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1 Manipulation tasks and metrics1

We provide more details about the evaluation manipulation tasks, and introduce more metrics for2

each task in this section.3

Simple objectives:4

• Shift up: Shift the object upward (along the negative x-axis in the manipulator frame) under all5

initial poses. For evaluation, we grid sample 360 initial object orientations with positions in the6

center of the manipulator, and close the manipulator around the object. The average success rate7

after one closure S−x ↑ (%) is reported, where success is counted if the object is shifted more than8

3mm along the negative x-axis. We additionally report continuous metrics including average delta9

object translation along the x-axis after one closure ∆x ↓ (cm), and average final x coordinate of the10

object after the 40th gripper closure x ↓ (cm). The metrics are averaged among the 360 interaction11

trails with different initial object orientations. The motion objective is f (o,m, p) =−∆x(o,m, p),12

then the design objective is aggregated from f (o,m, p) as F(m) = ∑o ∑p f (o,m, p).13

• Shift down: Shift the object downward (along the positive x-axis) under all initial poses. Metrics14

are average success rate of the object being shifted more than 3mm along the positive x-axis after15

one closure S+x ↑ (%), average delta translation along the x-axis ∆x ↑ (cm), and average final x16

coordinate x ↑ (cm). The motion objective is f (o,m, p) = ∆x(o,m, p).17

• Shift left: Shift the object leftward (along the negative y-axis) under all initial poses. Metrics are18

average success rate of the object being shifted more than 2mm along the negative y-axis after19

one closure S−y ↑ (%), average delta translation along the y-axis ∆y ↓ (cm), and average final y20

coordinate y ↓ (cm). The motion objective is f (o,m, p) =−∆y(o,m, p).21

• Shift right: Shift the object rightward (along the positive y-axis) under all initial poses. Metrics22

are average success rate of the object being shifted more than 2mm along the positive y-axis after23

one closure S+y ↑ (%), average delta translation along the y-axis ∆y ↑ (cm), and average final y24

coordinate y ↑ (cm). The motion objective is f (o,m, p) = ∆y(o,m, p).25

• Rotate clockwise: Rotate the object clockwise (negative delta rotation around the z-axis) under26

all initial poses. Metrics are average success rate of the object being rotated more than 0.03rad27

around the negative z-axis after one closure S−
θ
↑ (%), average delta rotation around the z-axis28

∆θ ↓ (°), and average final orientation θ ↓ (°). The motion objective is f (o,m, p) =−∆θ(o,m, p).29

• Rotate counterclockwise: Rotate the object counterclockwise (positive delta rotation around the30

z-axis) under all initial poses. Metrics are average success rate of the object being rotated more31

than 0.03rad around the positive z-axis after one closure S+
θ
↑ (%), average delta rotation around32

the z-axis ∆θ ↑ (°), and average final orientation θ ↑ (°). The motion objective is f (o,m, p) =33

∆θ(o,m, p).34

Complex objectives:35

• Rotate: Rotate the object either clockwise or counterclockwise under all initial poses. The metrics36

are average success rate S+−
θ

↑ (%), the average absolute value of delta rotation around the z-axis37
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Figure 1: Results on Simple Objectives. We generate manipulators for simple objectives that involve motion
along one dimension in SE2 space. Red and green object masks denote object configurations before and after
interaction respectively, overlaid with the image after closing in the manipulator. Compared with baseline
methods, finger shapes produced by our method achieve the task much more effectively.

|∆θ | ↓ (°), and the average absolute value of final orientation |θ | ↓ (°). The motion objective is38

f (o,m, p) = [∆θ(o,m, p)]2.39

• Rotate clockwise and shift up: Rotate the object clockwise and shift it up under all initial40

poses. The metrics are average success rate S−
θ

&S−x ↑ (%), average delta rotation around the41

z-axis ∆θ ↓ (°), average final orientation θ ↓ (°), average delta translation along the x-axis af-42

ter one closure ∆x ↓ (cm), and average final x coordinate x ↓ (cm). The motion objective is43

f (o,m, p) =−∆θ(o,m, p)−∆x(o,m, p).44

• Rotate clockwise and shift left: Rotate the object clockwise and shift it left under all initial45

poses. The metrics are average success rate S−
θ

&S−y ↑ (%), average delta rotation around the z-axis46

∆θ ↓ (°), average final orientation θ ↓ (°), average delta translation along the y-axis ∆y ↓ (cm),47

and average final y coordinate y ↓ (cm). The motion objective is f (o,m, p) = −∆θ(o,m, p)−48

