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Outline. Additional technical details are given in Section Al The proofs are provided in Section Bl.
Finally, we give additional empirical results in Section O.

A TECHNICAL DETAILS
Additional technical details are presented here.

Label combiner parameter search. Recall that the label combiner requires two parameters: the
combining weight w € [0, 1] and the quality score threshold 6 € [0,1]. We adopt a simple grid
search approach to select w and #. More precisely, we first create a parameter candidate set PC'S =
{wo, w1, wa, - ,wpr} X {0o,01,02,---,0n}, where w,, = 7 and §; = ;. Next, for each
(w,8) € PCS, we evaluate the performance of combining the base service and the kth service
using (w, ), and select the parameter that gives the highest accuracy. Note that this involves M2
number of label combinations for each k& € [K]. In practice, we have found that M = 10 is sufficient
to obtain a good combiner.

0 selection in Algorithm 0. A naive approach is to set a small constant value, say, § = 0.01.
To obtain a more accurate strategy, we can adopt a search algorithm to select the best § value
based on the evaluation the performance on a validation dataset. More precisely, we first cre-

ate a constant set CS. Then for each a € CS, let § = alOZgVN , and then solve Problem B2 to
obtain the parameter p, evaluate the performance on a validation dataset. Finally, we select the
a € CS that achieves the highest accuracy on the validation dataset. In practice, we have found that

CS ={-10,-9,-8,---,0,1,2,---,10} is sufficient to obtain a highly accurate solution.

B PROOFS

For ease of notations, let us introduce b2 p— Coase and é; 2 ¢ - 1 k=base first. Then we can rewrite
the API selection problem (Problem B) as

1 N K
ZERNXK N;;anak(m")
1 N K X )
st ;;kack <b (B.1)

K
> Znk=1,Y0;Z € {0,1},Yn,k
k=1

Its corresponding linear programming simply becomes

N
1
28, T 2y Zniln(an)
N K
1 )
st SN Zser<b (B.2)
n=1k=1

K
ZZn,k = LVn;Zn’k S [O7 1],Vn7]§
k=1

We will analyze some useful properties for those two problems first, and then prove the desired
results for the original API selection problem on top of those properties.
B.1 HELPFUL LEMMAS

Before proving the desired results, let us also provide a few generic lemmas.
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Lemma 3. Let A € RN1*N2 pe q fixed matrix and B € R™ be a random vector. If B is supported
on [0, 1]N* with a continuous density function, then with probability I,

min [[Az — B0 = N1 — N».
x

Proof. If N1 < Ns then the above inequality obviously holds. Suppose N1 > N,. We prove this
by contradiction. Assume the inequality does not hold. Then there exists some z’, such that with
probability larger than O,

| Az’ — Bllo < Ni — No.

That is to say, at least Ny — (N7 — N3) + 1 = Ny 4+ 1 many equations in Az’ = 3 can be forced to
0. Let U be the set of those N2 + 1 indexes. Then formally we have

.AUﬁlziﬂU.
That is to say, with probability larger than 0, B is in the subspace formed by the columns of Ay .

On the other hand, we can show that for any set of indexes V' with |V| = Na + 1, By lies in the
subspace formed by the columns of Ay with probability 0, which gives a contradiction. To see
this, let us start by considering a fixed set of indexes V. Let Qy denote the subspace formed by
Ay and pg, () be the density function of By,. The density function of B is continuous and thus
P, (+) is also continuous. The support of B is in [0, 1]V, and thus the support of By is in [0, 1]V2F1
(since |V| = N3 + 1 by definition). That is to say, pg, (-) is a continuous function on a compact
set. Therefore, pg,, (-) must be bounded, i.e., there exists a constant p"P such that pg,, () < p*P.
Hence we have

Pilpy el = [

ey

ppy (T)dz < /

Ty EQy

p*Pdx = p°'P / ldz
Ty EQy

where the first equation is by definition of the random variable By, the inequality is by increasing
the density function to its upper bound p*"P, and the last equation simply moves the constant out of
the integral. In addition, Qy is a N5 + 1 dimensional space spanned by N, vectors, which implies

that its measure in RV211 {5 0, i.e, f 1dz = 0. Thus, we have just shown that
Ty EQy

Pr[ﬂVGQV]SpSUP/ ldz =0
Ty EQy
Probability is non-negative, and thus Pr[8y € Qy] = 0 (for a fixed V). Note that the size of V' is

Ny + 1 and there are in total /N7 possible indexes. Thus, there are ( N];]jrl) many possible choices of

V. Applying union bound, we have for any V, Pr[8y € Qy] = 0. A contradiction. The assumption
is incorrect, and thus we must have

min [Az — B0 =2 N1 — Na.
x
O

Lemma 4. Let f be a function defined on 2. Assume there exists a set 2, 1 C €, such that for
any z € ), there exists 2’ € 1, such that ||f(z) — f(2)|| < A. Then we have

1£(z%) = f(zDII < A,

where z* = arg max,cq, f(2),2] = argmax,cq, , f(2).

