
Appendix to "Passive Attention in Artificial Neural Networks
Predicts Human Visual Selectivity"

A ANN models, passive attention, and active attention

In the paper we used the following naming convention. The naming convention for passive attention
maps is <architecture>-<passive attention method>-<I/C/P for ImageNet/CIFAR-100/Places365>.
The naming convention for active attention maps is <attention module>-<architecture>-active-<I/C
for ImageNet/CIFAR-100>.

Table 1: Human experiments

Experiment Map
short name

Approx.
participants
per experiment

Total
participants for
all experiments1

New
experiment

Patch ratings PATCH 9 225 Yes
Discrimination accuracy D-PRIME 63 1,575 Yes
Spatial memory SPATIAL 90 2,250 Yes
Free-viewing fixations FREE (22) (22) No [1]2

Saliency search fixations SALIENCY (20) (20) No [1]2

Object search fixations OBJECT (19) (38) No [1]2

Recognition validation N/A 1,200 3,600 Yes
Labelling N/A 5 1603 Yes

Table 2: Evaluated deep learning models

Model # params Model ref. Impl. ref.

CIFAR AlexNet 2.50M [2] [3] (MIT)
CIFAR VGG-19 (w/ BatchNorm) 20.09M [4] [3] (MIT)
CIFAR ResNet-110 1.73M [5] [3] (MIT)
ImageNet AlexNet 61.10M [2] [6] (BSD-3)
ImageNet VGG-16 (w/ BatchNorm) 138.37M [4] [6] (BSD-3)
ImageNet ResNet-101 44.55M [5] [6] (BSD-3)
ImageNet EfficientNet-B0 5.29M [7] [8] (Apache 2.0)
ImageNet ViT-S/16 22.05M [9, 10] [8] (Apache 2.0)
Places AlexNet 58.50M [2] [11] (CC BY)
Places ResNet-50 24.26M [5] [11] (CC BY)

CIFAR LTPA VGG 19.99M [12, 4] [13] (GPLv3)
CIFAR ABN ResNet-110 3.06M [14, 5] [15] (MIT)
CIFAR ABN DenseNet-BC (L = 100, k = 12) 1.12M [14, 16] [15] (MIT)
ImageNet ABN ResNet-101 62.58M [14, 5] [15] (MIT)

1. ANN models. We evaluated several different CNN models, some with active attention modules
and some without. Some of these models were trained on CIFAR-100 [17], meaning that they take in
32x32 images as input and classify into 100 possible classes; some were trained on ImageNet 2012
[18], meaning that they take in 224x224 images as input and classify into 1000 possible classes; and
some were trained on Places365-Standard [11], meaning that they take in 224x224 images as input
and classify into 365 possible classes. The particular models we evaluated are listed in Table 2. The

1For our experiments we are counting the number of AMT Human Intelligence Tasks (HITs) that were
completed. We did not exclude AMT workers from completing multiple HITs. For the eye movement data,
numbers in parentheses represent unique human participants.

2Parentheses indicate publicly available data, see [1] for details. Images and eye fixation data were obtained
from https://data.mendeley.com/datasets/8rj98pp6km/1.

3For technical reasons, we only retained the data for 125 participants out of the full 160 that were recruited
for the labelling experiment.
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models in the top part of the table were evaluated with passive attention methods, and the models in
the bottom part of the table have active attention modules.

2. Passive attention methods. Passive attention methods have been developed to provide insights
into which parts of an input image a model is attending to. In addition to early gradient-based
techniques [19, 20], we used class activation mapping techniques [21, 22]. We adapted open-source
PyTorch implementations of these methods [23]4 (released under the MIT License). For each method,
we computed attention maps with respect to the top class prediction made by the model. For Grad-
CAM, Score-CAM, and CAMERAS, activation maps were derived from the last convolutional layer.
We describe each of the methods below:

(a) Guided backpropagation (GBP) [20] – This computes an imputed version of the gradient. It is
the same as standard backpropagation except it prevents the backward flow of negative gradients
by zeroing them out. By doing so, it uses higher layers to “guide” backpropagation to lower
layers.

(b) Guided gradient × image (GBPxIM) [24] – This is the same as the output of guided backpropa-
gation except it is multiplied by the (normalized) input image. Roughly, this gives a first-order
approximation of the effect of setting any given input pixel to 0.

(c) SmoothGrad with guided backpropagation (SGBP) [25] – This method attempts to address the
noisiness in raw gradient visualizations. The authors posit that this noisiness is because the
gradient may fluctuate sharply at small scales, which seems plausible especially given that,
due to ReLU activation functions, the output generally is not even continuously differentiable.
To address this, SmoothGrad adds Gaussian noise to the original input and performs guided
backpropagation, repeats this to generate a sample of sensitivity maps, and then averages these
together to produce the final sensitivity map. We used a sample size of 30, and we set σ such
that the noise level is 10%.

