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ABSTRACT

In recent years, a variety of methods based on Transformer and state space model
(SSM) architectures have been proposed, advancing foundational DNA language
models. However, there is a lack of comparison between these recent approaches
and the classical architecture—convolutional networks (CNNs)—on foundation
model benchmarks. This raises the question: Are CNNs truly being surpassed
by these recent approaches based on transformer and SSM architectures? In
this paper, we develop a simple but well-designed CNN-based method, termed
ConvNova. ConvNova identifies and proposes three effective designs: 1) dilated
convolutions, 2) gated convolutions, and 3) a dual-branch framework for gating
mechanisms. Through extensive empirical experiments, we demonstrate that
ConvNova significantly outperforms recent methods on more than half of the
tasks across several foundation model benchmarks. For example, in histone-
related tasks, ConvNova exceeds the second-best method by an average of 5.8%,
while generally utilizing fewer parameters and allowing faster computation. In
addition, the experiments observed findings that may be related to biological
characteristics. This indicates that CNNs are still a strong competitor compared
to Transformers and SSMs. We anticipate that this work will spark renewed
interest in CNN-based methods for DNA foundation models. Code is available at:
https://github.com/aim-uofa/ConvNova

Figure 1: A) The trade-off between model size and accuracy (AUC score) of various methods.
ConvNova achieves the current SoTA performance. B) The trade-off between input sequence length
and runtime of different methods. ConvNova exhibits clear superiority over HyenaDNA and Caduceus.
All models are around 7M parameters, tested on A100 80GB with batch size 1.

∗YB and WM contributed equally. Work was done when WM was visiting Zhejiang University. CS and HC
are the corresponding authors.
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1 INTRODUCTION

Consistently at the forefront of scientific research, DNA has catalyzed significant advancements
across a multitude of fields, including aging research, synthetic biology, and disease treatment
(Chucair-Elliott et al., 2024; Moe-Behrens et al., 2013). In contrast, unlike NLP, comprehending DNA
poses a formidable challenge, owing to the myriad undiscovered biological principles underlying its
structure and function. Fortunately, the rapid progress of genome language modeling has showcased
its dominance in numerous subsequent applications. These include the prediction of promoters (Zhang
et al., 2022), gene expression (Avsec et al., 2021), DNA methylation (Jin et al., 2022), analysis of
chromatin state (Lee et al., 2022), prediction of promoter-enhancer interactions (Chen et al., 2022),
TF-DNA binding prediction (Wang et al., 2022), variant effect prediction (Rozowsky et al., 2023),
and gene network prediction (Theodoris et al., 2023).

Versatile sequence models have been established as foundational models for genetics, typically falling
into two categories: Transformer-based methods (e.g., DNABERT (Ji et al., 2021), DNABERT-
2 (Zhou et al., 2023), NucleotideTransformer (Dalla-Torre et al., 2023)) and SSM-inspired methods
(e.g., HyenaDNA (Nguyen et al., 2024), Caduceus (Schiff et al., 2024)). These approaches have
made significant progress in genomic language modeling tasks and are now widely adopted. Prior to
these developments, however, convolutional neural networks (CNNs) were the dominant technique
for DNA modeling in bioinformatics, giving rise to notable models such as Basset (Kelley et al.,
2016), Bassenji (Kelley et al., 2018), and LegNet (Penzar et al., 2023). Despite their success, CNN
architectures have not been systematically compared to the newer DNA foundation models in recent
research. Comparisons between CNNs and modern approaches have been limited to specific domains,
such as NTv2 (Dalla-Torre et al., 2023) and Caduceus (Schiff et al., 2024). In these cases, only a few
domain-specific CNN models, like Spliceator (Scalzitti et al., 2021) and some benchmark baselines,
have been evaluated.

In this landscape, we rethink and re-evaluate whether CNN methods are indeed less effective than
the current leading paradigms, including Transformer-based methods and SSM-inspired methods,
which have been the primary focus of recent research in DNA foundation models. The motivation
behind this is straightforward, as CNNs still hold advantages over existing methods: 1) The input
lengths for downstream tasks on DNA vary greatly (ranging from tens to thousands). Transformers
are not robust to sequence length variations (Press et al., 2021), and their performance can be
affected. 2) Transformers have a computational complexity of O(n2), higher than CNN methods.
Additionally, to avoid overly long sequences, transformers also require tokenizers, which affect
translational invariance (Zhou et al., 2023). 3) Mamba (Gu and Dao, 2023) is better suited for tasks
involving long sequences with autoregressive properties (Yu and Wang, 2024), while DNA sequences
typically do not exhibit autoregressive characteristics. 4) CNNs possess a local inductive bias, which
can provide better data utilization efficiency and are more friendly towards tasks with small training
data volumes.

Based on this motivation, we propose a simple yet well-designed CNN method, named ConvNova.
Extensive empirical experiments demonstrate that ConvNova outperforms recent Transformer and
SSM-inspired methods on more than half of the evaluated tasks, indicating that CNNs continue to
demonstrate superiority. Through an analysis of the design of ConvNova, we identify and propose
three key designs that enable CNNs to achieve superior performance: 1) dilated convolution (Yu
and Koltun, 2015), 2) gated convolution (Yu et al., 2019), and 3) a dual-branch framework for
the gated convolution. Specifically, we found that for DNA tasks, increasing the receptive field
of the CNN through downsampling (U-Net (Ronneberger et al., 2015) style) can severely degrade
CNN performance. This stands in contrast to observations in other fields, such as computer vision.
However, dilated convolution can circumvent this issue by enlarging the receptive field without the
need for downsampling. Additionally, gated convolution can significantly enhance CNN performance.
We hypothesize that this is because DNA may contain a substantial amount of irrelevant segments,
and the gating mechanism can suppress this information. Lastly, we discovered that splitting the
network pathways into two branches, with one branch exclusively providing gating signals to the
other, can improve network performance. For detailed designs, please refer to §3 and §4.

Comprehensive experiments demonstrate the superiority of ConvNova. On the NT benchmarks,
ConvNova achieves SoTA performance on 12 out of 18 datasets. Notably, in the H3K4me3 task,
it outperforms the second-best method by 10.5%, and in the histone-related tasks, it surpasses the
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second-best method by an average of 5.8%. In the gene finding benchmark (long sequences modeling),
ConvNova significantly surpasses HyenaDNA (Nguyen et al., 2024) (55% vs. 35%). Compared to
the transformer model with much larger parameters (7.4M vs. 336M), ConvNova still achieves better
performance (55% vs. 52%).

By adjusting the receptive field size of ConvNova, specifically through controlling the dilation stride,
we reveal that the performance of the vast majority of tasks improves with the increase of the receptive
field of the CNN. However, we find that some specific tasks, including H3K4me2, H3K4me3, and
H3K14ac, exhibit the opposite phenomenon. Existing wet lab experimental data indicate that some of
these tasks exhibit pronounced localized characteristics; therefore, this phenomenon may be caused
by biological characteristics. For detailed findings and analysis, please refer to §5.

In summary, the main contributions of our work are as follows:

• We reexamine the convolutional paradigm for DNA foundation models. Analyses and exten-
sive experimentation demonstrate the continued competitiveness of convolutional neural
networks (CNNs) for downstream tasks. This may prompt the community to reconsider
CNNs for such tasks.

• We propose ConvNova and identify three key designs for genomic language modeling:
dilated convolution, gated convolution, and a dual-branch design. With these designs,
ConvNova achieves superior performance on numerous benchmarks while maintaining
fewer parameters.

• ConvNova outperforms recent methods on over half of the tasks across various DNA founda-
tion model benchmarks, typically using fewer parameters and achieving faster performance.

2 PRELIMINARIES AND RELATED WORK

2.1 TRANSFORMER-BASED DNA MODELS

Transformers have become a dominant force across various fields in the deep learning community,
and recent research has begun to explore their potential within the realm of genomics. DNABERT (Ji
et al., 2021) was the first to establish the transformer as a foundational model for DNA, utilizing
k-mer tokenization. Nucleotide Transformer (NT) (Dalla-Torre et al., 2023) scaled up the transformer
model (with sizes of 500M and 2.5B) and investigated the impact of different pretraining datasets
(HG381 and Multispecies2) on 18 downstream tasks. Their experiments demonstrate that multispecies
data and larger models generally yield superior performance. DNABERT-2 (Zhou et al., 2023), also
pretrained on multispecies data, tackled several problems encountered with DNABERT. They further
explored the Byte Pair Encoding (BPE) tokenization and ALiBi positional embedding as effective
strategies for modeling DNA with transformer models. Additionally, they utilized FlashAttention to
accelerate the processing. Meanwhile, BigBird (Zaheer et al., 2020), despite not being specifically
designed, had also been applied in genomics.