Proof. By assumption, there exists a 2’ € €, 1, such that

If(z") = @) <A
which implies
@)= fz") - A

Noting that 27 is the optimal solution on €2, ; and 2’ is a feasible solution, we have

fz1) = f(Z)

Combining the above two inequalities, we have

fz1) = f(z7) - A
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On the other hand, since €2, ; C €2, 27 is a feasible solution on {2, and thus we have

f2) < f(27) < f(z7) + A

Combing those two inequalities we have

1f(z1) = fz) <A

which completes the proof. O

Lemma 5. Let X1, X5, -+, Xn, and X1, X}, - Xp, be two Li.d. samples from the same distri-
bution which lies in [Ting, Tsup|. Then we have with probability 1 — ¢,

N2 Nl
1 1 log4 —loge \/1og410ge
— ), GA— X, < — Tip .
N, nzzl " TN nzzl nll < (@sup = Tine) l\/ N, 2N,

Proof. We can apply the Hoeffding’s inequality for both sequences separately, and we can obtain
with probability 1 — €,

log2 —loge
||7 Z Xn - Xl H < (miup Tinf T
and with probability 1 — €
log2 —loge
!/
”7 ZX Xl H < (msup Tinf T
Now applying union bound, we have with probability 1 — ¢,
log4 —loge
||7 HZIX Xl H < (xsup Tinf T
and 1 —e¢
log4 —loge
!/
||7 ZX Xl H < (xsup Tinf T

Now applying the triangle mequahty, we have

N Ny
1 1 log4 — loge \/log4—loge
FYE X, ~ AT Xn < sup — <inf
No nzzl "N nzzl IS (@oup = in) [\/ oN, T 2N,

which completes the proof. O

Lemma 6. Let f1, fa, g1, g2 be functions defined on Q, such that max,cq, |(f12) — f2(2)] < A
and maxzcq, ||92(2) — g1(2)|| < As. Suppose

2] = arg maxfi(z)
S.t.gl (Z) S 0
and
23 = arg max fa(z)
s.t.g2(2) < Ag,

then we must have

f1(23) = fi(z]) — 24,
gl(zz) S 2A2.
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Proof. Note that max,cq, |(f1(2) — f2(2)] < Ay implies fi1(z) > fa(z) — Ay for any 2z € Q.

Specifically,
fi1(25) > fa(z3) — Ay

Noting max,cq, |92(2) — g1(2)]] < Az, we have g2(27) < g1(2]) — Az < —A,, where the
last inequality is due to g;(2%) < 0 by definition. Since, 27 is a feasible solution to the second
optimization problem, and the optimal value must be no smaller than the value at 27. That is to say,

fa(23) = f2(21)

Hence we have

fl(ZZ) > fa(25) — A1 = fa(27) — Ao
In addition, max,cq, |(fi1(2) — f2(2)] < A; implies fa(2) > f1(2) — Ay for any z € Q,. Thus,
we have fo(27) > f1(z)7 — Ap and thus

f1(23) > fa(27) — A1 > fi(2]) — 244

By max,cq, |g1(2) — 92(2)| < A,y, we must have g1(23) < g2(25) + Ag < 2A,, where the last
inequality is by definition of z’, which completes the proof. O

B.2 PROOF OF THEOREM [0

Proof. We give a constructive proof via explicitly giving the value of p*. In fact, let p* and ¢* be
the optimal solution to

rzr)l}]n bp + nz:l qn
1 1 (B.3)
s.t.chp +q, > Nak(xn)
p,q 20

Then our goal is to show that for this constructed p*, sP” is a feasible solution to Problem Bl and
r(sP7) > r(s*)— + with probability 1 (Since probabilistic statement is only introduced in Lemma B
whose result holds with probability 1, and we only apply it finite times, we will omit the probabilistic
statement for the rest of the proof for simplicity). To achieve this, let us construct a N x K matrix

SN
Zn,k - ]lsp* (xn)=k

It is not hard to see that s?" (v,,) = argmaxy Zf;k. By construction of s?", feasibility of s*" to

Problem Bl is equivalent to feasibility of Z”" to Problem B By construction of s* and s?,
r(sP") > r(s*) — & is equivalent to

1 . N K 1
szzﬁkak Tn) N;; k8 (Tn) N

Therefore, our goal becomes showing the feasibility of ZP" and the above inequality. By construc-
tion of Z¥ , the natural constraints (Z? , € {0,1} and Zszl Z¥ . =1,Vn) are obviously satisfied.
Thus, we only need to show ZP" satisfies the budget constraint and the above inequality. To show

those two results, let us introduce another variable Z*~¥ which represents a sparse optimal solu-
tion to the relaxed version of Problem B (i.e., Problem B™). The proof idea is then (roughly) to

show (i) that Z" s actually close to Z “LP (ii) that Z “LP gatisfies the budget constraint and gives
an estimated accuracy as high as that of the optimal solution Z*, and (iii) that the difference between

ZP" and Z**" does not break the budget constraints and only decreases the estimated accuracy by
1/N. Combining the three points finishes the proof. Now we formalize this idea.

Step 1: We first show that ZP~ and Z*'“ are close to each other.

Lemma 7. Let Z*LT be an optimal solution to Problem BZ. Then there exists some constant 1/,
such that Z¥. = Zw " wn £ .
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Proof. Note that Problem B33 is the dual problem to Problem BZ. We can write the complementary
slackness constraints as follows

1 1
ZW (e + a4 - Ndk(x")) =0,vn,k

N

Now let us construct the matrix

%éa 17 07 ) O
1,
%é7 0) 07 ’ 1
and the vector .
a(r1)
1 |a(z2)
_ RNK
B N :
d(ﬂl‘N)

Then by Lemma B, min, |[Az — B|lo > NK — N — 1. Specifically, if z = [p*,¢*7]", then
we should have ||[Az — B|lo > NK — N — 1. Note that each row of Az — ,3 corresponds to
—ckp +q — Jbak(xn) and thus we effectively have

1 1
P @ — k(@) £ 0

for atleast NK — N — 1 choices of n, k. In other words, among all possible choices of n, k, at most
N + 1 many of them satisfies

flA *+q; —lA( )=0
C —_ a ’I'L:
Nkp q, Nkl“

Furthermore, note that the constraint ZkK 123EF (2,,) = 1 ensures that for any n, there must exist

at least one k' such that Z:;’ﬁp # 0 and thus +cpp* + g} — %@ (z,) = 0. By the pigeon-
hole principle, we can conclude that for all n except one (denoted by n'), exactly one equation in
{&erp* + ¢, — %ax(x,) = 0} can be satisfied.