The next three methods are based on class activation maps (CAMs) [26]. The original CAM method
relies on a global average pooling (GAP) layer between the final convolutional layer and the fully-
connected layer in an image classification CNN. A GAP layer simply computes the average value
over each activation map in the final convolutional layer, and uses these averages as inputs into the
fully-connected layer. The CAM is then defined as the linear combination of these final activation
maps, weighted by the target class’s weights in the fully-connected layer. This CAM indicates the
discriminative regions of the image used by the CNN to identify that class. Since not all CNN
architectures have a GAP layer, several closely related techniques have been developed that do not
rely on a GAP layer. We describe the three methods we used below:

(d) Grad-CAM [21] – This stands for gradient-weighted class activation mapping. This is the same
as standard CAM except that instead of relying on a GAP layer, Grad-CAM uses gradients to
weigh each activation map.

(e) Score-CAM [22] – There are several issues with gradient-based approaches like Grad-CAM,
such as gradients being noisy and tending to vanish. Therefore, Score-CAM avoids gradients
altogether. Score-CAM is the same as standard CAM except that instead of relying on a GAP
layer, Score-CAM uses forward-passing scores to weigh each activation map. An activation
map’s forward-passing score for a given class is defined as the model’s score for that class when
the input image is masked by the activation map.

(f) CAMERAS [27] – CAM methods generally rely on the low-resolution activation maps of
the final convolutional layer, resulting in saliency maps that may be imprecise. CAMERAS
addresses this by up-/down-sampling the input image to multiple resolutions (we used resolutions
of 100x100, 224x224, and 1000x1000) and running each of these through the ANN. The resulting
gradients and activations are averaged and then used to produce the final, fused class activation
map.

We used each of the above passive attention methods to acquire attention maps from each of the
models in the top part of Table 2.

4Note that we made some modifications to this code, and these modifications are present in our supplementary
materials. In particular, we fixed the SmoothGrad implementation so that σ is computed correctly, and we
generalized the guided backpropagation implementation (and therefore all the other methods that rely on guided
backpropagation) so that it works for architectures other than AlexNet and VGGNet. Our code is available at
https://github.com/czhao39/neurips-attention.
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3. Active attention methods. Relatively recently in the area of computer vision, some models have
been developed which have active attention modules built into their architectures, so that these models
explicitly attend to certain locations in the input. We evaluated two different active attention modules,
which we describe below:
(a) Learn to Pay Attention (LTPA) [12] – We refer to this architecture by the title of its paper, LTPA.

In particular, we used the (VGG-att3)-concat-pc model defined in the paper, and apply attention
before the max-pooling layers. The model is based off of a VGGNet architecture, with three
attention estimators at intermediate layers within the CNN. Of the three attention estimators, we
used the attention maps produced by the middle estimator in our analyses.

(b) Attention Branch Network (ABN) [14] – ABN also uses an end-to-end trainable attention
module. ABN consists of three modules: feature extractor, attention branch, and perception
branch. The feature extractor and perception branch are constructed by splitting a baseline CNN
into two parts. The attention branch is placed after the feature extractor and is based on class
activation mapping. We used the resulting CAM as the attention map in our analyses.

We evaluated the LTPA and ABN models listed in the bottom part of Table 2.

B Non-ANN models of human attention

The focus of this work is to evaluate visual selectivity of ANNs in relation to human visual selectivity.
In particular, we do not claim that ANN saliency represents the state-of-the-art in modeling humans.
Nevertheless, it is still instructive to compare ANN saliency to non-ANN models of human attention
(i.e., models designed specifically to predict human attention). We examined two state-of-the-art
non-ANN models of human attention:

1. Graph-Based Visual Saliency (GBVS) [28] – GBVS first computes standard biologically-
inspired feature maps (Gabor filters, contrast maps, and luminance maps), then uses a
graph-based approach to compute activation maps on these feature maps which are meant to
highlight locally “unusual" regions, then uses a graph-based approach to normalize these
activation maps in a way that concentrates the mass on these maps, and finally sums these
together. This approach is naturally parallelizable, suggesting biological plausibility.

2. Boolean Map based Saliency (BMS) [29] – As opposed to most models which focus on
properties of local image patches (e.g., contrast and rarity), BMS tries to model a global
perceptual phenomenon found to be relevant to human visual attention—figure-ground
segregation. In particular, BMS computes a saliency map by detecting surrounded regions
in an image.