∆y(o,m, p).49

• Convergence: Reorient the object towards a fixed final pose under a range of initial poses. The50

design objective is encouraging the object to rotate in the positive direction when its initial ori-51

entation is smaller than the target orientation, or else rotate in the negative direction. The motion52

objective is:53

f (o,m, p) =
{

∆θ(o,m, p) if θ ∈ [θtarget −π,θtarget]

−∆θ(o,m, p) if θ ∈ [θtarget,θtarget +π]
(1)

To determine the best target orientation θtarget, we first forward the dynamics network with the54

manipulator shape initialization, object shape, and sampled initial object poses to get a pseudo55

interaction profile. We detect the initial object orientation ranges that lead to consecutive positive56

delta rotations followed by consecutive negative delta rotations as pseudo convergence ranges.57

Then we select the largest pseudo convergence range’s corresponding convergence orientation58

as θtarget. The metric is the maximum convergence range Rmax
c ↑ (°), the largest range of initial59

orientations leading to θtarget within a small tolerance. We report the maximum convergence range60

within the tolerance of 3°, 5°, and 10°, respectively.61

2 Additional results62

We report results on all the manipulation tasks and metrics described above in Tab. 1, Tab. 2, Tab. 3,63

and Tab. 4. The evaluation procedure is the same as described in the main paper, where we run each64

approach 16 times per object-task pair and select the best performance, then average among test65

objects. DGDM outperforms baselines consistently on both discrete metrics (e.g. average success66

rate) and continuous metrics (e.g. delta object transformation and final transformation).67
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Table 1: Single Object Simple Objectives Evaluation
up down left right clock counter

S−x ↑ ∆x ↓ x ↓ S+x ↑ ∆x ↑ x ↑ S−y ↑ ∆y ↓ y ↓ S+y ↑ ∆y ↑ y ↑ S−
θ
↑ ∆θ ↓ θ ↓ S+

θ
↑ ∆θ ↑ θ ↑

2D
Unguided 56.8 -0.2 -1.3 82.1 0.3 1.9 82.9 -0.5 -1.2 80.4 0.5 1.4 46.9 -1.5 -9.5 58.5 2.3 11.1

Opt. 79.5 -0.4 -2.2 53.3 0.4 2.3 81.3 -0.6 -2.4 94.0 0.7 1.7 48.8 -2.9 -8.8 73.2 3.6 9.6
DGDM 88.2 -0.4 -3.1 92.0 0.5 3.7 96.7 -0.7 -2.4 97.7 0.8 2.1 60.8 -2.6 -12.3 72.0 3.6 14.2

3D
Unguided 43.0 -0.1 -0.6 43.8 0.1 1.0 80.4 -0.2 -1.2 87.9 0.2 0.9 41.2 -1.1 -4.9 33.5 0.5 2.7

Opt. 47.4 -0.1 -1.3 66.3 0.2 1.7 86.3 -0.3 -1.3 88.1 0.3 1.6 59.1 -1.9 -5.0 52.0 1.2 4.6
DGDM 81.5 -0.2 -1.6 75.1 0.2 1.7 95.1 -0.4 -1.8 97.2 0.4 1.9 69.9 -2.3 -7.7 65.0 2.2 6.3

Table 2: Single Object Complex Objectives Evaluation
rotate clock-up clock-left convergence

S+−
θ

↑ |∆θ | ↑ |θ | ↑ S−
θ

&S−x ↑ ∆θ ↓ θ ↓ ∆x ↓ x ↓ S−
θ

&S+y ↑ ∆θ ↓ θ ↓ ∆y ↓ y ↓ Rmax
c (3°) ↑ Rmax

c (5°) ↑ Rmax
c (10°) ↑

2D
Unguided 74.0 3.5 18.2 36.4 -1.5 -9.5 -0.2 -1.3 36.9 -1.5 -9.5 -0.5 -1.2 56.5 61.7 68.7

Opt. 78.9 4.5 18.9 29.3 -1.8 -4.2 -0.3 -1.0 49.4 -2.9 -9.0 -0.6 -2.1 69.6 73.7 82.1
DGDM 79.3 4.5 20.1 62.7 -3.3 -14.5 -0.4 -3.6 63.7 -3.2 -10.1 -0.7 -2.4 78.4 83 89.3