Now let us fix any n # n’. Then there exists some &/, such that 3¢/ p* + ¢, — +ay (z,) = 0, and

for any k # K/, chp +4q; — ak(x”) > 0 (due to the natural constraint in Problem B33). That
is to say, for any k # K/,

1.,
— Qg (:L'n)

1 * * 1. 1 * *
—cxp" +q, — —ai(ry) > 0= —cpp” +q,, — N

N N N
Multiplying N and rearranging the terms gives

ap (xn) — cpp™ > ap(x,) — cpp”

That is to say, k' is the unique solution to maxy ax(x,) — cxp*. By definition of Z"", we have
ZP ., =1land Z¥ = 0,Vk # k. Meanwhile, for any k # k', by the slackness constraint, since

, ]{,ckp* +qf — % ~ak(7,) > 0, we must have Z *’LP = 0. The natural constraint in Problem B2

requires Y1, *LP—I Thus, we have Z” k, —Zk L ZoEE — ke Z *LP—l.

,LP
Sy

That is to say, for any n # n’, we always have Z ﬁ , which completes the proof. O

. 1 N K p* 4 1 N K ~ 1
Step 2: Now we can show « >, >y Z) 1an(2n) > § Dy Yopey Zop@k(20) — - To
see this, by Lemma [, Zﬁ_’_ = ZZ’,.LP, VYn # n/, we must have

*,LP a *LPA /
75 EZkakwn E kakxn:NEZn’k n

n=1 k=1 n=1k=1

n’ ka'k

TTMN
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As ay(x},) is bounded in [0, 1], we have

K K K
1 p Sp* 1
* LPA ~ *LP *,LP
ZZ O PIALAC <*ZZ P LARIES DI
k=1 k=1 k=1
By natural constraint in Problem B2, Zszl *,Lkp = 1. Thus, we have
1 MK 1 MK K 1
LP 4 D" 4 ,LP
ED W) S NEREESD $) S ALAEREERE SP A gen
n=1k=1 n=1k=1 k=1

On the other hand, Z**" is the optimal solution to Problem B2 and Z* is a feasible solution. Thus
we have

._.
a
f=~)
o
w
—
o

Step 3: Finally, we are ready to show the budget constraint is satisfied. By Lemma [1, ZfL =

ZEP yn # n', we have

1 ~ 1
p* A * LPA * LPA

R I S e DL A SO
Denote s (z,,7) by k1. By construction, we have

K K K

7D A *LP~ A *,LP
Zzn/,kck - Zzn’,k Ck = Cky — Zzn/ k Ck
k=1 k=1 k=1

Let S be the set of any k such that Z, LP

K

P *,LP A~
EZ,kck—EZ,kck—ckl Eank
k=1 =

kesS

# 0. Then we can further write

Note that k£ € S implies k € arg maxék(xn ) — éxp* (Suppose not. Then there exists some k',
such that @y (z,/) — éxp* > ar(z, ) — Exp*. Multlplymg both sides by — and then adding ¢,

gives —%dk, (xn) + %ék/p* +4q; < —Nak(x,b )+ chp +q;,- By complementaxy slackness
of Problem B2, Z; " (— %ax(zn) + F&rp* +q;) = 0. k € S implies Z,;;" # 0 and thus

—tag(zp)+ 2 ~Crp” +q;, = 0. Thus, — Ll (zn)+ % ~Crp" +¢;, < 0, which contradlcts with the
feasibility constraint in the dual problem.). Recall that %, is determined by arg maxy, @y (2, ) —éip*
and we break ties by picking k with smallest cost. Thus, for any k& € S, &, > &, . Therefore,

ZZ 1l — Zz*,ﬁj’ck <én - Z e, =0-> 2z""e

keS keS

By feasibility constraint in Problem B2, ) .csZ zZ LP Zk 1 :Lkp = 1. Thus, the above

inequality becomes Zk:l n kck - Zk:l Z,Lkpék g 0. Thus,

| MK ) K | x
AP *LPA Fp* A «,LPx
szzik’ck_ﬁ nk ZZZ’,kck_N;Z/k‘ ¢, <0
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Z*LP is a feasible solution to Problem B2, so it must satisfy the budget constraint and thus
LN K geLP,
N 2on=1 2 k=12, € < b. Hence, we must have

1 N K B 1 N K
szz W< 5> >z e <b<b

ie., Z°F " satisfies the budget constraint in Problem Bl
Finally, combining step 2 and step 3 finishes the proof.

B.3 PROOF OF THEOREM [

Proof. Let us first establish a few lemmas consisting of the main components of the proof.

Lemma 8. Suppose § > ”cl)l‘” {\/1(’3’4 log e —0—\/1°g4 logﬁ Then with probability at least 1 — ¢,

sP is a feasible solution to Problem B.

Proof. We first note that Problem B2 is a linear programming, and its dual problem is
NTT

S5, 3 Dz

NTT K

NTT Z Zzn kck 5)?) (B4)

n=1 k=1

K
S Zuw =125 €[0,1],Yn,k
k=1

Note that this is in the same form of Problem B2 except that the data become {z17}2 N ", instead of

{x,}N_,. Using a similar argument in the proof for Theorem I, s?(z1") is a feasible solution to

NT?"

