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Outline. Additional technical details are given in Section A. The proofs are provided in Section B.
Finally, we give additional empirical results in Section C.

A TECHNICAL DETAILS

Additional technical details are presented here.

Label combiner parameter search. Recall that the label combiner requires two parameters: the
combining weight w ∈ [0, 1] and the quality score threshold θ ∈ [0, 1]. We adopt a simple grid
search approach to select w and θ. More precisely, we first create a parameter candidate set PCS ≜
{w0, w1, w2, · · · , wM} × {θ0, θ1, θ2, · · · , θM}, where wm = m

M and θi = m
M . Next, for each

(w, θ) ∈ PCS, we evaluate the performance of combining the base service and the kth service
using (w, θ), and select the parameter that gives the highest accuracy. Note that this involves M2

number of label combinations for each k ∈ [K]. In practice, we have found that M = 10 is sufficient
to obtain a good combiner.

δ selection in Algorithm 1. A naive approach is to set a small constant value, say, δ = 0.01.
To obtain a more accurate strategy, we can adopt a search algorithm to select the best δ value
based on the evaluation the performance on a validation dataset. More precisely, we first cre-
ate a constant set CS. Then for each α ∈ CS, let δ = α logN

N , and then solve Problem 3.2 to
obtain the parameter p̂, evaluate the performance on a validation dataset. Finally, we select the
α ∈ CS that achieves the highest accuracy on the validation dataset. In practice, we have found that
CS = {−10,−9,−8, · · · , 0, 1, 2, · · · , 10} is sufficient to obtain a highly accurate solution.

B PROOFS

For ease of notations, let us introduce b̂ ≜ b− cccbase and ĉcck ≜ ccck ·1k ̸=base first. Then we can rewrite
the API selection problem (Problem 3.1) as

max
ZZZ∈RN×K :

1

N

N∑
n=1

K∑
k=1

ZZZn,kâ̂âak(xn)

s.t.
1

N

N∑
n=1

K∑
k=1

ZZZn,kĉcck ≤ b̂

K∑
k=1

ZZZn,k = 1,∀n;ZZZn,k ∈ {0, 1},∀n, k

(B.1)

Its corresponding linear programming simply becomes

max
ZZZ∈RN×K :

1

N

N∑
n=1

ZZZn,kâ̂âak(xn)

s.t.
1

N

N∑
n=1

K∑
k=1

ZZZn,kĉcck ≤ b̂

K∑
k=1

ZZZn,k = 1,∀n;ZZZn,k ∈ [0, 1],∀n, k

(B.2)

We will analyze some useful properties for those two problems first, and then prove the desired
results for the original API selection problem on top of those properties.

B.1 HELPFUL LEMMAS

Before proving the desired results, let us also provide a few generic lemmas.
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Lemma 3. Let AAA ∈ RN1×N2 be a fixed matrix and βββ ∈ RN1 be a random vector. If βββ is supported
on [0, 1]N1 with a continuous density function, then with probability 1,

min
xxx

‖AAAxxx− βββ‖0 ≥ N1 −N2.

Proof. If N1 ≤ N2 then the above inequality obviously holds. Suppose N1 > N2. We prove this
by contradiction. Assume the inequality does not hold. Then there exists some xxx′, such that with
probability larger than 0,

‖AAAxxx′ − βββ‖0 < N1 −N2.

That is to say, at least N1 − (N1 −N2) + 1 = N2 + 1 many equations in AAAxxx′ = βββ can be forced to
0. Let U be the set of those N2 + 1 indexes. Then formally we have

AAAUxxx
′ = βββU .

That is to say, with probability larger than 0, βββU is in the subspace formed by the columns of AAAU .

On the other hand, we can show that for any set of indexes V with |V | = N2 + 1, βββV lies in the
subspace formed by the columns of AAAV with probability 0, which gives a contradiction. To see
this, let us start by considering a fixed set of indexes V . Let ΩΩΩV denote the subspace formed by
AAAV and pβββV

(·) be the density function of βββV . The density function of βββ is continuous and thus
pβββV

(·) is also continuous. The support of βββ is in [0, 1]N1 , and thus the support of βββV is in [0, 1]N2+1

(since |V | = N2 + 1 by definition). That is to say, pβββV
(·) is a continuous function on a compact

set. Therefore, pβββV
(·) must be bounded, i.e., there exists a constant psup such that pβββV

(·) ≤ psup.
Hence we have

Pr[βββV ∈ ΩΩΩV ] =

∫
xxx∈ΩΩΩV

pβββV
(xxx)dxxx ≤

∫
xxxV ∈ΩΩΩV

psupdxxx = psup
∫
xxxV ∈ΩΩΩV

1dxxx

where the first equation is by definition of the random variable βββV , the inequality is by increasing
the density function to its upper bound psup, and the last equation simply moves the constant out of
the integral. In addition, ΩΩΩV is a N2 + 1 dimensional space spanned by N2 vectors, which implies
that its measure in RN2+1 is 0, i.e,

∫
xxxV ∈ΩΩΩV

1dxxx = 0. Thus, we have just shown that

Pr[βββV ∈ ΩΩΩV ] ≤ psup
∫
xxxV ∈ΩΩΩV

1dxxx = 0

Probability is non-negative, and thus Pr[βββV ∈ ΩΩΩV ] = 0 (for a fixed V ). Note that the size of V is
N2 + 1 and there are in total N1 possible indexes. Thus, there are

(
N1

N2+1

)
many possible choices of

V . Applying union bound, we have for any V , Pr[βββV ∈ ΩΩΩV ] = 0. A contradiction. The assumption
is incorrect, and thus we must have

min
xxx

‖AAAxxx− βββ‖0 ≥ N1 −N2.

Lemma 4. Let f be a function defined on Ωzzz . Assume there exists a set Ωzzz,1 ⊆ Ωzzz , such that for
any zzz ∈ Ωzzz , there exists zzz′ ∈ Ωzzz,1, such that ‖f(zzz)− f(zzz′)‖ ≤ ∆. Then we have

‖f(zzz∗)− f(zzz∗1)‖ ≤ ∆,

where zzz∗ = argmaxzzz∈Ωzzz
f(zzz), zzz∗1 = argmaxzzz∈Ωzzz,1

f(zzz).

Proof. By assumption, there exists a zzz′ ∈ Ωzzz,1, such that

‖f(zzz∗)− f(zzz′)‖ ≤ ∆

which implies
f(zzz′) ≥ f(zzz∗)−∆

Noting that zzz∗1 is the optimal solution on Ωzzz,1 and zzz′ is a feasible solution, we have

f(zzz∗1) ≥ f(zzz′)

Combining the above two inequalities, we have

f(zzz∗1) ≥ f(zzz∗)−∆
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On the other hand, since Ωzzz,1 ⊆ Ωzzz , zzz∗1 is a feasible solution on Ωzzz , and thus we have

f(zzz∗1) ≤ f(zzz∗) ≤ f(zzz∗) + ∆

Combing those two inequalities we have

‖f(zzz∗1)− f(zzz∗)‖ ≤ ∆

which completes the proof.

Lemma 5. Let X1, X2, · · · , XN1
and X ′

1, X
′
2, · · ·XN2

be two i.i.d. samples from the same distri-
bution which lies in [xinf , xsup]. Then we have with probability 1− ϵ,

‖ 1

N2

N2∑
n=1

X ′
n − 1

N1

N1∑
n=1

Xn‖ ≤ (xsup − xinf)

[√
log 4− log ϵ

2N2
+

√
log 4− log ϵ

2N1

]
.