While adept at capturing long-range dependencies, transformer-based models in genomics face
challenges compared to CNNs. CNNs possess an inductive bias towards local, translation-invariant
features (Battaglia et al., 2018), aligning well with many genomic patterns. In contrast, transform-
ers lack this inherent bias for local structure modeling. Additionally, the attention layer’s O(n2)
complexity poses computational challenges, especially for long DNA sequences.

2.2 SSM-INSPIRED DNA MODELS

Another approach that has gained traction involves the use of State Space Models (SSMs). HyenaDNA
(Nguyen et al., 2024) is a decoder-only, sequence-to-sequence model that incorporates a modified
convolution operator (Hyena (Poli et al., 2023)). This innovative approach enables the expansion of
input sequences of the model to 1M-size nucleotides and significantly outperforms transformer-based
models in a variety of tasks with a model size that is 300 times smaller. Additionally, Mamba (Gu and

1https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26
2based on genomes at https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26;

more details can refer to NT’s original paper.
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Dao, 2023), a state-space-model inspired architecture, has demonstrated promising, albeit preliminary,
experiments on DNA sequences. Caduceus (Schiff et al., 2024) refines the Mamba Block into an
RC-equivariant architecture. By taking into account the reverse complementary strand, Caduceus
surpasses both HyenaDNA and transformer-based models in downstream tasks, marking a significant
advancement in the field.

2.3 CNN-BASED DNA MODELS

Convolutional Neural Network (CNN)–based DNA models are powerful deep learning tools designed
to analyze and interpret DNA sequences by automatically extracting significant motifs and patterns.
Early models like DeepBind (Alipanahi et al., 2015) predicted the sequence specificities of DNA
and RNA-binding proteins, while DeepSEA (Zhou and Troyanskaya, 2015) used CNNs to predict
the effects of noncoding variants. Basset (Kelley et al., 2016) advanced the field by learning the
regulatory code of the accessible genome using deep CNNs.

Recent advancements have further enhanced the capabilities of CNN-based genomic models. En-
former (Avsec et al., 2021) integrates convolutional layers with attention mechanisms to predict gene
expression from DNA sequences, effectively capturing short- and long-range regulatory interactions.
Borzoi (Linder et al., 2023) builds upon the Basenji (Kelley et al., 2018) family by incorporating
dilated convolutions and skip connections, improving performance on various genomic prediction
tasks. LegNet (Penzar et al., 2023) employs a convolutional architecture for predicting gene expres-
sion and single-nucleotide variant effects in regulatory regions, achieving first place in the DREAM
2022 challenge.

These models demonstrate the CNNs’ strengths, capturing local sequence features and motifs cru-
cial for understanding genetic information. However, despite their success, they have not been
incorporated into the broader consideration of DNA foundation models.

3 METHOD

In this section, we first present our overall network architecture (§3.1), followed by an introduction
to the core component of this architecture - the Gated Convolution Block (§3.2). Subsequently, we
delve into the selection of convolutional network methods, specifically whether to use dilation or
down-sampling (§4.4). Finally, we discuss our pretraining approach and downstream usage (§3.3).

3.1 CONVNOVA

Figure 2 shows the overall illustration of ConvNova. DNA sequences are mapped to the hidden
space through a convolution operation, followed by N gated convolution blocks (GCBs), and finally
processed through a multilayer perceptron (MLP). Different output heads are used in pretraining
and downstream tasks. Each GCB utilizes dilated convolution to increase the receptive field and
aggregate the features through a dual-branch structure.

3.2 GATED CONVOLUTION BLOCK

Yu et al. (2019) introduce gated convolution as a solution to a problem inherent to standard convolution,
which indiscriminately treats all input pixels as valid. This method enhances partial convolution by
offering a learnable dynamic feature selection mechanism for each channel at every spatial location
throughout all layers. This mechanism allows for more nuanced and effective feature selection,
improving the performance of convolutional neural networks.

With the motivation to effectively retain and forget information, we propose Gated Convolutional
Blocks (GCBs). The dual-branch structure of these blocks is designed to facilitate independent
feature extraction, thereby promoting complementary representation learning. Let’s define A ∈ Rl×d

as the feature extracted by the left branch and B ∈ Rl×d as the right branch feature.

We first process the left branch feature A through a LayerNorm layer and then pass it through a
convolution layer, followed by the GELU activation function to obtain the intermediate features
h of the current layer. In the other path, the right branch features B are processed through other
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Figure 2: ConvNova architecture. The ConvNova model processes double stands as inputs. The
sequences are initially subjected to one-hot encoding and subsequently pass through a convolution
layer. The processed data then enters a series of Gated Convolution Blocks (GCBs), the specifics of
which are elaborated in §3.2. The output from the GCBs is then fed into an MLP. The final stage of
the framework bifurcates into two distinct heads: the downstream head and the pretraining head.

LayerNorm and convolution layers that do not share weight with the left branch, followed by the
sigmoid activation function to obtain the intermediate features g.

Next, we update the left branch features A by multiplying the intermediate features g with the
intermediate features h. Simultaneously, the right branch features g are used to update the right
branch features B themselves. Additionally, the kernel size for all convolutional layers is consistently
set to 9. This entire process, which integrates both branches, is described by Eq.1 and is illustrated in
the Gated Convolution Block of Figure 2:

h = GELU(convolution(A))

g = sigmoid(convolution((B))

A = A+ h⊙ g

B = B+ g

(1)

A stage is composed of several GCBs, with the dilation rate for each Block set to [1, 1, d, d2, d3, ...].
In different experiment, we use different stages. By default, 1 stage uses 5 GCBs. You can find the
information in Table 9.

3.3 MLM PRETRAINING AND DOWNSTREAM USAGE

MLM Pretraining We use the bidirectional masked language model (MLM) pretraining method
and have observed significant performance improvement in downstream tasks.

In this work, 10% of the nucleotides in a primary DNA strand are masked, and the model is trained
to predict the type of the masked tokens. Therefore no extra labels are required. The objective of
this pretraining is to infer the type of nucleotides that have been masked by utilizing the surrounding
nucleotides. The optimization objective is to minimize the cross-entropy loss. The pretraining data is
HG38, same as HyenaDNA (Nguyen et al., 2024).

Downstream Usage Upon completing the pretraining phase for 400 epochs, we proceed to finetune
ConvNova on the downstream tasks, keeping the entire model adjustable. We employ the pooling
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Table 1: NT Benchmark results. MCC/F1-score is reported for pretrained NTv2, HyenaDNA,
DNABERT-2, Caduceus-Ph, and ConvNova. The best values per task are bold, and the second-best
are underlined. ± indicates the error range across five random seeds.

NTv2 HyenaDNA DNABERT-2 Caduceus-Ph ConvNova
(500M) (1.6M) (117M) (1.9M) (1.7M)

Histone

H3 78.17 ±2.54 78.14 ±1.70 79.31 ±0.68 80.48 ±1.04 81.50 ±0.80
H3K4me1 51.64 ±1.12 44.52 ±2.59 48.34 ±4.63 52.83 ±0.96 56.60 ±1.01
H3K4me2 37.24 ±2.25 42.68 ±2.66 43.02 ±2.92 49.88 ±2.65 57.45 ±2.27
H3K4me3 50.30 ±1.77 50.41 ±3.15 45.43 ±3.33 56.72 ±2.58 67.15 ±0.93
H3K9ac 61.05 ±1.40 58.50 ±1.75 60.04 ±1.27 63.27 ±2.29 68.10 ±1.91
H3K14ac 57.22 ±2.19 56.71 ±2.40 54.49 ±4.99 60.84 ±2.94 70.71 ±2.32
H3K36me3 60.50 ±1.75 59.92 ±1.06 57.58 ±2.38 61.12 ±1.44 68.31 ±1.19
H3K79me3 65.78 ±2.34 66.25 ±3.65 64.38 ±0.48 67.17 ±2.03 72.08 ±1.23
H4 79.87 ±1.34 78.15 ±1.58 78.18 ±0.98 80.10 ±1.00 81.12 ±0.93
H4ac 55.22 ±2.20 54.15 ±2.96 51.80 ±0.10 59.26 ±3.67 66.10 ±1.20

Regulatory

Enhancer 54.51 ±1.94 53.13 ±4.52 52.50 ±1.44 55.20 ±2.56 57.60 ±2.52
Enhancer Types 43.36 ±1.75 48.16 ±2.48 44.32 ±1.18 47.17 ±2.85 49.75 ±2.82
Promoter All 96.82 ±0.47 95.57 ±0.18 96.23 ±0.17 96.65 ±0.16 96.82 ±0.22
Promoter non-TATA 97.45 ±0.69 95.86 ±0.37 97.17 ±0.17 96.31 ±0.50 96.76 ±0.21
Promoter TATA 96.53 ±0.81 95.88 ±0.53 96.99 ±0.49 96.21 ±0.81 96.34 ±0.38

Splice sites

Splice Acceptor 97.99 ±0.66 96.98 ±0.49 97.49 ±0.36 94.21 ±0.37 96.23 ±0.41
Splice Donor 98.50 ±0.43 95.27 ±1.07 94.33 ±0.27 94.69 ±0.67 96.62 ±0.61
Splice All 98.15 ±1.01 94.05 ±1.08 93.75 ±1.25 92.87 ±1.73 96.33 ±0.31

method of HyenaDNA to get an embedding for each DNA sequence and utilize a linear mapping
to the output label dimension to serve as the finetuned head. In cases where it’s not significantly
indicated, the setting for our downstream tasks remains consistent with that of HyenaDNA (Nguyen
et al., 2024).