C Human visual selectivity estimation

C.1 Experimental design and procedure

“Informativeness” patch ratings task. We used the procedure described by [30, 31] to generate
dense “meaning” maps for all 25 images (taken from the database of images used by [1] for which
detailed eye-movement fixation patterns were available). For the patches, we extracted circular
image regions from a 12 by 12 regular grid over the entire image. The patches were extracted from
high-resolution versions of the images that were full-color 2430 by 2430 pixel images. The diameter
of the patches was 442 pixels (see SI Appendix Fig. S1A). During the experiment, we presented
each of the patches along with a small thumbnail of the full image that included a green circular
marker over the image to indicate where the patch was extracted from, for context. Participants
rated the “informativeness or recognizability” of the image content revealed by each of the patches
using a Likert scale (1 = “Very low recognizability”, 2 = “Low recognizability”, 3 = “Somewhat low
recognizability”, 4 = “Somewhat high recognizability”, 5 = “High recognizability”, 6 = “Very high
recognizability”), see SI Appendix Fig. S1A). In the experiment, the terms “informativeness” and
“recognizability” were used interchangeably. Participants rated all 144 patches for a given image per
experiment, and we obtained judgments from 9 unique participants for each image patch over AMT.
Participants were paid $2 for their participation. The exact instructions at the start of the experiment
were as follows: “In the task, you will see a circular image patch along with a thumbnail of the full
image from which the patch was taken to provide context. A circle over the full thumbnail image
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will indicate the location of the patch. your job is simply to rate the content revealed inside each
circular image patch (NOT the full image) in terms of how RECOGNIZABLE or INFORMATIVE it
is using a 6-point Likert scale (‘very low’, ‘low’, ‘somewhat low’, ‘somewhat high’, ‘high’, ‘very
high’). There is no right or wrong answer.” SI Appendix Fig. S1D shows the final map results for
this task, for all 25 images.

Change sensitivity discrimination task. We used the same design and procedure described in [32].
We started by producing a regular grid of possible point locations that spanned the full area of each
of the images (see SI Appendix Fig. S1B). The grid points were 7 pixels apart. During the task,
participants saw an image presented for 1000 ms with a red point displayed over it (SI Appendix
Fig. S1B). Following a 1000 ms blank delay, the image reappeared with the point either in the same
exact location relative to the image or in a shifted position. In the “shifted” condition, the point was
shifted by 6 pixels somewhere along a circular radius around the original point location, sampled at
random. The second display remained for 1000 ms on the screen and was followed by a 2AFC (“red
dot same”, or “red dot shifted”). Participants could take as long as they liked to choose a response,
although they had to complete the experiment within one hour before the experiment expired on
AMT. We obtained responses from a total of 9 participants for each grid point, and for each condition
(“same” or “shifted”). The full instructions at the start of the experiment were as follows: “In this
experiment, you will see two images presented one after the other. These images will have a red dot
placed over them. Your task is to determine if the red dot is in the same spot relative to the image for
both images in the pair, or if the red dot appears displaced the second time it is presented. NOTE: The
displays will be shown in random positions on the screen, even in cases when the red dot is placed in
the EXACT SAME spot over the image! So part of the challenge is to ignore the random shifting
of the overall display, and focus on the RELATIVE positions of the dots in relation to the images,
ignoring the random overall displacements.” For the discrimination experiment, compensation was
$1.5, and included 120 trials. Participants could take part in as many discrimination experiments as
they wished.

Spatial memory task. We used the same design and procedure introduced by [32] to estimate spatial
memory priors. Participants were presented with an image with a red point initialized somewhere
over the image for 1000 ms. The location of the point was sampled from a uniform distribution.
Participants were instructed to reproduce the exact location of the point relative to the image from
memory as accurately as possible. Exact instructions were: “In this task, a background image display
with a red dot over it will be shown for some time, and will be followed by a blank screen. The
background image will reappear but without the red dot inside. Your task will be to place the dot
in the exact position where you previously saw it (relative to the background)!”. Overall positions
of the displays, including the point and image, were shifted by a random horizontal and vertical
offset between 0 and 80 pixels on the screen canvas (in order to avoid a strategy of marking the
absolute positions of the points on the screen). The response of the participant was sent to another
participant on AMT who performed the same task, with their response becoming the stimulus for the
next participant (and so on). A total of twenty iterations (generations) of the process were completed
for each chain (There was a total of 250 chains for each image, beginning as random point location
initializations over the image). We ended each experiment after approximately 12 hours. Typical
participation included 105 trials, and the average time needed to complete the task was about 12-14
minutes. A typical experiment included about 90 participants. Compensation for taking part in the
task was dependent on performance (between $1.4 and $1.5). Participants could take part only once
per experiment, but could take part in more than one experiment (for more than one image). We only
retained the chains that reached the full twenty iterations. Participants completed 10 practice trials
prior to moving on to the 95 experimental trials.