Proof. We can apply the Hoeffding’s inequality for both sequences separately, and we can obtain
with probability 1− ϵ,

‖ 1

N1

N1∑
n=1

Xn − E[X1]‖ ≤ (xsup − xinf)

√
log 2− log ϵ

2N1

and with probability 1− ϵ

‖ 1

N2

N2∑
n=1

X ′
n − E[X1]‖ ≤ (xsup − xinf)

√
log 2− log ϵ

2N2

Now applying union bound, we have with probability 1− ϵ,

‖ 1

N1

N1∑
n=1

Xn − E[X1]‖ ≤ (xsup − xinf)

√
log 4− log ϵ

2N1

and 1− ϵ

‖ 1

N2

N2∑
n=1

X ′
n − E[X1]‖ ≤ (xsup − xinf)

√
log 4− log ϵ

2N2

Now applying the triangle inequality, we have

‖ 1

N2

N2∑
n=1

X ′
n − 1

N1

N1∑
n=1

Xn‖ ≤ (xsup − xinf)

[√
log 4− log ϵ

2N2
+

√
log 4− log ϵ

2N1

]
which completes the proof.

Lemma 6. Let f1, f2, g1, g2 be functions defined on Ωzzz , such that maxzzz∈Ωzzz
|(f1zzz) − f2(zzz)| ≤ ∆1

and maxzzz∈Ωzzz
‖g2(zzz)− g1(zzz)‖ ≤ ∆2. Suppose

zzz∗1 = arg max
zzz∈Ωzzz

f1(zzz)

s.t.g1(zzz) ≤ 0

and

zzz∗2 = arg max
zzz∈Ωzzz

f2(zzz)

s.t.g2(zzz) ≤ ∆2,

then we must have

f1(zzz
∗
2) ≥ f1(z

∗
1)− 2∆1

g1(zzz
∗
2) ≤ 2∆2.
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Proof. Note that maxzzz∈Ωzzz
|(f1(zzz) − f2(zzz)| ≤ ∆1 implies f1(zzz) ≥ f2(zzz) − ∆1 for any zzz ∈ Ωzzz .

Specifically,
f1(zzz

∗
2) ≥ f2(zzz

∗
2)−∆1

Noting maxzzz∈Ωzzz ‖g2(zzz) − g1(zzz)‖ ≤ ∆2, we have g2(zzz
∗
1) ≤ g1(zzz

∗
1) − ∆2 ≤ −∆2, where the

last inequality is due to g1(zzz
∗
1) ≤ 0 by definition. Since, zzz∗1 is a feasible solution to the second

optimization problem, and the optimal value must be no smaller than the value at zzz∗1. That is to say,

f2(zzz
∗
2) ≥ f2(zzz

∗
1)

Hence we have
f1(zzz

∗
2) ≥ f2(zzz

∗
2)−∆1 ≥ f2(zzz

∗
1)−∆1

In addition, maxzzz∈Ωz |(f1(zzz) − f2(zzz)| ≤ ∆1 implies f2(zzz) ≥ f1(zzz) − ∆1 for any zzz ∈ Ωzzz . Thus,
we have f2(zzz

∗
1) ≥ f1(zzz)

∗
1 −∆1 and thus

f1(zzz
∗
2) ≥ f2(zzz

∗
1)−∆1 ≥ f1(zzz

∗
1)− 2∆1

By maxzzz∈Ωzzz
|g1(zzz) − g2(zzz)| ≤ ∆2, we must have g1(zzz

∗
2) ≤ g2(zzz

∗
2) + ∆2 ≤ 2∆2, where the last

inequality is by definition of z′, which completes the proof.

B.2 PROOF OF THEOREM 1

Proof. We give a constructive proof via explicitly giving the value of p∗. In fact, let p∗ and qqq∗ be
the optimal solution to

min
p,qqq:

b̂p+

N∑
n=1

qqqn

s.t.
1

N
ĉcckp+ qqqn ≥ 1

N
âaak(xn)

p,qqq ≥ 0

(B.3)

Then our goal is to show that for this constructed p∗, sp
∗

is a feasible solution to Problem 3.1 and
r(sp

∗
) ≥ r(s∗)− 1

N with probability 1 (Since probabilistic statement is only introduced in Lemma 3
whose result holds with probability 1, and we only apply it finite times, we will omit the probabilistic
statement for the rest of the proof for simplicity). To achieve this, let us construct a N ×K matrix

Z̃ZZp∗

n,k ≜ 1sp∗ (xn)=k

It is not hard to see that sp
∗
(xn) = argmaxk Z̃ZZ

p∗

n,k. By construction of sp
∗
, feasibility of sp

∗
to

Problem 3.1 is equivalent to feasibility of Z̃ZZp∗
to Problem B.1. By construction of s∗ and sp

∗
,

r(sp
∗
) ≥ r(s∗)− 1

N is equivalent to

1

N

N∑
n=1

K∑
k=1

Z̃ZZp∗

n,kâ̂âak(xn) ≥
1

N

N∑
n=1

K∑
k=1

ZZZ∗
n,kâ̂âak(xn)−

1

N
.

Therefore, our goal becomes showing the feasibility of Z̃ZZp∗
and the above inequality. By construc-

tion of Z̃ZZp∗
, the natural constraints (Z̃ZZp∗

n,k ∈ {0, 1} and
∑K

k=1 Z̃ZZ
p∗

n,k = 1,∀n) are obviously satisfied.

Thus, we only need to show Z̃ZZp∗
satisfies the budget constraint and the above inequality. To show

those two results, let us introduce another variable ZZZ∗,LP , which represents a sparse optimal solu-
tion to the relaxed version of Problem B.1 (i.e., Problem B.2). The proof idea is then (roughly) to
show (i) that Z̃ZZp∗

is actually close to ZZZ∗,LP , (ii) that ZZZ∗,LP satisfies the budget constraint and gives
an estimated accuracy as high as that of the optimal solutionZZZ∗, and (iii) that the difference between
Z̃ZZp∗

and ZZZ∗,LP does not break the budget constraints and only decreases the estimated accuracy by
1/N . Combining the three points finishes the proof. Now we formalize this idea.

Step 1: We first show that Z̃ZZp∗
and ZZZ∗,LP are close to each other.

Lemma 7. Let ZZZ∗,LP be an optimal solution to Problem B.2. Then there exists some constant n′,
such that Z̃ZZp∗

n,· = ZZZ∗,LP
n,· ,∀n 6= n′.
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Proof. Note that Problem B.3 is the dual problem to Problem B.2. We can write the complementary
slackness constraints as follows

ZZZ∗LP
n,k (

1

N
ĉcckp

∗ + qqq∗n − 1

N
âaak(xn)) = 0,∀n, k

Now let us construct the matrix

AAA =


1
N ĉcc, 111, 000, · · · , 000
1
N ĉcc, 000, 111, · · · , 000
..., ,

..., · · · ,
. . . ,

...
1
N ĉcc, 000, 000, · · · , 111

 ∈ RNK×(N+1)

and the vector

βββ =
1

N


âaa(x1)
âaa(x2)

...
âaa(xN )

 ∈ RNK .

