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Abstract001

Recent advances in large reasoning models002
have enabled complex, step-by-step reasoning003
but often introduce significant overthinking, re-004
sulting in verbose and redundant outputs that005
hinder efficiency. In this study, we examine006
whether explicit self-reflection, signaled by to-007
kens such as “Wait” and “Hmm”, is necessary008
for advanced reasoning. We propose NOWAIT,009
a simple yet effective approach that disables010
explicit self-reflection by suppressing these to-011
kens during inference. Extensive experiments012
on ten benchmarks across textual, visual, and013
video reasoning tasks show that NOWAIT re-014
duces chain-of-thought trajectory length by up015
to 27%–51% in five R1-style model series,016
without compromising model utility. NOWAIT017
thus offers a plug-and-play solution for efficient018
and utility-preserving multimodal reasoning.019

1 Introduction020

Recent advancements in large reasoning models021

(LRMs), exemplified by DeepSeek-R1 (DeepSeek-022

AI et al., 2025), have shown that complex rea-023

soning abilities can be effectively elicited through024

simple rule-based reinforcement learning (Qwen,025

2025a,b; Abdin et al., 2025; Xia et al., 2025).026

These models produce explicit, step-by-step rea-027

soning through long chain-of-thought (CoT) tra-028

jectories (Yang et al., 2025a; Ma et al., 2025a)029

before arriving at final answers. This capability030

is believed to be accompanied by the emergence031

of the “Aha Moment” phenomenon (Chen et al.,032

2025c; Yang et al., 2025b), in which the model033

begins to rethink problems and self-reflect on its034

reasoning trajectory with anthropomorphic expres-035

sions such as “Wait”, “Hmm”, or “Alternatively”.036

This was firstly achieved on R1-style language rea-037

soning models and has been extended to vision-038

language models (VLMs), enabling multimodal039

reasoning on images (Zhang et al., 2025b; Shen040

et al., 2025a; Huang et al., 2025; Zhou et al., 2025)041

and videos (Feng et al., 2025; Qwen, 2024; Du 042

et al., 2025). 043

Despite the effectiveness of long CoT reasoning 044

with self-reflection, the overthinking problem has 045

emerged (Chen et al., 2024a; Cuadron et al., 2025; 046

Chen et al., 2025b; Wu et al., 2025; Sui et al., 2025). 047

It is characterized by excessively verbose reason- 048

ing and redundant thought steps, often extending 049

over thousands of tokens, resulting in significant 050

computational overhead and high reasoning latency. 051

Such inefficiencies hinder the practical deployment 052

of R1-style reasoning models in applications with 053

limited computational resources. 054

Although numerous efforts have been devoted 055

to efficient reasoning, many existing approaches 056

require additional training, either through reinforce- 057

ment learning (RL) with length-based rewards (Ag- 058

garwal and Welleck, 2025; Liao et al., 2025; Luo 059

et al., 2025) or fine-tuning on variable-length CoT 060

trajectories (Ma et al., 2025b; Munkhbat et al., 061

2025). On the other hand, several training-free 062

approaches have been proposed to mitigate over- 063

thinking by reducing token usage during inference. 064

However, they often compromise the overall model 065

utility (Ma et al., 2025a) or have only demonstrated 066

effectiveness on distilled reasoning models (Yang 067

et al., 2025c,a; Xu et al., 2025). 068

In this study, we investigate the impact of ex- 069

cessive self-reflection during the reasoning process 070

and question whether explicit self-reflection, sig- 071

naled by “Wait”-like tokens, is really necessary 072

for advanced reasoning. To this end, we propose 073

NOWAIT, a simple yet effective training-free ap- 074

proach that disables explicit self-reflection in R1- 075

style reasoning models, significantly reducing to- 076

ken usage while maintaining overall model utility. 077

As illustrated in Figure 1, we directly intervene in 078

the inference process by identifying specific key- 079

word tokens (e.g., “Wait” and “Hmm”) that indicate 080

explicit self-reflection and suppressing their gener- 081

ation. Specifically, we achieve this by proactively 082
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Our Proposal: NoWait

Question: Typical ceiling of 
churches from this period?
A. timber roofs 
B. quadripartite vaults
C. pendentive domes

Visual QA

Question: Cities A and B are 45 miles apart. 
Alicia leaves A biking at 18 miles per hour, 
and Beth leaves B biking at 12 miles per 
hour. They start at the same time. How far 
from City A do they meet?

Textual QA

Do we really need to “Wait” in the reasoning process?

<think>

Okay, let me … Wait,

First,

I need to …

I need to …

Hmm,

Next,

calculate …

calculate …

</think>

R1-style Reasoning Model

Chain-of-Thought

Okay, let me …

Suppress “Wait” Tokens

Wait
First
Hmm
Let
...

Logits (Before)

First
Let
Take
Next
...

Logits (After)

Question: The video shows 
the complete workflow of 
a process. What is the 
name of the first step of 
the process?

Video QA
NoWait is better!

Efficient

Training-Free

Multimodal

Utility-Preserving

Results

Model: QwQ-32B
Dataset: AIME 2025

Reduction: 31%

68

15240
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67

10548

Acc

Original
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Model: Kimi-VL-A3B
Dataset: MMMU-Pro
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Model: QvQ-72B-Preview
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Figure 1: Illustrative pipeline for NOWAIT. We introduce NOWAIT, a simple yet effective approach that suppresses
the generation of reflection keywords (e.g., “Wait” and “Hmm”) during inference. NOWAIT reduces chain-of-thought
trajectory length by up to 27%-51% across textual, visual, and video reasoning tasks.

adjusting the logits of these tokens to negative val-083

ues during decoding, thereby steering the model084

toward selecting alternative tokens to continue the085

reasoning process.086

Comprehensive experiments show that NOWAIT087

achieves strong performance on ten benchmarks088

spanning ❶ textual reasoning (AMC 2023 (AI-089

MO, 2024), AIME 2024, AIME 2025 (MAA090

Committees), GQPA-D (Rein et al., 2024)),091

❷ visual reasoning (MMMU (Yue et al., 2024a),092

MMMU-Pro (Yue et al., 2024b), MathVista (Lu093

et al., 2024), EMMA-mini (Hao et al., 2025)),094

and ❸ video reasoning (MMVU (Zhao et al.,095

2025), VSI-Bench (Yang et al., 2024)). When in-096

tegrated into five R1-style model series, including097

QwQ (Qwen, 2025b), Phi4 (Abdin et al., 2025),098

Qwen3 (Qwen, 2025a), Kimi-VL (Du et al., 2025),099

QvQ (Qwen, 2024), NOWAIT reduces CoT trajec-100

tory length by up to 27%-51% across different101

modalities. NOWAIT serves as a plug-and-play102

solution for improving reasoning efficiency while103

preserving overall model utility.104

2 Preliminaries105

Reasoning Model Generation Patterns. Reason-106

ing models structure their output using thinking107

delimiters (i.e., <think> and <\think>), dividing108

the response into two main components: the CoT109

trajectory detailing the reasoning process and the110

final answer summarizing overall thoughts.111

Within the generated CoTs, models employ com-112

plex reasoning strategies, such as forward thinking,113

backtracking, and self-reflection. Notably, large 114

reasoning models often continue to reason even 115

after obtaining an initial result, performing addi- 116

tional validation steps. Accordingly, we define each 117

segment of reasoning as a thinking chunk. Each 118

thinking chunk is associated with an intermediate 119

answer r. Formally, a thinking chunk can be rep- 120

resented as a pair (chunki, ri), where chunki is 121

the reasoning text and ri is the intermediate an- 122

swer from chunki derived from chunki. Thus, a 123

complete CoT can be structured as follows: 124

CoT = {(chunki, ai)}ni=1 . (1) 125

The final response is the combination of the CoT 126

trajectory and a concise reasoning summary: 127

Response = (CoT, summary) . (2) 128

Self-Reflection within Reasoning Models. As 129

stated above, a single CoT can contain multiple 130

reasoning chunks. The transitions between these 131

chunks are often marked by specific keywords, 132

such as Wait, Alternatively, or Hmm. Models 133

may switch their reasoning approaches in subse- 134

quent steps, often to verify previous results or ex- 135

plore alternative paths. However, this mechanism 136

can sometimes lead to unproductive overthinking, 137

causing models to repeatedly enter new reasoning 138

steps and engage in seemingly endless validation 139

loops. In this study, we further investigate this 140

self-reflection phenomenon in the context of multi- 141

modal reasoning models. We introduce a simple yet 142

effective method, which enables models to achieve 143

more concise reasoning. 144
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3 NOWAIT is Better145