3D
Unguided 64.2 2.2 16.5 30.3 -1.1 -4.9 -0.1 -0.6 33.1 -0.5 -2.7 -0.2 -1.2 52.2 63.6 67.8

Opt. 66.9 2.4 15.7 29.2 -1.1 -2.7 -0.1 -0.5 37.7 -1.3 -3.3 -0.3 -1.0 50.3 60 72.3
DGDM 83.0 3.1 21.0 57.1 -2.4 -6.8 -0.2 -0.9 58.2 -2.9 -11.1 -0.5 -1.7 68.8 72.5 81.5

Table 3: Multi-object Simple Objectives Evaluation
up down left right clock counter

S−x ↑ ∆x ↓ x ↓ S+x ↑ ∆x ↑ x ↑ S−y ↑ ∆y ↓ y ↓ S+y ↑ ∆y ↑ y ↑ S−
θ
↑ ∆θ ↓ θ ↓ S+

θ
↑ ∆θ ↑ θ ↑

2D
Unguided 55.8 -0.2 -1.3 79.8 0.3 1.3 77.1 -0.5 -1.1 80.3 0.5 1.3 44.7 -1.5 -3.5 56.4 2.1 6.2

Opt. 78.6 -0.4 -1.0 50.3 0.3 1.0 79.2 -0.6 -1.0 93.8 0.7 1.7 46.1 -2.9 -7.8 71.4 3.5 7.4
DGDM 83.8 -0.4 -3.0 88.1 0.4 3.4 99.3 -0.7 -2.5 94.3 0.7 2.1 61.3 -2.4 -10.5 68.4 3.3 16.5

3D
Unguided 40.1 -0.1 -0.5 40.8 0.1 0.9 75.8 -0.2 -0.8 87.9 0.2 0.6 34.7 -0.5 -0.8 29.2 0.1 2.5

Opt. 42.4 -0.1 -0.4 66.4 0.2 1.0 77.9 -0.2 -0.4 86.6 0.3 0.8 40.3 -1.1 -1.9 39.2 1.9 3.5
DGDM 89.7 -0.2 -1.5 66.8 0.2 1.2 96.1 -0.5 -1.8 95.4 0.4 1.3 69.3 -2.0 -5.2 58.2 1.6 3.5

Table 4: Multi-object Complex Objectives Evaluation
rotate clock-up clock-left

S+−
θ

↑ |∆θ | ↑ |θ | ↑ S−
θ

&S−x ↑ ∆θ ↓ θ ↓ ∆x ↓ x ↓ S−
θ

&S+y ↑ ∆θ ↓ θ ↓ ∆y ↓ y ↓

2D
Unguided 68.3 3.2 13.4 35.2 -1.5 -3.5 -0.2 -0.8 35.2 -1.0 -3.0 -0.5 -1.0

Opt. 74.3 3.8 7.2 25.0 -1.4 -0.1 -0.1 -0.2 49.0 -2.9 -4.6 -0.4 -0.7
DGDM 78.4 4.2 15.8 62.4 -3.3 -10.6 -0.4 -3.6 63.8 -3.0 -6.3 -0.7 -2.4

3D
Unguided 61.7 2.1 15.8 29.2 -0.8 -0.4 -0.1 -0.5 25.2 0.1 2.5 -0.2 -0.7

Opt. 67.0 2.3 9.5 22.6 0.1 -0.1 -0.1 -0.3 34.3 -0.9 -1.2 -0.2 -0.5
DGDM 77.6 2.5 21.6 44.2 -1.6 -7.6 -0.2 -1.2 37.9 -2.3 -8.9 -0.5 -2.3

3 Discussions68

Modeling Interactions instead of Modeling Contacts. Differentiable simulator [1, 2, 3, 4, 5] is an-69

other popular choice for providing the gradient of design objective ∇mF , but suffers from two major70

limitations. First, soft contact models, such as penalty-based methods used by Xu et al., are known71

to yield biased and high-variance gradients [6, 2]. Further, such gradients need to be computed for72

each simulation timestep, which is computationally expensive for long-horizon interactions. Instead73

of modeling individual contacts, our dynamics network learns to capture the temporally extended74

finger-object interaction. It is trained on physically accurate simulated data, avoiding the limitations75

associated with soft contacts. Moreover, our dynamics network generalizes to novel objects and76

tasks at test time, allowing for constructing new objectives without extra data generation or training.77
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