Sp
max NT E

NT?"

sty S e < (-6,
n=1
and thus we have o
o S e) < (1= 6y
n=1
Note that training data 2" are i.i.d samples from the true distribution and 0 < nl*/(z" ¢) < ||¢/|so-

Thus, by Hoeffding’s 1nequahty, with probability 1 — €, we have

NT7
P, Tr P log2 — loge
g 2 IR 0) — B [0 )(e,0)] I < lellog) e

n=1

The data stream z,, is also from the same distribution, and thus we also have with probability 1 — e,

1 o log2 — loge
LN o) — B [l < F
I 2 o) = & [0 I < ell/ =255

Applying union bound, we have with probability 1 — e,
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1 Nz log4 —loge
P o) — [s”] =Bt = 2
I 2o 1@l ) = E [0 @) I < lellooy/ 25

n=1

1Y log4 —loge
L (5] 7E{ (5] } < ogs —loge
IIN n§:1n (zp:€) n*(@,e) | | < llelloay/ o

Using triangle inequality, we have with probability 1 — e,

1 N log4 —loge log4 —loge
[S*"] [s”] DoF T et Dor T Per
ke 3 T L S el < el BB g 0BT

n=1 n=1

and

Thus we have

N NTr
1 1 log4 loge log4 —loge
il [s”] [s”]
7 2 1) < g7 X N0+ lellf G el

n=1

log4 —loge log4 —loge
<(1-9)b+ Hc”oc\/ N + ||C||oo\/ ToNTT <b

where the last inequality is due to the assumption on §. That is to say, with probability 1 — ¢, s? is a

feasible solution to Problem B, which completes the proof. O
& 1 2
Lemma 9. Construct the set Qr = {0, D oer (T TmimeZoar " W} and
NT’V‘
P(Qur) £ arg max o NTT Z r ()
s t.NTTn[s Wan,e) < (1—6)b.
Then with probability 1 — ,
N N

1 5 1 5(2n1) \/10gN+log81oge \/10gNTT+log8loge

= s _ = s <0 .
Ix ;T o) = § n:1r ()l < O 2N + ONTT )

Proof. Note that ), C R. Consider an element p € R.

ﬁ: This effectively means the API with the smallest cost is always selected. In other

P>
words, we always have
bs = arg maxay(x) — péx

To see this, simply note that for any other k;, we have

aps () — peys — (A, (¥) — pex, ) =bs(T) — @y, (T) + p(Ck, — Cps) = @ps(T) — g, (¥) + pex,

1

>0~ 1y, > ~1+&,  ———— >0
mine, £o Cx
Thus, for such p, the objective value is the same as that for F € Q.
1 #0 Ck
({):0<p< W By construction of €2, there exists some m, such that m <

p < m Letp; = m for ease of notations. Clearly, we have p,, € Q).
Ck Ck
Now let us partition the space of a(z) into M regions, denoted by Ay, As,--- , Aps. Abusing the

notation a little bit, let ¢(p, ) 2 arg maxay(x) — péy A; is the set of all @(x) such that ¢(p, ) is a
constant. As is the set of all @(x) such that ¢(p, x) is a constant for p larger than p;. Generally, A; is
the set of all a(z) such that ¢(p, z) is a constant for p larger than p;_; subtracting A,_;. Formally,

‘ {a(z) : ¢(p, x)is a constant}, j=1
! {{a( ) : ¢(p, x)is a constant if p > pj_1} — Aj, j>1
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One can easily verify that {A;} form a partition of the space of the estimated accuracy, and further

more, ||A4;| < —leln By the assumption of the distribution, there exists some constant u,
J M mine, =0 Ck
such that Pr(A) <
. ullefly
Prla c Al <||Aillu = ——m—m——
rla(e) € Aj) < 4yl = gt

. m << o mFl
(Mfl)mlnck#,ck SP = (Mfl)mmck#ock

A,, may affect the reward. More precisely, we have

1 . . 1 ; 1 om
Nzrs(n Z * Z r’ (xn)_ﬁ Z 7 (2n)

n=1 n=1 anAm Tn€Am

Now note that, when p,, = = pm+1, only elements in

Note that each estimated accuracy is an i.i.d sample from the true distribution, and its value is from
[0, 1], by Hoeffding’s inequality, with probability 1 — €, we have

log2 —loge

N
1
I S Lenea, = Prlen € 4]l <4/ 25

n=1

Applying the union bound, we have for any j, with probability 1 — e,

N
1 log M +log2 — log e
Iy 2 Lasea, — Prlon € 4] <y oe M+ g

Therefore, we have with probability 1—k,

TOMSCRET D SEGEAET 1D DR ES S SR

n=1 Tn€EAm Ty €Am
1 1 &
z Z O_N Z 1:NZ]1%€A7W,
Tp€EAm T €EAm n=1

log M +log2 —1
ZPr[anAm]\/Og +23§ g€

>W/logM+log2—loge
- 2N

and similarly

1L L, 1SN o 1 , 1 o
~ er () — N er (zn) = N % (zy) — i Z % (xy)
n=1 n=1 Tp€Am Tn EAm
< Z 1—-— Z 0= N Z 1z,ea,,
Tn€Am mneAm

log M +log2 — 1
< Prfr, € A +\/ 0g +2(;\% oge

ullellx +\/logM+log2loge
2N

< -
M ming, 2o i

That is to say,

N N

1 » 1 pm ulle|lr \/logM+log2—loge

— E ) — — E s 2l < . B.5
”Nn:lr () N " @)l < S ming,so0n T 2N ®-3)

