
Under review as a conference paper at ICLR 2023

A PROOFS

A.1 DERIVATION OF EQUIVALENT EFFICIENT OPTIMIZATION OBJECTIVE

We first demonstrate that our loss function is an upper bound of the negative log-likelihood.

− log p(G) ≤ KL(p(Z|G; θenc)||q(Z|G; θdec)− log p(G)
= −Ep(Z|G;θenc) log q(Z|G; θdec)− log p(G) + Ep(Z|G;θenc) log p(Z|G; θenc)
= −Ep(Z|G;θenc) log q(G,Z; θdec) + Ep(Z|G;θenc) log p(Z|G; θenc)
= −Ep(Z|G;θenc) log q(G|Z; θdec)− Ep(Z|G;θenc) log pθ(Z) + Ep(Z|G;θenc) log p(Z|G; θenc)
= −Ep(Z|G;θenc) log q(G|Z; θdec) +DKL(p(Z|G)||pθ(Z))

= Lrec + Ldiff

(18)

The second term in Ldiff is the negative entropy of the latent variable and has a simply expression
w.r.t. the posterior variance:

Ep(Z|G;θenc) log p(Z|G; θenc) = −H(µ(G; θenc) +Σ
1
2 (G; θenc)E), (19)

with E ∼ N (0, INF×NF). For simplicity, we drop G, θenc and omit the constant that is irrelevant of
the model, we have

H(µ+ΣE) = log |Σ|
2

− 1

2
Ex∼N (µ,Σ)(x− µ)TΣ−1(x− µ)

=
log |Σ|

2
− 1

2
Ex∼N (µ,Σ)Tr((x− µ)TΣ−1(x− µ))

=
log |Σ|

2
− 1

2
Ex∼N (µ,Σ)Tr(Σ

−1(x− µ)(x− µ)T)

=
log |Σ|

2
− 1

2
Tr(Ex∼N (µ,Σ)Σ

−1(x− µ)(x− µ)T)

=
log |Σ|

2

(20)

Using Eq.9 as the first term in Ldiff , thus one can efficiently estimate Ldiff .

A.2 INTRACTABILITY OF CLASSICAL SCORE-MATCHING OBJECTIVES

We demonstrates the intractability of classical score-matching objectives. We can not directly
optimize the classic score-matching objectives, due to the intractability of SGM prior pθ(Z). The
explicit score-matching objectives has the form:

LESM = Et∼U(0,T)

[
Eq(Zt)[||sθ(Zt, t)−∇ log qt(Zt)||22]

]
, (21)

with the estimation sθ(Zt, t). But ∇ log qt(Zt) depends on pθ(Z0) and thus intractable:

qθ(Zt) =

∫
q(Zt|Z0)qθ(Z0)dZ0. (22)

One can develop the connection between explicit score-matching objective with the denosing score-
matching objective which is the standard objective in SGMs, and we provide a detailed derivation
here:

LESM = Et∼U(0,T)

[
Eq(Zt)||sθ(Zt, t)||22 − 2Eq(Zt)⟨sθ(Zt, t),∇ log qt(Zt)⟩

]
+ C1

= Et∼U(0,T)

[
||sθ(Zt, t)||2L2

− 2Eq(Zt)⟨sθ(Zt, t),
∇qt(Zt)

qt(Zt)
⟩
]
+ C1,

(23)

where

C1 = Et∼U(0,T)Eq(Zt)||
∇qt(Zt)

qt(Zt)
||22 (24)

15

Under review as a conference paper at ICLR 2023

The latent space is assumed to be continuous with positive density function, and thus:

Eq(Zt)⟨sθ(Zt, t),
∇Zt · qt(Zt)

qt(Zt)
⟩ =

∫
⟨sθ(Zt, t),∇Zt · qt(Zt)⟩dZt

=

∫
⟨sθ(Zt, t),∇Zt ·

∫
qt(Zt|Z0)q(Z0)dZ0⟩dZt

=

∫
⟨sθ(Zt, t),

∫
∇Zt

· qt(Zt|Z0)q(Z0)dZ0⟩dZt

=

∫ ∫
⟨sθ(Zt, t),∇Zt

· qt(Zt|Z0)q(Z0)⟩dZ0dZt

=

∫ ∫
⟨sθ(Zt, t), q(Z0)q(Zt|Z0)∇Zt

· log qt(Zt|Z0)⟩dZ0dZt

=

∫ ∫
q(Z0)q(Zt|Z0)⟨sθ(Zt, t),∇Zt

· log qt(Zt|Z0)⟩dZtdZ0

= Eq(Z0)Eq(Zt|Z0)⟨sθ(Zt, t),∇Zt
· log qt(Zt|Z0)⟩.