Then by Lemma 3, minxxx ‖AAAxxx − βββ‖0 ≥ NK − N − 1. Specifically, if xxx = [p∗, qqq∗T ]T , then
we should have ‖AAAxxx − βββ‖0 ≥ NK − N − 1. Note that each row of AAAxxx − βββ corresponds to
1
N ĉcckp

∗ + qqq∗n − 1
N âaak(xn), and thus we effectively have

1

N
ĉcckp

∗ + qqq∗n − 1

N
âaak(xn) 6= 0

for at least NK−N − 1 choices of n, k. In other words, among all possible choices of n, k, at most
N + 1 many of them satisfies

1

N
ĉcckp

∗ + qqq∗n − 1

N
âaak(xn) = 0

Furthermore, note that the constraint
∑K

k=1 zzz
∗LP
k (xn) = 1 ensures that for any n, there must exist

at least one k′ such that ZZZ∗,LP
n,k 6= 0 and thus 1

N ccck′p∗ + qqq∗n − 1
N âaak′(xn) = 0. By the pigeon-

hole principle, we can conclude that for all n except one (denoted by n′), exactly one equation in
{ 1
N ccckp

∗ + qqq∗n − 1
N âaak(xn) = 0}k can be satisfied.

Now let us fix any n 6= n′. Then there exists some k′, such that 1
N ccck′p∗ + qqq∗n − 1

N âaak′(xn) = 0, and
for any k 6= k′, 1

N ccckp
∗ + qqq∗n − 1

N âaak(xn) > 0 (due to the natural constraint in Problem B.3). That
is to say, for any k 6= k′,

1

N
ccckp

∗ + qqq∗n − 1

N
âaak(xn) > 0 =

1

N
ccck′p∗ + qqq∗n − 1

N
âaak′(xn)

Multiplying N and rearranging the terms gives

âaak′(xn)− ccck′p∗ > âaak(xn)− ccckp
∗

That is to say, k′ is the unique solution to maxk âaak(xn) − ccckp
∗. By definition of Z̃ZZp∗

, we have
Z̃ZZp∗

n,k′ = 1 and Z̃ZZp∗

n,k = 0,∀k 6= k′. Meanwhile, for any k 6= k′, by the slackness constraint, since
, 1
N ccckp

∗ + qqq∗n − 1
N âaak(xn) > 0, we must have ZZZ∗,LP

n,k = 0. The natural constraint in Problem B.2

requires
∑K

k=1ZZZ
∗,LP
n,k = 1. Thus, we have ZZZ∗,LP

n,k′ =
∑K

k=1ZZZ
∗,LP
n,k −

∑
k ̸=k′ ZZZ

∗,LP
n,k = 1.

That is to say, for any n 6= n′, we always have Z̃ZZp∗

n,· = ZZZ∗,LP
n,· , which completes the proof.

Step 2: Now we can show 1
N

∑N
n=1

∑K
k=1 Z̃ZZ

p∗

n,kâ̂âak(xn) ≥ 1
N

∑N
n=1

∑K
k=1ZZZ

∗
n,kâ̂âak(xn) − 1

N . To

see this, by Lemma 7, Z̃ZZp∗

n,· = ZZZ∗,LP
n,· ,∀n 6= n′, we must have

1

N

N∑
n=1

K∑
k=1

ZZZ∗,LP
n,k â̂âak(xn)−

1

N

N∑
n=1

K∑
k=1

Z̃ZZp∗

n,kâ̂âak(xn) =
1

N

K∑
k=1

ZZZ∗,LP
n′,k â̂âak(x

′
n)−

1

N

K∑
k=1

Z̃ZZp∗

n′,kâ̂âak(x
′
n)
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As âk(x′
n) is bounded in [0, 1], we have

1

N

K∑
k=1

ZZZ∗,LP
n′,k â̂âak(x

′
n)−

1

N

K∑
k=1

Z̃ZZp∗

n′,kâ̂âak(x
′
n) ≤

1

N

K∑
k=1

ZZZ∗,LP
n′,k ·1− 1

N

K∑
k=1

Z̃ZZp∗

n′,k ·0 =
1

N

K∑
k=1

ZZZ∗,LP
n′,k

By natural constraint in Problem B.2,
∑K

k=1ZZZ
∗,LP
n′,k = 1. Thus, we have

1

N

N∑
n=1

K∑
k=1

ZZZ∗,LP
n,k â̂âak(xn)−

1

N

N∑
n=1

K∑
k=1

Z̃ZZp∗

n,kâ̂âak(xn) ≤
1

N

K∑
k=1

ZZZ∗,LP
n′,k =

1

N

On the other hand, ZZZ∗,LP is the optimal solution to Problem B.2 and ZZZ∗ is a feasible solution. Thus
we have

1

N

N∑
n=1

K∑
k=1

ZZZ∗
n,kâ̂âak(xn) ≤

1

N

N∑
n=1

K∑
k=1

ZZZ∗,LP
n,k â̂âak(xn)

Combining the two inequalities leads to

1

N

N∑
n=1

K∑
k=1

Z̃ZZp∗

n,kâ̂âak(xn) ≥
1

N

N∑
n=1

K∑
k=1

ZZZ∗
n,kâ̂âak(xn)−

1

N

Step 3: Finally, we are ready to show the budget constraint is satisfied. By Lemma 7, Z̃ZZp∗

n,· =

ZZZ∗,LP
n,· ,∀n 6= n′, we have

1

N

N∑
n=1

K∑
k=1

Z̃ZZp∗

n,kĉcck − 1

N

N∑
n=1

K∑
k=1

ZZZ∗,LP
n,k ĉcck =

1

N

K∑
k=1

Z̃ZZp∗

n′,kĉcck − 1

N

K∑
k=1

ZZZ∗,LP
n′,k ĉcck

Denote sp
∗
(xn′) by k1. By construction, we have

K∑
k=1

Z̃ZZp∗

n′,kĉcck −
K∑

k=1

ZZZ∗,LP
n′,k ĉcck = ĉcck1

−
K∑

k=1

ZZZ∗,LP
n′,k ĉcck

Let S be the set of any k such that ZZZ∗,LP
n′,k 6= 0. Then we can further write

K∑
k=1

Z̃ZZp∗

n′,kĉcck −
K∑

k=1

ZZZ∗,LP
n′,k ĉcck = ĉcck1

−
∑
k∈S

ZZZ∗,LP
n′,k ĉcck

Note that k ∈ S implies k ∈ argmax âaak(xn′) − ĉ̂ĉckp
∗ (Suppose not. Then there exists some k′,

such that âaak′(xn′) − ĉ̂ĉck′p∗ > âaak(xn′) − ĉ̂ĉckp
∗. Multiplying both sides by − 1

N and then adding qqq∗n
gives − 1

N âaak′(xn′) + 1
N ĉ̂ĉck′p∗ + qqq∗n < − 1

N âaak(xn′) + 1
N ĉ̂ĉckp

∗ + qqq∗n. By complementary slackness
of Problem B.2, ZZZ∗,LP

n,k (− 1
N âaak(xn′) + 1

N ĉ̂ĉckp
∗ + qqq∗n) = 0. k ∈ S implies ZZZ∗,LP

n,k 6= 0 and thus
− 1

N âaak(xn′)+ 1
N ĉ̂ĉckp

∗+qqq∗n = 0. Thus, − 1
N âaak′(xn′)+ 1

N ĉ̂ĉck′p∗+qqq∗n < 0, which contradicts with the
feasibility constraint in the dual problem.). Recall that k1 is determined by argmaxk âaak(xn′)−ĉ̂ĉckp