Similarly, for the training dataset, we can also get, with probability 1 — €,
H 1 NZT: (277 1 iv: (2T < ulle]l1 +\/logM +log2 —loge
7 (z,") — T T

NTr — " NTr — " 7T M ming, o ¢k 2N

23



Under review as a conference paper at ICLR 2022

Combining case (i) and case (ii), we have just shown that for any p € R, there exists another
p’ € Qu, such that

NTr N

1 p, 1 o ullellx \/logM+log21oge
S ™Yy . _ & S T < B'6
H NTr 7;1 r (x" ) NTr ;T (ZL'" )” — Mminck7go ck + 2N ( )
Thus, applying Lemma B, we have with probability 1 — e,
1 NZT: gy ] i\’: s reyy o Ullelh +\/logM+log2 “loge
_— P (T -
NTr — Tn NTv n:1r Tn = M ming, o1 5N

Now by Lemma B, for each fixed j, we have with probability 1 — e,

N NTT
1 P 1 i Ty log4 —loge log4 —loge
I 2o o) = gy X a0l < [\/ [

Applying union bound, with probability 1 — e,

NT'r
1 sPi g, Tr log M +log4 —loge log M +log4 — loge
H*Zr o)~y 2 >||<[\/ = + e !

n=1

for all 5. Specifically, we have

N NTT
1 RIGIYS) 1 RICTYS I log M +log4 — loge log M +log4 —loge
HNZT (xn)iNTr ZT (xn )” § N IN + 2NT,.

n=1 n=1
(B.7)
and
1 & o’ 1 N s (L Try|| < \/logM—l—log4—loge \/logM—HogéL—loge
Iy 7 @)=y v @il < Lo oEC o
(B.8)

Now combining equations B3, B, B4, and BR with triangle inequality, we have with probability
1—e¢,
N N
1 sP 1 p(QM)
PP P
ullel1 +4\/logM+log8—loge 2\/logM—Hog8—loge
—4M mincwgo Cr 2N 2NTr

Setting M = min{Nyp,, N}, we have

N N
1 Z e 1 Z B \/logN—HogS—loge \/10gNTT+10g8—loge
_ S _ S < O
which completes the proof. O

Lemma 10. Let

N
Q) & = (@,
p(Q) £ argprggﬁN;r (%)

1 log8& — loge log8 — loge
L) < (1 81— \/ g g \/ g g
st (Tn,e) < (1 =6)b— el [ SN + SN

Then with probability 1 — e,
N N
1 RIGIYS) 1 RICIY \/log8 —loge \/log8 —loge
il > _ _
N nz::l e 2 ; " 2N aNT"
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and

1 & 5(nr) log8 — loge log8 — loge
= [s7520] <(1=68)b+2 \/ _ \/ - :
7 2 1 o) < (1= 00+ 2l |y PSS

Proof. By Lemma B, with probability 1 — €, we have

N NTT
1 5P 2T log4 —loge log4 —loge
”N;r (o) = NTT ZT < —\/ o VTNt

and similarly, with probability 1 — ¢,

”i ﬁ: [sP] N [Sp] \/log4 —loge \/log4 —loge
N 27 (xn,€) — NTT Zn o)l < llello l vt T aNT ] :
which is the same as
N » log4 —loge log4 —loge
H—anm ~(1=6)b WQ)” ()MKM&N SN +¢2WT}

Now applying union bound, we have with probability 1 — ¢,

N NTT
1 5P 1 P Tr log8 —log e log8 —log e
I 3 7 (0) = e S0l < BT flog B _logc

n=1 n=1
and
1 NTT log8 —loge log& — loge
~ D —(1-0)b— [s7] sl < \/ . \/ - |
|\;nxm W | 2t e = (= < el =8+ Ty

both hold. By Lemma B, we can conclude that

N
p(QM) 1 P(Qns) log8 —loge \/log 8 —loge
s > _ S — —_ .
N Z N \/ ON INTT

n=1

N
spmM) log8 — log e \/logS —loge
—(1-98)b<2|c]|oo .
v €)= (1-3)b < 2] W [

with probability 1 — €, which completes the proof.

and

Lemma 11. Ford = Q(\/log 4;[10“ —l—\/logﬁ,}lfge), we have with probability 1 — e,

N

N
p<nM> 1 5" logN —loge \/logN —loge
_ : > .
Z ™)~ N nzzlr (zn) 2 O(\/ oN oNTr )

Proof. Let p(A) be the optimal solution to the following problem

N
p 1 P
max-— Z 7’ (xn)s.t.Nn[é Nap,e) <b—A

On one hand, p* apparently is a feasible solution to the above problem with A = 0, so we must have

P SP(O)
an:lr (xn) < N 2 (B.9)
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Let A’ = §+|lc]| oo [\/log %}Vlog = —I—\/ logﬁle?ge} . Then p(A’) corresponds to the following problem

1 N
JR— sp
sk S

1 i log 8 — 1 log 8 —1
s.t.Nn[s Nan,e) < (1= 8)b— |le]ls l\/OgS oge +\/ 0g 3 Oge]

2N 2NTr

Then using the same argument in the proof of Lemma B, we have with probability 1 — ¢,

N N
1 $P(AD) 1 PN (1 logN +log8 +loge log N + log 8 — loge
I 2o ) = 5 Do) s\/ + .
n=1

