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1 Manipulation tasks and metrics

We provide more details about the evaluation manipulation tasks, and introduce more metrics for
each task in this section.

Simple objectives:

* Shift up: Shift the object upward (along the negative x-axis in the manipulator frame) under all
initial poses. For evaluation, we grid sample 360 initial object orientations with positions in the
center of the manipulator, and close the manipulator around the object. The average success rate
after one closure S, 1 (%) is reported, where success is counted if the object is shifted more than
3mm along the negative x-axis. We additionally report continuous metrics including average delta
object translation along the x-axis after one closure Ax | (cm), and average final x coordinate of the
object after the 40th gripper closure x | (cm). The metrics are averaged among the 360 interaction
trails with different initial object orientations. The motion objective is f(o,m, p) = —Ax(o,m, p),
then the design objective is aggregated from f(o,m, p) as F(m) =Y, ¥, f(0,m, p).

* Shift down: Shift the object downward (along the positive x-axis) under all initial poses. Metrics
are average success rate of the object being shifted more than 3mm along the positive x-axis after
one closure S} 1 (%), average delta translation along the x-axis Ax 1 (cm), and average final x
coordinate x 1 (cm). The motion objective is f(o,m, p) = Ax(o,m, p).

« Shift left: Shift the object leftward (along the negative y-axis) under all initial poses. Metrics are
average success rate of the object being shifted more than 2mm along the negative y-axis after
one closure S 1 (%), average delta translation along the y-axis Ay | (cm), and average final y
coordinate y | (cm). The motion objective is f(o,m, p) = —Ay(o,m, p).

* Shift right: Shift the object rightward (along the positive y-axis) under all initial poses. Metrics
are average success rate of the object being shifted more than 2 mm along the positive y-axis after
one closure S 1 (%), average delta translation along the y-axis Ay 1 (cm), and average final y
coordinate y 1 (cm). The motion objective is f(o,m, p) = Ay(o,m, p).

* Rotate clockwise: Rotate the object clockwise (negative delta rotation around the z-axis) under
all initial poses. Metrics are average success rate of the object being rotated more than 0.03rad
around the negative z-axis after one closure S, 1 (%), average delta rotation around the z-axis
A8 | (°), and average final orientation 6 |, (°). The motion objective is f(o,m, p) = —A0(o,m, p).

* Rotate counterclockwise: Rotate the object counterclockwise (positive delta rotation around the
z-axis) under all initial poses. Metrics are average success rate of the object being rotated more
than 0.03rad around the positive z-axis after one closure S‘g 1 (%), average delta rotation around
the z-axis A6 1 (°), and average final orientation 6 1 (°). The motion objective is f(o,m, p) =
AB(o,m,p).

Complex objectives:

* Rotate: Rotate the object either clockwise or counterclockwise under all initial poses. The metrics
are average success rate S'g_ 1 (%), the average absolute value of delta rotation around the z-axis
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Figure 1: Results on Simple Objectives. We generate manipulators for simple objectives that involve motion
along one dimension in SE2 space. Red and green object masks denote object configurations before and after
interaction respectively, overlaid with the image after closing in the manipulator. Compared with baseline
methods, finger shapes produced by our method achieve the task much more effectively.

|AB] | (°), and the average absolute value of final orientation |6| | (°). The motion objective is
flo,m,p) = [AO(OamJ))]Z'

* Rotate clockwise and shift up: Rotate the object clockwise and shift it up under all initial
poses. The metrics are average success rate S, &S, 1 (%), average delta rotation around the
z-axis AB | (°), average final orientation 6 | (°), average delta translation along the x-axis af-
ter one closure Ax | (cm), and average final x coordinate x | (cm). The motion objective is
f(05m7p) = —AG(O,m,p) —Ax(o,m,p).

* Rotate clockwise and shift left: Rotate the object clockwise and shift it left under all initial
poses. The metrics are average success rate Sy &S, 1 (%), average delta rotation around the z-axis
Af | (°), average final orientation 6 | (°), average delta translation along the y-axis Ay | (cm),
and average final y coordinate y | (cm). The motion objective is f(o,m,p) = —A8(o,m,p) —
Ay(o,m, p).

» Convergence: Reorient the object towards a fixed final pose under a range of initial poses. The
design objective is encouraging the object to rotate in the positive direction when its initial ori-
entation is smaller than the target orientation, or else rotate in the negative direction. The motion
objective is:

Ae(o,m,p) if 6 € [etarget — T, Btarget]

. 1
—A6 (O,M,P) if 6 € [eta.rgeta etarget + 717] M

f (o,m,p ) = {
To determine the best target orientation Oarge, We first forward the dynamics network with the
manipulator shape initialization, object shape, and sampled initial object poses to get a pseudo
interaction profile. We detect the initial object orientation ranges that lead to consecutive positive
delta rotations followed by consecutive negative delta rotations as pseudo convergence ranges.
Then we select the largest pseudo convergence range’s corresponding convergence orientation
as Brger. The metric is the maximum convergence range R 1 (°), the largest range of initial
orientations leading to 6areer Within a small tolerance. We report the maximum convergence range
within the tolerance of 3°, 5°, and 10°, respectively.