∗

and we break ties by picking k with smallest cost. Thus, for any k ∈ S, ĉcck ≥ ĉcck1
. Therefore,

K∑
k=1

Z̃ZZp∗

n′,kĉcck −
K∑

k=1

ZZZ∗,LP
n′,k ĉcck ≤ ĉcck1

−
∑
k∈S

ZZZ∗,LP
n′,k ĉcck1

= (1−
∑
k∈S

ZZZ∗,LP
n′,k )ĉcck1

By feasibility constraint in Problem B.2,
∑

k∈S ZZZ
∗,LP
n′,k =

∑K
k=1ZZZ

∗,LP
n′,k = 1. Thus, the above

inequality becomes
∑K

k=1 Z̃ZZ
p∗

n′,kĉcck −
∑K

k=1ZZZ
∗,LP
n′,k ĉcck ≤ 0. Thus,

1

N

N∑
n=1

K∑
k=1

Z̃ZZp∗

n,kĉcck − 1

N

N∑
n=1

K∑
k=1

ZZZ∗,LP
n,k ĉcck =

1

N

K∑
k=1

Z̃ZZp∗

n′,kĉcck − 1

N

K∑
k=1

ZZZ∗,LP
n′,k ĉcck ≤ 0
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ZZZ∗,LP is a feasible solution to Problem B.2, so it must satisfy the budget constraint and thus
1
N

∑N
n=1

∑K
k=1ZZZ

∗,LP
n,k ĉcck ≤ b. Hence, we must have

1

N

N∑
n=1

K∑
k=1

Z̃ZZp∗

n,kĉcck ≤ 1

N

N∑
n=1

K∑
k=1

ZZZ∗,LP
n,k ĉcck ≤ b ≤ b

i.e., Z̃ZZp∗
satisfies the budget constraint in Problem B.1.

Finally, combining step 2 and step 3 finishes the proof.

B.3 PROOF OF THEOREM 2

Proof. Let us first establish a few lemmas consisting of the main components of the proof.

Lemma 8. Suppose δ ≥ ∥ccc∥∞
b

[√
log 4−log ϵ

N +
√

log 4−log ϵ
NTr

]
. Then with probability at least 1 − ϵ,

sp̂ is a feasible solution to Problem 3.1.

Proof. We first note that Problem 3.2 is a linear programming, and its dual problem is

max
ZZZ∈RN×K :

1

NTr

NTr∑
n=1

ZZZn,kâ̂âak(x
Tr
n )

s.t.
1

NTr

NTr∑
n=1

K∑
k=1

ZZZn,kĉcck ≤ (1− δ)b̂

K∑
k=1

ZZZn,k = 1,ZZZn,k ∈ [0, 1],∀n, k

(B.4)

Note that this is in the same form of Problem B.2 except that the data become {xTr
n }NTr

n=1 instead of
{xn}Nn=1. Using a similar argument in the proof for Theorem 1, sp̂(xTr

n ) is a feasible solution to

max
1

NTr

NTr∑
n=1

rs
p

(xTr
n )

s.t.
1

NTr

NTr∑
n=1

η[s
p](xTr

n , ccc) ≤ (1− δ)b,

and thus we have
1

NTr

NTr∑
n=1

η[s
p](xTr

n , ccc) ≤ (1− δ)b

Note that training data xTr
n are i.i.d samples from the true distribution and 0 ≤ η[s](xTr

n , ccc) ≤ ‖ccc‖∞.
Thus, by Hoeffding’s inequality, with probability 1− ϵ, we have

‖ 1

NTr

NTr∑
n=1

η[s
p](xTr

n , ccc)− E
[
η[s

p](x,ccc)
]
‖ ≤ ‖ccc‖∞

√
log 2− log ϵ

2NTr

The data stream xn is also from the same distribution, and thus we also have with probability 1− ϵ,

‖ 1

N

N∑
n=1

η[s
p](xn, ccc)− E

[
η[s

p](x,ccc)
]
‖ ≤ ‖ccc‖∞

√
log 2− log ϵ

2N

Applying union bound, we have with probability 1− ϵ,
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‖ 1

NTr

NTr∑
n=1

η[s
p](xTr

n , ccc)− E
[
η[s

p](x,ccc)
]
‖ ≤ ‖ccc‖∞

√
log 4− log ϵ

2NTr

and

‖ 1

N

N∑
n=1

η[s
p](xn, ccc)− E

[
η[s

p](x,ccc)
]
‖ ≤ ‖ccc‖∞

√
log 4− log ϵ

2N

Using triangle inequality, we have with probability 1− ϵ,

‖ 1

NTr

NTr∑
n=1

η[s
p](xTr

n , ccc)− 1

N

N∑
n=1

η[s
p](xn, ccc)‖ ≤ ‖ccc‖∞

√
log 4− log ϵ

2N
+ ‖ccc‖∞

√
log 4− log ϵ

2NTr
.

Thus we have

1

N

N∑
n=1

η[s
p](xn, ccc) ≤

1

NTr

NTr∑
n=1

η[s
p](xTr

n , ccc) + ‖ccc‖∞

√
log 4− log ϵ

2N
+ ‖ccc‖∞

√
log 4− log ϵ

2NTr

≤(1− δ)b+ ‖ccc‖∞

√
log 4− log ϵ

2N
+ ‖ccc‖∞

√
log 4− log ϵ

2NTr
≤ b

where the last inequality is due to the assumption on δ. That is to say, with probability 1− ϵ, sp̂ is a
feasible solution to Problem 3.1, which completes the proof.

Lemma 9. Construct the set ΩM ≜ {0, 1
(M−1)minccck ̸=0 ccck

, 2
(M−1)minccck ̸=0 ccck

, · · · , 1
minccck ̸=0 ccck

} and

p̂(ΩM ) ≜ arg max
p∈ΩM

1

NTr

NTr∑
n=1

rs
p

(xTr
n )

s.t.
1

NTr
η[s

p](xn, ccc) ≤ (1− δ)b.

Then with probability 1− ϵ,

‖ 1

N

N∑
n=1

rs
p̂

(xn)−
1

N

N∑
n=1

rs
p̂(ΩM )

(xn)‖ ≤ O(

√
logN + log 8− log ϵ

2N
+

√
logNTr + log 8− log ϵ

2NTr
).

Proof. Note that ΩM ⊆ R. Consider an element p ∈ R.

(i) p ≥ 1
minccck ̸=0 ccck

: This effectively means the API with the smallest cost is always selected. In other
words, we always have

bs = argmax âaak(x)− pĉcck

To see this, simply note that for any other k1, we have

âaabs(x)− pĉccbs − (âaak1
(x)− pĉcck1

) =âaabs(x)− âaak1
(x) + p(ĉcck1

− ĉccbs) = âaabs(x)− âaak1
(x) + pĉcck1

≥0− 1 + pĉcck1
≥ −1 + ĉcck1

· 1

minccck ̸=0 ccck
≥ 0

Thus, for such p, the objective value is the same as that for 1
minccck ̸=0 ccck

∈ ΩM .