In this section, we propose NOWAIT, a simple yet146

effective method, that surprisingly improves the147

reasoning efficiency while maintaining acceptable148

model utility.149

3.1 Method150

Unlike methods that attempt to alter the underly-151

ing reasoning process, NOWAIT functions as an152

inference-time intervention. It directly prevents153

the model from generating the specific tokens as-154

sociated with self-reflection. Our method involves155

three main stages:156

Initialize Reflection Keywords List. We begin157

by identifying initial reflection keywords, such as158

“Wait”, “Alternatively”, and “Hmm”. To establish159

this list empirically, we conduct 32 independent160

runs of the QwQ-32B model (Qwen, 2025b) on161

the AIME 2025 benchmark. Using “\n\n” as delim-162

iters, we identify the 15 most frequent monolingual163

words as our identified keywords K = {ki}. All164

identified keywords are listed in Table 1.165

Specific Token-Level Keyword List. Secondly,
for each target model α, we expand the initial key-
word list K into a specific token-level list, Kα.
We achieve this by iterating through the overall
vocabulary Vα and identifying all variant tokens
whose textual representation contains any keyword
from K as a substring. Specifically, we define that,
is_substr(x, y) = True when x is the substring
of y. This process can be formulated as follows:

Kα = {v ∈ Vα|∃ks ∈ K, s.t.is_substr(ks, v)}

We further manually filter keywords that are not rea-166

sonable (i.e., “Ohio” for “oh”) to keep the robust-167

ness. For instance, the variants of “wait” include “168

wait”, “Wait”, “ Wait”, “.wait” and “WAIT”.169

Suppressing Keywords Generation. During the170

inference, we leverage a logit processor to pro-171

hibit models from generating keywords. For any172

keyword v ∈ Kα, its corresponding logit is set173

to a large negative value. This effectively makes174

these reflection-associated tokens, ensuring they175

are highly unlikely to be sampled by models.176

By surgically preventing the generation of these177

targeted reflection-associated tokens, NOWAIT178

aims to streamline the LRM’s reasoning pathways.179

This targeted intervention is designed to enhance180

inference efficiency, reducing both latency and to-181

Table 1: Keyword List for Suppressing.

Keyword List for Suppressing

“wait”, “alternatively”, “hmm”, “but”,
“however”, “alternative”, “another”,
“check”, “double-check”, “oh”,
“maybe”, “verify”, “other”, “again”,
“now”, “ah”, “any”

ken costs, without requiring any modification to 182

the model’s underlying architecture or weights. 183

3.2 Experimental Setup 184

Model & Benchmark. To comprehensively evalu- 185

ate the effectiveness of NOWAIT, we conduct exper- 186

iments on the open-source models across different 187

modalities and parameter scales. 188

For the textual reasoning task, we assess re- 189

inforcement learning (RL) based models, includ- 190

ing QwQ-32B (Qwen, 2025b), Phi4-Reasoning- 191

Plus (Abdin et al., 2025), and Qwen3-32B (Qwen, 192

2025a) on math reasoning benchmarks, AIME 193

2024, AIME 2025 (MAA Committees), and AMC 194

2023 (AI-MO, 2024) as well as a professor-level 195

benchmark, GPQA-Diamond (Rein et al., 2024). 196

For the visual reasoning task, our experiments 197

cover the state-of-the-art RL-based vision reason- 198

ing models, Kimi-VL-A3B-Thinking (Du et al., 199

2025) and QvQ-72B-Preview (Qwen, 2024) and 200

evaluate on MMMU-Pro (Yue et al., 2024b), 201

MMMU (Yue et al., 2024a), MathVista (Lu et al., 202

2024) and EMMA-mini (Hao et al., 2025) 203

For the video reasoning task, we select QvQ- 204

72B-Preview and evaluate on VSI-Bench (Yang 205

et al., 2024) and MMVU (Zhao et al., 2025). 206

Metrics. The goal of NOWAIT is to preserve the 207

model’s reasoning accuracy while substantially di- 208

minishing the number of generated tokens during 209

inference. Performance is assessed using two key 210

metrics: ❶ Accuracy (ACC): This measures the 211

correctness of the model’s final output. ❷ Genera- 212

tion Length (LEN) quantifies the average number 213

of tokens generated by the model per problem in- 214

stance, calculated over n independent runs. 215

Experiment Details. For each evaluated bench- 216

mark, we conduct five independent runs. Except 217

for the Qwen3 series, we infer without chat tem- 218

plates on open-ended problems and leverage the 219

same prompt template for multiple-choice prob- 220

lems (see Appendix D). Because of the different 221
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Table 2: Experiment results of method NOWAIT for RL-based models.

Textual Reasoning Task

Strategy AMC 2023 AIME 2024 AIME 2025 GQPA-D
ACC↑ LEN↓ ACC↑ LEN↓ ACC↑ LEN↓ ACC↑ LEN↓

QwQ-32B

Original 91.25 7542 73.33 14142 66.67 15240 62.12 6960
NoThink 72.50 4265 46.67 7980 40.00 8167 52.02 6556
NOWAIT 95.50 +4.25 5267 -30% 71.33 -2.00 11907 -16% 68.00 +1.33 10548 -31% 63.63 +1.51 6522 -6%

Phi4-Resoning-Plus

Original 90.00 6366 70.00 15161 59.33 16257 61.61 5516
NoThink 80.83 3805 34.67 6200 31.33 5549 31.82 2776
NOWAIT 96.00 +6.00 4524 -28% 69.33 -0.67 11185 -26% 62.67 +3.34 12490 -23% 56.57 -5.04 4758 -14%

Qwen3-32B

Original 97.50 6424 81.33 12720 66.67 14987 69.19 5613
NoThink 59.50 1240 25.33 2511 20.00 2165 50.50 605
NOWAIT 96.67 -0.83 5560 -13% 83.33 +2.00 10732 -16% 64.44 -2.67 12930 -14% 63.13 -6.06 4788 -15%