C.2 Cross-participant reliability in the behavioral measures

We evaluated the internal reliability of our behavioral estimates using split-half reliability. We
computed 100 random splits of the data for each human behavioral task and measured the average
split-half correlations for the 100 split-half pairs with the Spearman-Brown correction. The results
were: ρ =.85 for the patch ratings estimates, ρ =.88 for free fixations, ρ =.92 for cued object search
fixations, ρ =.87 for saliency search fixations, ρ =.63 for the spatial memory KDEs, and ρ =.75 for
the d′ discrimination accuracy maps.
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C.3 Map estimation

“Informativeness” patch map estimation. To compute full maps from the patch ratings, we averaged
the ratings made for all patches at a given pixel location and ratings made at neighboring pixel
locations weighted by an isotropic Gaussian kernel (as a weighted interpolation of the ratings at a
given pixel with the ratings at neighboring pixel locations). To increase the dynamic range, we then
exponentiated the resulting map by squaring each of the individual values in the map to obtain the
final maps. SI Appendix Fig. S1D shows the final results for all the images.

Change sensitivity map estimation. We obtained d′ values for each of the discrimination grid points
by using the 2AFC responses obtained for each grid point (see formula for computing d′ included
in Appendix F.1). We then convolved the grid of raw d′ values with a fixed Gaussian kernel. Next,
we generated full continuous d′ map estimates by interpolating between the grid points using cubic
interpolation. Finally, to increase the dynamic range, we exponentiated the final result by squaring
each of the map values. SI Appendix Fig. S1B shows the results including the raw d′ grid point
values, the smoothed d′ grid point values before the interpolation, and the smoothed d′ interpolated
maps (final discrimination accuracy maps) for one of the images. SI Appendix Fig. S1D shows the
final interpolated change sensitivity estimates for all the images.

Spatial memory Kernel Density Estimation (KDE). We computed KDEs using the data from
the last (20th) iteration of the serial reproduction chains. For each point in the 20th iteration, we
computed a Gaussian kernel centered at that point with a diagonal covariance matrix. We then
summed all of the Gaussian kernels and then normalized to get the final KDE. Final KDEs are shown
in SI Appendix Fig. S1D.

Free fixations, cued object search fixations, and saliency search fixations. To compute maps of
the fixations data, we used the raw eye-movements data in [1], which consisted in (x,y) coordinates
of the fixations over the images, and used the same kernel density estimation procedure used for the
spatial memory task (see above) to obtain the final maps. These are shown in SI Appendix Fig. S1D.

D Comparing human and ANN maps

D.1 Principal Component Analysis (PCA) for estimating Human PC

In order to estimate the shared component of the variance between all the human behavioral maps,
we completed a Principal Component Analysis (PCA) with the concatenated human maps as input (a
250,000 x 6 matrix containing 6 vectorized versions of the concatenations of the maps across all 25
100 x 100 images, for each map type). We z-scored (standardized) each of the 6 2,500 x 100 human
map concatenations prior to vectorizing them, and then concatenated them into the full 250,000 x 6
matrix for the input to the PCA. We used MATLAB’S pca function to obtain the 6 PCA coefficients
(loadings) for each of the human map vectors that explain the maximal shared variance between them.
We then obtained the Human PC as a linear combination of the 6 human map types using these factor
loadings. Because we did not want to overrepresent the three human fixations maps (which were

highly intercorrelated (r = 0.72-0.86) we downweighted each by multiplying them by a factor of
√

1
3

to obtain the final PC map. The PC map images for all 25 images are shown in SI Appendix Fig.
S1E. The first PC explains 53.3% of the variance in the human behavioral measures (whereas the
next three components explain 19.9%, 12.4% and 6.8% of the variance).

D.2 Predicting human PC and behavioral maps using ANN attention

For each human map type (including the human PC), we computed the peak average correlation
between the 25 image maps (which were resized to 100 x 100 images) and the corresponding attention
maps produced by each of the ANN methods. For each ANN method, we searched over a smoothing
parameter range of σ = 0 − 30 and selected the one that produced the peak average correlation
(over all 25 images) of the ANN method maps to the corresponding human maps by smoothing
each using MATLAB’S imgaussfilt function (see SI Appendix Fig. S2A). Barplots showing the
ANN methods sorted by peak average correlation to each of the human behavioral maps are shown
in SI Appendix Fig. S2B-H. Error bars for each of the ANN methods shown in each barplot were
obtained by resampling the human data with replacement and estimating 100 new human maps, and
then taking the standard deviation of the averaged correlations of each of the 100 bootstrapped map
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Figure S1: Human behavioral tasks, map generation procedures, and results for all images. A.
“Informativeness” patch ratings task, and map estimation. For each pixel, maps were obtained by
averaging the ratings given for patches that overlapped with that pixel, including ratings given for
neighboring locations weighted by an isotropic Gaussian centered at the pixel. B. Discrimination task
and map generation procedure. Participants completed 2AFC tasks for each grid point sampled from
a regular grid of locations over the image. For each point, we computed d′ using the 2AFC responses,
smoothed the grid d′ values, and interpolated between them to obtain continuous change sensitivity
estimates over the entire images. For both experiments we exponentiated the final map values by
squaring each value to increase the dynamic range. C. Spatial memory localization estimates and
serial reproduction procedure. Participants were instructed to remember precise point locations from
memory. Each response from a given iteration in the chain was forwarded to the next participant
in the subsequent iteration. Kernel Density Estimates (KDEs) of the results at each of the chain
iterations are shown, including the final (20th) estimate. D. Behavioral map results for all tasks,
including the 3 fixations (see [1] for details). E. Human PC maps for all images.