(ii): 0 ≤ p ≤ 1
minccck ̸=0 ccck

: By construction of ΩM , there exists some m, such that m
(M−1)minccck ̸=0 ccck

≤
p ≤ m+1

(M−1)minccck ̸=0 ccck
. Let pj ≜ j

(M−1)minccck ̸=0 ccck
for ease of notations. Clearly, we have pm ∈ ΩM .

Now let us partition the space of âaa(x) into M regions, denoted by A1, A2, · · · , AM . Abusing the
notation a little bit, let ϕ(p, x) ≜ argmax âaak(x)− pĉcck A1 is the set of all âaa(x) such that ϕ(p, x) is a
constant. A2 is the set of all âaa(x) such that ϕ(p, x) is a constant for p larger than p1. Generally, Aj is
the set of all âaa(x) such that ϕ(p, x) is a constant for p larger than pj−1 subtracting Aj−1. Formally,

Aj =

{
{âaa(x) : ϕ(p, x)is a constant}, j = 1

{âaa(x) : ϕ(p, x)is a constant if p ≥ pj−1} −Aj , j > 1
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One can easily verify that {Aj} form a partition of the space of the estimated accuracy, and further
more, ‖Aj‖ ≤ ∥ccc∥1

M minccck ̸=0 ccck
. By the assumption of the distribution, there exists some constant u,

such that Pr(A) ≤ u‖A‖, for any A in the probability space. Thus, we must have

Pr[âaa(x) ∈ Aj ] ≤ ‖Aj‖u =
u‖ccc‖1

M minccck ̸=0 ccc2k

Now note that, when pm = m
(M−1)minccck ̸=0 ccck

≤ p ≤ m+1
(M−1)minccck ̸=0 ccck

= pm+1, only elements in
Am may affect the reward. More precisely, we have

1

N

N∑
n=1

rs
p

(xn)−
1

N

N∑
n=1

rs
pm

(xn) =
1

N

∑
xn∈Am

rs
p

(xn)−
1

N

∑
xn∈Am

rs
pm

(xn)

Note that each estimated accuracy is an i.i.d sample from the true distribution, and its value is from
[0, 1], by Hoeffding’s inequality, with probability 1− ϵ, we have

‖ 1

N

N∑
n=1

1xn∈Aj − Pr[xn ∈ Aj ]‖ ≤
√

log 2− log ϵ

2N

Applying the union bound, we have for any j, with probability 1− ϵ,

‖ 1

N

N∑
n=1

1xn∈Aj − Pr[xn ∈ Aj ]‖ ≤
√

logM + log 2− log ϵ

2N

Therefore, we have with probability 1− ϵ,

1

N

N∑
n=1

rs
p

(xn)−
1

N

N∑
n=1

rs
pm

(xn) =
1

N

∑
xn∈Am

rs
p

(xn)−
1

N

∑
xn∈Am

rs
pm

(xn)

≥
∑

xn∈Am

0− 1

N

∑
xn∈Am

1 =
1

N

N∑
n=1

1xn∈Am

≥ Pr[xn ∈ Am]−
√

logM + log 2− log ϵ

2N

≥ −
√

logM + log 2− log ϵ

2N

and similarly

1

N

N∑
n=1

rs
p

(xn)−
1

N

N∑
n=1

rs
pm

(xn) =
1

N

∑
xn∈Am

rs
p

(xn)−
1

N

∑
xn∈Am

rs
pm

(xn)

≤
∑

xn∈Am

1− 1

N

∑
xn∈Am

0 =
1

N

N∑
n=1

1xn∈Am

≤ Pr[xn ∈ Am] +

√
logM + log 2− log ϵ

2N

≤ u‖ccc‖1
M minccck ̸=0 ccck

+

√
logM + log 2− log ϵ

2N

That is to say,

‖ 1

N

N∑
n=1

rs
p

(xn)−
1

N

N∑
n=1

rs
pm

(xn)‖ ≤ u‖ccc‖1
M minccck ̸=0 ccck

+

√
logM + log 2− log ϵ

2N
(B.5)

Similarly, for the training dataset, we can also get, with probability 1− ϵ,

‖ 1

NTr

NTr∑
n=1

rs
p

(xTr
n )− 1

NTr

N∑
n=1

rs
pm

(xTr
n )‖ ≤ u‖ccc‖1

M minccck ̸=0 ccck
+

√
logM + log 2− log ϵ

2N
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Combining case (i) and case (ii), we have just shown that for any p ∈ R, there exists another
p′ ∈ ΩM , such that

‖ 1

NTr

NTr∑
n=1

rs
p

(xTr
n )− 1

NTr

N∑
n=1

rs
p′

(xTr
n )‖ ≤ u‖ccc‖1

M minccck ̸=0 ccck
+

√
logM + log 2− log ϵ

2N
(B.6)

Thus, applying Lemma 4, we have with probability 1− ϵ,

‖ 1

NTr

NTr∑
n=1

rs
p̂

(xTr
n )− 1

NTr

N∑
n=1

rs
p̂(ΩM )

(xTr
n )‖ ≤ u‖ccc‖1

M minccck ̸=0 ccck
+

√
logM + log 2− log ϵ

2N

Now by Lemma 5, for each fixed j, we have with probability 1− ϵ,

‖ 1

N

N∑
n=1

rs
pj
(xn)−

1

NTr

NTr∑
n=1

rs
pj
(xTr

n )‖ ≤

[√
log 4− log ϵ

2N
+

√
log 4− log ϵ

2NTr

]
Applying union bound, with probability 1− ϵ,

‖ 1

N

N∑
n=1

rs
pj
(xn)−

1

NTr

NTr∑
n=1

rs
pj
(xTr

n )‖ ≤

[√
logM + log 4− log ϵ

2N
+

√
logM + log 4− log ϵ

2NTr

]
for all j. Specifically, we have

‖ 1

N

N∑
n=1

rs
p̂(ΩM )

(xn)−
1

NTr

NTr∑
n=1

rs
p̂(ΩM )

(xTr
n )‖ ≤

[√
logM + log 4− log ϵ

2N
+

√
logM + log 4− log ϵ

2NTr

]
(B.7)

and

‖ 1

N

N∑
n=1

rs
p′

(xn)−
1

NTr

NTr∑
n=1

rs
p′

(xTr
n )‖ ≤

[√
logM + log 4− log ϵ

2N
+

√
logM + log 4− log ϵ

2NTr

]
(B.8)

Now combining equations B.5, B.6, B.7, and B.8 with triangle inequality, we have with probability
1− ϵ,

‖ 1

N

N∑
n=1

rs
p̂

(xn)−
1

N

N∑
n=1

rs
p̂(ΩM )

(xn)‖

≤ u‖ccc‖1
4M minccck ̸=0 ccck

+ 4

√
logM + log 8− log ϵ

2N
+ 2

√
logM + log 8− log ϵ

2NTr

Setting M = min{NTr, N}, we have

‖ 1

N

N∑
n=1

rs
p̂

(xn)−
1

N

N∑
n=1

rs
p̂(ΩM )

(xn)‖ ≤ O(

√
logN + log 8− log ϵ

2N
+

√
logNTr + log 8− log ϵ

2NTr
)

which completes the proof.