thinking patterns, we apply chat templates for the222

Qwen3 model inference. In baseline and NOWAIT223

experiments, we set a maximum token limit of224

32,768 tokens per instance. If a model’s generation225

reaches this limit before finishing CoT generation,226

that instance is considered incorrect, and the gen-227

eration length is 32,768 tokens. If not, we will228

extract the final answer from the generated CoT229

and judge the correctness. This policy ensures that230

models failing to complete their response within231

the budget are appropriately penalized in Accuracy232

metric. For NoThink strategy (Ma et al., 2025a),233

we set a token budget of 10,000. Details can be234

found in subsection C.1.235

3.3 LRMs can be Efficient without “WAIT”236

Table 2 presents a comprehensive quantitative237

overview of our NOWAIT’s performance on var-238

ious textual reasoning tasks, evaluated across dif-239

ferent LRMs with diverse model structures and pa-240

rameter scales. Our method NOWAIT consistently241

and significantly reduces the output length while242

maintaining or even improving reasoning accuracy243

across diverse model architectures.244

Model Architectures Generalization. Notably,245

when integrated with QwQ-32B, NOWAIT im-246

proves accuracy on AMC 2023 by 4.25 percentage247

points, while reducing output length to just 70%248

of the baseline. With another model architecture,249

Phi4-Reasoning-Plus, our method achieves an even250

greater improvement of 6.00 percentage points, 251

alongside a 28% reduction in token generation. Ad- 252

ditionally, Qwen3-32B also benefits from our ap- 253

proach, reducing output length by 13% with only 254

a marginal decrease in reasoning accuracy. These 255

results demonstrate that our method NOWAIT con- 256

sistently enhances efficiency across diverse model 257

architectures. This consistency suggests a funda- 258

mental similarity in the reasoning patterns and re- 259

dundancy present in different models, underscoring 260

the broad applicability of our approach. 261

Reasoning Difficulty Analysis. We tested our 262

method on mathematical reasoning benchmarks 263

spanning various difficulty levels (AMC 2023 < 264

AIME 2024 < AIME 2025). The experimen- 265

tal statistics demonstrated strong generalization 266

across these levels: All tested models achieved 267

comparable reductions in token usage regardless of 268

task difficulty. Crucially, NOWAIT enabled mod- 269

els to maintain or even improve performance on 270

more challenging tasks. For instance, QwQ-32B 271

achieved a 1.33% point increase on the challeng- 272

ing AIME 2025 benchmark, while reducing token 273

usage by 31%, which is comparable to its perfor- 274

mance on the college-level AMC 2023. Qwen3- 275

32B consistently reduced output length by 14% to 276

16% across all three math benchmarks, while Phi4- 277

Reasoning-Plus showed similar gains and reduc- 278

tions from 23% to 26%. On the non-mathematical 279

GPQA-Diamond task, models showed a slight per- 280
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Table 3: Experiment results of method NOWAIT for RL-based models.

Strategy MMMU-Pro MMMU MathVista EMMA-mini
ACC↑ LEN↓ ACC↑ LEN↓ ACC↑ LEN↓ ACC↑ LEN↓

Kimi-VL-A3B-Thinking

NOWAIT 58.73 -2.54 1457 -51% 55.20 -1.80 1746 -40% 69.40 -2.10 1045 -43% 27.50 -7.25 2269 -60%

Baseline 61.27 2975 57.00 2929 71.50 1822 34.75 5734

QvQ-72B-Preview

NOWAIT 63.79 -1.98 1659 -21% 66.74 -0.11 1571 -21% 70.92 -2.62 939 -30% 28.00 -4.00 1554 -26%

Baseline 65.77 2094 66.85 1977 73.54 1338 32.00 2097

Table 4: Experiment Results on Video Reasoning
Tasks. We use QvQ-72B-Preview for experiments.

Strategy MMVU VSI-Bench
ACC↑ LEN↓ ACC↑ LEN↓

Baseline 64.10 1734 22.51 1280
NOWAIT 62.20 1260 22.57 1020

Performance -1.90 -27% +0.06 -20%

formance decrease compared to the math reasoning281

benchmarks, but still maintained efficiency, with282

an overall 11.67% reduction in token usage.283

These consistent efficiency gains and stable per-284

formance across diverse models and varying task285

difficulties suggest that, despite their scale, large286

reasoning models exhibit inherent redundancy in287

their output generation processes. NOWAIT ef-288

fectively prunes this redundancy, demonstrating289

that substantial efficiency improvements can be290

achieved simply by generating more concise out-291

puts, without the need for more complex or explicit292

"waiting" mechanisms.293

3.4 Comparison Analysis294

Comparison Experiment. We further compare295

with existing efficient reasoning techniques, includ-296

ing prompt-based training-free technique, Token-297

Budget (Han et al., 2024), and training-based tech-298

nique, O1-Pruner (Luo et al., 2025), using QwQ-299

32B-Preview (Qwen, 2025b) on AIME 2024 and300

AMC 2023. All inference is conducted without301

chat templates to ensure fairness.302

NOWAIT exhibits more significant generation303

length curtailment compared to Token-Budget. Al-304

though Token-Budget shows promising results on305

base models, such as GPT-4o, its effectiveness306

does not generalize to current LRMs(Deepseek-307

Table 5: Comparison Experiments across Multiple
Efficient Reasoning Methods. We use QwQ-32B-
Preview for experiments.

Strategy AIME 2024 AMC 2023
ACC↑ LEN↓ ACC↑ LEN↓

Baseline 42.00 8979 82.50 4143

Token-Budget 46.67 8734 82.50 3636

O1-Pruner 33.33 4289 77.50 2399

NOWAIT 42.00 5764 86.00 3396

R1 (DeepSeek-AI et al., 2025), QwQ-32B (Qwen, 308

2025b)). These reasoning models are less sensitive 309

to the prompt design, resulting in less efficiency. 310

O1-Pruner, while effective at reducing token usage, 311

incurs severe performance degradation on QwQ- 312

32B-Preview. In contrast, NOWAIT does not re- 313

quire additional training or data, but instead guides 314

models to strike an effective balance between out- 315

put length and reasoning accuracy, achieving an 316

inherent trade-off. 317

LRM Cannot Skip Thinking. As shown in Ta- 318

ble 2, Qwen3-32B, a model specifically trained 319

for non-thinking patterns, exhibits notable reduc- 320

tions in token usage. However, for other models 321

(QwQ-32B and Phi4-Reasoning-Plus) without non- 322

thinking pattern training, the prompt-based method, 323

NoThinking (Ma et al., 2025a), fails to fully sup- 324

press the generation of reasoning steps. While No- 325

Thinking does reduce the generation length, the 326

evaluated model can still generate lengthy text, 327

which results in seriously compromising accuracy. 328

This failure indicates that the presence of explicit 329

"thinking" tokens is not as critical to reasoning 330

performance as previously assumed. Our proposed 331
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Figure 2: Accuracy Degradation across Qwen3 Seires
Models on Math Reasoning Benchmarks.

NOWAIT operates on a similar premise by targeting332

key reasoning-related tokens, but achieves much333

greater efficiency improvements with minimal im-334

pact on accuracy.335

3.5 Efficient Multimodal Reasoning336

In this study, we first propose efficient multimodal337

reasoning and evaluate our method on vision rea-338

soning models using both image and video rea-339

soning benchmarks. As shown in Table 2, vision340

reasoning models exhibit more exciting outcomes.341

Severe Verbosity on Multimodal Reasoning. Al-342

though Kimi-VL-A3B-Thinking generates an aver-343

age of only 2,000 tokens across four image reason-344

ing benchmarks - significantly fewer than that in345

math reasoning tasks - our method NOWAIT further346

reduces the generation length by an average of 49%,347

with only a modest overall accuracy drop of 3.42348

percentage points. A similar trend is observed with349

QvQ-72B-Preview, which achieves up to a 30%350

reduction in token usage, accompanied by only a351

slight decrease in accuracy (ranging from 0.11%352

to 4.00%). For video reasoning tasks, QvQ-72B-353

Preview also demonstrates substantial reductions354

in output length while maintaining comparable ac-355

curacy. Similar to textual reasoning tasks, these356

results reveal the same challenging problems that357

a significant portion of generated tokens are either358

redundant or contribute little to the final reasoning.359

Existing multimodal reasoning models still suffer360

from severe overthinking.361

Reinforcement Learning is Less Efficient. We362

further evaluate various RL-based reasoning mod-363

els across various benchmarks and modalities.364

While a generation of intellectual reasoning models365

confirms the effectiveness of the RL algorithm in366
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Figure 3: Accuracy Radar Map on MMMU for QvQ-
72B-Preview.

advanced reasoning capabilities, the efficiency of 367

the optimal policy derived from the RL algorithm 368

is still disappointing. The model learns a reasoning 369

policy from training and begins to spontaneously 370

reflect reasoning processes during inference. How- 371

ever, the RL algorithm fails to effectively teach 372

these models when reflection is truly necessary. As 373

a result, these models often adopt a lower threshold 374

for self-reflection, leading to unnecessary verifica- 375

tion steps and less efficient reasoning. Our method 376

suppresses the generation of reflection keywords, 377

raising the threshold of self-reflection, and making 378

it more efficient and necessary. 379

4 Discussion 380

In this section, we first discuss the effectiveness 381

of our method NOWAIT by case study (described 382

in subsection 4.1) and the robustness of the model 383

while applying NOWAIT. Additionally, we conduct 384

an empirical experiment to analyze the difference 385

between RL-based models and distill models based 386

on NOWAIT in subsection 4.2. 387

4.1 Why does NOWAIT Work? 388

As we discussed in Table 3.4, thinking tokens 389

(“<think>” and “<\think>”) as well as keywords 390

(i.e., “wait”, “alternatively”, “hmm”) cannot com- 391

pletely trigger models’ actions. The thinking to- 392

kens failed to directly prevent the model from think- 393

ing, and banning keywords will not completely re- 394

move self-reflection in CoTs. Our method raises 395
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Question

Thinking Length: 445 Tokens, NoWait !