4 EXPERIMENTS

Some other studies have demonstrated that adopting multispecies data for pretraining can enhance
downstream task performance. However, in this work, all pretraining tasks are performed on the
human reference genome3 to align with the previous work (HyenaDNA and Caduceus). In addition,
we employ a tokenization scheme at the character or base pair level, which has been proven to
function well in SSM-inspired models. We also show the speed comparison between ConvNova and
other models along sequence length (103 to 106). At a sequence length of 106, ConvNova is 1.35
times faster than its fastest counterpart–HyenaDNA, as shown in Figure 1. Please refer to A.1 for
additional details on the pretraining dataset and recipes.

4.1 SHORT RANGE

4.1.1 NUCLEOTIDE TRANSFORMER BENCHMARK

We start the evaluation with the recently proposed Nucleotide Benchmark (Dalla-Torre et al., 2023).
These datasets encompass three types of tasks: histone marker prediction, regulatory annotation
prediction, and splice site annotation prediction.

To assess performance, we follow the methodology outlined in (Nguyen et al., 2024), applying
different metrics depending on the task: Matthews Correlation Coefficient (MCC) for histone marker

3https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26
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tasks and various enhancer-related tasks, F1 score for various promoter-related tasks and splice site
annotation tasks. The baselines consist of NT-v2(500M), DNABERT-2, similar-sized HyenaDNA,
and Caduceus-ph. Because in (Schiff et al., 2024), Caduceus-ph outperforms Caduceus-ps in almost
all functions except promoter TATA and H3K36me3, we only choose Caduceus-ph as our baseline.
For HyenaDNA and ConvNova, we adopt the pooling methodology from HyenaDNA (Nguyen et al.,
2024) and implement a linear layer to derive the logits.

Furthermore, we recognize the instability inherent in the datasets, where different random seeds may
result in variations of up to 5 points. Therefore, we provide the mean and standard deviation (±)
calculated from 10 random seeds.

The results of this benchmark suite are showcased in Table 1, demonstrating the competitive per-
formance of ConvNova. Notably, ConvNova outperforms Caduceus-ph, the second-best model, by
10 points despite having fewer parameters. Across nearly all tasks, ConvNova exhibits superior
performance compared to a similarly sized HyenaDNA model, except for the splice sites acceptor.
Additionally, ConvNova surpasses the transformer-based DNABERT-2 in 15 out of 18 tasks and
NT-v2 in 12 out of 18 tasks despite having significantly fewer parameters. For more details, see
A.2.1.

Furthermore, we have also included previously popular supervised CNNs, LegNet (Penzar et al.,
2023) and Basenji (Kelley et al., 2018), in this benchmark. For more details, please refer to A.4.

4.1.2 GENOMIC BENCHMARK

Table 2: Genomic Benchmark results. Top-1 accuracy (↑) is reported for pretrained HyenaDNA,
Caduceus-Ph, ConvNova, and the original CNN baseline (trained from scratch). The best values are
in bold, and the second-best is underlined. ± indicates the error range across five random seeds.

Task CNN HyenaDNA Caduceus-Ph ConvNova
(264K) (436K) (470K) (386K)

Enhancers

Mouse Enhancers 0.730 ±0.032 0.779 ±0.013 0.754 ±0.074 0.784 ±0.009
Human Enhancers Cohn 0.702 ±0.021 0.718 ±0.008 0.747 ±0.004 0.743 ±0.005
Human Enhancer Ensembl 0.744 ±0.122 0.832 ±0.006 0.893 ±0.008 0.900 ±0.004

Species Classification

Coding vs. Intergenomic 0.892 ±0.008 0.904 ±0.008 0.915 ±0.003 0.943 ±0.001
Human vs. Worm 0.942 ±0.002 0.961 ±0.002 0.973 ±0.001 0.967 ±0.002

Regulatory Elements

Human Regulatory 0.872 ±0.005 0.862 ±0.004 0.872 ±0.011 0.873 ±0.002
Human Non-TATA Promoters 0.861 ±0.009 0.887 ±0.005 0.946 ±0.007 0.951 ±0.003
Human OCR Ensembl 0.698 ±0.013 0.744 ±0.019 0.828 ±0.006 0.793 ±0.004

Next, we conduct a comprehensive evaluation using eight datasets introduced by GenomicsBench-
marks (Grešová et al., 2023) with eight regulatory element classification tasks with sequence lengths
spanning from 200 to approximately 2000bps. Our baselines comprise HyenaDNA, Caduceus-ph,
and the original CNN model described in (Grešová et al., 2023). We conduct experiments using five
distinct random seeds and report the mean and the disparity between the maximum/minimum and the
mean results.

As shown in Table 2, ConvNova models outperform baselines in 5 tasks. In other tasks, ConvNova is
competitive with the best models. Additionally, we also compared the performance of supervised
CNNs, LegNet and Basenji, in this benchmark. See A.2.4 and A.4 for additional experiment details.

4.2 LONG RANGE

4.2.1 BEND GENE FINDING

Gene finding (Marin et al., 2023) is a multiclass classification task aimed at predicting the nucleotide
types within DNA sequences (exons, introns, donors, acceptors, noncoding regions). This task
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Table 3: Gene Finding results. MCC-score is reported for ConvNova and baseline models. The best
value is in bold.

GeneFinding
NT-H DNABERT-2 GENA-LM HyenaDNA ConvNova

(500M) (117M) (336M) (6.5M) (7.4M)

0.41 0.43 0.52 0.35 0.55

aids in gene annotation and coding sequence identification. The dataset, derived from GENCODE
annotations, includes labels {EF , DF , IF , AF , ER, DR, IR, AR, NC}.

Figure 3: Chromatin Profile Prediction results. AUC
Score (↑) is reported for ConvNova, HyenaDNA, NT v2,
DNABERT-2, and DeepATT performance on transcription
factors (TF), DNase I hypersensitive sites (DHS), histone
modifications (HM), and average score.

The task employs the GENCODE
dataset (Harrow et al., 2012), com-
prising 5,976 DNA sequences span-
ning 1,433 to 14,000 bps. The ob-
jective is to classify each nucleotide
based on its gene structure context,
using local signals to predict exon-
intron boundaries and long-range de-
pendencies for accurate annotation.
As shown in Table 3, our ConvNova
model achieved the highest MCC of
0.55 on the gene-finding task, outper-
forming NT-H (0.41), DNABERT-2
(0.43), GENA-LM (0.52), and Hye-
naDNA (0.35). This demonstrates
ConvNova’s ability to leverage local
and long-range dependencies for im-
proved gene annotation.

4.2.2 CHROMATIN PROFILE PREDICTION

This classification task (Zhou and Troyanskaya, 2015) focuses on predicting chromatin profiles and
epigenetic markers from DNA sequences, which is crucial for quantifying the functional effects
of non-coding variants. The dataset comprises 919 chromatin features, including transcription
factor (TF) binding profiles, DNase I hypersensitive sites (DHS), and histone mark (HM) profiles.
For a given DNA sequence of length 1,000 bps, the task involves jointly predicting 919 binary
classes corresponding to the chromatin profile of a central region of the sequence. We fine-tune our
pretrained ConvNova models for 10 epochs, along with all baseline models, which range from 436K
(tiny HyenaDNA) to 500M (NT-v2). Notably, ConvNova outperforms all baseline models, including
DeepATT (Li et al., 2021), which is a previously state-of-the-art supervised model for this task, as
illustrated in Figure 3.

Table 4: Comparison of dilation and downsampling in
ConvNova. Performance (MCC-score or F1-score) is re-
ported on selected NT benchmark tasks. The best values are
in bold.

Task Downsampling Dilation
(1.7M) (1.7M)

H3 65.20 81.62
H3K4me1 34.88 56.37
H3K9ac 48.81 68.98
Promoter All 93.69 96.99
Splice Sites All 45.65 96.45

Moreover, we provide compelling
evidence of ConvNova’s scalability
when ample data is available. As
we augment the model’s parameter
count from 6.8M to 51.1M, ConvNova
shows a discernible improvement in
the performance capabilities exhibited.
See Appendix A.2.2 for experiment
details and comparing different model
sizes and training methods, whether
pretrained or from scratch. Remark-
ably, without pretraining, ConvNova
outperforms all Hyena-DNA models
and DeepATT under the same epoch
hyperparameter settings, even with a
smaller parameter size.
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4.3 ABLATION

4.4 DILATION OR DOWNSAMPLING

In image processing, the U-Net (Ronneberger et al., 2015) architecture has been proven highly
effective through its use of downsampling and upsampling. Downsampling reduces image size while
increasing the receptive field, enabling the capture of broader contextual information. Additionally,
dilation, another method to increase the receptive field, expands the convolutional operation’s
receptive field by introducing gaps within the convolution kernel.