estimates to the optimally smoothed ANN method maps across all 25 images. For the human PC,
the 100 bootstrapped map estimates were obtained by a linear combination of the 100 bootstrapped
sample map estimates obtained for each of the 6 behavioral maps using the weights (loadings) from
the PCA (see section above for PCA details). Pairwise t-tests comparing the peak ANN method maps
to all other ANN method maps revealed significantly higher correlations for the maps produced by
AlexNet pretrained on ImageNet using SGBP relative to most of the remaining ANN methods for
human maps except the object search fixation maps (p < 0.001; We applied the Bonferroni correction
for multiple corrections; see SI Appendix Fig. S2). Qualitative examples of the ANN maps, including
unsmoothed and smoothed examples (fit to the human PC maps), are shown in SI Appendix Fig. S3A.
Examples shown include ANN maps that were among the top predictors of the human PC maps, as
well as the lowest predictors of the human PC maps (SI Appendix Fig. S3A).

Overall average peak correlations achieved between the smoothed ANN maps and the human PC
maps were higher than the peak correlations achieved between the ANN maps optimized to each
individual human map. This finding is illustrated in Fig. F3B of the main text for the human patch
ratings results, and for all 6 human behavioral maps in SI Appendix Fig. S4. This indicates that
the ANN maps capture a shared component of the variability across all human behavioral measures
rather than the unique variance captured by any one of the individual human maps.
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Figure S2: ANN attention and human visual selectivity. A. Schematic of the ANN and human
map comparison procedure. We fit a smoothing parameter that maximized the average correlation
(across all 25 images) of the smoothed ANN maps to the corresponding human maps. The schematic
illustrates an example for a single image, correlating a smoothed ANN attention map with the
corresponding human PC map. B. Sorted peak average correlations across all 25 images for all ANN
maps to the human PC maps. The maps produced by ImageNet pretrained AlexNet probed using
Smooth Guided Backpropagation (SGBP) were significantly more highly correlated to the human
maps than most of the remaining ANN maps (p < 0.001; with the Bonferroni correction for multiple
comparisons applied). C. results for the “informativeness” patch ratings maps. As with the Human PC
results, the same ANN maps outperformed the remaining ANN maps (p < 0.001). Panels D-H show
the results for all remaining human maps. They show similar results, with guided backpropagation
methods producing ANN maps that were more predictive than others overall (p < 0.001).
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Figure S3: Human PC maps, and ANN maps (optimally smoothed and raw unsmoothed examples).
A. Human PC maps (first row of each group of three). Second row in each group of three shows
optimally smoothed ANN maps, and third row in each group shows the unsmoothed raw ANN
maps, for all images. Examples for some of the best performing ANN maps are shown, including
intermediate and worse performing examples. The peak average r correlations to the human PC maps
achieved with optimal smoothing are shown for each ANN map type.

With respect to passive and active attention, we observed more human-like results using passive
attention techniques applied to the same models for which we could extract active attention maps. In
particular, we found that LTPA (which is a VGGNet model with an added active attention module,
and is trained on CIFAR-100) achieved a peak correlation with the human PC of r = 0.53, while
SGBP applied to VGG19 (also trained on CIFAR-100) achieved a higher peak correlation of r =
0.64 (p < 0.001). Similarly, ABN ResNet-110 (which is a ResNet-110 model with an added active
attention module trained on CIFAR-100) achieved a peak correlation of r = 0.31, while SGBP applied
to “vanilla” ResNet-110 produced a much higher peak correlation of r = 0.68 (p < 0.001). Finally,
ABN ResNet-101 (trained on ImageNet) achieved a peak correlation of r = 0.32, while SGBP applied
to ResNet-101 (also trained on ImageNet) has a higher peak correlation of r = 0.63 (p < 0.001). These
results indicate that comparing identical discriminator networks for which we could obtain both
passive and active attention maps shows that active attention networks produce far less human-like
results.