Lemma 10. Let

p(ΩM ) ≜ arg max
p∈ΩM

1

N

N∑
n=1

rs
p

(xn)

s.t.
1

N
η[s

p](xn, ccc) ≤ (1− δ)b− ‖ccc‖∞

[√
log 8− log ϵ

2N
+

√
log 8− log ϵ

2NTr

]
Then with probability 1− ϵ,

1

N

N∑
n=1

rs
p̂(ΩM )

(xn) ≥
1

N

N∑
n=1

rs
p(ΩM )

−
√

log 8− log ϵ

2N
−
√

log 8− log ϵ

2NTr
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and

1

N

N∑
n=1

η[s
p̂(ΩM )](xn, ccc) ≤ (1− δ)b+ 2‖ccc‖∞

[√
log 8− log ϵ

2N
+

√
log 8− log ϵ

2NTr

]
.

Proof. By Lemma 5, with probability 1− ϵ, we have

‖ 1

N

N∑
n=1

rs
p

(xn)−
1

NTr

NTr∑
n=1

rs
p

(xTr
n )‖ ≤

√
log 4− log ϵ

2N
+

√
log 4− log ϵ

2NTr
.

and similarly, with probability 1− ϵ,

‖ 1

N

N∑
n=1

η[s
p](xn, ccc)−

1

NTr

NTr∑
n=1

η[s
p](xTr

n , ccc)‖ ≤ ‖ccc‖∞

[√
log 4− log ϵ

2N
+

√
log 4− log ϵ

2NTr

]
.

which is the same as

‖ 1

N

N∑
n=1

η[s
p](xn, ccc)−(1−δ)b−

 1

NTr

NTr∑
n=1

η[s
p](xTr

n , ccc)− (1− δ)b

 ‖ ≤ ‖ccc‖∞

[√
log 4− log ϵ

2N
+

√
log 4− log ϵ

2NTr

]
.

Now applying union bound, we have with probability 1− ϵ,

‖ 1

N

N∑
n=1

rs
p

(xn)−
1

NTr

NTr∑
n=1

rs
p

(xTr
n )‖ ≤

√
log 8− log ϵ

2N
+

√
log 8− log ϵ

2NTr
.

and

‖ 1

N

N∑
n=1

η[s
p](xn, ccc)−(1−δ)b−

 1

NTr

NTr∑
n=1

η[s
p](xTr

n , ccc)− (1− δ)b

 ‖ ≤ ‖ccc‖∞

[√
log 8− log ϵ

2N
+

√
log 8− log ϵ

2NTr

]
.

both hold. By Lemma 6, we can conclude that

1

N

N∑
n=1

rs
p̂(ΩM )

(xn) ≥
1

N

N∑
n=1

rs
p(ΩM )

−
√

log 8− log ϵ

2N
−
√

log 8− log ϵ

2NTr
.

and

1

N

N∑
n=1

η[s
p̂(ΩM )](xn, ccc)− (1− δ)b ≤ 2‖ccc‖∞

[√
log 8− log ϵ

2N
+

√
log 8− log ϵ

2NTr

]
.

with probability 1− ϵ, which completes the proof.

Lemma 11. For δ = Ω(
√

log 4−log ϵ
N +

√
log 4−log ϵ

NTr ), we have with probability 1− ϵ,

1

N

N∑
n=1

rs
p(ΩM )

(xn)−
1

N

N∑
n=1

rs
p∗

(xn) ≥ −O(

√
logN − log ϵ

2N
+

√
logN − log ϵ

2NTr
).

Proof. Let p̃(∆) be the optimal solution to the following problem

max
p∈R

1

N

N∑
n=1

rs
p

(xn)s.t.
1

N
η[s

p](xn, ccc) ≤ b−∆

On one hand, p∗ apparently is a feasible solution to the above problem with ∆ = 0, so we must have

1

N

N∑
n=1

rs
p∗

(xn) ≤
1

N

N∑
n=1

rs
p̃(0)

(xn) (B.9)
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Let ∆′ = δ+‖ccc‖∞
[√

log 8−log ϵ
2N +

√
log 8−log ϵ

2NTr

]
. Then p̃(∆′) corresponds to the following problem

max
p∈R

1

N

N∑
n=1

rs
p

(xn)

s.t.
1

N
η[s

p](xn, ccc) ≤ (1− δ)b− ‖ccc‖∞

[√
log 8− log ϵ

2N
+

√
log 8− log ϵ

2NTr

]

Then using the same argument in the proof of Lemma 9, we have with probability 1− ϵ,

‖ 1

N

N∑
n=1

rs
p̃(∆′)

(xn)−
1

N

N∑
n=1

rs
p(ΩM )(xn)‖ ≤

√
logN + log 8 + log ϵ

2N
+

√
logN + log 8− log ϵ

2NTr
.

(B.10)
Furthermore, it is clear that p̃(∆) is decreasingly-monotone with respect to ∆. In fact, removing
the budget by ∆1, at most ∆1

minccck>cj
ck−cj

data’s APIs need be changed, and thus incurs at most
∆1

minccck>cj
ck−cj

accuracy decrease. That is to say, we must have

‖ 1

N

N∑
n=1

rs
p̃(∆′)

(xn)−
1

N

N∑
n=1

rs
p̃(0)

(xn)‖ ≤ ∆1

minccck>cccj ccck − cccj
(B.11)

Now combining equations B.9, B.10, B.11, we can obtain

1

N

N∑
n=1

rs
p(ΩM )

(xn)−
1

N

N∑
n=1

rs
p∗

(xn)

=
1

N

N∑
n=1

rs
p(ΩM )(xn) − 1

N

N∑
n=1

rs
p̃(∆′)

(xn)

+
1

N

N∑
n=1

rs
p̃(∆′)

(xn)−
1

N

N∑
n=1

rs
p̃(0)

(xn) +
1

N

N∑
n=1

rs
p̃(0)

(xn)−
1

N

N∑
n=1

rs
p∗

(xn)

≥−
√

logN + log 8 + log ϵ

2N
−
√

logNTr + log 8− log ϵ

2NTr
− ∆1

minccck>cccj ccck − cccj
− 0

When δ = Ω(

[√
log 4−log ϵ

N +
√

log 4−log ϵ
NTr

]
), we have

1

N

N∑
n=1

rs
p(ΩM )

(xn)−
1

N

N∑
n=1

rs
p∗

(xn)

≥−O(

√
logN − log ϵ

2N
+

√
logNTr − log ϵ

2NTr
)

which completes the proof.

Now we are ready to prove the main theorem. We start by showing the bound on the reward. Suppose

δ = Θ

(√
logN−log ϵ

N +
√

logNTr−log ϵ
NTr

)
. By union bound, with probability 1−ϵ, Lemma 9, Lemma

10, and Lemma 11 all hold, and we have
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1

N

N∑
n=1

rs
p̂

(xn)−
1

N

N∑
n=1

rs
p∗

(xn)

=
1

N

N∑
n=1

rs
p̂

(xn)−
1

N

N∑
n=1

rs
p̂(ΩM )

(xn) +
1

N

N∑
n=1

rs
p̂(ΩM )

(xn)

+
1

N

N∑
n=1

rs
p(ΩM )

(xn)−
1

N

N∑
n=1

rs
p∗

(xn)

≥−O

(√
logN − log ϵ

N
+

√
logNTr − log ϵ

NTr

)
Now note that by Theorem 1, we have with probability 1,

1

N

N∑
n=1

rs
p∗

(xn) ≥
1

N

N∑
n=1

rs
∗
(xn)−

1

N

Combing the above two inequalities, we have

1

N

N∑
n=1

rs
p̂

(xn)−
1

N

N∑
n=1

rs
∗
(xn) ≥ −O

(√
logN − log ϵ

N
+

√
logNTr − log ϵ

NTr

)
Next we consider the feasibility requirement. By Lemma 8, with probability 1 − ϵ, sp̂ is a feasible
solution to Problem 3.1. That is to say, sp̂ with probability 1 − ϵ is a feasible solution. Applying
union bound completes the proof.
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C EXPERIMENTAL DETAILS

We provide missing experimental details in this part.