In DNA sequence modeling tasks, both the upsampling-downsampling structure and dilation convolu-
tion represent potentially viable approaches. For the dilation mechanism, we use the design shown
in Figure 2. For the downsampling architecture, we implement a variant of ConvNova with U-Net
style, maintaining the gating mechanism. We retain the same pretraining settings and parameter size
(1.7M) and conduct comparative experiments on randomly selected tasks within the NT benchmark.

Due to the significant performance gap observed as shown in Table 4, we opt not to conduct multiple
experiments using ten different random seeds. Instead, we only utilize a single random seed. It is
evident that while the downsampling (U-Net style) architecture can approximate the performance
achieved using dilation in the ‘promoter all’ task, it significantly lags behind in other tasks, even
decreasing by 50 points in ‘splice sites all’.

4.5 KEY DESIGNS

Table 5: Ablation study results. MCC-score (↑) is reported
for performance comparison across different models. ‘w/o
Gate’ represents the ablation of the Gate mechanism, while
‘Single Branch’ is the ablation of the double-branch struc-
ture in ConvNova. The best values are in bold, and the
second-best is underlined. ± indicates the error range across
experiments

Task w/o Gate Single Branch ConvNova
H3 78.96 ±1.46 80.95 ±1.61 81.50 ±0.80
H3K4me1 57.83 ±1.87 56.45 ±1.58 56.60 ±1.01
H3K4me2 52.52 ±2.59 50.20 ±1.92 53.72 ±2.42
H3K4me3 54.45 ±1.31 58.66 ±0.97 60.20 ±1.91
H3K9ac 63.54 ±2.20 66.87 ±0.69 68.10 ±1.91
H3K14ac 63.83 ±1.03 65.34 ±2.12 66.19 ±1.84
H3K36me3 64.12 ±1.46 66.77 ±1.42 68.31 ±1.19
H3K79me3 69.49 ±1.75 71.23 ±1.37 72.08 ±1.23
H4 79.27 ±1.09 80.55 ±0.61 81.12 ±0.93
H4ac 62.02 ±2.28 63.07 ±1.10 64.75 ±1.90

We conduct ablation experiments on
the gate mechanism and the double-
branch design in ConvNova. We im-
plement an ordinary gate convolution
model with the same parameter count
(1.7M) named “Single Branch” in Ta-
ble 5 to compare with the double-
branch structure, and an additive ag-
gregation model (1.7M) named “w/o
Gate” in Table 5 to assess the role
of the gate mechanism. We select
homologous protein tasks from the
NT benchmark and maintain the same
method of selecting ten random seeds
as described in §4.1.1 for comparison.
For the details, refer to §A.3.1.

The results indicate that both the fea-
ture aggregation method and the gate
mechanism in ConvNova are crucial design components, effectively supporting the overall model
capability.

For detailed ablation on kernel size, dilation rate, please refer to §A.3.2.

5 DISCUSSION

Table 6: ConvNova performance on Histone
tasks in NT Benchmark. Results are reported
for models with 15% and 100% full sequence re-
ceptive fields. The best values are in bold.

Task 15% Receptive Field 100% Receptive Field
H3K4me2 57.45 ±2.27 53.72 ±2.42
H3K4me3 67.15 ±0.93 60.20 ±1.91
H3K14ac 70.71 ±2.32 66.19 ±1.84
H3K9ac 65.49 ±1.83 68.10 ±1.91

We utilize dilation to control the receptive
field in histone tasks from the NT-benchmark.
H3K4me2, H3K4me3, and H3K14ac demon-
strate significantly improved classification ac-
curacy when the receptive field covers approx-
imately 15% of the input length, compared to a
global receptive field.

The enhancement effects of H3K14ac (Figure
6A) and H3K4me3 (Figure 6C) align with pre-
vious biological research (Ramakrishnan et al.,
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2016; Regadas et al., 2021), which has shown that these histone marks are highly enriched around
transcription start sites (TSS), indicating their strong localized characteristics. As illustrated in Figure
6A, the pronounced enrichment of H3K14ac and H3K4me3 within this localized region supports the
idea that a smaller receptive field is sufficient for effective classification in these tasks.

In contrast, H3K9ac (Figure 6D) exhibits a more uniform distribution across the gene body, which
explains the suboptimal performance of a small receptive field in this case.

Interestingly, H3K4me2 (Figure 6B) also shows an enhancement effect with a small receptive field
despite its enrichment being predominantly located in the middle of genes.

This observation raises two intriguing possibilities:

Gene Position Context: The enrichment of H3K4me2 in the middle of genes may indicate its
role in transcriptional regulation during elongation. This localization could facilitate the binding of
transcriptional machinery, enhancing transcriptional efficiency. Additionally, since our data were
collected through ChIP-chip experiments on cells before and after oxidative stress, this enrichment
might reflect interactions with genes associated with the histone methyltransferase Set1, suggesting a
complex relationship that requires further exploration.

Contextual Locality: Alternatively, the improved performance of H3K4me2 in small receptive fields
may not be tied to its position within genes but rather could stem from its involvement in other
biological processes not captured during the experimental conditions. The sequences associated with
H3K4me2 might exhibit strong local characteristics in contexts outside the immediate transcriptional
environment, potentially involving regulatory mechanisms that are yet to be fully understood.

These possibilities highlight the need for further exploration to clarify the specific roles of H3K4me2
and its implications in various biological contexts.

6 CONCLUSION

In this study, we revisit the convolutional paradigm for DNA modeling. Through extensive analysis
and experimentation, we show that convolutional neural networks maintain a competitive edge in
DNA modeling tasks. This reevaluation prompts a reconsideration of CNNs, a relatively early method,
for such functions within the community. We have introduced ConvNova, featuring three key design
elements: dilated convolution, gated convolution, and a dual-branch structure. With these innovations,
ConvNova achieves state-of-the-art performance on multiple benchmarks with small model sizes.
Additionally, we have investigated the varying demands for receptive field sizes across different
tasks. While some tasks exhibit expected behaviors, others may suggest the presence of undiscovered
biological phenomena.

One limitation is that this work does not consider the multi-species pre-training dataset. Furthermore,
we have not considered the specific genomic regions used in pretraining; it is possible that training
exclusively in known functional regions could lead to improved performance. Furthermore, the
current foundation model benchmarks are primarily limited to classification tasks, which results in a
lack of diversity in the types of tasks evaluated. The positive social impact is that this work can
accelerate DNA research. No negative social impact is perceived.
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A APPENDIX

All the experiments are conducted with 4 RTX-4090 GPUs.

A.1 PRETRAINING

We adhere to most of the pretraining hyperparameters and settings used for HyenaDNA, including
the dataset selection. However, we implemented some small differences. We pretrained on sequences
with a maximum length of 16K, while other pretraining sequence lengths were 1K or 2K, aligning with
HyenaDNA’s recommendation to use sequences 2-4 times longer than those required for downstream
tasks. We set the global batch size to 512 and trained for 400 epochs with a learning rate of 1e-3.
For MLM pretraining, selected nucleotides were "masked" by replacing them with "N" to predict the
original nucleotide type. Table 7 and Table 8 illustrate the parameter settings for models of various
sizes and the time needed to pretrain. The pretraining dataset is HG384.

Table 7: Pretraining hyperparameters. Values used during pretraining are reported.

Hyperparameter Value

Learning Rate 1× 10−3

Batch Size 256
Weight Decay 0.1
Dropout 0.0

Optimizer AdamW
Optimizer Momentum β1 = 0.9, β2 = 0.999
Learning Rate Scheduler Cosine Decay
Training Epochs 200

Table 8: Pretraining time. The time required for pretraining different model sizes with varying
sequence lengths on 4 RTX-4090 GPUs is reported.

Parameters 386K 1.7M 7.4M 27.4M
Sequence Length 1K 1K 16K 2K
Time 50 mins 80 mins 14 hours 4 hours

A.2 DOWNSTREAM TASKS

All hyperparameters for the ConvNova model on downstream tasks can be found in Table 9.

Table 9: Hyperparameters for ConvNova model on all downstream tasks. Specific settings for
each task include sequence length, dilation rate, hidden dimension, number of GCBs, and model size.

Tasks Sequence Length Dilation Rate Hidden Dim Num GCB Size

NT 1K 4/1 128 5 1.7M
Deepstarr 1K 4 128 5 1.7M
Genomic Benchmark 1K 4 64 5 386K
Chromatin Profile Prediction 2K 4 512/256 5 27.4M/6.8M
Gene Finding 16K 4 196 10 7.4M

A.2.1 NUCLEOTIDE TRANSFORMER BENCHMARK

Objective: Sequence classification.