2 Additional results

We report results on all the manipulation tasks and metrics described above in Tab. 1, Tab. 2, Tab. 3,
and Tab. 4. The evaluation procedure is the same as described in the main paper, where we run each
approach 16 times per object-task pair and select the best performance, then average among test
objects. DGDM outperforms baselines consistently on both discrete metrics (e.g. average success
rate) and continuous metrics (e.g. delta object transformation and final transformation).
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Table 1: Single Object Simple Objectives Evaluation

up down left right clock counter
Set Axl xS At xSyt Ayl yL|STT Ayt oy T[Syt AOL 6L [SgT A8t 61
Unguided | 56.8 -0.2 -1.3(82.1 0.3 19[829 -05 -1.2|/804 05 1.4|469 -15 -95 585 23 11.1
2D Opt. 79.5 -04 -22(533 04 23|813 -0.6 -24[940 0.7 1.7|488 -29 -88|732 36 9.6
DGDM |88.2 -0.4 -3.1(/92.0 0.5 3.7|96.7 -0.7 -2.4/97.7 0.8 2.1|60.8 -2.6 -12.3|72.0 3.6 14.2
Unguided [ 43.0 -0.1 -0.6[43.8 0.1 1.0[/80.4 -02 -1.2|879 02 09[41.2 -1.1 -49|335 05 27
3D  Opt. 474 -0.1 -1.3]/663 02 1.7(86.3 -03 -1.3|88.1 03 1.6(59.1 -19 -50 520 12 46
DGDM |81.5 -0.2 -1.6|75.1 0.2 1.7|951 -04 -1.8/97.2 04 19|699 -23 -7.7 |650 2.2 63
Table 2: Single Object Complex Objectives Evaluation
rotate clock-up clock-left convergence
Sy T IAGIT (61 T[S,&S; T A6 L B Axl x| |S;&S{T A6L 01 Avi vyl |RMU(3)T RIS T RE(10°) 1
Unguided | 740 3.5 182| 364 -1.5 95 -02 -13] 369 -15 95 -05 -12 56.5 61.7 68.7
2D Opt. 789 45 189 293 -1.8 42 -03 -1.0| 494 -29 -90 -0.6 -2.1 69.6 73.7 82.1
DGDM | 793 45 201| 62.7 -3.3 -145 -04 -3.6| 637 -3.2 -10.1 -0.7 -2.4 78.4 83 89.3
Unguided | 642 22 165| 303 -1.1 49 -0.1 -0.6| 33.1 -05 27 -02 -12 522 63.6 67.8
3D Opt. 669 24 157 292 -1.1 27 -0.1 -0.5| 377 -1.3 -33 -03 -1.0 50.3 60 723
DGDM | 83.0 31 21.0| 571 24 -68 -02 -09| 582 -29 -11.1 -0.5 -1.7 68.8 72.5 81.5
Table 3: Multi-object Simple Objectives Evaluation
up down left right clock counter
Set Acd xL[SET Avt xSyt Ayl vyl [SET Ayt oy TSyt A6L 61 |S; T A6t 61
Unguided | 55.8 -0.2 -1.3|79.8 03 13|77.1 -0.5 -1.1|80.3 0.5 1.3[447 -15 -35|564 21 62
2D Opt. 786 -04 -1.0(503 03 1.0[(79.2 -0.6 -1.0/938 0.7 1.7|46.1 -2.9 -78 |714 35 74
DGDM |83.8 -0.4 -3.0|838.1 04 3.4|993 -0.7 -25(943 0.7 2.1|61.3 -24 -10.5/684 3.3 16.5
Unguided | 40.1 -0.1 -0.5|40.8 0.1 09758 -0.2 -0.8(87.9 0.2 0.6(34.7 -0.5 -0.8 292 0.1 25
3D  Opt. 424 -0.1 -04]664 02 1.0[|779 -02 -04[86.6 03 0.8|403 -1.I -1.9 (392 19 35
DGDM |89.7 -0.2 -1.5|66.8 0.2 1.2|96.1 -0.5 -1.8/954 0.4 1.3|69.3 -2.0 -52|582 16 3.5
Table 4: Multi-object Complex Objectives Evaluation
rotate clock-up clock-left
So 1 A8 1 [8]T[Sp&Sy T ABL 61 Ax] x| |S&STT A8L 61 Ayl yl
Unguided | 68.3 3.2 134 352 -15 -35 -02 -08| 352 -1.0 -3.0 -0.5 -1.0
2D Opt. 743 38 72 25.0 -14 -0.1 -0.1 -0.2| 490 -29 -46 -04 -0.7
DGDM | 784 4.2 158| 624 -3.3 -10.6 -04 -3.6| 638 -3.0 -63 -0.7 -24
Unguided | 61.7 2.1 158 29.2 -0.8 -04 -0.1 -0.5| 252 0.1 25 -02 -0.7
3D Opt 67.0 23 95 22.6 0.1 -0.1 -0.1 -03| 343 -09 -1.2 -02 -0.5
DGDM | 77.6 2.5 21.6| 442 -16 -7.6 -02 -1.2| 379 -23 -89 -0.5 -2.3

3 Discussions

Modeling Interactions instead of Modeling Contacts. Differentiable simulator [1, 2, 3, 4, 5] is an-
other popular choice for providing the gradient of design objective V,,F, but suffers from two major
limitations. First, soft contact models, such as penalty-based methods used by Xu et al., are known
to yield biased and high-variance gradients [6, 2]. Further, such gradients need to be computed for
each simulation timestep, which is computationally expensive for long-horizon interactions. Instead
of modeling individual contacts, our dynamics network learns to capture the temporally extended
finger-object interaction. It is trained on physically accurate simulated data, avoiding the limitations
associated with soft contacts. Moreover, our dynamics network generalizes to novel objects and
tasks at test time, allowing for constructing new objectives without extra data generation or training.
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