Experimental setup All experiments were run on a machine with 8 Intel Xeon Platinum 2.5 GHz
cores, 32 GB RAM, and 500GB disk with Ubuntu 16.04 LTS as the OS. Our code is implemented
in Python 3.7. Each experiments, except the case study, were run for five times to mitigate the
randomness introduced by training-testing splitting.

ML tasks and services Recall that We focus on three multi-label classification tasks, multi-label
image classification (MIC), scene text recognition (STR), and named entity recognition (NER).

MIC is a computer vision task, where the goal is to assign a set of labels to a given image. For MIC,
we use 3 different commercial ML cloud services, Google Vision (Goo), Microsoft Vision (Mic),
and Everypixel(Eve). We also use a single shot detector model (SSD) pretrained on OpenImageV4
(Kuznetsova et al., 2020), which is freely available from GitHub (SSD). All of those APIs produce
labels from a large (and unknown) set, but the datasets we consider have bounded number of labels.
For example, there are only 80 distinct labels in COCO dataset. Thus, we remove the predicted
labels which are not in the full label set. For example, if Google API gives label {person, car, man}
for an image in COCO, but man is not in the full label set of COCO, then we will use {person, car}
as the label set produced from Google.

STR is a computer vision task, where the goal is to predict all texts in a natural scene image. In
the context of multi-label classification, we view each predicted word as a label, and all possible
words as the label set. For STR, the ML services used in the experiments are Google Vision (Goo),
iFLYTEK API (Ifl), and Tencent API (Ten). We also use PP-OCR (Pad), an open source model from
GitHub.

NER is a natural language processing task where the goal is to extract all possible entities from a
given text. For example, for the sentence ICML was held in Long Beach in 2019, ICML should be
extracted as an organization, and Long Beach should be identified as a location. In this paper, we
consider three common types of entities, person, location, and organization. For any given text, each
possible entity is viewed as a label, and the label set is the number of unique entities in the entire
dataset. For NER, we use three common APIs: Amazon Comprehend (Ama), Google NLP (GoN),
and IBM natural language API (IBM). a multi-task convolutional neural network model(Spa) from
GitHub is also used.

Table 3: Dataset Statistics.
Task Dataset Size # Labels Dist Labels

MIC

PASCAL (Everingham et al., 2015) 11540 16682 20
MIR (Huiskes & Lew, 2008) 25000 92909 24

COCO (Lin et al., 2014) 123287 357662 80

STR

MTWI (He et al., 2018) 9742 867727 4404
ReCTS (Zhang et al., 2019) 20000 555286 4134

LSVT (Sun et al., 2019) 30000 1878682 4852

NER

CONLL (Sang & Meulder, 2003) 10898 43968 9910
ZHNER (ZHN) 16915 147164 4375

GMB (Bos, 2013) 47830 116225 14376

Datasets. The experiments were conducted on 9 datasets. For MIC, we use three popular datasets
including PASCAL (Everingham et al., 2015), MIR (Huiskes & Lew, 2008) and COCO (Lin et al.,
2014). PASCAL is a standard object recognition dataset with 20 distinct labels, and COCO is an-
other one with 80 unique labels. PASCAL’s label set contains 20 common objects: person, bird,
cat, cow, dog, horse, sheep, aeroplane, bicycle, boat, bus, car, motorbike, train, bottle, chair, dining
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table, potted plant, sofa, tv/monitor. The 80 objects in COCO include: person, bicycle, car, motorcy-
cle, airplane, bus, train, truck, boat, traffic light, fire hydrant, stop sign, parking meter, bench, bird,
cat, dog, horse, sheep, cow, elephant, bear, zebra, giraffe, backpack, umbrella, handbag, tie, suit-
case, frisbee, skis, snowboard, sports ball, kite, baseball bat, baseball glove, skateboard, surfboard,
tennis racket, bottle, wine glass, cup, fork, knife, spoon, bowl, banana, apple, sandwich, orange,
broccoli, carrot, hot dog, pizza, donut, cake, chair, couch, potted plant, bed, dining table, toilet,
tv, laptop, mouse, remote, keyboard, cell phone, microwave, oven, toaster, sink, refrigerator, book,
clock, vase, scissors, teddy bear, hair drier, toothbrush. For those two datasets, we use their original
associated labels as the label set. MIR is a dataset designed for image retrieval. There are origi-
nally 25 labels: animals, baby, bird, car, clouds, dog, female, flower, food, indoor, lake, male, night,
people, plant_life, portrait, river, sea, sky, structures, sunset, transport, tree, water. We remove the
label night since it is not in the label set of any of the APIs or the GitHub model. On average, there
are 1.44 labels per image for PASCAL, 3.71 labels per image for MIR, and 2.91 labels per image
for COCO. The dataset statistic is summarized in Table 3. Most of the datasets are open and under
Creative Commons license (e.g., the dataset COCO (Lin et al., 2014)). The details can be found in
their corresponding paper and repository. As those datasets are actually open, they do not require an
in-person consent from the authors/developers. The datasets themselves may contain personal infor-
mation (e.g., there are personal images in COCO). Though, they have been render anonymous. For
the purpose of deciding which API to call, we also do not use personally identifiable information.

For STR, we use three large scale Chinese text recognition datasets, MTWI (He et al., 2018),
ReCTS (Zhang et al., 2019) and LSVT (Sun et al., 2019). The label set contains all possible Chi-
nese characters as well as digits (0-9). MTWI contains images from the internet mainly targeting at
advertisements. Thus, most of its images have dense texts. ReCTS includes photos taken on sign
boards and thus has relatively fewer words. The images from LSVT are typically street view images
and hence have medium number of words. All images in MTWI and ReCTS are fully annotated and
used in our experiments. LSVT contains both fully and partially annotated images, and we only use
the subset with full annotations.

The other datasets, CONLL (Sang & Meulder, 2003), ZHNER (ZHN) and GMB (Bos, 2013), are
used for NER task. CONLL contains English sentences from newspapers, and texts from GMB
are also English and from a wider range of sources. On the other hand, ZHNER is a Chinese text
dataset. We consider four common types of entities: organization, person, and location. In this
paper, we focus on three common types of entities that all datasets contain: persons,locations, and
organizations. Each sentence from those datasets is extracted as a data point, and the associated
label set is simply all entities in this sentence. An entity is considered correctly extracted if and only
if it is labeled as an entity and its entity type is correct.