= 2N 2NTr
(B.10)
Furthermore, it is clear that p(A) is decreasingly-monotone with respect to A. In fact, removing
the budget by A, at most ﬁ data’s APIs need be changed, and thus incurs at most
ep>cj CkTC
ﬁ accuracy decrease. That is to say, we must have
cp>cj J
N N
1 (A% 1 #(0) Ay
~ ° n) =~ ° | € = B.11
||an::1r () an::lr @l < e (B.11)
Now combining equations B9, BT0, BT, we can obtain
1 N (@) 1 N *
sP(nmr sP
N;r (xn)_NT;r (zn)
1 (@) 1 Y 7
_T sPOM) () L sP
Py PP
1 & 10 ) 1 5(0) 1 5(0) 1 *
+ﬁ Z T,Sl’ (xn) . N Z rsp (.I'n) + N Z ?"SP (l’n) o N Z rsp (:L’n)
n=1 n=1 n=1 n=1
S \/logN+log8+loge \/logNT’”+log8—loge A 0
- 2N 2NTr Ming, >¢, Ck — Cj
When § = Q( [\/log 45,10“ —|—\/1°gﬁ,}1§)ge} ), we have
LS - LS )
N n=1 " N n=1 .
logN —log e \/log NTr —loge
- O(\/ 2N + 2NTr )
which completes the proof. O

Now we are ready to prove the main theorem. We start by showing the bound on the reward. Suppose
6=06 (\/ log N]; loge —|—\/ log N;;flog € ). By union bound, with probability 1 —e¢, Lemma 8, Lemma
M, and Lemma [ all hold, and we have
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n=1 n=1
1 N p 1 N (2pp) 1 N 5(pp)
<P $P(Qnr sP
:NZT (xn)iﬁzr (xn)+ﬁzr Y (l’n)
n=1 n=1 n=1
+lirsp(ﬂzu)(x ) _ lirsp* (I‘ )
N n=1 ! N n=1 !

logN —loge log NT" —log e
=0 (\/ N +\/ NTT

Now note that by Theorem [, we have with probability 1,

1L 1 & 1
) .

— s > s S

N nzzlr (en) 2 ;T (n) =

Combing the above two inequalities, we have

N N
1 P 1 o logN —loge \/1og NTr —loge
— : _ : > _
N ,;T (@) = % nzzlr (zn) 2 -0 <\/ N NT

Next we consider the feasibility requirement. By Lemma B, with probability 1 — ¢, sP is a feasible
solution to Problem Bl. That is to say, s” with probability 1 — € is a feasible solution. Applying
union bound completes the proof. O
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C EXPERIMENTAL DETAILS
We provide missing experimental details in this part.

Experimental setup All experiments were run on a machine with 8 Intel Xeon Platinum 2.5 GHz
cores, 32 GB RAM, and 500GB disk with Ubuntu 16.04 LTS as the OS. Our code is implemented
in Python 3.7. Each experiments, except the case study, were run for five times to mitigate the
randomness introduced by training-testing splitting.

ML tasks and services Recall that We focus on three multi-label classification tasks, multi-label
image classification (MIC), scene text recognition (STR), and named entity recognition (NER).

MIC is a computer vision task, where the goal is to assign a set of labels to a given image. For MIC,
we use 3 different commercial ML cloud services, Google Vision (God), Microsoft Vision (Mid),
and Everypixel(Eve). We also use a single shot detector model (SSD) pretrained on OpenlmageV4
(Kunznefsova ef all, P020), which is freely available from GitHub (SSD). All of those APIs produce
labels from a large (and unknown) set, but the datasets we consider have bounded number of labels.
For example, there are only 80 distinct labels in COCO dataset. Thus, we remove the predicted
labels which are not in the full label set. For example, if Google API gives label {person, car, man}
for an image in COCO, but man is not in the full label set of COCO, then we will use {person, car}
as the label set produced from Google.

STR is a computer vision task, where the goal is to predict all texts in a natural scene image. In
the context of multi-label classification, we view each predicted word as a label, and all possible
words as the label set. For STR, the ML services used in the experiments are Google Vision ((God),
iFLYTEK API (Ifl), and Tencent API (Ten). We also use PP-OCR (Pad), an open source model from
GitHub.

NER is a natural language processing task where the goal is to extract all possible entities from a
given text. For example, for the sentence ICML was held in Long Beach in 2019, ICML should be
extracted as an organization, and Long Beach should be identified as a location. In this paper, we
consider three common types of entities, person, location, and organization. For any given text, each
possible entity is viewed as a label, and the label set is the number of unique entities in the entire
dataset. For NER, we use three common APIs: Amazon Comprehend (Amd), Google NLP (GoN),
and IBM natural language API (IBM)). a multi-task convolutional neural network model(Spd) from
GitHub is also used.

Table 3: Dataset Statistics.

’ Task H Dataset ‘ Size ‘ # Labels | Dist Labels

PASCAL (Everingham et al], Z015) | 11540 16682 20
MIC MIR (Hiuskes & Tew, PO0OX) 25000 92909 24
COCO (Linefall, P014) 123287 | 357662 80