4https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26
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Models and Setup: We follow the HyenaDNA setup (Nguyen et al., 2024), splitting the dataset into
90/10 training and test sets and fine-tuning DNABERT-2, HyenaDNA, NT-v2, and Caduceus-Ph for
20 epochs using pre-trained weights from Hugging Face.

Experiment Configuration: All models are tested with 32-bit floating point precision, and ConvNova
uses consistent hyperparameters across tasks as detailed in Table 9, with ten random seeds to report
mean values, shown in Tables 16 and 17. Optimizer we use AdamW and share the same setting as
Table 7. Learning rate we use 1e-3 for ConvNova and official learning rate for the baselines.

A.2.2 CHROMATIN PROFILE PREDICTION

Objective: Perform 919 binary classification tasks on DNA fragments using 4.4 million training data
points. Even small improvements (<1%) are significant for this challenging task.

Models and Setup: The baseline models include HyenaDNA (0.4M, 3.3M, 6.5M), NT-v2 (50M,
100M, 250M, 500M), DNABERT-2, and DeepATT (previous state-of-the-art CNN for this task),
trained for 10 epochs. All models are tested using 32-bit floating point precision.

Experiment Configuration: The train/test split follows the DeepSEA paper methodology. The
optimizer used is AdamW with settings from Table 7, and a learning rate of 1e-3 for ConvNova, with
official learning rates used for the baselines.

We provide more detailed comparisons of different models in Table 10. Besides the pretrained
ConvNova model, we also train ConvNova from scratch. Remarkably, even without pretraining, the
model outperformed all versions of HyenaDNA at similar parameter sizes, further demonstrating
ConvNova’s superior ability to encode long-sequence information. Hyperparameters can be found in
Table 9.

Table 10: Chromatin Profile Prediction detailed comparison. AUC Score (↑) is reported for
ConvNova, HyenaDNA, NT v2, DNABERT-2, DeepATT performance on transcription factors (TF),
DNase I hypersensitive sites (DHS), histone modifications (HM), and average score. The best values
per task are bolded, and the second best are underlined.

Tasks Pretrain From Scratch

ConvNova Hyena-DNA NTv2 DNABERT-2 ConvNova DeepATT
6.8M 27.4M 0.4M 3.3M 6.5M 50M 100M 250M 500M 117M 1.7M 6.8M 27.4M 7.8M

TF 96.77 96.99 94.42 94.72 95.91 96.17 96.23 96.64 96.76 96.16 96.62 96.63 96.77 96.35
HM 86.54 86.70 84.64 84.96 85.46 86.23 86.20 86.81 86.76 86.18 85.74 85.74 85.76 86.16
DHS 93.42 93.71 90.58 90.90 92.33 92.50 92.65 93.13 93.39 92.50 92.93 92.94 93.03 92.52
Avg. 92.25 92.47 89.89 90.19 91.23 91.63 91.69 92.19 92.30 91.61 91.76 91.77 91.85 91.68

A.2.3 GENEFINDING

Objective: Classify each nucleotide based on its gene structure context, predicting exon-intron
boundaries and capturing long-range dependencies for accurate annotation.

Models and Setup: The baseline models include NT-H, DNABERT2, HyenaDNA, and GENA_LM.
ConvNova is tuned for 10 epochs, while the results of the other baselines are taken from BEND.

Experiment Configuration: The optimizer used is AdamW with settings from Table 7, and a
learning rate of 1e-3 for ConvNova.

Dilation and Layer impact on Gene Finding We find that the gene-finding task requires long-
range dependency. Both decreasing dilation rate and the number of layers can result in performance
decline in Figure 4. Models are trained from scratch in all experiments. For Dilation impact, the
model dimension is 256 and contains 5 GCBs. For GCB counts impact, the model dimension is set to
256, and the dilation rate is set to 4. For additional hyperparameter settings in this task, readers can
refer to Table 9.

A.2.4 GENOMIC BENCHMARK

Objective: Sequence classification task.
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Figure 4: The impact of dilation rate and GCB counts on the MCC in ConvNova model.

(a) Impact of dilation on GeneFinding. (b) Impact of GCB counts on GeneFinding.

Models and Setup: All models are fine-tuned for ten epochs. ConvNova is used as the backbone
with a width of 64, 5 GCBs, and a parameter size of 386K, pretrained on sequences of length 1000.
The baselines used in this task are CaduceusPh, HyenaDNA, and the CNN model provided in the
benchmark. We follow the train-valid split (90/10) as provided by HyenaDNA (Nguyen et al., 2024).

Experiment Configuration: The models are trained with 16-precision float points. We use five
random seeds and report the mean result across all models. Hyperparameters for this task can be
found in Table 9.The optimizer used is AdamW with settings from Table 7, and a learning rate of
1e-3 for ConvNova, with official learning rates used for the baselines.

A.3 ABLATIONS EXPERIMENTS

A.3.1 GATING MECHANISM AND DUAL BRANCH

In this section, we provide more details about the ablation experiments. There are two variants of the
ConvNova model: "Single Gate" and "Dual Branch", and one variant without any gating mechanism.

Single Gate Our "Single Gate" design follows a sequential process as shown in Eq.2. First, a single
Conv1D layer processes the input feature A ∈ Rl×d with weight matrix Wd ∈ Rk×d×d and bias
term bd ∈ Rd to produce z ∈ Rl×d. This output is then processed through two parallel activation
paths - GELU activation and sigmoid activation (σ). The final output is obtained through residual
addition of element-wise multiplication (⊙) of activated h and gated g. To maintain parameter count
parity with ConvNova, we increase the dimension of the Conv1D layer.

z = Wd ∗A+ bd

h = GELU(z)

g = σ(z)

A = A+ h⊙ g

(2)

Dual Gate Our "Dual Branch" design processes input features through two parallel convolu-
tional paths with gating mechanisms, as shown in Eq.3. The inputs A,B ∈ Rl×d are processed
through two separate Conv1D layers with weights W1,d/

√
2,W2,d/

√
2 ∈ Rk×d×d/

√
2 and biases

b1,d/
√
2,b2,d/

√
2 ∈ Rd/

√
2 to produce intermediate features z1, z2 ∈ Rl×d/

√
2. The first path applies

GELU activation to z1, while the second applies sigmoid activation to z2. The final output A is
obtained through residual addition of element-wise multiplication (⊙) of activated h and gated g,
and B is obtained through residual addition of gated g.
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z1 = W1,d/
√
2 ∗A+ b1,d/

√
2

z2 = W2,d/
√
2 ∗B+ b2,d/

√
2

h = GELU(z1)

g = σ(z2)

A = A+ h⊙ g

B = B+ g

(3)

Addition w/o Gate This variant uses simple addition operations for feature aggregation without
any gating mechanism. As shown in Eq.4, the input features A,B ∈ Rl×d are processed through
convolutional layers and GELU activation to produce intermediate features h,g ∈ Rl×d/

√
2. These

are then combined through addition to produce the final outputs A and B.

h = GELU(W1,d/
√
2 ∗A+ b1,d/

√
2)

g = GELU(W2,d/
√
2 ∗B+ b2,d/

√
2)

A = A+ h+ g

B = B+ g

(4)

A.3.2 DILATION MECHANISM, KERNEL SIZE AND LOCAL DEPENDENCY ANALYSIS

In this section, we present the results of the ablation experiments on the dilation rate and kernel size.
We perform experiments on the NT benchmark, testing kernel sizes of 3, 5, 7, 9, 11 and dilation rates
of 1, 2, 3, 4. We report the average results across 18 tasks from the entire benchmark.

As shown in Table 11, the performance generally improves with increasing dilation rate and kernel
size. However, to balance compatibility with long-range tasks and maintain relatively small model
parameters, we ultimately select a kernel size of 9 and a dilation rate of 4.

Table 11: Performance of different kernel sizes and dilation rates across 18 tasks in the NT benchmark.
The values represent the average performance for all tasks.

Kernel Size \Dilation Rate 1 2 3 4

3 63.710 67.440 69.630 71.705
5 63.939 70.324 73.049 73.688
7 68.353 71.141 74.049 74.598
9 68.959 72.257 74.241 74.530
11 69.408 73.437 74.835 74.549

Furthermore, we observe that even for short-range tasks (all having a sequence length of 500 bp), the
intensity of local dependencies varies significantly. For instance, the tasks H3K4me2, H3K4me3, and
H3K14ac, as discussed in §5, exhibit strong local dependencies, with better performance observed
when the dilation rate is small. On the other hand, tasks like splice site prediction show a much
stronger global dependency, which benefits from a larger dilation rate. See Table 12 for more details.