Thinking Length: 2119 Tokens

How does the energy of the pendulum changes after adding a new 
item in the experiment without consideration of friction?

Ground Truth Answer: D.

So I'm watching this video where there's a woman conducting some kind of experiment ...
She  starts  by explaining what she's going to do ...
At one point, she steps away from the table briefly and then returns to continue ...
Now, at the end of the video, there's a question about how the energy of the pendulum...
A. Larger B. Smaller, then larger C. Smaller D. Keep same E. Larger, then smaller ...
First, I should recall some basic physics about
So, if the woman adds a new item to the experiment without considering friction ...
Possible scenarios could be:
1. Adding mass to the pendulum: ... 2. Changing the length of the pendulum: ... 3. Adding an obstacle or 
another object that the pendulum interacts with: ... 
But without knowing exactly what she added to the experiment, it's a bit tricky to be precise.
Let me think differently. Suppose she added something that doesn't directly ...
However, if she added mass to the pendulum ...
Wait a minute, maybe I should consider the principle of conservation of energy. ...
But option A suggests that ... Option B says smaller ... Option C says smaller ... Option D says keep 
same ... Option E says larger ... Given that the question specifies... D. Keep same.
However, if adding mass to the pendulum changes its energy ...
But I think the key here is
I'll go with that. **Final Answer** \[ \boxed{D} \]

So I'm watching this video where there's a woman conducting some kind of experiment ...
She  starts  by explaining what she's going to do ...
After that, she introduces a new element into the experiment. She adds something to the setup ...
Throughout the video, she's very animated and engaged, using her hands to show ...
At one point, she steps away from the table to retrieve something, and then returns to continue ...
As the video progresses, she continues to interact with the apparatus ...
Towards the end of the video, she summarizes what she's demonstrated ...
Overall, the video is a well-structured and informative demonstration of pendulum ... 

**Final Answer**: \[ \boxed{D} \]

Figure 4: One Case Study From QvQ-72B-Preview on MMVU. NOWAIT CoT is more straightforward than the
original CoT, without unnecessary self-reflection and verbosity.

the threshold of self-reflection by suppressing key-396

word generation, substantially pruning less effec-397

tive reflection steps.398

Concise and Straightforward Reasoning. For399

an example from the MMVU benchmark, by care-400

fully evaluating and comparing the original QvQ-401

72B’s CoT (see Figure 7 and Figure 8) with the402

NoWait approach’s QvQ-72B’s CoT (see Figure 9),403

we can find that the NoWait CoT is more effi-404

cient primarily due to its concise reasoning struc-405

ture, reduced self-reflection, and streamlined logi-406

cal progression; it swiftly summarizes observations,407

confidently connects actions to outcomes without408

frequent hesitation, and promptly reaches the con-409

clusion. In contrast, the Baseline CoT exhibits pro-410

longed deliberation, redundant explorations of mul- 411

tiple hypothetical scenarios, repeated self-doubt, 412

and extensive revisiting of basic principles, all of 413

which slow down and complicate the reasoning 414

process, ultimately making it less efficient. 415

Different from the original reasoning policy, 416

NOWAIT guides models to link observations to con- 417

clusions without unnecessary speculation, making 418

the reasoning more concise and straightforward. 419

More Efficient Self-Reflection Mechanism. 420

NOWAIT does not prohibit models from self- 421

reflection. Even if we identify a relatively compre- 422

hensive keyword list associated with self-reflection, 423

the model can still conduct the double-checking 424

operations. Specifically, the model will generate 425
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non-English transition terms, including Chinese,426