D.3 Statistical comparison of averaged correlations

When comparing averaged correlations between different methods or training sets, we computed
the averaged peak correlations for each condition and for each image. For each comparison, we
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Figure S4: Peak correlations between all ANN maps and Human PC (x-axis) and peak correlation
between all ANN maps and each of the human behavioral maps (y-axis). Error bars were estimated
from 100 bootstrapped samples of the human data. A. Results for the patch ratings experiment shown
in Fig. F3B in the main text. Points plotted below the dotted diagonal line inside the blue shaded
area correspond to ANN map types that achieved peak correlations to the Human PC maps that were
higher than the corresponding peak correlations of the same ANN maps to the particular human
map types shown. Results for discrimination accuracy d′ maps, spatial memory KDE maps, and the
three eye-movement fixation maps are shown in panels B-F. The fact that peak average correlations
achieved by the higher-performing ANN maps to the Human PC maps are overall higher than those
achieved by the same ANN maps optimized to each individual human map indicates that the most
human-like ANN maps capture a shared component of the variability across all human behavioral
measures rather than the unique variance captured by any one of the individual behavioral maps. Note,
we also include peak correlations achieved by non-deep learning computational attention methods in
each subplot. These are the peak correlations for Graph-based Visual Saliency (GBVS) and Boolean
Map based Saliency (BMS) methods. These results show that we can use off-the-shelf ANN and
interpretability methods to produce saliency maps that can predict human visual selectivity just as
well as custom models (i.e. non-deep-learning visual-attention models) designed specifically for that
purpose.

then performed a paired t-test across all 25 images for the two averaged vectors. When multiple
comparison were reported, we used the Bonferroni correction.

E Human recognition experiments: design

E.1 Human recognition experiment: experimental design

Participants completed a speeded categorization task for 10 images (trials). The 10 trials were
comprised of a unique permutation of a multiset of 5 correctly masked image cases, and 5 incorrectly
masked image cases. The 10 images were a set of unique images sampled without replacement from
the full set of 25 images. Each set did not contain more than one image containing the same object
label (labels were obtained through crowdsourcing, see below). For example, a set could only contain
one car and street image. We generated 200 sets of 10 images with 5 correctly masked cases and 5
incorrectly masked cases each, ensuring that the total number of correctly masked and incorrectly
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Figure S5: Human recognition experimental design and procedure. A. Masking procedure. Grayscale
versions of the original images were masked by an elementwise product with smoothed ANN maps
that were thresholded in order to reveal 50% of the total image area. Correct masking consisted in
using the smoothed ANN map obtained for the same image as a masker, while incorrect masking
consisted in using an ANN map obtained from a different image, with a random rotation applied.
Only incorrect maps that were relatively weakly correlated to the correct mask (less than r = 0.4) were
retained for incorrect masking. B. Screenshot of the Amazon Mechanical Turk (AMT) experiment
instructions. C. All the original RGB images, and representative examples of correctly masked and
incorrectly masked images for each experiment.

masked cases was equalized for each image. This produced a total of 2000 unique masked images
(See SI Appendix Fig. S5C for representative examples, for each of the 25 images).

The masking was done as follows. The image was converted to grayscale (so as to avoid participants
using color cues). The mask was an ANN map smoothed using the smoothing parameter that yielded
the peak correlation to the human data. We started by thresholding the map to ensure that only 50%
of its values were above 0 (as a way of roughly equalizing the amount of image area being revealed
under the mask across images and conditions). We then multiplied the thresholded map and grayscale
image elementwise to obtain the final masked image (see SI Appendix Fig. S5A and C).

Each participant on Amazon Mechanical Turk (AMT) completed 10 experimental trials. Their
instructions were as follows: “In the task, you will see an image flash for about 200 milliseconds.
Your job is simply to select the best caption (set of object words) from a list of words that will be
presented to you. Choose the list of words that provide the best description of the image you saw.
The images will be partly masked, and may be difficult to see. If you are unsure, just provide your
best guess.” See SI Appendix Fig. S5B for a screenshot of the experiment instructions from the AMT
task. Participants completed 4 practice trials prior to completing the full 10 experimental trials from
the image set assigned to them. Because we had several images showing similar object categories
(multiple images of cars and houses), we constrained the image sets such that they never contained
more than one image of a given category.
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Figure S6: Human recognition experiment results. A. d′ results for masked images obtained using
the SGBP method on AlexNet pretrained on ImageNet (first row). Also shown are d′ results for
masked images obtained using the Score-CAM and Grad-CAM methods on AlexNet pretrained
on ImageNet (second and third rows, respectively). Results show a clear main effect of correct vs.
incorrect masking for most individual images (p < 0.001; with the Bonferroni correction for multiple
comparisons applied). A significant interaction (p < 0.001) confirms that correctly masked images
obtained using SGBP yielded higher d′ than correctly masked images obtained using the Score-CAM
or Grad-CAM methods (p < 0.001; with the Bonferroni correction for multiple comparisons applied).
Results are shown for participants that had a higher than 15% accuracy during the task. B. The same
results are shown in terms of percent accuracy instead of d′.
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E.2 Crowdsourcing image captions for the human recognition experiment

We recruited a total of 160 participants but retained usable responses for 125. For each image,
5 participants were instructed to do the following “Please write three words or short phrases that
summarize the contents of the image. If someone were to see these three words or phrases, they
should understand the subject and context of the image.” Participants were paid $0.2 to label all 25
images. To come up with the final list of labels for the human recognition experiments, we tallied
the frequency of all the labels provided by all participants, and retained the top-one or top-two most
frequent word labels as final labels.