A.4 SUPERVISED METHODS AGAINST FOUNDATION MODELS

We conduct a comparison between previous supervised models and DNA foundation models on both
the NT benchmark and genomic benchmark. For our comparison, we select the popular Basenji
and the recently established state-of-the-art model, LegNet, which excels in short DNA regulatory
regions. Originally, these supervised models are designed for specific tasks. We apply them to
the benchmarks used for foundation models. As observed in Table 13 and Table 14, although they
show decent performance on specific tasks, they do not achieve the same level of consistency across
various datasets as foundation models do. This inconsistency may arise from the enhanced modeling
capabilities afforded by pretraining in foundation models.
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Table 12: Performance of different dilation rates and kernel sizes on the NT benchmark. For
example, k3_d1 represents a kernel size of 3 and a dilation rate of 1, with similar notation for other
configurations.

Task Histone Modifications
H3 H3K4me1 H3K4me2 H3K4me3 H3K9ac H3K14ac H3K36me3 H3K79me3

k3_d1 70.14 43.14 41.26 49.12 54.00 54.80 54.48 62.38
k3_d2 74.66 50.54 47.52 56.50 58.92 60.16 63.18 67.50
k3_d3 79.24 52.44 49.50 55.18 61.60 62.72 63.66 68.50
k3_d4 78.72 51.94 47.54 54.12 62.36 62.30 63.74 68.48
k5_d1 70.76 50.26 48.28 56.86 58.02 61.62 60.44 65.38
k5_d2 76.80 55.88 53.50 62.30 63.58 66.24 65.04 70.30
k5_d3 80.88 55.58 52.16 58.86 65.62 65.22 66.02 70.84
k5_d4 80.48 55.12 50.46 56.56 65.60 63.58 65.58 69.70
k7_d1 71.76 53.12 50.72 59.78 61.06 65.16 62.80 67.32
k7_d2 77.72 56.62 53.66 62.54 65.96 66.92 66.06 70.78
k7_d3 81.20 56.42 53.38 58.04 66.56 65.30 66.54 70.96
k7_d4 81.62 56.46 51.02 57.60 66.38 64.24 65.96 69.10
k9_d1 72.52 54.70 52.90 60.50 62.26 66.02 63.94 69.14
k9_d2 78.02 56.76 55.38 62.04 66.80 67.46 67.62 71.52
k9_d3 81.58 56.16 52.20 58.64 66.70 65.00 66.28 71.84
k9_d4 81.18 55.36 48.54 56.60 65.84 64.40 66.08 70.02
k11_d1 72.60 55.90 53.78 62.80 63.02 66.40 66.14 69.58
k11_d2 79.62 56.74 55.20 63.84 67.08 67.24 68.20 71.54
k11_d3 81.66 56.12 53.98 58.66 66.88 64.62 66.84 71.22
k11_d4 80.66 55.16 47.84 55.76 66.82 63.20 66.28 70.18

Task promoter splice_sites enhancer
all non_tata tata all acceptor donor types

k3_d1 94.68 94.82 94.54 47.08 79.72 78.16 54.04 48.96
k3_d2 96.06 96.04 95.74 49.26 80.62 79.84 52.36 49.76
k3_d3 96.50 96.44 96.20 60.36 84.10 83.10 53.84 50.66
k3_d4 96.62 96.64 96.38 91.42 87.54 87.12 56.46 48.96
k5_d1 95.10 95.30 94.88 48.20 79.84 78.20 52.44 51.30
k5_d2 96.36 96.48 96.32 53.84 82.22 81.28 52.96 50.50
k5_d3 96.68 96.80 96.54 88.70 86.96 85.74 55.68 49.62
k5_d4 96.76 96.74 96.18 96.38 96.08 95.62 56.14 51.84
k7_d1 95.36 95.46 95.46 48.50 79.72 78.92 55.70 51.48
k7_d2 96.54 96.48 96.32 59.54 83.76 83.12 53.26 49.00
k7_d3 96.76 96.70 96.28 95.38 88.86 88.82 57.42 49.88
k7_d4 96.76 96.68 96.48 96.24 97.02 96.40 58.02 50.02
k9_d1 95.56 95.66 95.28 49.16 80.36 79.40 53.58 49.60
k9_d2 96.54 96.54 96.34 70.96 84.78 84.16 54.06 48.12
k9_d3 96.70 96.66 96.40 95.94 91.98 90.98 56.82 48.94
k9_d4 96.74 96.82 96.92 96.54 97.08 96.48 58.60 50.00
k11_d1 95.68 95.84 95.06 49.08 80.78 79.04 54.56 49.18
k11_d2 96.40 96.46 96.40 84.60 85.62 84.84 55.92 48.20
k11_d3 96.64 96.58 96.22 95.84 96.86 95.62 57.16 48.58
k11_d4 96.82 96.66 96.60 96.76 97.16 86.46 61.68 50.80
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Table 13: Supervised Methods against Foundation Models on NT Benchmark. MCC/F1-score is
reported for pretrained NTv2, HyenaDNA, DNABERT-2, Caduceus-Ph, ConvNova, Basenji, LegNet
ConvNova*(* means trained from scratch)

. The best values per task are bold, and the second-best are underlined. ± indicates the error range
across five random seeds.

NTv2 HyenaDNA DNABERT-2 Caduceus-Ph ConvNova Basenji LegNet ConvNova*
(500M) (1.6M) (117M) (1.9M) (1.7M) (7.4M) (2.1M) (1.7M)

Histone

H3 78.17 ±2.54 78.14 ±1.70 79.31 ±0.68 80.48 ±1.04 81.50 ±0.80 78.05 ±1.83 76.24 ±0.83 81.18 ±1.68
H3K4me1 51.64 ±1.12 44.52 ±2.59 48.34 ±4.63 52.83 ±0.96 56.60 ±1.01 42.70 ±3.16 47.47 ±1.36 55.36 ±2.26
H3K4me2 37.24 ±2.25 42.68 ±2.66 43.02 ±2.92 49.88 ±2.65 57.45 ±2.27 34.73 ±1.66 45.75 ±0.56 48.54 ±3.24
H3K4me3 50.30 ±1.77 50.41 ±3.15 45.43 ±3.33 56.72 ±2.58 67.15 ±0.93 38.85 ±1.49 52.67 ±2.54 56.60 ±2.70
H3K9ac 61.05 ±1.40 58.50 ±1.75 60.04 ±1.27 63.27 ±2.29 68.10 ±1.91 56.34 ±2.86 58.21 ±0.92 65.84 ±1.14
H3K14ac 57.22 ±2.19 56.71 ±2.40 54.49 ±4.99 60.84 ±2.94 70.71 ±2.32 49.88 ±1.60 56.64 ±2.12 64.40 ±0.90
H3K36me3 60.50 ±1.75 59.92 ±1.06 57.58 ±2.38 61.12 ±1.44 68.31 ±1.19 52.73 ±1.84 57.54 ±1.03 66.08 ±1.88
H3K79me3 65.78 ±2.34 66.25 ±3.65 64.38 ±0.48 67.17 ±2.03 72.08 ±1.23 62.43 ±1.29 63.78 ±1.72 70.02 ±0.72
H4 79.87 ±1.34 78.15 ±1.58 78.18 ±0.98 80.10 ±1.00 81.12 ±0.93 77.60 ±2.02 78.73 ±1.93 80.78 ±0.82
H4ac 55.22 ±2.20 54.15 ±2.96 51.80 ±0.10 59.26 ±3.67 66.10 ±1.20 46.05 ±1.77 55.29 ±2.60 63.56 ±1.14

Regulatory

Enhancer 54.51 ±1.94 53.13 ±4.52 52.50 ±1.44 55.20 ±2.56 57.60 ±2.52 57.54 ±2.75 55.25 ±3.23 58.60 ±3.80
Enhancer Types 43.36 ±1.75 48.16 ±2.48 44.32 ±1.18 47.17 ±2.85 49.75 ±2.82 52.67 ±2.94 44.72 ±2.04 50.00 ±1.80
Promoter All 96.82 ±0.47 95.57 ±0.18 96.23 ±0.17 96.65 ±0.16 96.82 ±0.22 95.79 ±0.24 96.52 ±0.33 96.74 ±0.06
Promoter non-TATA 97.45 ±0.69 95.86 ±0.37 97.17 ±0.17 96.31 ±0.50 96.76 ±0.21 95.99 ±0.18 96.45 ±0.27 96.82 ±0.28
Promoter TATA 96.53 ±0.81 95.88 ±0.53 96.99 ±0.49 96.21 ±0.81 96.34 ±0.38 95.89 ±0.78 96.25 ±0.45 96.92 ±0.32

Splice sites

Splice Acceptor 97.99 ±0.66 96.98 ±0.49 97.49 ±0.36 94.21 ±0.37 96.23 ±0.41 97.65 ±0.34 85.80 ±0.58 97.08 ±0.32
Splice Donor 98.50 ±0.43 95.27 ±1.07 94.33 ±0.27 94.69 ±0.67 96.62 ±0.61 97.82 ±0.66 84.72 ±0.95 96.48 ±0.32
Splice All 98.15 ±1.01 94.05 ±1.08 93.75 ±1.25 92.87 ±1.73 96.33 ±0.31 98.07 ±0.45 54.71 ±2.38 96.54 ±0.36

Table 14: Supervised Methods against Foundation Models on Genomic Benchmark. Top-1
accuracy (↑) is reported for pretrained HyenaDNA, Caduceus-Ph, ConvNova, Basenji, LegNet, and
the original CNN baseline (trained from scratch). The best values are in bold, and the second-best is
underlined. ± indicates the error range across five random seeds.