French, and other languages, or potentially struc-427

ture its reasoning process.428

By closely evaluating and comparing the orig-429

inal Qwen3-32B CoT and the Qwen3-32B CoT430

employing the NoWait strategy for an example431

from the AMC2023 benchmark, we observe that432

although the NoWait CoT doesn’t litter its exposi-433

tion with “hmm” or “let me think,” it practices ef-434

ficient self-reflection by embedding three targeted435

checkpoints—first, discarding the extraneous root436

immediately after factoring; second, briefly cross-437

validating the same result via a compact exponent-438

based substitution; and third, verifying both orig-439

inal equations numerically at the end—instead of440

the Original CoT’s repeated, explicit pausing and441

full re-derivation, thus maintaining clarity while442

ensuring correctness with minimal overhead.443

A Closer Look at RL Models Performance. For444

textual reasoning tasks, our evaluation primarily in-445

cludes math reasoning problems. As we discussed446

in subsection 3.3, NOWAIT demonstrates consis-447

tent experimental outcomes across different math448

benchmarks. For multimodal reasoning tasks, Fig-449

ure 3 showcases the accuracy of the QvQ-72B-450

Preview across these various fields for Baseline451

and NOWAIT strategies on the MMMU bench-452

mark. A crucial observation highlights remarkably453

small accuracy divergence between the baseline454

and NOWAIT strategies across almost all tested455

disciplines. Despite the potential intervention intro-456

duced by NOWAIT, the performance remains con-457

sistently close to the baseline across a wide range of458

academic and professional subjects. This minimal459

degradation across diverse domains strongly indi-460

cates the high robustness of the QvQ-72B-Preview461

when using the NOWAIT strategy, demonstrating462

its ability to maintain performance effectively with-463

out significant drops across varied areas.464

4.2 Distill Models Cannot Reasoning without465

“Wait”466

Recent studies (Yue et al., 2025) underscore the467

distinct difference between RL-based reasoning468

models and distill reasoning models in terms of469

their reasoning capabilities and robustness. To ex-470

plore this difference further under challenging rea-471

soning tasks, we evaluate NOWAIT on Qwen3 se-472

ries (Qwen, 2025a), including the RL-based model,473

Qwen3-32B, and three distill models: Qwen3-14B,474

Qwen3-8B, and Qwen3-4B.475

Figure 2 illustrates the accuracy degradation ob- 476

served for each model across three math reasoning 477

benchmarks: AMC 2023, AIME 2024, and AIME 478

2025, which represent increasing levels of difficulty 479

(AMC 2023 < AIME 2024 < AIME 2025). A dis- 480

tinct accuracy degradation trend is evident between 481

the RL model and the distill models. Qwen3-32B, 482

which is post-trained with RL algorithms, exhibits 483

consistently low accuracy degradation, showing 484

fluctuations generally within the range of 1.5% to 485

3% across all three benchmarks. 486

In stark contrast, the distill models (Qwen3-14B, 487

Qwen3-8B, and Qwen3-4B) show significantly 488

higher and more varied degradation, particularly 489

as the reasoning difficulty increases. On the rel- 490

atively easier AMC 2023 benchmark, the degra- 491

dation is slight, with Qwen3-4B even showing a 492

slight performance improvement (-2.5%), while 493

Qwen3-14B and Qwen3-8B experience moderate 494

degradation ( 1.5% and 3% respectively). However, 495

on the more challenging AIME 2024 and especially 496

AIME 2025, the degradation for distill models esca- 497

lates dramatically. On math reasoning benchmark 498

AIME 2025, degradation reaches approximately 499

17% for Qwen3-14B, around 14% for Qwen3-8B, 500

and about 13% for Qwen3-4B. 501

The sharp performance drop in distill models, 502

unlike the stable RL model, shows their higher sen- 503

sitivity to reflection keywords. Since SFT injects 504

new knowledge directly, the CoT structure is cru- 505

cial for the advanced reasoning. Simply removing 506

these keywords disrupts this structure, preventing 507

distill models from fully demonstrating their rea- 508

soning abilities, especially on harder tasks where 509

effective self-checking is needed even without ex- 510

plicit reflection keywords. 511

5 Conclusion 512

This work demonstrates that explicit self-reflection, 513

signaled by tokens such as “Wait” and “Hmm”, is 514

not essential for advanced reasoning in R1-style 515

models. By suppressing these tokens during infer- 516

ence, the proposed NOWAIT approach effectively 517

reduces overthinking and shortens chain-of-thought 518

trajectories without compromising overall model 519

utility. Extensive experiments across diverse mod- 520

els and benchmarks in textual, visual, and video 521

reasoning tasks demonstrate that NOWAIT serves 522

as an efficient and utility-preserving solution for 523

multimodal reasoning, offering new insights for the 524

lightweight deployment of large reasoning models. 525
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Limitation526

In this paper, we introduce the NoWait method to527

address the overthinking phenomenon. We have528

conducted experiments across various benchmarks529

and with a range of models, which yield positive530

results and demonstrate the effectiveness of our531

approach. Although we have shown the feasibility532

of NoWait on multiple and diverse benchmarks,533

we acknowledge that the benchmarks used in our534

experiments may still have certain limitations.535
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Models (LLMs) (OpenAI, 2024b) has spurred sig- 807

nificant research, particularly focusing on strategies 808

that scale computation (Chen et al., 2024b; Snell 809

et al., 2024) or refine the generation process during 810

inference. 811

Prior studies apply fundamental techniques like 812

Chain-of-Thought (CoT) prompting (Wei et al., 813

2023), guiding the model to think step by step, or 814

integrate Process Reward Models(PRMs), external 815

verifiers and search-guided decoding (Brown et al., 816

2024) to aggregate multiple reasoning paths and en- 817

hance final answer accuracy. These efforts have cul- 818

minated in a new generation of powerful Large Rea- 819

soning Models (LRMs), such as ChatGPT-O1 (Ope- 820

nAI, 2024a), Deepseek-R1 (DeepSeek-AI et al., 821

2025), QwQ (Qwen, 2025b), Gemini2.5 (Google, 822

2025), which enable to spontaneous generation of 823

extensive CoT sequences involving forward think- 824

ing, backtracking, and verification steps. 825

Within the open-source domain, models de- 826

rive reasoning abilities from diverse training 827

paradigms, primarily through reinforcement learn- 828

ing (RL) (DeepSeek-AI et al., 2025; Ramesh et al., 829

2024; Muennighoff et al., 2025) on reasoning tasks 830

or distillation (DeepSeek-AI et al., 2025; Yu et al., 831

2024) on high-quality CoT data produced from RL- 832

based models. Recent works (Yue et al., 2025) have 833

analyzed the difference between the two types of 834

models. In this study, we include RL-based models 835

for further exploration, underscoring the defects of 836

RL-triggered reasoning capabilities. 837

Efficient Reasoning While elaborating reason- 838

ing processes like long CoT demonstrates enhanced 839

performance on reasoning tasks, the associated 840

verbosity presents a significant efficiency chal- 841

lenge (Chen et al., 2024a). The generation of ex- 842

tensive intermediate steps substantially increase 843

inference latency and computational cost, hinder- 844

ing practical deployment in real-world applications. 845

Consequently, a considerable body of work ex- 846

plores methods for efficient reasoning, aiming to 847
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reduce the length of reasoning traces without com-848

promising accuracy.849

Some techniques continue to train models for850

CoT optimization (Aggarwal and Welleck, 2025;851

Luo et al., 2025; Shen et al., 2025b), such as apply-852

ing RL with length-based reward design (Sun et al.,853

2024; Liao et al., 2025; Luo et al., 2025; Aggarwal854

and Welleck, 2025), or fine-tuning with variable-855

length CoT data (Han et al., 2024; Yu et al., 2024;856

Munkhbat et al., 2025). Other methods conform857

training-free strategy, applying dynamic reasoning858

paradigms during inference (Yang et al., 2025a;859

Zhang et al., 2025a; Wu et al., 2025; Lin et al.,860

2025) or leveraging prompts to guide efficient rea-861

soning (Cheng and Van Durme, 2024; Xu et al.,862

2025; Han et al., 2024; Ma et al., 2025a). While863

existing studies are effective in cutting down the864

token usage for reasoning, our study provides a865

new insight to rethink the internal mechanism of ef-866

ficient reasoning and propose efficient multimodal867

reasoning.868

Self-Reflection & Overthinking Parallel to en-869

hancing reasoning capabilities and efficiency, re-870

cent studies analyze the intricacies of the gener-871

ated thought processes. Within these generated872

sequences, an interesting phenomenon occurs - mo-873

ments marked by keywords like "wait" and "hmm",874

which we term Aha Moment (DeepSeek-AI et al.,875

2025; Liu et al., 2025). These moments seemingly876

indicate a capability for self-reflection (Chen et al.,877

2025a), allowing models to reassess their reasoning878

path and verify their CoT before concluding.879

Prior studies (Yang et al., 2025b; Zhang et al.,880

2025a) have begun to characterize these moments881

and probe the latent states to explore the poten-882

tial mechanisms behind such spontaneous self-883

reflection. However, the frequent occurrence of884

these keywords can also lead to significant Over-885

thinking (Chen et al., 2024a; Sui et al., 2025),886

where the model continues reflecting even after887

reaching correct intermediate or final conclusions.888

Building on the initial characterizations from pre-889

vious work, our study takes a further step to eval-890

uate the functional effectiveness of these sponta-891

neously generated Aha Moments, directly address-892

ing whether they are essential contributors to the893

reasoning outcomes or potentially represent a form894

of inefficient behavioral mimicry.895

C Baseline Implementation Details 896

Our experiments include three baselines, NoThink- 897

ing (Ma et al., 2025a), TokenBudget (Han et al., 898

2024), and O1-Pruner (Luo et al., 2025). In this 899

section, we introduce the implementation details 900

on these techniques. 901

C.1 NoThinking 902

The core idea of NoThinking is to leverage prompts, 903

guide reasoning models to skip the reasoning pro- 904

cesses and directly generating final response. For 905

models that have not been post-trained for non- 906

reasoning mode, such as QwQ-32B and Phi4- 907

Reasoning-Plus, we apply the prompt template as 908

follows: 909

Prompt Template for NoThinking

{Question}
<think>
Okay, I think I have finished thinking.
<\think>

910

We then adopt a budget forcing technique specifi- 911

cally for NoThinking. Different from the token bud- 912

get we apply for normal inference and NOWAIT, 913

we set the token budget to 10,000 and forced 914

models to generate Final Answer when the model 915

reaches the token budget. 916

C.2 Token-Budget 917

We apply TALE-EP strategy, a prompt-based 918

method. This method consists of two steps: 919

1) Directly answering the reasoning model: 920

Prompt Template for TALE-EP

Task: Analyze the given question and esti-
mate the minimum number of tokens re-
quired to generate a complete and accu-
rate response. Please give the response by
strictly following this format: [[budget]],
for example, Budget: [[12]].