F Human recognition experiments: analysis

F.1 Calculating d′

d′ scores were computed for each image, and for each condition (correct vs. incorrect masking) by
calculating the False Alarm (FA) rate (the number of times a given label set was selected when the
image shown was not an instance of that label set, over the number of times that the presented images
were not instances of that label set), and the HIT rate (the number of times that a given label set was
selected when the image shown was an instance of that label set, over the number of times that all
the presented images were instances of that label set). d′ is given by: d′ = Z(HIT)− Z(FA) where
the function Z(p), p ∈ [0, 1], is the inverse of the cumulative distribution function of the Gaussian
distribution.

F.2 Testing the effect of masking and ANN map type

For each image and for each ANN map type (see SI Appendix Fig. S5C), we computed d′ using the
formula described in the previous section. For each of the 25 images we computed d′ using HIT and
FA rates from participant choices on the nAFC task. SI Appendix Fig. S6A and B show the results
broken down by image, for all recognition experiments. Fig. S6A shows the results in terms of d′.
While some images were intrinsically harder to recognize than others (with lower d′ scores in the
correct masking conditions), the results reveal clear effects of correct vs. incorrect masking for most
individual images (p < 0.001; we applied the Bonferroni correction for multiple comparisons). Fig.
S6B shows the same results in terms of percent accuracy. In order to mitigate the problem of negative
d′ values, we excluded data from participants that had a lower than 15% accuracy in their trials.

Paired t-tests revealed a significant difference (p < 0.001) between the d′ scores across models for the
correct masking condition (blue bars in Fig. F4D of the main text and in the far right of each barplot
in SI Appendix Fig. S6A). This finding confirms the prediction that human recognition accuracy is in
fact significantly more sensitive to the visual regions revealed by one of the models with the highest
peak correlations to the human PC maps, but less sensitive to those revealed by passive attention
techniques on a model with a much lower peak correlation to the human PC maps, even though
correct masking did produce a boost in recognition accuracy over incorrect masking for both map
types (p < 0.001, Fig. F4D).

G ANN recognition experiments: design

G.1 Masking procedure

We produced masked images using the same procedure used for the human recognition experiments
as outlined in the main text (in the section called "Validation Experiment: ANN Visual Selectivity
Boosts Human Recognition"), except that we used RGB (instead of grayscale) images in order
to minimize distribution shift for the ANNs (See SI Appendix Fig. S7A for examples of masked
RGB images). We expected a reduction in classification accuracy on masked images because of the
significant distribution shift caused by masking the RGB images, regardless of the mask type. As a
consequence, we simply examined the difference in accuracy when an image is masked with a correct
mask versus with an incorrect mask. For each image, we produced one correctly masked image,
and then generated 24 incorrectly masked images by pairing the image with masks of the same map
type (such as using the patch ratings maps) from the other 24 images; this gave us a total of 25× 25
masked images for each of the 25 images in the dataset.
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Figure S7: ANN recognition. A. All original RGB images, and masked RGB image examples.
Masked image examples shown were obtained using the human patch ratings maps. B. Procedure
for computing the change in rank of the top prediction. For each model, the top-1 prediction on
the original unmasked image was taken as the ground truth label. We measured the rank distance
(change in rank) of this prediction for the same image when correctly masked and incorrectly masked.
We inverted the rank distance for comparability to the d′ metric used for the human experiments.
We call this inverted quantity the inverse-rank. C. Mean inverse-rank results averaged across all
ANN models and human behavioral maps. Results show clear trends for most images and significant
effects (p < 0.05) for the lighthouse image, as well as the boat, house, dog, and beach images p <
0.001. We applied the Bonferroni correction for multiple comparisons. To help with comparing the
ANN and human recognition results, the x-axis labels in the barplot are the labels provided by human
participants, and not predictions made by the ANN models. They are ordered in the same order as the
full RGB images in A. D. Mean inverse-rank result for each human behavioral map, including the
Human PC factor.

G.2 Inverse rank computation

For each model, the top-1 prediction on the unmasked image is taken as the ground truth label. The
rank distance (change in rank) of this prediction due to (correct or incorrect) masking captures how a
mask affects ANN recognition on the given image; for example, if the top-1 predicted label on the
unmasked image attains a rank position of 5 on a masked image, the rank distance is 4. SI Appendix
Fig. S7B shows a schematic of the rank distance measurement procedure. As described in the main
text (Section "Validation Experiment: Human Visual Selectivity Boosts ANN Recognition" in the
paper), this rank distance is inverted to align with trends in the d′ metric described in Appendix F.1,
and we call the inverted quantity the inverse-rank. We computed inverse-rank as N/(r +N), where
N is the total number of categories, and r is the rank of the top-1 category predicted by the model for
the full (unmasked) RGB image.