Task CNN HyenaDNA Caduceus-Ph ConvNova Basenji LegNet
(264K) (436K) (470K) (386K) (7.4N) (2.1M)

Enhancers

Mouse Enhancers 0.730 ±0.032 0.779 ±0.013 0.754 ±0.074 0.784 ±0.009 0.659 ±0.155 0.504 ±0.000
Human Enhancers Cohn 0.702 ±0.021 0.718 ±0.008 0.747 ±0.004 0.743 ±0.005 0.712 ±0.030 0.739 ±0.004
Human Enhancer Ensembl 0.744 ±0.122 0.832 ±0.006 0.893 ±0.008 0.900 ±0.004 0.905 ±0.007 0.879 ±0.002

Species Classification

Coding vs. Intergenomic 0.892 ±0.008 0.904 ±0.008 0.915 ±0.003 0.943 ±0.001 0.905 ±0.004 0.939 ±0.002
Human vs. Worm 0.942 ±0.002 0.961 ±0.002 0.973 ±0.001 0.967 ±0.002 0.957 ±0.003 0.965 ±0.001

Regulatory Elements

Human Regulatory 0.872 ±0.005 0.862 ±0.004 0.872 ±0.011 0.873 ±0.002 0.764 ±0.005 0.764 ±0.006
Human Non-TATA Promoters 0.861 ±0.009 0.887 ±0.005 0.946 ±0.007 0.951 ±0.003 0.919 ±0.006 0.942 ±0.007
Human OCR Ensembl 0.698 ±0.013 0.744 ±0.019 0.828 ±0.006 0.793 ±0.004 0.766 ±0.009 0.802 ±0.004

A.5 NEIGHBORHOOD IMPORTANCE IN DNA MODELING

To support our hypothesis that the inductive bias of CNNs—emphasizing neighboring nucleotides—is
beneficial for DNA modeling, we make modifications to the Rotary Position Embedding (RoPE)
mechanism. Specifically, we adjust the original θ values, enabling each attention head to have distinct
θ values.

Additionally, we modified the initialization of the bias term in the linear layers of the K and Q
projections. The bias was initialized to [0, 0, 0, 0, 0, . . . , 1], while all other parameters retained the
initialization strategy of NTv2 (standard deviation σ = 0.02, mean µ = 0). This adjustment ensures
that the initialization process places greater emphasis on neighboring nucleotides. Refer to Figure
A.5 for an illustration of the improved attention map, which places greater emphasis on neighboring
tokens.

To validate our hypothesis, we train NTv2 from scratch on three tasks where ConvNova with small
dilation values performs better (H3K4me2, H3K4me3, and H3K14ac). The results, presented in Table
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15, show that the adjusted NTv2 consistently outperform its original version. However, despite these
improvements, our naive modifications to the transformer architecture does not surpass ConvNova
trained from scratch(See Table 13). To enhance transformer and state space model (SSM) designs for
DNA modeling further dedicated efforts is needed.

Our primary goal here is to validate the hypothesis and provide an explanation for why CNNs might
outperform transformers in this context.

Table 15: Performance comparison of NTv2 and NTv2*, where NTv2* represents our modified
version. Results demonstrate that NTv2* achieves significant improvements.

Task NTv2* NTv2

H3K14ac 46.65 34.42
H3K4me2 33.10 25.79
H3K4me3 34.62 21.40

Figure 5: Visualization of the attention maps for NTv2* (Left) and NTv2 (Right). The asterisk (*)
denotes the modified version. The modified initialization places more emphasis on neighboring
tokens in the attention map.
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Table 16: Results for all models on NT benchmark across genomic regions. Ten random seeds
were used for each model. The best values per task are bolded.

Seed 2222 42 43 44 45 46 47 48 49 50

Promoter All
ConvNova (4 dilation) 96.99 96.84 96.81 96.82 96.75 96.82 96.64 96.60 96.96 96.96
Caduceus-Ph 96.66 96.61 96.64 96.61 96.51 96.79 96.77 96.49 96.73 96.68
HyenaDNA 95.55 95.62 95.44 95.58 95.62 95.58 95.56 95.65 95.75 95.39
DNABERT-2 96.38 96.27 96.15 96.21 96.05 96.19 96.31 96.22 96.29 96.11
NTv2 96.47 97.19 96.95 96.35 97.12 96.63 97.21 96.85 96.40 97.00

Promoter Non-TATA
ConvNova (4 dilation) 96.55 96.81 96.73 96.83 96.88 96.61 96.77 96.83 96.87 96.72
Caduceus-Ph 96.14 95.81 96.14 96.52 96.79 95.98 96.47 96.36 96.39 96.50
HyenaDNA 95.81 96.23 95.66 96.00 95.96 95.60 95.63 96.04 95.87 95.83
DNABERT-2 97.18 97.02 97.31 97.22 97.04 97.29 97.15 97.03 97.26 97.12
NTv2 96.89 97.44 98.01 96.81 97.29 98.14 97.52 96.78 97.93 97.66

Promoter TATA
ConvNova (4 dilation) 96.57 96.08 95.92 96.57 96.07 96.40 96.57 96.09 96.41 96.72
Caduceus-Ph 95.40 96.72 96.40 95.73 96.23 96.74 96.24 95.71 96.56 96.41
HyenaDNA 95.92 96.06 96.23 95.89 96.41 95.55 95.58 96.16 95.58 95.42
DNABERT-2 97.38 97.12 96.52 97.41 97.18 96.53 97.40 97.15 96.54 96.87
NTv2 95.75 96.89 97.13 95.92 96.48 96.12 97.05 96.73 95.88 97.34

Splice Sites All
ConvNova (4 dilation) 96.46 96.18 96.6 96.41 96.28 96.50 95.82 96.30 95.93 95.85
Caduceus-Ph 96.29 96.33 96.21 96.36 96.58 96.04 96.19 95.84 96.03 96.27
HyenaDNA 96.97 96.99 96.93 96.74 96.96 97.22 97.05 96.89 97.47 96.61
DNABERT-2 94.32 94.18 93.71 94.29 94.21 93.72 94.34 94.23 93.74 94.03
NTv2 97.14 98.47 98.97 97.88 98.63 98.09 97.57 98.42 98.28 98.05

Splice Sites Acceptor
ConvNova (4 dilation) 96.65 96.01 96.87 96.70 96.86 96.59 96.37 97.06 96.50 96.59
Caduceus-Ph 97.36 96.41 96.74 96.61 96.24 96.83 96.74 96.87 96.50 96.56
HyenaDNA 94.20 95.37 95.21 94.97 96.06 95.94 95.2 94.48 95.73 95.56
DNABERT-2 94.57 94.21 94.23 94.55 94.19 94.24 94.59 94.18 94.25 94.28
NTv2 98.57 97.89 98.14 97.45 98.64 97.72 98.09 97.33 98.38 97.69

Splice Sites Donor
ConvNova (4 dilation) 96.57 96.34 96.52 96.51 96.44 96.02 96.04 96.38 96.12 96.33
Caduceus-Ph 92.47 93.21 94.74 92.61 92.78 93.56 91.14 94.36 92.57 91.22
HyenaDNA 94.38 94.59 95.04 93.09 94.63 93.38 94.52 93.67 92.97 94.22
DNABERT-2 92.51 94.76 93.72 92.48 94.81 93.74 92.53 94.79 93.71 94.52
NTv2 98.93 98.67 98.43 98.12 98.54 98.79 98.26 98.68 98.37 98.21

Enhancer
ConvNova (4 dilation) 59.00 55.08 57.09 58.54 55.33 58.26 58.77 58.42 58.10 57.39
Caduceus-Ph 53.72 53.64 54.04 53.50 57.76 56.75 55.94 55.35 54.66 56.63
HyenaDNA 55.34 53.88 54.43 51.44 51.56 54.28 55.53 48.61 53.18 53.05
DNABERT-2 52.11 51.06 52.15 53.67 53.23 53.24 51.56 52.08 52.88 53.06
NTv2 53.25 55.80 54.10 52.99 56.45 54.75 53.40 55.50 54.99 53.85

Enhancer Types
ConvNova (4 dilation) 49.08 48.32 49.24 52.56 48.72 48.90 51.24 49.45 49.96 49.98
Caduceus-Ph 47.78 44.58 45.93 46.01 48.04 50.02 47.98 47.09 46.93 47.35
HyenaDNA 47.71 47.77 48.06 48.49 50.34 49.67 49.45 48.43 45.68 46.09
DNABERT-2 43.68 44.17 43.29 45.50 43.23 45.29 44.22 45.18 45.40 43.28
NTv2 42.15 44.90 43.20 41.85 44.25 43.80 42.50 45.10 43.05 42.75
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Table 17: (Cont.) Results for all models on NT benchmark across genomic regions.