MTWI (Heef all, (11R) 9742 867727 4404

STR ReCTS (Zhang et all, Z0TY) 20000 | 555286 4134

LSVT (Sunefall, P0T9) 30000 | 1878682 4852

CONLL (Sang & Meuldet, 2003) 10898 43968 9910

NER ZHNER (ZHN) 16915 147164 4375

GMB (Bas, 2013) 47830 116225 14376

Datasets. The experiments were conducted on 9 datasets. For MIC, we use three popular datasets
including PASCAL (Everingham et all, Z0T135), MIR (Huiskes & Tew, P008) and COCO (Cin“ef-all,
014). PASCAL is a standard object recognition dataset with 20 distinct labels, and COCO is an-
other one with 80 unique labels. PASCAL’s label set contains 20 common objects: person, bird,
cat, cow, dog, horse, sheep, aeroplane, bicycle, boat, bus, car, motorbike, train, bottle, chair, dining
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table, potted plant, sofa, tv/monitor. The 80 objects in COCO include: person, bicycle, car, motorcy-
cle, airplane, bus, train, truck, boat, traffic light, fire hydrant, stop sign, parking meter, bench, bird,
cat, dog, horse, sheep, cow, elephant, bear, zebra, giraffe, backpack, umbrella, handbag, tie, suit-
case, frisbee, skis, snowboard, sports ball, kite, baseball bat, baseball glove, skateboard, surfboard,
tennis racket, bottle, wine glass, cup, fork, knife, spoon, bowl, banana, apple, sandwich, orange,
broccoli, carrot, hot dog, pizza, donut, cake, chair, couch, potted plant, bed, dining table, toilet,
tv, laptop, mouse, remote, keyboard, cell phone, microwave, oven, toaster, sink, refrigerator, book,
clock, vase, scissors, teddy bear, hair drier, toothbrush. For those two datasets, we use their original
associated labels as the label set. MIR is a dataset designed for image retrieval. There are origi-
nally 25 labels: animals, baby, bird, car, clouds, dog, female, flower, food, indoor, lake, male, night,
people, plant_life, portrait, river, sea, sky, structures, sunset, transport, tree, water. We remove the
label night since it is not in the label set of any of the APIs or the GitHub model. On average, there
are 1.44 labels per image for PASCAL, 3.71 labels per image for MIR, and 2.91 labels per image
for COCO. The dataset statistic is summarized in Table B. Most of the datasets are open and under
Creative Commons license (e.g., the dataset COCO (LCin“efall, P00T4))). The details can be found in
their corresponding paper and repository. As those datasets are actually open, they do not require an
in-person consent from the authors/developers. The datasets themselves may contain personal infor-
mation (e.g., there are personal images in COCO). Though, they have been render anonymous. For
the purpose of deciding which API to call, we also do not use personally identifiable information.

For STR, we use three large scale Chinese text recognition datasets, MTWI (He“ef-all, POTR),
ReCTS (Zhang et all, 2019) and LSVT (Sun-ef-all, 20T9). The label set contains all possible Chi-
nese characters as well as digits (0-9). MTWI contains images from the internet mainly targeting at
advertisements. Thus, most of its images have dense texts. ReCTS includes photos taken on sign
boards and thus has relatively fewer words. The images from LSVT are typically street view images
and hence have medium number of words. All images in MTWI and ReCTS are fully annotated and
used in our experiments. LSVT contains both fully and partially annotated images, and we only use
the subset with full annotations.

The other datasets, CONLL (Sang & Meuldei, 2003), ZHNER (ZHN) and GMB (Bas, 2013), are
used for NER task. CONLL contains English sentences from newspapers, and texts from GMB
are also English and from a wider range of sources. On the other hand, ZHNER is a Chinese text
dataset. We consider four common types of entities: organization, person, and location. In this
paper, we focus on three common types of entities that all datasets contain: persons,locations, and
organizations. Each sentence from those datasets is extracted as a data point, and the associated
label set is simply all entities in this sentence. An entity is considered correctly extracted if and only
if it is labeled as an entity and its entity type is correct.

GitHub model cost We evaluate the inference time of all GitHub models on an Amazon EC2 p2.x
instance, which is $0.90 per hour. For multi-label image classification, the GitHub model (SSD)
takes 6s to classify each image, resulting in an equivalent cost of $0.0015 per image. For the named
entity task, the GitHub model (Spd) can extract the entities from a sentence in 0.015s, leading to $
0.00000375 per sentence. The GitHub model (Pad) with the mobile version 3.0 text detector and
recognizer requires 1.5 on average to extract text from an image, causing a cost of $ 0.000375 per
image. Compared to the commercial APIs, this cost is much cheaper.

Training cost of FrugalMCT Both dollar cost and computation time of training are often much
smaller than ML APIs inference cost.This is because (i) training is a one-time cost and (ii) Fru-
galMCT requires a small number of label annotations (a few thousands see Figure B). Consider the
image tagging task as an example: the dollar cost of calling all APIs is $0.0006+$0.001+$0.0015 =
$0.0031 per image. Labeling for (say) five thousands images takes $0.0031 x 5000 = $15.5. Train-
ing a FrugalMCT strategy on half of the COCO dataset takes 59.5s on the experiment machine. This
is much cheaper than calling the selected APIs after at large scale (e.g., millions of images)

Case study on COCO Now we provide more details about the case study on the multi-label image
classification dataset, COCO. There are in total 123,287 images containing labels from 80 different
categories in COCO. Figure B gives the label distribution. First note that the label distribution is
quite skewed. overall, the label person is the most frequent: more than 50% of the images con-
tain the person label. Among others, car, chair, and dining tables are also quite common labels
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Figure 6: Label Distribution on COCO.

in this dataset with more than 10% occurrence. On the other hand, there are also quite some rare
labels. For example, half driver and toaster appear in less than 1% of the images. Such imbalance
between different labels imposes a high data and computational complexity to directly apply previ-
ous approach that learns a decision rule per label, and thus verifies the necessity of the proposed
framework, FrugalMCT.