921

2) We include a token budget in the prompt to 922

guide models thinking efficient. 923

C.3 O1-Pruner 924

O1-Pruner is an effective post-training method. 925

We select a released model trained on QwQ-32B- 926

Preview by O1-Pruner. This model can be accessi- 927

ble via Hugging Face. 928
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Figure 5: Final / Intermediate answer entropy scores across AIME25. As the accuracy degradation, the entropy
scores of final answers increase gradually, while the intermediate answer entropy remains relatively lower.

Prompt method Content

Vanilla CoT Let’s think step by step:

Token Budget
Let’s think step by step and
use less than {budget} tokens:

Table 6: Prompt Template Applied for Token Budget.

D Prompts929

Prompt Template for
Multiple-Choice Question

{Question}
—
Choices:
A. option A
B. option B
...
—
Choose the correct answer from the choices
above.
Output format: [ANSWER: "<answer>"] If
the answer is A, output [ANSWER: "A"]

930

E Additional Experiment: Is931

Self-Reflection Really Necessary?932

E.1 Preliminaries933

Reasoning models structure their output using934

thinking delimiters (i.e., <think> and <\think>), di-935

viding it into two main parts: the Chain-of-Thought936

(CoT), detailing the reasoning processes, and the 937

final response by summarizing the thought process. 938

Within the generated CoTs, models employ com- 939

plex reasoning strategies, including thinking for- 940

ward, backtracking, and self-reflection. Notably, 941

even after initially arriving at a result, LRMs fre- 942

quently continue their reasoning for further vali- 943

dation. We define the subparagraph of reasoning 944

or validation from its beginning up to the point 945

where a result is generated as a "thinking chunk". 946

Each thinking chunk is associated with one result 947

r, referred to as the intermediate answer r. Con- 948

ceptually, the thinking chunk can be represented as 949

a pair (chunki, ri), where chunki comprises the 950

reasoning text and ri is the intermediate answer 951

from chunki. A complete CoT is thus formally 952

structured as a sequence of these reasoning-answer 953

pairs: CoT = {(chunki, ai)}ni=1. 954

On the other hand, the final response is a brief 955

summary without complex reasoning strategies 956

such as reflection. Generally, models will pro- 957

vide a final answer in the response. The structure 958

of final response can be denoted as Response = 959

(summary, ans). 960

E.2 Does Self-Reflection Really Work? 961

In this section, we conduct a pilot study to xxxx. 962

There are multiple thinking chunks in the single 963

CoT. Transition between different chunks are al- 964

ways marked by a series of keywords, such as 965

Wait and Alternatively, and then reasoning models 966

switch their reasoning strategies to double check 967
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the reasoning processes. However, this mecha-968

nism can sometimes lead to unproductive over-969

thinking, causing models to repeatedly entering970

the new thinking chunk and endlessly validate the971

processes. Are these verbose self-reflection really972

effective to the advanced reasoning?973

To investigate the practical effectiveness of self-974

reflection, we employ a two-fold analysis, assess-975

ing the association between intermediate answers976

and final answers.977

E.3 Study Design978

In this section, we conduct an empirical experiment979

to assess the effectiveness of self-reflection mech-980

anism. We describe the experiment design in E.3,981

introduce experiment method in E.3 and metrics in982

E.3, and finally analyze the experiment results.983

Setup. In this experiment, we first sample 32 runs984

on math benchmark AIME25 (30 problems), col-985

lecting the final answers across different samples986

and all the intermediate answers within 32×30987

CoTs. Second, by quantifying and comparing the988

variability observed in both the intermediate an-989

swers and the overall reasoning paths, we aim to990

assess the nature and utility of reflection-driven991

exploration in reasoning models.992

Intermediate Answer Data Collection. To enable993

a detailed analysis of the reasoning process, we pre-994

cisely segment each Chain-of-Thought (CoT) into995

discrete thinking chunks. This process involves996

several steps.997

The first step is to intially divide CoTs into think-998

ing chunks. We perform an initial split of the raw999

CoT text into paragraph segments based on the1000

double newline delimiter ("\n\n"). We then lever-1001

age reflection keywords (i.e., "Wait", "Hmm" and1002

"Alternatively") to define the boundaries of think-1003

ing chunks. Each thinking chunk is formed by1004

grouping one or more consecutive paragraph seg-1005

ments starting either at the beginning of the CoT1006

or immediately following one of these reflection1007

keywords, and ending just before the next occur-1008

rence of a keyword. Secondly, for each initially1009

delineated thinking chunk, we employ GPT-4.1-1010

mini (OpenAI, 2024b) to extract the intermediate1011

answer. This step specifically targets identifying1012

and extracting the result or conclusion presented1013

at the end of the reasoning sequence within that1014

chunk, if such a result is explicitly stated.1015

This structured representation facilitates the anal-1016

ysis of the step-by-step reasoning process and the1017

role of intermediate results. 1018

Evaluation & Metrics. To enhance the robust- 1019

ness of our experimental results, we perform 1020

N = 32 independent samplings for state-of-the-art 1021

model QwQ-32B (Qwen, 2025b) on math reason- 1022

ing benchmark AIME25. To quantify the consis- 1023

tency of final answers and intermediate answers, 1024

we apply entropy score. 1025

Specifically, for each question, we can collect 1026

two answer collections as described in E.3, includ- 1027

ing 32× final answers A = {ansi}Ni=1 and 32× 1028

intermediate answer collections {Ri|{rj}
Mj

j=1}Ni=1, 1029

where M is the count of intermediate answers 1030

within jth CoT. Additionally, we define the calcu- 1031

lation operation U(·), which is the corresponding 1032

non-duplicated collection, and | · | represents the 1033

count of the collection. 1034

To quantify the consistency of the final answers, 1035

we first we calculate the entropy score H(A): 1036

H(A) = −
|U(A)|∑
i=1

(
uk
N

log(
uk
N

))

where uk is the kth answer of U(A). 1037

For intermediate answer collections C =
{Ri}Ni=1, we first get the entropy score H(Ri) for
each sample. Then calculate the average score of
32 collections. The entropy score of intermediate
answers can be defined as follow:

H(C) =
1

N

N∑
i=1

H(Ri)

A higher H score indicates higher consistency, 1038

highlighting the variability of reasoning processes, 1039

while the lower score reflect less breaking point 1040

within reasoning processes. 1041

E.4 Results & Analysis 1042

Interestingly, models tend to generate consistent 1043

intermediate answers within a single Chain-of- 1044

Thought (CoT), regardless of correctness. How- 1045

ever, across different samplings, models exhibit 1046

lower consistency and robustness, frequently gen- 1047

erating various incorrect answers. Each sampling 1048

is independent and initiates a fresh reasoning se- 1049

quence, demonstrating that LRMs can reach solu- 1050

tions through multiple reasoning routes or make 1051

distinct errors in different steps. Conversely, within 1052

a single CoT, repeated self-reflection yields highly 1053

consistent intermediate answers, highlighting the 1054

influence of earlier reasoning steps on subsequent 1055
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processes. This contradict suggests the ineffec-1056