Task/Model 2222 42 43 44 45 46 47 48 49 50

H3
ConvNova (4 dilation) 81.62 81.78 81.04 82.24 82.12 82.06 81.36 81.12 80.91 80.69
ConvNova (1 dilation) 76.90 77.14 77.28 77.73 76.80 76.59 77.24 77.26 77.68 76.96
Caduceus-Ph 80.29 79.85 78.63 81.47 80.24 81.50 81.35 80.35 79.95 81.02
HyenaDNA 76.88 77.01 78.23 77.24 79.84 78.39 77.56 79.27 79.11 77.90
DNABERT-2 79.61 79.34 79.12 78.90 79.02 79.61 78.68 79.42 79.99 79.41
NTv2 76.55 80.32 78.30 77.52 80.71 79.25 76.89 77.82 76.94 77.38

H3K4me1
ConvNova (4 dilation) 58.88 56.99 56.37 56.20 56.70 55.59 55.71 55.71 56.48 57.41
ConvNova (1 dilation) 55.67 57.8 56.62 57.64 55.28 55.65 55.80 56.32 57.44 55.82
Caduceus-Ph 53.31 53.00 54.54 51.87 53.40 53.42 52.34 51.91 52.01 52.45
HyenaDNA 43.04 44.54 44.04 44.55 46.02 44.9 41.93 45.26 46.13 44.77
DNABERT-2 50.32 47.21 48.09 49.38 49.22 43.71 46.91 50.22 47.82 50.51
NTv2 51.56 50.96 52.35 51.81 50.52 52.03 52.31 52.72 51.25 50.93

H3K4me2
ConvNova (4 dilation) 55.80 54.68 51.81 52.52 54.51 52.20 51.30 55.01 54.91 54.45
ConvNova (1 dilation) 56.53 59.72 57.26 58.60 56.13 56.35 58.72 56.25 58.67 56.24
Caduceus-Ph 47.96 47.23 52.47 50.14 51.35 50.14 52.18 50.01 48.72 48.56
HyenaDNA 40.5 40.02 42.43 43.32 41.80 44.07 43.78 42.39 44.82 43.65
DNABERT-2 43.10 42.10 45.20 41.90 43.01 40.10 43.80 44.40 43.40 43.20
NTv2 37.76 36.32 37.59 37.57 35.56 37.87 39.49 37.04 36.35 36.86

H3K4me3
ConvNova (4 dilation) 59.23 62.11 60.42 59.98 59.82 60.10 60.58 58.73 61.45 59.60
ConvNova (1 dilation) 67.13 66.8 67.97 67.79 66.45 67.01 66.75 68.00 67.42 66.22
Caduceus-Ph 56.93 56.09 58.64 54.56 57.95 57.84 58.54 56.49 54.14 56.03
HyenaDNA 47.65 52.13 50.12 52.10 52.32 51.43 49.46 49.72 47.26 51.90
DNABERT-2 46.30 46.40 46.60 46.00 45.80 45.60 46.40 44.80 44.30 42.10
NTv2 51.70 48.94 50.52 49.17 52.03 50.15 49.87 51.34 50.75 48.53

H3K9ac
ConvNova (4 dilation) 68.98 69.98 66.18 67.54 68.39 66.18 67.54 68.39 68.67 69.10
ConvNova (1 dilation) 63.85 65.33 67.12 65.15 66.24 63.66 65.38 66.82 65.17 66.20
Caduceus-Ph 63.78 62.28 64.20 65.04 61.06 60.98 65.24 63.59 63.55 62.95
HyenaDNA 57.57 57.51 58.37 60.25 58.57 59.78 59.19 59.31 57.53 56.88
DNABERT-2 58.80 60.40 61.00 58.82 60.41 60.98 58.77 60.78 61.23 59.20
NTv2 60.45 61.90 62.22 59.98 60.85 61.57 62.10 60.02 61.78 59.65

H3K14ac
ConvNova (4 dilation) 66.24 66.61 65.91 68.03 65.98 65.83 65.6 66.58 64.93 66.22
ConvNova (1 dilation) 69.76 73.03 69.26 72.57 69.95 69.88 71.03 69.46 72.23 69.92
Caduceus-Ph 61 59.36 62.4 60.7 62.14 57.9 62.83 61.31 59.65 61.08
HyenaDNA 56.08 57.59 54.5 54.31 57.31 55.19 58.26 57.09 57.95 58.85
DNABERT-2 56.31 55.72 53.42 55.14 55.61 55.36 49.52 54.54 53.81 55.72
NTv2 55.03 58.65 56.74 59.18 57.01 55.82 57.33 58.40 56.10 57.92

H3K36me3
ConvNova (4 dilation) 67.12 67.58 68.44 69.43 68.07 68.54 69.13 67.75 67.85 69.22
ConvNova (1 dilation) 69.31 67.01 66.1 66.43 67.17 68.31 66.66 66.24 66.59 67.01
Caduceus-Ph 62.53 61.53 61.16 62.3 59.68 61.42 61.46 60.33 60.81 59.93
HyenaDNA 60.27 60.52 59.8 59.01 58.88 59.66 60.73 60.09 60.98 59.3
DNABERT-2 59.12 58.11 58.11 57.16 56.14 57.15 58.25 58.21 58.65 55.27
NTv2 58.75 61.42 60.15 62.10 59.81 61.68 60.25 58.90 60.77 61.12

H3K79me3
ConvNova (4 dilation) 72.24 71.37 71.05 70.85 72.41 72.73 72.67 72.19 72.35 72.91
ConvNova (1 dilation) 70.99 71.83 69.34 72.57 71.17 70.66 71.85 70.23 71.24 71.67
Caduceus-Ph 68.78 68.28 67.77 68.02 65.14 66.89 66.37 66.49 66.58 67.42
HyenaDNA 62.6 65.71 67.33 66.82 66.97 65.52 65.23 67.68 67.63 66.99
DNABERT-2 64.10 64.10 65.10 64.10 64.12 65.13 64.32 64.21 64.82 63.91
NTv2 64.23 66.14 67.22 65.99 63.87 65.43 68.12 64.68 66.79 65.31
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Table 18: (Cont.) Results for all models on NT benchmark across genomic regions.

Task/Model 2222 42 43 44 45 46 47 48 49 50

H4
ConvNova (4 dilation) 80.44 80.97 82.36 80.76 81.37 81.17 81.62 80.19 80.74 81.54
ConvNova (1 dilation) 77.29 76.05 77.06 76.83 78.82 76.29 76.88 77.42 76.81 79.06
Caduceus-Ph 80.51 80.02 80.21 79.94 81.12 79.72 79.36 79.82 80.25 80.33
HyenaDNA 78.33 77.61 77.60 77.84 77.85 77.96 79.73 78.58 79.24 76.79
DNABERT-2 78.82 78.42 77.83 78.83 78.42 77.26 78.62 78.23 77.54 78.14
NTv2 78.53 80.21 79.65 79.11 81.20 78.92 79.76 81.00 80.45 79.83

H4ac
ConvNova (4 dilation) 64.78 65.04 62.44 64.47 66.65 63.18 64.95 66.23 65.63 64.14
ConvNova (1 dilation) 64.9 66.89 66.77 66.9 65.68 65.32 66.14 65.77 66.82 65.77
Caduceus-Ph 58.21 60.68 60.68 60.69 58.96 57.55 59.52 60.47 60.27 55.59
HyenaDNA 53.77 53.99 51.30 57.10 55.75 54.30 51.32 55.36 55.34 53.22
DNABERT-2 51.82 51.92 51.73 51.83 51.92 51.73 51.83 51.92 51.73 51.83
NTv2 53.68 56.94 54.72 57.41 54.20 55.84 56.10 54.95 53.02 55.35

A.6 RELATIVE OCCUPANCY OF YEAST HISTONE MARKS

Figure 6: Relative occupancy of histone marks on chromosome IV. A) Histone H3K14ac vs H3
YPD ChIP chip ratios B) Histone H3K4me2 vs H3 YPD ChIP chip ratios C) Histone H3K4me3 vs
H3 YPD ChIP chip ratios D) Histone H3K9ac vs H3 YPD ChIP chip ratios. Relative occupancy
of histone marks on chromosome IV. Data were obtained from the Yeast Genome Database. For
complete datasets and additional information, please refer to https://www.yeastgenome.
org/dataset/E-WMIT-3#resources.
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