To further understand when and why FrugalMCT gives a better performance than single API, we
present the precision and recall per class for each API, majority vote, and FrugalMCT in Figure [
and Figure B. We first note that there is no API universally better than other APIs for each label. For
example, GitHub and Microsoft APIs can hardly correctly predict the label “toaster”, but Everypixel
and Google APIs have a relatively high accuracy on label “toaster”. On the other hand, Everypixel
has a low accuracy on label “kite” and “knite”, while Microsoft, Google, GitHub APIs can usually
predict those labels with higher accuracy. This implies that combining different APIs may produce
an accuracy better than any single one of them. There are also some easy labels on which all APIs
give a high accuracy. For example, on the label “zebra”, all APIs give a 90% precision and recall.
This actually suggests that it is not always necessary to use all API. For example, if GitHub predicts
an image has the label “zebra”, and we know there is no other labels in this image, then probably
there is no need to call any other APIs.

Another interesting observation is that FrugalMCT improves the precision and recall for almost ev-
ery label compared to any single API. This is primarily because FrugalMCT appropriately utilizes
the predicted label information from GitHub model to infer which API is better on certain input,
and combine its performance with the base API aptly. Yet, the precision and recall difference can
be quite different for different APIs. For example, as shown in Figure B(c], the recall for “airplane”
is much higher than its precision, but banana’s precision is much higher than its recall. For applica-
tions that have specific precision and recall requirements, we may adopt different accuracy metrics
in FrugalMCT. Another interesting observation is that the precision and recall for some labels is
extremely. For example, “hair drier” cannot be predicted by FrugalMCT, which is due to that no
API actually predicts this label correctly. How to extend FrugalMCT to recognize unseen labels
remains an open question.

Ensemble method comparison For comparison, we compare FrugalMCT against FrugalML as
well as two ensemble methods, majority vote and weighted majority vote. In majority vote, for each
label, we accept it if at least half of the APIs predict it. In weighted majority vote, we assign each
API’s accuracy as its weight. Next, for each label, we compute a label score, which is equal to the
sum of each API’s confidence score on this label weighted by its corresponding weight. If an API
does not predict a label, then its confidence score is viewed as 0. Finally, we only accept the label if
its label score is larger than a threshold. We pick a threshold that maximizes the overall accuracy by
grid search.
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Table 4: Performance of FrugalMCT’s accuracy predictor. Root mean square error (RMSE) quanti-
fies the standard deviation of the differences between predicted and true accuracy.

Data \ RMSE \ Data \ RMSE \ Data \ RMSE \
PASCAL | 0.8 MIR 022 [ coco | 024
MTWI | 0.17 | ReCTS | 022 | LSVT | 0.19
CONLL | 029 |ZHNER | 031 | GMB | 0.28

Table 5: Comparison of ensemble methods as well as cost-aware approaches. For FrugalMCT and
FrugalML, we pick their corresponding strategies that minimize the cost while ensures that the
accuracy reaches the highest possible.

best single API | FrugalML | FrugalMCT | majority vote | weighted maj vote

acc cost acc cost acc cost acc cost acc cost

PASCAL || 74.8 10 769 | 11 | 785 8 77.8 | 31.01 | 77.8 31.01

MIR 41.2 10 43.8 8 492 | 14 | 414 | 31.01 | 48.7 31.01

COCO 47.5 10 49.3 8 54 12 | 50.1 | 31.01 | 52.8 31.01

MTWI 67.9 210 68.1 | 213 | 71.1 | 208 | 75.4 | 275.01 | 75.4 275.01

ReCTS 61.3 210 634 | 213 | 64.7 | 208 | 70.2 | 275.01 | 70.2 275.01

LSVT 53.8 210 56.2 | 213 | 57.2 | 208 | 62.8 | 275.01 | 62.8 275.01

CONLL || 52.6 3 55.7| 32 | 56.8 | 36.8 | 58.5 | 43.01 | 58.5 43.01

ZHNER || 61.3 30 674 | 31.2 | 71.8 | 36.8 | 66 43.01 66 43.01

GMB 50.1 30 52.6 | 30.1 | 53.1 | 20.5 | 51.3 | 43.01 | 515 43.01

The results are summarized in Table B. Overall, we observe that FrugalMCT and ensemble methods
have similar performance across different tasks and datasets, but with a much lower cost. In fact,
for datasets including COCO and ZHNER, FrugalMCT can achieve an accuracy enven higher than
ensemble methods.

Accuracy predictor performance Note that FrugalMCT’s performance highly depends on its
accuracy predictors’ performance. Tn obtain a quantitative sense of the accuracy predictors, we
evaluate the accuracy predictors’ performance in Table 5. RMSE measures the standard deviation of
the difference between accuracy predictor’s output and the corresponding true accuracy. PCC stands
for Pearson correlation coefficient, which roughly measures the linear correlation between the true
accuracy and the predicted value from the accuracy predictors. Overall, FrugalMCT’ random forest
predictors enjoy a much smaller RMSE and higher PCC than DAP (the dummy accuracy predictors),
which matches the fact that FrugalMCT gives a higher end to end performance than using the DAP.
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Table 6: Accuracy predictor performance. RMSE and PCC stand for root mean square error and
Pearsons correlation coefficient.

RMSE PCC

Data FrugalMCT | DAP | FrugalMCT | DAP
PASCAL 0.28 0.35 0.55 0.012
MIR 0.22 0.31 0.55 0.013
COCO 0.24 0.31 0.63 0.001
MTWI 0.17 0.21 0.57 0.004
ReCTS 0.22 0.27 0.57 0.001
LSVT 0.19 0.24 0.61 -0.003
CONLL 0.29 0.41 0.72 -0.003
ZHNER 0.31 0.36 0.48 -0.005
GMB 0.28 0.40 0.69 -0.006
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