tiveness of spontaneous self-reflection mechanisms1057

implied in these models1058

E.5 Case Analysis on Attention Map1059

To find out why models determine to generate1060

"Wait", in this section, we detect the attention map1061

at the beginning of thinking chunks. We randomly1062

select a CoT generated for AIME25, and split it1063

into thinking chunks. We then calculate the at-1064

tention score of the last token in CoT. It is clear1065

that LRMs know how many times of self-reflection1066

do they conduct, and the tails of thinking chunks1067

exhibit much higher scores than those of interme-1068

diate reasoning processes. The high-score zone is1069

overlapped with keywords position.1070

To further analyze whether keywords result in a1071

high score or not, we delete all the keywords in the1072

CoT, and recalculate the attention map. We find1073

that there is no distinct difference before and after1074

modification. Keywords do not act as the flag1075

F Benchmark & Models1076

F.1 Textual QA1077

In this paper, we evaluate a range of mathemat-1078

ics competition benchmarks designed to assess1079

the mathematical reasoning abilities of models, in-1080

cluding AIME2024, AIME2025, AMC2023. We1081

have also evaluated GPQA-Diamond (Rein et al.,1082

2024), a challenging benchmark spanning biology,1083

physics, and chemistry. Here is the detailed infor-1084

mation on these benchmarks:1085

• AIME2024: A benchmark derived from the1086

2024 American Invitational Mathematics Ex-1087

amination (AIME), a challenging mathemat-1088

ics competition aimed at high school students1089

in the U.S., designed specifically to evaluate1090

advanced mathematical reasoning abilities of1091

AI models. It consists of complex problems1092

covering algebra, geometry, combinatorics,1093

and number theory, each requiring integer so-1094

lutions ranging from 0 to 999. Models are1095

tested on their ability to perform multi-step1096

reasoning, provide accurate step-by-step ex-1097

planations, and derive correct final answers.1098

• AIME2025: Like AIME2024, the AIME20251099

benchmark is based on the 2025 American In-1100

vitational Mathematics Examination (AIME),1101

an advanced and highly respected mathemat-1102

ics competition aimed at high school students1103

in the United States, intended specifically for 1104

evaluating the mathematical reasoning and 1105

problem-solving capabilities of AI models. 1106

• AMC2023: A benchmark derived from the 1107

2023 American Mathematics Competitions 1108

(AMC), specifically designed to evaluate the 1109

mathematical reasoning abilities of AI models. 1110

It consists of 40 questions, covering various 1111

mathematical topics such as algebra, geome- 1112

try, number theory, and combinatorics. 1113

• GPQA-Diamond (Rein et al., 2024): A subset 1114

of the GPQA dataset, specifically designed to 1115

assess the reasoning capabilities of advanced 1116

AI systems and highly knowledgeable humans 1117

on extremely difficult, domain-expert-level 1118

questions in biology, physics, and chemistry. 1119

The "Diamond" subset is the hardest subset of 1120

the benchmark, intended to facilitate research 1121

on reasoning models. 1122

We evaluated and measured these models on the 1123

above benchmarks: 1124

• QwQ-32B (Qwen, 2025b): A large-scale lan- 1125

guage model designed to achieve robust per- 1126

formance across a wide range of natural lan- 1127

guage processing tasks. Developed with 32 1128

billion parameters, Qwq32B leverages ad- 1129

vanced architecture and training techniques 1130

to enhance understanding, generation, and 1131

reasoning in both general and specialized do- 1132

mains. 1133

• Phi4-Reasoning-Plus (Abdin et al., 2025): 1134

An advanced language model specifically de- 1135

signed to excel in complex reasoning and 1136

problem-solving tasks across multiple do- 1137

mains, demonstrating strong performance in 1138

textual data. 1139

• Qwen3-32B(Qwen, 2025a): A state-of-the-art 1140

large language model developed by Alibaba 1141

Cloud, featuring 32 billion parameters and 1142

designed to deliver high performance across 1143

a broad spectrum of language understanding 1144

and generation tasks. 1145

• QwQ-32B-Preview (Qwen, 2025b): An exper- 1146

imental large language model developed by 1147

Alibaba’s Qwen team, designed to advance 1148

AI reasoning capabilities. With 32.5 billion 1149

parameters and a 32,768-token context win- 1150

dow, it is specifically tested on benchmark 1151
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AIME2024 and AMC2023 to compare with1152

other methods.1153

F.2 Visual QA1154

Additionally, we incorporate evaluations on the1155

multimodal benchmarks including MMMU-Pro1156

(Yue et al., 2024b), MMMU (Yue et al., 2024a),1157

Math-Vista (Lu et al., 2024) and EMMA-mini1158

(Hao et al., 2025) to further explore the models’ ca-1159

pabilities across diverse reasoning and multimodal1160

tasks. Here is the detailed information on these1161

benchmarks:1162

• MMMU (Yue et al., 2024a): A large-scale,1163

multimodal evaluation benchmark specifically1164

designed to test the capabilities of AI mod-1165

els on college-level tasks that require both1166

advanced subject knowledge and deliberate1167

reasoning across a broad range of academic1168

disciplines.1169

• MMMU-Pro (Yue et al., 2024b): MMMU-1170

Pro is an enhanced evaluation benchmark de-1171

signed to rigorously test the true understand-1172

ing and reasoning capabilities of multimodal1173

AI models. Building on the original MMMU1174

benchmark, it forces models to simultaneously1175

process and integrate visual and textual infor-1176

mation, simulating real-world scenarios that1177

require human-like cognitive skills.1178

• Math-Vista (Lu et al., 2024) : A comprehen-1179

sive benchmark specifically designed to eval-1180

uate and challenge the mathematical reason-1181

ing abilities of large language and multimodal1182

models within visual contexts. MathVista re-1183

quires models to perform deep, fine-grained1184

visual understanding and complex composi-1185

tional reasoning across diverse mathematical1186

tasks.1187

• EMMA-mini (Hao et al., 2025): A specialized1188

benchmark designed to rigorously assess the1189

ability of Multimodal Large Language Mod-1190

els (MLLMs) to perform integrated, organic1191

reasoning over both text and images—an es-1192

sential aspect of human intelligence. Unlike1193

existing benchmarks that often focus on text-1194

based reasoning or superficial visual cues,1195

EMMA-mini presents tasks spanning math-1196

ematics, physics, chemistry, and coding, all1197

of which require genuine cross-modal reason-1198

ing that cannot be solved by independently1199

analyzing text or images alone.1200

We evaluated and measured these models on the 1201

above benchmarks: 1202

• Kimi-VL-A3B-Thinking (Du et al., 2025): An 1203

efficient open-source vision-language model 1204

(VLM) built on a Mixture-of-Experts (MoE) 1205

architecture, designed to deliver advanced 1206

multimodal reasoning, robust long-context un- 1207

derstanding, and strong agent capabilities. 1208

• QvQ-72B-Preview (Qwen, 2024): QVQ-72B- 1209

preview is an open-source, large-scale multi- 1210

modal reasoning model built on top of Qwen2- 1211

VL-72B, achieving remarkable performance 1212

on challenging benchmarks. In this part of the 1213

experiment, the image recognition and reason- 1214

ing capability of this model has been tested. 1215

F.3 Video QA 1216

Furthermoer, we conduct experiment on video 1217

benchmarks, whose name and details is listed as 1218

follows: 1219

• MMVU (Zhao et al., 2025): A comprehen- 1220

sive dataset designed to evaluate the capa- 1221

bilities of AI models in understanding and 1222

reasoning over expert-level, domain-specific 1223

videos. Each example is meticulously crafted 1224

using a textbook-guided annotation process, 1225

ensuring that questions require both visual 1226

comprehension and the application of domain- 1227

specific knowledge. Unique to MMVU is the 1228

inclusion of expert-annotated reasoning ratio- 1229

nales and relevant domain knowledge for each 1230

question, facilitating fine-grained analysis of 1231

model performance. 1232

• VSI-Bench (Yang et al., 2024): A pioneering 1233

dataset, designed to evaluate the visual-spatial 1234

reasoning capabilities of multimodal large lan- 1235

guage models (MLLMs). It comprises many 1236

question-answer pairs derived from egocen- 1237

tric videos sourced from public indoor 3D 1238

scene reconstruction datasets, aiming to pro- 1239

vide a comprehensive benchmark for testing 1240

and improving the spatial reasoning abilities 1241

of MLLMs, moving beyond traditional static 1242

image evaluations. 1243

G Additional Experiment Results & Case 1244

Study 1245
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Table 7: Complete Experiment results of NOWAIT on Qwen3 Series Models and Other Distill Models.