GitHub model cost We evaluate the inference time of all GitHub models on an Amazon EC2 p2.x
instance, which is $0.90 per hour. For multi-label image classification, the GitHub model (SSD)
takes 6s to classify each image, resulting in an equivalent cost of $0.0015 per image. For the named
entity task, the GitHub model (Spa) can extract the entities from a sentence in 0.015s, leading to $
0.00000375 per sentence. The GitHub model (Pad) with the mobile version 3.0 text detector and
recognizer requires 1.5 on average to extract text from an image, causing a cost of $ 0.000375 per
image. Compared to the commercial APIs, this cost is much cheaper.

Training cost of FrugalMCT Both dollar cost and computation time of training are often much
smaller than ML APIs inference cost.This is because (i) training is a one-time cost and (ii) Fru-
galMCT requires a small number of label annotations (a few thousands see Figure 5). Consider the
image tagging task as an example: the dollar cost of calling all APIs is $0.0006+$0.001+$0.0015 =
$0.0031 per image. Labeling for (say) five thousands images takes $0.0031× 5000 = $15.5. Train-
ing a FrugalMCT strategy on half of the COCO dataset takes 59.5s on the experiment machine. This
is much cheaper than calling the selected APIs after at large scale (e.g., millions of images)

Case study on COCO Now we provide more details about the case study on the multi-label image
classification dataset, COCO. There are in total 123,287 images containing labels from 80 different
categories in COCO. Figure 6 gives the label distribution. First note that the label distribution is
quite skewed. overall, the label person is the most frequent: more than 50% of the images con-
tain the person label. Among others, car, chair, and dining tables are also quite common labels
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Figure 6: Label Distribution on COCO.

in this dataset with more than 10% occurrence. On the other hand, there are also quite some rare
labels. For example, half driver and toaster appear in less than 1% of the images. Such imbalance
between different labels imposes a high data and computational complexity to directly apply previ-
ous approach that learns a decision rule per label, and thus verifies the necessity of the proposed
framework, FrugalMCT.

To further understand when and why FrugalMCT gives a better performance than single API, we
present the precision and recall per class for each API, majority vote, and FrugalMCT in Figure 7
and Figure 8. We first note that there is no API universally better than other APIs for each label. For
example, GitHub and Microsoft APIs can hardly correctly predict the label “toaster”, but Everypixel
and Google APIs have a relatively high accuracy on label “toaster”. On the other hand, Everypixel
has a low accuracy on label “kite” and “knite”, while Microsoft, Google, GitHub APIs can usually
predict those labels with higher accuracy. This implies that combining different APIs may produce
an accuracy better than any single one of them. There are also some easy labels on which all APIs
give a high accuracy. For example, on the label “zebra”, all APIs give a 90% precision and recall.
This actually suggests that it is not always necessary to use all API. For example, if GitHub predicts
an image has the label “zebra”, and we know there is no other labels in this image, then probably
there is no need to call any other APIs.

Another interesting observation is that FrugalMCT improves the precision and recall for almost ev-
ery label compared to any single API. This is primarily because FrugalMCT appropriately utilizes
the predicted label information from GitHub model to infer which API is better on certain input,
and combine its performance with the base API aptly. Yet, the precision and recall difference can
be quite different for different APIs. For example, as shown in Figure 8(c), the recall for “airplane”
is much higher than its precision, but banana’s precision is much higher than its recall. For applica-
tions that have specific precision and recall requirements, we may adopt different accuracy metrics
in FrugalMCT. Another interesting observation is that the precision and recall for some labels is
extremely. For example, “hair drier” cannot be predicted by FrugalMCT, which is due to that no
API actually predicts this label correctly. How to extend FrugalMCT to recognize unseen labels
remains an open question.

Ensemble method comparison For comparison, we compare FrugalMCT against FrugalML as
well as two ensemble methods, majority vote and weighted majority vote. In majority vote, for each
label, we accept it if at least half of the APIs predict it. In weighted majority vote, we assign each
API’s accuracy as its weight. Next, for each label, we compute a label score, which is equal to the
sum of each API’s confidence score on this label weighted by its corresponding weight. If an API
does not predict a label, then its confidence score is viewed as 0. Finally, we only accept the label if
its label score is larger than a threshold. We pick a threshold that maximizes the overall accuracy by
grid search.
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Table 4: Performance of FrugalMCT’s accuracy predictor. Root mean square error (RMSE) quanti-
fies the standard deviation of the differences between predicted and true accuracy.

Data RMSE Data RMSE Data RMSE

PASCAL 0.28 MIR 0.22 COCO 0.24

MTWI 0.17 ReCTS 0.22 LSVT 0.19

CONLL 0.29 ZHNER 0.31 GMB 0.28

Table 5: Comparison of ensemble methods as well as cost-aware approaches. For FrugalMCT and
FrugalML, we pick their corresponding strategies that minimize the cost while ensures that the
accuracy reaches the highest possible.

best single API FrugalML FrugalMCT majority vote weighted maj vote

acc cost acc cost acc cost acc cost acc cost

PASCAL 74.8 10 76.9 11 78.5 8 77.8 31.01 77.8 31.01

MIR 41.2 10 43.8 8 49.2 14 41.4 31.01 48.7 31.01

COCO 47.5 10 49.3 8 54 12 50.1 31.01 52.8 31.01

MTWI 67.9 210 68.1 213 71.1 208 75.4 275.01 75.4 275.01

ReCTS 61.3 210 63.4 213 64.7 208 70.2 275.01 70.2 275.01

LSVT 53.8 210 56.2 213 57.2 208 62.8 275.01 62.8 275.01

CONLL 52.6 3 55.7 32 56.8 36.8 58.5 43.01 58.5 43.01

ZHNER 61.3 30 67.4 31.2 71.8 36.8 66 43.01 66 43.01

GMB 50.1 30 52.6 30.1 53.1 20.5 51.3 43.01 51.5 43.01

The results are summarized in Table 5. Overall, we observe that FrugalMCT and ensemble methods
have similar performance across different tasks and datasets, but with a much lower cost. In fact,
for datasets including COCO and ZHNER, FrugalMCT can achieve an accuracy enven higher than
ensemble methods.

Accuracy predictor performance Note that FrugalMCT’s performance highly depends on its
accuracy predictors’ performance. Tn obtain a quantitative sense of the accuracy predictors, we
evaluate the accuracy predictors’ performance in Table 5. RMSE measures the standard deviation of
the difference between accuracy predictor’s output and the corresponding true accuracy. PCC stands
for Pearson correlation coefficient, which roughly measures the linear correlation between the true
accuracy and the predicted value from the accuracy predictors. Overall, FrugalMCT’ random forest
predictors enjoy a much smaller RMSE and higher PCC than DAP (the dummy accuracy predictors),
which matches the fact that FrugalMCT gives a higher end to end performance than using the DAP.
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Table 6: Accuracy predictor performance. RMSE and PCC stand for root mean square error and
Pearsons correlation coefficient.

Data
RMSE PCC

FrugalMCT DAP FrugalMCT DAP

PASCAL 0.28 0.35 0.55 0.012

MIR 0.22 0.31 0.55 -0.013

COCO 0.24 0.31 0.63 0.001

MTWI 0.17 0.21 0.57 0.004

ReCTS 0.22 0.27 0.57 0.001

LSVT 0.19 0.24 0.61 -0.003

CONLL 0.29 0.41 0.72 -0.003

ZHNER 0.31 0.36 0.48 -0.005

GMB 0.28 0.40 0.69 -0.006
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Figure 7: The per class precision and recall of different APIs .
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Figure 8: The per class precision and recall of different APIs .
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