(25)
Plugging the Eq.25 into LESM , we have:
LESM = Et∼U(0,T)

[
||sθ(Zt, t)||2L2

− 2Eq(Z0)Eq(Zt|Z0)⟨sθ(Zt, t),∇Zt
· log qt(Zt|Z0)⟩

]
+ C1

= Et∼U(0,T)

[
Eq(Zt,Z0)||sθ(Zt, t)−∇Zt

· log qt(Zt|Z0)||22
]
+ C2

= LDSM + C2

(26)
As a result, we can calculate the difference between explicit score-matching and denosing score-
matching objectives.

C2 = E||∇ log qt(Zt)||22 − E||∇Zt · log qt(Zt|Z0)||22 (27)
If one directly diffuse the observed data with prefixed diffusion coefficient, then C2 is indeed a
constant. But if the diffusion is performed on the learned latent space with prior pθ(Z0), then C2

will depend on the learnable parameter θ, even if the forward diffusion is fixed:

qθ(Zt) =

∫
q(Zt|Z0)qθ(Z0)dZ0 (28)

and thus the denosing score matching is also intractable. But the objectives we use, as Eq.9, do not
include the term qθ(Zt) and thus tractable.

A.3 DETAILED EXPLANATION OF SELF-GUIDANCE

Here we present a continuous-time setting of self-guidance mechanism: After embedding, we have
latent Z0 with pseudo label c, with joint distribution p(Z, c). In the forward SDE, only the latent Z
is diffused:

dZ = f(t)Zdt+ g(t)dw, Z ∼ p(Z|c) (29)
By designing the drift coefficient f(t), the resulting noise ZT is determined entirely by a independent
Brownian motion and forget the initial distribution Z0. For example, we can design:∫ T

0

f(s)ds = ∞ (30)

So the reverse process start with a known prior with label c. To reverse the process, we need the
reverse SDE with the following form:

dẐ = (f(t)Ẑ − g(t)2∇Ẑ log qt(Ẑ|c))dt+ g(t)dw̄. (31)

In other word, we need to estimate the conditional score function ∇Ẑ log qt(Ẑ|c) to generate sample
with label c. Using probability chain rule, one can decompose the conditional score function as:

∇Ẑ log qt(Ẑ|c) = ∇Ẑ log qt(c|Ẑ)−∇Ẑ log qt(Ẑ) (32)
and estimate each part. Real-world graph sets usually do not have explicit label, and thus our model
leverages pseudo label to improve the sample quality and cover the whole distribution of target
unlabeled graph set by performing self-guidance, as described in section 3.2.

16

Under review as a conference paper at ICLR 2023

B ADDITIONAL DETAILS AND EXPERIMENTS

B.1 IMPLEMENTATION DETAILS AND HYPERPARAMETERS

Implementation Details of Generic Graph Generation In generic graph generation tasks, we
follow the standard setting of existing works (You et al., 2018; Liu et al., 2019; Niu et al., 2020b; Jo
et al., 2022). Specifically, we report the result means of 30 runs, 3 different runs for 10 independently
trained models on Ego-small and Community-small datasets. And due to the costly training procedure
of GraphVAE and EDP-GNN, we report the result means of 3 different runs on Enzymes and Grid
datasets. As for the baseline methods implementation, we follow the hyperparameter settings that
provided by original works. For SGGM with SLD, we first initilize the node features with the
one-hot embedding of the degrees, and then pretrain a variational graph autoencoder. The pretrained
autoencoder will initialize a hierarchical pseudo label set by iteratively clustering on all the latent
embeddings of the training dataset. The number of classes and hierarchies are detailed in Tab.4 and
the hierarchical psuedo label set will be further utilized in SGGM for self-guided diffusion generation
with periodic update. We perform the grid search to choose the proper numbers for the hierarchies
and classes. After we train SGGM with SLD, we the best MMD with the lowest average of three
graph statistics, degree, clustering coefficient, and orbit. For the datasets with small graphs, we use
two-layer graph encoder and decoder and a two-layer convolution for score matching while they are
of more layers for modeling large graphs, please refer to Tab.4 for further details.