Strategy AMC 2023 AIME 2024 AIME 2025 GQPA-D
ACC↑ LEN↓ ACC↑ LEN↓ ACC↑ LEN↓ ACC↑ LEN↓

Qwen3-32B

NOWAIT 96.67 5560 83.33 10732 64.44 12930 63.13 4788
NoThink 59.50 1240 25.33 2511 20.00 2165 50.50 605
Baseline 97.50 6424 81.33 12720 66.67 14987 69.19 5613

Qwen3-14B

NOWAIT 95.50 4714 73.33 10919 61.33 12104 54.75 3889
NoThink 69.50 1749 33.33 3559 26.67 3171 38.59 1001
Baseline 96.25 6677 78.67 14217 78.00 14765 59.59 4633

Qwen3-8B

NOWAIT 94.50 5251 72.67 10963 60.00 13674 51.71 4735
NoThink 66.50 1760 28.89 3362 25.56 3719 32.93 1271
Baseline 97.50 8513 77.33 14142 74.61 16094 57.07 5904

Qwen3-4B

NOWAIT 95.50 4523 65.33 10358 56.67 12213 76.26 3178
NoThink 70.00 2236 33.33 4068 23.00 4656 27.27 1288
Baseline 93.75 8125 70.00 13488 70.00 18086 53.54 5965

Llama-Nemontron-Nano-8B-v1

NOWAIT 72.00 3690 30.67 4865 33.33 7271 42.83 3754
NoThink 39.00 2982 6.6 2185 14.67 3677 30.30 3109
Baseline 71.50 4535 39.33 7371 44.67 11798 54.1 5071

Deepseek-R1-Distill-Qwen-7B

NOWAIT 72.00 4315 26.67 7247 31.33 8236 40.91 3672
NoThink 30.00 2552 18.67 3895 10.00 2724 21.00 1112
Baseline 73.00 4796 34.67 7755 40.00 13767 49.10 3809
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Original CoT:

So I'm watching this video where there's a woman conducting some kind of experiment 
or demonstration. She's in a room that looks like a laboratory or a classroom with a lot of 
scientific equipment and wooden cabinets in the background. On the table in front of her, 
there's this setup that seems to be a pendulum or some sort of apparatus that can move 
back and forth.

She starts by explaining what she's going to do. She mentions a pendulum and talks 
about its motion. Then, she begins to manipulate the apparatus, pushing it back and 
forth. I can see that the object is moving in a way that suggests it's a pendulum, swinging 
from one side to the other.
As she continues, she adds another component to the setup. It looks like she's 
introducing a new element into the experiment, maybe to observe how it affects the 
pendulum's motion. She keeps adjusting things and observing the results.

At one point, she steps away from the table briefly and then returns to continue her 
demonstration. Throughout the video, she's engaged in showing and explaining the 
principles behind the pendulum's behavior.

Now, at the end of the video, there's a question about how the energy of the pendulum 
changes after adding a new item to the experiment, assuming no friction is present. The 
options are:

A. Larger   B. Smaller, then larger   C. Smaller  D. Keep same  E. Larger, then smaller
I need to choose the correct answer from these options.

First, I should recall some basic physics about pendulums and energy conservation. A 
pendulum swings back and forth, converting potential energy to kinetic energy and back 
again. If there's no friction or other dissipative forces, the total mechanical energy of the 
pendulum should remain constant. That means that the sum of its potential energy and 
kinetic energy shouldn't change over time.

So, if the woman adds a new item to the experiment without considering friction, I need 
to think about how this addition affects the pendulum's energy.

Possible scenarios could be:
1. Adding mass to the pendulum: If she adds mass to the pendulum, the potential energy 
at the highest points would increase because potential energy depends on mass and 
height. Since total energy is conserved, the kinetic energy at the lowest point would also 
have to adjust accordingly. So, the overall energy might be larger if mass is added, but 
I'm not entirely sure.
2. Changing the length of the pendulum: Changing the length affects the period of the 
pendulum but doesn't directly change its energy if the amplitude remains the same. 
However, if the length is changed and the amplitude is adjusted, that could affect the 
energy.

Figure 7: A CoT Example from QvQ-72B-Preview on MMVU 2023.
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Original CoT(continue):

3. Adding an obstacle or another object that the pendulum interacts with: This could 
transfer some of the pendulum's energy to the other object, possibly reducing the 
pendulum's energy.

But without knowing exactly what she added to the experiment, it's a bit tricky to be 
precise.
Let me think differently. Suppose she added something that doesn't directly interact 
with the pendulum's energy, like a support or another structural component that 
doesn't affect the motion. In that case, the energy of the pendulum should remain the 
same, assuming no energy is being lost or gained from external sources.

However, if she added mass to the pendulum, say by attaching something to it, that 
would increase its moment of inertia, potentially affecting its motion and energy.

Wait a minute, maybe I should consider the principle of conservation of energy. If no 
friction is present and no external work is done on the system, the total energy should 
remain constant. So, unless she's adding or removing energy in some way, the energy 
of the pendulum should stay the same.

But option A suggests that the energy becomes larger, which might be the case if she 
added mass without accounting for the increased potential energy.  

Option B says smaller, then larger, which doesn't make much sense immediately.

Option C says smaller, which might be if she added something that absorbed energy, 
like a damping mechanism.

Option D says keep same, which aligns with the conservation of energy principle if no 
energy is added or removed.

Option E says larger, then smaller, which also seems unclear.

Given that the question specifies "without consideration of friction," and assuming 
that the added item doesn't dissipate energy, the most straightforward answer would 
be D. Keep same.
However, if adding mass to the pendulum changes its energy, then perhaps it could be 
A. Larger.
But I think the key here is that if no friction is considered, and no energy is being 
added or removed, the energy should remain constant. Therefore, the answer should 
be D. Keep same.
I'll go with that.
**Final Answer**
\[ \boxed{D} \]

Figure 8: A CoT Example from QvQ-72B-Preview on MMVU 2023. [2]
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No Wait CoT:

So I'm watching this video where there's a woman conducting some kind of 
experiment or demonstration. She's in a room that looks like a laboratory or a 
classroom with a lot of scientific equipment and wooden cabinets in the background. 
On the table in front of her, there's this setup that seems to be a pendulum or some 
sort of apparatus that can move left and right.

She starts by explaining what she's going to do. She mentions a pendulum and talks 
about its motion. Then, she begins to manipulate the apparatus, pushing it and 
observing how it moves. She does this a few times, and it seems like she's 
demonstrating the natural motion of the pendulum without任何 external forces 
acting on it.

After that, she introduces a new element into the experiment. She adds something to 
the setup, possibly a magnet or另一个 pendulum, and continues to observe the 
motion. This time, the motion of the original pendulum is affected by this new 
addition, and she explains what's happening.

Throughout the video, she's very animated and engaged, using her hands to show 
what's going on and speaking clearly to the camera. The room is filled with various 
scientific instruments and models, which adds to the educational atmosphere of the 
setting.

At one point, she steps away from the table to retrieve something, and then returns to 
continue her demonstration. This suggests that she's prepared multiple parts to her 
experiment, each building upon the last to illustrate a particular concept or principle.

As the video progresses, she continues to interact with the apparatus, adjusting it and 
observing the effects. Her explanations are thorough, and she makes sure to point out 
key points in the motion and how they relate to the properties of pendulums.

Towards the end of the video, she summarizes what she's demonstrated and how it 
relates to the choices provided in the question. She emphasizes the importance of 
considering friction and otros factors that might affect the energy of the pendulum 
over time.

Overall, the video is a well-structured and informative demonstration of pendulum 
motion and the factors that influence its energy, particularly focusing on the changes 
in energy when additional elements are introduced into the system.

**Final Answer**

\[ \boxed{D} \]

Figure 9: A CoT Example from QvQ-72B-Preview on MMVU 2023. [1]
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