H ANN recognition experiments: analysis

We computed the inverse-rank across all models, for all types of human maps (Section "Validation
Experiment: ANN Visual Selectivity Boosts Human Recognition"), and across all 25 different masks
for each of the 25 images (see SI Appendix Fig. S7C for results broken down by image). We found
that the correctly masked images are more recognizable (have higher inverse-rank) than incorrectly
masked images for all types of human behavioral maps (error bars represent 95% confidence intervals
across the 25 images). This supports the hypothesis that ANNs are sensitive to visual regions
highlighted by human behavioral maps. Fig. S7D shows the results for each human behavioral map,
including the Human PC map.

We performed a subsequent ANOVA analysis using the masking condition (2: correct vs. incorrect),
the specific image (25), and the behavioral map type (7) as repeated measures. We find a significant
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effect of masking condition (F(1,176)=184.85, p < 0.001) indicating that the correct masking condition
gives higher mean inverse-rank. This trend is seen even across individual images (averaged across
the 7 behavioral maps) in Fig. S7. We also find a significant effect of the type of behavioral map
(F(6, 176)=49.65, p < 0.001); i.e., certain types of behavioral maps produce more recognizable
masks overall. For example, images masked using Human PC, patch ratings, and discrimination
accuracy maps were more recognizable overall than those masked using spatial localization maps
(KDEs), across both correct and incorrect masking conditions. This might be driven by the statistics
of the masks and their compatibility with ANN classification. We also note that these differences
are consistent with the correlational findings: Overall, the average of the peak correlations across all
ANN maps were higher for the Human PC, patch ratings, and discrimination accuracy maps, than
they were for the spatial localization (KDE) maps.

Finally, we examine whether different behavioral maps also capture different information, and
whether this affects ANN recognizability. This is reflected in whether different behavioral maps
vary in how well they distinguish between correct and incorrect masking for ANN recognition. We
indeed find a significant interaction between masking condition (correct vs. incorrect) and the kind of
behavioral map (F(6,176)=6.54, p < 0.001). This indicates that the difference in inverse-rank between
correct and incorrect masking varies significantly across different behavioral maps. We find a trend
that maps from behavioral measures that have higher overall peak correlation to ANN attention maps
(Human PC, patch ratings, and discrimination accuracy maps) also lead to higher differences in
inverse-rank across masking conditions, while measures such as eye movement patterns (that have
lower overall peak correlation with ANN attention maps) give lower mean inverse-rank differences.

Figure S8: Split-half cross-validation analysis. A. Procedure. For each raw ANN map, we randomly
permuted all the maps and divided them into a training and separate testing set. Next, we optimized
a smoothing parameter σ that maximized the average correlation of the maps in the training set to
the corresponding human PC maps. We then measured the average correlation achieved between the
ANN naps in the testing set and their corresponding human PC maps when smoothed using the σ
parameter fit to the training set maps. We repeated this process 100 times for each ANN map type. B.
Results. The results are essentially unchanged relative to the results reported in the main text, where
no cross-validation was done, and the smoothing parameter was fit to all the data. Error bars reflect
100 random permutations and splits of the ANN maps for each ANN map type. Results are ordered
in terms of the peak average correlations achieved for the training set.

I Split-half cross-validation analysis of smoothing parameter

As a supporting analysis, we estimated peak correlations between the ANN maps and the human
PC maps using split-half cross-validation when estimating the smoothing parameter (a Gaussian
smoothing kernel with standard deviation σ). SI Appendix Fig. S8A illustrates the procedure. For
each ANN map, we repeated the following process 100 times: We started by randomly permuting
the order of the maps and splitting them into training and testing sets (the training set contained 12
maps, and the testing set contained the remaining 13 maps). Next, we fit the smoothing parameter σ
to the training set by maximizing the average correlation between the training set ANN maps and the
corresponding human PC maps. We then evaluated the correlation achieved between the 13 testing
set ANN maps and the corresponding human PC maps when smoothed using the same σ parameter.
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Results of the analysis are shown in SI Appendix Fig. S8B. They show a near total overlap between
the peak correlations achieved for the training set maps, and those obtained for the testing set maps.
In fact, the results are essentially unchanged relative to those reported in the main text: performance
of smoothed test set maps using smoothing parameters σ fit to the training set maps produced nearly
identical ranges in peak correlations to the human PC (between r = 0.73 and r = -0.01 for the training
set, and between r = 0.72 and r = -0.04 for the testing set). In addition, we observe a nearly identical
rank order in the peak correlations to the human PC (for instance, across 100 random splits of the
data, we observed an average correlation of r =.711 (sd =.028) for the peak correlation of the AlexNet
SGBP maps to the human PC maps in the training set, and an average of r =.710 (sd =.026) for the
peak correlation of the AlexNet SGBP maps to the human PC maps in the testing set when applying
the smoothing parameter optimized to the training set). Note that we have also included non-ANN
attention-based model maps in the analysis (GBVS [28] and BMS [29]), for reference.
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