Implementation Details of Molecular Graph Generation In the experiments of molecular graph
generation, each molecule is represented by a graph with the node features X ∈ {0, 1}N×F and
the adjacency matrix A∈{0, 1, 2, 3}N×N , where N denotes the number of atoms in the molecule,
and F denotes the number of atom types. The entries of A represent the bond types, i.e. single,
double, or triple bonds. Following the standard process of existing works (Shi et al., 2020; Luo et al.,
2021b; Jo et al., 2022), the molecules are kekulized by the RDKit library Landrum et al. (2016) and
hydrogen atoms are deleted. The whole training pipeline of molecular graph generation is similar to
that of generic graph generation, which has been introduced in last paragraph. For further detailed
hyperpameter settings, please refer to Tab.4. The novelty value can influence the FCD and NSPDK
MMD values. With respect to the evaluation, we choose the hyperparameters that exhibit the best
FCD value among those which show the novelty that exceeds 85%. As demonstrated in section 4, we
conduct the experiments for extensibility analysis. The geometrical and torsional diffusion processes
that used in experiments are implemented according to the published code of their original works
(Xu et al., 2021b; Jing et al., 2022).
Table 4: We provide hyperparameters of SGGM with SLD that used in the generic graph generation
tasks and the molecule generation tasks.

Hyperparameter Ego-small Community-small Enzymes Grid QM9 ZINC250k

sθ
Number of convolutional layers 2 3 5 5 2 2
Hidden dimension 32 32 32 32 16 16

fenc
Number of graph layers 2 2 3 3 2 2
Hidden dimension 32 32 32 32 16 16

fdec
Number of graph layers 2 2 3 3 2 2
Hidden dimension 32 32 32 32 16 16

Hierachical label Number of hierarchies 2 2 3 3 3 3
Number of update epochs 50 50 50 50 5 5
Number of classes {6, 2} {6, 2} {12, 4, 2} {12, 4, 2} {12, 4, 2} {12, 4, 2}

Loss Objective Weight α 1 1 1 1 1 1
Weight β 0.5 0.5 0.5 0.5 0.5 0.5

Train

Optimizer Adam Adam Adam Adam Adam Adam
Learning rate 1× 10−2 1× 10−2 1× 10−2 1× 10−2 5× 10−3 5× 10−3

Weight decay 1× 10−4 1× 10−4 1× 10−4 1× 10−4 1× 10−4 1× 10−4

Batch size 128 128 64 8 1024 1024
Number of epochs 5000 5000 5000 5000 300 500
Number of sampling steps 600 600 600 600 600 600

B.2 ADDITIONAL EXPERIMENTAL RESULTS

In this subsection, we provide additional experimental results for illustration: generic and molecular
graph generation results with the standard deviation; visualization of small, middle, and large graphs
generation results.

17

Under review as a conference paper at ICLR 2023

Table 5: We report the MMD distance between the test datasets and generated graphs with the
standard deviation on the Ego-small and the Community-small datasets.

Ego-small Community-small

Real, 4 ≤ |V | ≤ 18 Synthetic, 12 ≤ |V | ≤ 20

Deg. Clus. Orbit Deg. Clus. Orbit

SGGM 0.025 ± 0.005 0.028 ± 0.004 0.009 ± 0.005 0.041 ± 0.015 0.079 ± 0.134 0.010 ± 0.003
SGGM+SLD 0.014 ± 0.006 0.019 ± 0.006 0.007 ± 0.004 0.035 ± 0.017 0.071 ± 0.015 0.006 ± 0.003

Table 6: We report the MMD distance between the test datasets and generated graphs with the
standard deviation on the Enzymes and the Grid datasets.

Enzymes Grid

Real, 10 ≤ |V | ≤ 125 Synthetic, 100 ≤ |V | ≤ 400

Deg. Clus. Orbit Deg. Clus. Orbit

GraphRNN 0.017 ± 0.007 0.062 ± 0.020 0.046 ± 0.031 0.064 ± 0.017 0.043 ± 0.022 0.021 ± 0.007
GraphAF 1.669 ± 0.024 1.283 ± 0.019 0.266 ± 0.007 - - -
GraphDF 1.503 ± 0.011 1.061 ± 0.011 0.202 ± 0.002 - - -
GraphVAE 1.369 ± 0.020 0.629 ± 0.005 0.191 ± 0.020 1.619 ± 0.007 0.0 ± 0.000 0.919 ± 0.002
EDP-GNN 0.023 ± 0.012 0.268 ± 0.164 0.082 ± 0.078 0.455 ± 0.319 0.238 ± 0.380 0.328 ± 0.278
GDSS 0.026 ± 0.008 0.061 ± 0.010 0.009 ± 0.005 0.111 ± 0.012 0.005 ± 0.000 0.070 ± 0.044

SGGM 0.030 ± 0.005 0.073 ± 0.008 0.013 ± 0.005 0.114 ± 0.010 0.0 ± 0.0 0.065 ± 0.024
SGGM+SLD 0.022 ± 0.004 0.062 ± 0.006 0.007 ± 0.002 0.103 ± 0.006 0.0 ± 0.0 0.053 ± 0.014

Table 7: Graph generation results are the means and the standard deviations of 3 runs on the QM9
dataset. Validity is the fraction of the generated molecules that do not violate the chemical valency
rule. Uniqueness is the fraction of the valid molecules that are unique. Novelty is the fraction of the
valid molecules that are not included in the training set.

