinging a gold metal stick weapon, 
with a blue man face and yellow bird mouth, and intricate traditional Chinese elements..  

Residual DB

DDPO DRaFT-LV

Residual -DB

Prompt: A female archer elf leads a group of adventurers through a forest of crystal trees in a fantasy matte painting.  

Figure 25: More comparison between samples generated by residual ∇-DB and the baseline methods. The
model finetuned with residual ∇-DB is capable of following the instructions while generating diverse samples.
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Residual DB

DDPO DRaFT-LV

Residual -DB

Prompt: A surreal cat with a smile and intricate details.  

Residual DB

DDPO DRaFT-LV

Residual -DB

Prompt: Redhead punk girl playing electric guitar in an oil painting masterpiece.  

Figure 26: HPSv2 samples, Continued.
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L QUALITATIVE COMPARISON ON DIVERSITY OF SAMPLES GENERATED BY
DIFFERENT METHODS

Below we show uncurated samples generated by models finetuned with different methods with
propmts cat, bird, rabbit, bird, kangaroo.
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Figure 27: Uncurated samples generated by models finetuned with different methods with prompt cat.
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Figure 28: Uncurated samples generated by models finetuned with different methods with prompt bird.
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Figure 29: Uncurated samples generated by models finetuned with different methods with prompt rabbit.
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Figure 30: Uncurated samples generated by models finetuned with different methods with prompt deer.
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Figure 31: Uncurated samples generated by models finetuned with different methods with prompt kangaroo.
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