Method Validity w/o ↑ NSPDK ↓ FCD ↓ Validity (%) ↑ Uniqueness (%) ↑ Novelty (%) ↑correction (%) MMD

GraphAF 67 0.020±0.003 5.268±0.403 100.00 94.51 88.83
GraphDF 82.67 0.063±0.001 10.816±0.020 100.00 97.62 98.10
MoFlow 91.36±1.23 0.017±0.003 4.467±0.595 100.00±0.00 98.65±0.57 94.72±0.77
EDP-GNN 47.52±3.60 0.005±0.001 2.680±0.221 100.00±0.00 99.25±0.05 86.58±1.85
GraphEBM 8.22±2.24 0.030±0.004 6.143±0.411 100.00±0.00 97.90±0.14 97.01±0.17
GDSS 95.72±1.94 0.003±0.000 2.900±0.282 100.00±0.00 98.46±0.61 86.27±2.29

SGGM 95.91±1.73 0.006±0.001 2.745±0.264 100.00±0.00 98.52±0.15 96.61±1.75
SGGM+SLD 97.35±1.21 0.004±0.000 2.593±0.191 100.00±0.00 99.41±0.11 97.49±1.32

Table 8: Graph generation results are the means and the standard deviations of 3 runs on the ZINC250k
dataset. Validity is the fraction of the generated molecules that do not violate the chemical valency
rule. Uniqueness is the fraction of the valid molecules that are unique. Novelty is the fraction of the
valid molecules that are not included in the training set.

Method Validity w/o ↑ NSPDK ↓ FCD ↓ Validity (%) ↑ Uniqueness (%) ↑ Novelty (%) ↑correction (%) MMD

GraphAF 68 0.044±0.006 16.289±0.482 100.00 99.10 100.00
GraphAF+FC 68.47±0.99 0.044±0.005 16.023±0.451 100.00±0.00 98.64±0.69 99.99±0.01
GraphDF 89.03 0.176±0.001 34.202±0.160 100.00 99.16 100.00
GraphDF+FC 90.61±4.30 0.177±0.001 33.546±0.150 100.00±0.00 99.63±0.01 100.00±0.00
MoFlow 63.11±5.17 0.046±0.002 20.931±0.184 100.00±0.00 99.99±0.01 100.00±0.00
EDP-GNN 82.97±2.73 0.049±0.006 16.737±1.300 100.00±0.00 99.79±0.08 100.00±0.00
GraphEBM 5.29±3.83 0.212±0.075 35.471±5.331 99.96±0.02 98.79±0.15 100.00±0.00
GDSS 97.01±0.77 0.019±0.001 14.656±0.680 100.00±0.00 99.64±0.13 100.00±0.00

SGGM 97.28±0.78 0.018±0.001 13.931±0.625 100.00±0.00 98.87±0.14 100.00±0.00
SGGM+SLD 98.32±0.71 0.014±0.001 11.379±0.597 100.00±0.00 99.83±0.11 100.00±0.00

18

Under review as a conference paper at ICLR 2023

C GENERATION OF SMALL, MIDDLE AND LARGE GRAPHS

We visualize the graphs of small, middle, and large scales from the training datasets and the generated
graphs of SGGM with SLD for each dataset in Fig.3-5. We randomly choose samples from the
training datasets and the generated graph set for visualization, with e denotes edges number and n
denotes nodes number.

Figure 3: Visualization of the graphs sampled from the Ego-small dataset and the generated graphs of
SGGM with SLD.

Figure 4: Visualization of the graphs sampled from the ENZYMES dataset and the generated graphs
of SGGM with SLD.

19

Under review as a conference paper at ICLR 2023

Figure 5: Visualization of the graphs sampled from the Grid dataset and the generated graphs of
SGGM with SLD.

20

	Proofs
	Derivation of Equivalent Efficient Optimization Objective
	Intractability of Classical Score-Matching Objectives
	Detailed Explanation of Self-Guidance

	Additional Details and Experiments
	Implementation Details and Hyperparameters
	Additional Experimental Results

	Generation of Small, Middle and Large Graphs

